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Fig. 1. Comparison of various image-downscaling techniques. (left) Reference image. (right) Downscaling to 180 X 144 pixels performed with: (a) Lanczos
filtering followed by resampling using a cubic B-Spline causes structured high-frequency details from the pants, scarf, books, and most of the table cloth to
be removed. (b) The technique by Oztireli and Gross introduces aliasing artifacts in those regions. (c) The technique of Weber et al. removes most of these
high-frequency details, but still exhibits aliasing (e.g., see books). (d) By remapping high frequencies to the representable range of the downsampled spectrum,
our approach retains the structured details. The green plots under the images are the intensity values of the highlighted pixels. The light-blue envelopes show
the horizontally-compressed plot of the reference image. “Barbara” test image attributed to Allen Gersho (public domain). Please zoom in to see the details.

We present an image downscaling technique capable of appropriately repre-
senting high-frequency structured patterns. Our method breaks conventional
wisdom in sampling theory—instead of discarding high-frequency informa-
tion to avoid aliasing, it controls aliasing by remapping such information to
the representable range of the downsampled spectrum. The resulting images
provide more faithful representations of their original counterparts, retain-
ing visually-important details that would otherwise be lost. Our technique
can be used with any resampling method and works for both natural and
synthetic images. We demonstrate its effectiveness on a large number of
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images downscaled in combination with various resampling strategies. By
providing an alternative solution for a long-standing problem, our method
opens up new possibilities for image processing.
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1 INTRODUCTION

Image downscaling is one of the most prevalent image-processing
operations. It is present, for instance, when we (pre-)view images on
the displays of smartphones and digital cameras, or browse photo
collections. Unfortunately, some spatial frequencies found in the
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original images might not be representable in their reduced ver-
sions. Thus, following sampling theory [Shannon 1949], the original
images have traditionally been low-pass filtered before resampling.
Intended to avoid aliasing, the pre-filtering stage tends to discard
important visual information, such as high-frequency texture details
(Fig. 1a). Representing high-frequency content in the downsized
images has been a long-standing challenge in image processing,
which previous techniques have not been able to conquer.

We present a technique for image downscaling capable of repre-
senting high-frequency details. Unlike the classic approach based
on Shannon’s sampling theorem, which discards high-frequency
content before resampling, our technique remaps such content to the
representable range of the downsampled spectrum. As such, it pre-
serves structured patterns by adjusting their frequencies (Fig. 1d).
While this is a form of aliasing, it is controlled by our method. This
process is performed at the original image resolution, such that
any resampling method, including the recent techniques of Kopf et
al. [2013], Oztireli and Gross [2015], and Weber et al. [2016], can
be subsequently applied without introducing aliasing or discarding
important details. The resulting images better represent the original
content, which may contain arbitrary high frequencies.

Our spectral remapping technique is based on a discrete Gabor
space-frequency analysis [Gabor 1946]. The original image is decom-
posed into a series of overlapping patches, which are transformed
to frequency domain after a pixelwise multiplication by a Gaussian
window. Frequency remapping is performed for each patch. The
spectrally-remapped image is then obtained from the spectra of
the resulting patches by transforming them back to spatial domain,
multiplying by the dual of the Gaussian window, and accumulating
the overlapping patches. The algorithm is detailed in Section 4.

We demonstrate the effectiveness of our technique by applying it
to a large number of natural and synthetic images, in combination
with various resampling strategies. Fig. 1 compares our downscal-
ing method to three others, applied to the reference image on the
left, which has been reduced to 180 x 144 pixels (comparisons with
additional techniques are available in the supplementary materials).
Fig. 1a shows the result obtained with the use of Lanczos filtering fol-
lowed by resampling using a cubic B-Spline. Note that this removes
high-frequency details from the pants, scarf, books, and most of the
table cloth. The technique by Oztireli and Gross [2015] introduces
aliasing artifacts in those regions (Fig. 1b). The method by Weber
et al. [2016] removes most of these high-frequency details, but still
exhibits aliasing (see the books in Fig. 1c). Our approach remaps
relevant high-frequency content to a representable lower-frequency
counterpart, thus retaining the details. Fig. 1d was obtained apply-
ing our technique to the reference image, followed by resampling
performed with Lanczos filtering and subsampling using a cubic
B-Spline (same procedure used to generate Fig. 1a). Despite of the
use of the same resampling method, all visually-important details
are properly represented in our result. A direct comparison of these
images illustrates the benefits of our technique.

The contributions of our work include:

e Animage-downscaling technique that properly represents struc-
tured high-frequency content depicted in the original image
(Section 4). Our technique is the first of its kind, and can be used
in combination with any resampling method;
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o A technique for automatically decomposing an image into a set
of spatially-localized non-harmonic waves, and for computing
the waves” amplitudes and phases (Section 4.1 and Appendix B);

o A technique for remapping high frequencies to the representable
range of the downsampled spectrum (Section 4.2). The robust-
ness of our approach supports the remapping of arbitrary fre-
quencies present in the original image;

o A technique for aligning the phases of the remapped waves
(Section 4.3), avoiding discontinuities in the resulting image;

o A technique for preserving the original image’s energy in its
spectrally-remapped version (Section 4.4 and Appendix C).

2 RELATED WORK

Image downscaling techniques have been traditionally based on sam-
pling theory [Shannon 1949], consisting of an antialising low-pass
filtering stage followed by resampling. Since the “ideal” low-pass
sinc filter has infinite image-space support, several finite approxima-
tions have been used in practice to try to prevent aliasing while mini-
mizing ringing artifacts. Examples of such filters include the Lanczos
kernel, and several cubic filters [Mitchell and Netravali 1988]. Mod-
ern works also show that sampling is better seen through approx-
imation theory [Unser 2000], and the use of compact polynomial
bases with recursive digital filters leads to better and more efficient
reconstruction algorithms [Nehab and Hoppe 2014; Sacht and Nehab
2015]. Nevertheless, the quality of pre-filtering and reconstruction
strategies is a subjective issue involving an interplay among aliasing,
blurring, and ringing [Mitchell and Netravali 1988]. Regardless of
this subjectivity, by removing high-frequency content, this classic
approach tends to discard important visual content (Fig. 1a).
Recently, a few alternative image-downscaling techniques have
been proposed trying to preserve image details. Kopf et al. [2013]
optimize the shapes of downsampling bilateral kernels to locally
adjust them to image features. This approach produces crisp im-
ages, avoids ringing artifacts, and can be successfully applied to
pixel art. Oztireli and Gross [2015] also model image downscaling
as an optimization problem. Their technique maximizes the the
structural similarity index (SSIM) [Wang et al. 2004] between the
original and corresponding downscaled image. Despite of its focus
on image structure, the technique does not handle structured pat-
terns, thus introducing aliasing artifacts (Fig. 1b). Weber et al. [2016]
presented a fast downscaling algorithm suited for large images and
videos. It implements a variation of a joint-bilateral filter whose
range kernel favors differences in local pixel neighborhoods. This
technique does not handle structured patterns either. It mostly blurs
them, while also introducing some aliasing (Fig. 1c). While all these
techniques can preserve some image details, none of them handles
structured high-frequency content, a fundamental component of
visually-rich natural images. By performing frequency remapping,
our approach avoids discarding important structured details, which
become represented at lower frequency. The result is a more faithful
representation of the original visual content (Fig. 1d). Our technique
can be used with any resampling strategy, including the ones just
described. Since each resampling technique has its own strengths
and limitations, together they provide a suit of methods that can



be combined with our approach to obtain better results in different
situations. This flexibility is illustrated in Section 6.

A separate class of image downscaling techniques try to preserve
the perception of blur and noise observed in the original images.
Samadani et al. [2010] estimate the amount of blur and noise found in
an image, and subsequently re-synthesize them on a regularly down-
sampled thumbnail. Tretacoste et al. [2011] enhanced Samadani et
al’s “re-blurring” approach using a perceptual blur-estimation model.
These techniques can produce more accurate thumbnail represen-
tations for the original content. Since downsampling is performed
before the reintroduction of blur and noise, these techniques can be
integrated with and benefit from our approach.

The notion of creating a new signal by analysing and shifting
frequencies has already been explored in the audio-processing lit-
erature [Quatieri and McAulay 1986; Smith and Serra 1987]. For
audio, however, the problem is moderately simpler, as the ear is less
sensitive to errors in phase, provided that phase continuity is main-
tained [Smith and Serra 1987]. When working with images, phase
alignment becomes a crucial factor [Oppenheim and Lim 1981].

3 MATHEMATICAL BACKGROUND

In order to properly describe our method for image downscaling,
we provide a brief review of Fourier theory and Gabor analysis. For
simplicity, concepts and formulations are presented in 1-D. Their
extensions to 2-D are described in Appendix A. A vector s in the
usual finite-dimensional vector space CV is a sequence of N complex
numbers whose n-th element we denote by s(n), forn = 0..N — 1.
Through Fourier decomposition, it is possible to describe any such
vector as a linear combination of N complex waves f; oscillating at
harmonic frequencies k/N, for k = 0..N — 1:

N-1
1
s= $(k) fx, where fr(n) = —
2 =
The vector § is the discrete Fourier transform (DFT), or spectrum,
of s, and i = V—1. The k-th Fourier coefficient can be computed as

exp (2rink/N). (1)

N-1
$) = (s 1 fiy =D s f (), &)

n=0
noting that the vectors f, fi, ..., fN—1 define an orthonormal basis
for CN with respect to the usual inner product (- | -) of this space,

and fk*(n) denotes the complex conjugate of fi(n).

Let vectors p and 6 be the power and phase spectra of s. Eq. 1 can
be re-written as a sum of scaled and phase-shifted complex waves:

N-1
1
s(n) = p(k) — exp 2wink/N +i0(k)),
20

where p(k) = |§(k)|%, 8(k) = atan2(J5(k), Ri(k)) € [0,27), and
J3(k) and R3(k) are the imaginary and real parts of §(k).

3.1 Gabor Space-Frequency Decomposition

One inherent limitation of the classic Fourier decomposition just
described is the fact that the basis vectors fy, fi, ..., fN—1 are not
localized in their primal-domain (e.g., time or space) representation.
Thus, from the Fourier coefficients, it is not possible to determine
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the spatial position of, for example, high-frequency details of tex-
tured objects in an image. In his seminal work on time-frequency
analysis, Gabor [1946] addressed the issue of lack of time local-
ization by proposing a representation where a signal is expanded
onto a system of vectors that are parameterized by both time and
frequency. In such a system, time analysis and Fourier analysis are
both special limit cases. The situation of lack of spatial localization
is analogous, making Gabor analysis very relevant to image process-
ing since the underlying structure of image patches can be described
by Gabor atoms as fundamental components [Olshausen and Field
1996]. Next, we present one possible discretization of Gabor’s con-
tinuous space-frequency decomposition. For a detailed description
of Gabor analysis, we refer the reader to the works of Zibulski and
Zeevi [1994] and Mallat [1998].

3.1.1 Discrete Gabor analysis. From now on, we consider all
vectors s in CN not as finite complex sequences, but instead as
N-periodic complex sequences that satisfy s(n + N) = s(n), Yn € Z.
Any such vector may be described as the linear combination of N?
Gabor atoms g,, | defined by the translation in space and frequency
of a real, symmetric, and unit-norm window vector g:

N-1N-1

s= 2 > 50K g ®

n=0 k=0
where g(m) = g(-m), llgll = /(g | g) = 1, and

In,k(m) = g(m —n) \/LN exp (2rimk/N). (4)

For suitable choices of g, each Gabor coefficient $(n, k) describes
how much of the signal’s energy is concentrated in a neighborhood of
the n-th position in space and of the k-th harmonic in frequency. As
shown by Gabor [1946] for the continuous case, the smallest possible
neighborhood for energy measurement is obtained if the window
is chosen as a Gaussian function, exp (—0.5 mz/az). Harris [1978]
presents an extensive discussion of other choices of windows. In any
case, however, space and frequency locality are conflicting require-
ments; a consequence of the fact that the frequency of a signal with
finite duration can only be defined with some uncertainty [Mallat
1998]. For the Gaussian window, decreasing the value of ¢ improves
space resolution at the cost of poorer frequency resolution, and
vice versa. We discuss our choice of ¢ for the image downscaling
problem in Section 5.

Gabor atoms are not linearly-independent vectors, and thus do
not define an orthogonal basis. But since they consist of unitary
space translations of the window vector g, the set {g,, i} defines a
tight frame [Zibulski and Zeevi 1994]: an overcomplete system of
vectors with properties similar to an orthogonal basis. Like Fourier
coeflicients, Gabor coefficients for this particular expansion are
computed by the inner product of s with the respective atoms,
$(n, k) = (s|gp, k- Section 5 discusses the use of non-unitary space
and frequency translations for computational efficiency.

Let gn (m) = g(m—n) be the primal translation of the window and
let s - g be the elementwise vector product. A useful characterization
of Gabor decomposition is given by the identities (see Egs. 1, 2, 4)

$(nk) =<s1gnk) =<slgn - fi> =<5 gnlfi) =5 gn(k).
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Fig. 2. Overview of our spectral-remapping technique. An image s is separated into a series of overlapping patches centered at pixels s(m, n), of which three
are shown (scarf, arm, and table cloth). The image to the right of each patch shows its (mean-centered) Fourier power spectrum after windowing with a
Gaussian function. (Step 1, Section 4.1) Each spectrum is decomposed onto two sets of waves: those that require frequency remapping (‘W,,,), and those

that do not (‘W,!,(fn). Waves in ‘W%, are outside the spectral circle € (in white), and thus would be non-representable after downscaling. (Step 2, Section 4.2)
All waves in ‘W5, are remapped by the function ¢ to a new location inside €. (Step 3, Section 4.3) Remapped waves’ phases are re-computed in order
to preserve their alignments (not shown). (Step 4, Section 4.4) Remapped waves are combined with the non-remapped residual in order to form the final

spectrally-remapped image s.

Thus, for arbitrary but fixed n, Gabor coefficients $(n, k), Yk, can be
computed by Fourier analysis of the “windowed signal” s - gp,.

4 SPECTRAL REMAPPING

Our technique detects relevant high-frequency and structured de-
tails and remaps them to lower frequencies representable in the
downsampled spectrum. This process should maximize visual simi-
larity between the image’s original and downsampled versions. Fig. 2
provides an overview of our method, whose details and theoretical
justifications are presented next.

In our mathematical notation, a 2-D digital image s, containing
M rows and N columns, is a double-indexed vector whose (m, n)-th
pixel we denote by s(m,n) € C,form =0.M —1andn=0..N — 1.
Fourier analysis is a separable transform, meaning that the 2-D
Fourier basis is given by the outer product of the vectors defined in
Eq. 1. The same consideration is valid for the Gabor decomposition.
Appendix A gives the mathematical details.

4.1 Detecting Local Waves

This section introduces an algorithm for obtaining a sparse space-
frequency decomposition for images. Unlike conventional Gabor
analysis [Gabor 1946], which locally decomposes non-harmonic
waves as a linear combination of a set of harmonic (Fourier) basis
functions, our technique directly detects single non-harmonic waves
of arbitrary frequencies.

Structured visual detail is characterized by periodic patterns, often
with some random variations in position, orientation, or color [Por-
tilla and Simoncelli 2000]. In a small neighborhood of a 2-D digital
image s, the idealized wave decomposition consists of a small num-
ber of non-harmonic waves with well-defined frequencies. Let (m, n)
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be the center of such a spatial neighborhood, and let s - gmn be a
windowed portion of s around (m, n). We wish to find the set of
waves Wy, that best describes s - g, by minimizing

E(Whmn) = |[s - gmn — Z Wa,a,b,c “ Imnl||» (5)
(a,a,b,c)eWpn

where each tuple of real numbers (a, a, b, c) uniquely defines a bidi-
mensional wave of amplitude «, vertical and horizontal frequencies
aand b in [-0.5,0.5), and phase c in [0, 1):

Wa.abc(m’,n’) = a exp [ 27i(am” +bn’ +¢) | . (6)

Since the waves in Eq. 5 approximately define the neighborhood
around (m, n), the set ‘W, provides a local description of s in terms
of space-frequency non-harmonic atoms wgy 5 b, * gmn-

4.1.1 Minimizing E(Wp,p). Removing the windowing by gmn
from Eq. 5 results in a minimization program known as multi-tone
frequency estimation [Hannan 1973; Rife and Boorstyn 1976]. Al-
though statistical solutions that achieve optimal asymptotic perfor-
mance exist through maximum-likelihood and subspace methods,
they require the estimation of the number of terms in the sum,
which may be a challenging task [Quinn 1989]. We avoid this prob-
lem by using an iterative algorithm based on finding maximal peaks
in the power spectrum of s - gpmy, [Smith and Serra 1987], a tech-
nique that provides fast and accurate results for a variety of applica-
tions [Jacobsen and Kootsookos 2007], including image downscaling.
Appendix B provides the details of this algorithm.

4.2 Remapping Waves

For each pixel (m, n) in s, we obtain a local decomposition ‘W, of a
neighborhood centered at (m, n). When an image is downscaled by a
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Fig. 3. Sampling waves with frequencies close to the Nyquist limit results
in distracting visual artifacts. (top) Sampling of cos(Zn}Tgn) for integer n.
(bottom) Direct 2-D display of the sampled values.

factor R> 1 in both dimensions (non-uniform downscaling is similar,
using two factors Ry #Ry), many waves in ‘W, may not be repre-
sentable anymore. As a corollary of the sampling theorem [Shannon
1949], a wave (a, a, b, ¢) in ‘Wpy,, is representable in the downsam-
pled spectrum if and only if a and b are in [—075, %). For each
non-representable wave, we apply a function ¢ that remaps its fre-
quency coordinates to a new location inside the representable range:
(a,b) — ¢(a,b) € [—%, %)2. While there are several choices for
¢, the function

p(a,b) = (% cos I, 0?4 sin 19), where ¢ = atan2(b,a), (7)
works well for natural and synthetic images. Alternative ¢ functions
are likely to produce different frequency-remapping results, and this
subject is left for future exploration. Such a radial mapping replaces
higher-frequency waves with lower-frequency ones, preserving the
orientations of the original waves (i.e., 9), and, in turn, the local
structure of the image’s content.

The reason for choosing a spectral radius of % is twofold: first,
as it will be discussed shortly, some non-representable waves are
not good candidates for remapping and are thus left unchanged.
This means that low-pass filtering is still required before the actual
downscaling to eliminate such high-frequency residues. Since it is
neither desirable nor practically realizable to have a digital pre-filter
with an ideal transition band [Proakis and Manolakis 2007; Sacht
and Nehab 2015], coefficients corresponding to frequencies close
to the Nyquist limit % end up incorrectly attenuated. The use of
0R+4 avoids attenuating the remapped waves. A second reason for
choosing % is that the sampling of waves with frequencies too
close to the Nyquist limit results in ordinates that are distracting to
the human eye, as illustrated in Fig. 3. This occurs because sampling
(with pre-filtering) is equivalent to an orthogonal projection that
minimizes the squared norm of the space [Unser 2000], and such a
norm is oblivious to human perception [Nehab and Hoppe 2014].
By remapping high frequencies to a spectral circle € of radius %
instead of 0}‘75, we also avoid such perceptual artifacts. One should
note that other radius values smaller than the Nyquist limit could
be used, and the quality of such results is a subjective matter.

Finally, to be consistent, our implementation considers a wave as
non-representable if its frequency coordinates fall outside the circle
€, even if still inside the theoretical Nyquist range [—%, %)2.

4.2.1 Selective remapping. Some non-representable waves are
not good candidates for frequency remapping. In particular, waves
that belong to an ensemble of correlated harmonics are better left
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Fig. 4. Harmonic ensembles, such as the one observed in a square wave,
are characterized by a spectrum composed of several correlated harmonics.
For them, unlike for most non-ensemble signals, naive subsampling does not
introduce aliasing artifacts and works better than, e.g., Lanczos resampling.
Fig. 2 shows an example of a 2-D harmonic ensemble.

unchanged. Such ensembles are often associated with abrupt inten-
sity changes, as in sharp edges or fine impulse-like details. These
ensembles do not suffer from ordinary aliasing artifacts, and are
better treated by non-traditional resampling strategies, such as the
recent method of Oztireli and Gross [2015], or even by direct sub-
sampling without pre-filtering (Fig. 4). Thus, waves belonging to
harmonic ensembles should not be remapped by ¢, allowing them
to be correctly handled by the chosen resampling algorithm (which
is orthogonal to, and complements, our method).

In our experience, inequality (8) correlates well with the occur-
rence of a harmonic ensemble related to a wave («, a, b, c). This
is an approximate, heuristic estimator, constructed by analysing
ensembles from numerous natural images. Thus, we do not remap
(a,b) to ¢(a, b) if the energy of the wave, measured by its amplitude
a, is less than or equal to the signal’s energy at frequency ¢(a,b),
measured by its Fourier coefficient relative to the non-harmonic
complex wave fy(a b) = Wi, g(a,b),0, and increased by 0.6 dB:

100.06

o< ———
(11 gmn)

The division by (1| gmn) = gmn(0, 0) disconsiders the energy origi-
nating from the window. Similarly, using the mean-centered signal
Smn instead of s disconsiders the energy contribution of the “0-th
harmonic”, making (8) invariant to the mean intensity of the im-
age [Mairal et al. 2014]. S;p = s — (s | gmn)/{1 | gmn) is obtained by
subtracting from s its windowed weighted average. This preserves
all waves (a,a,b,c) from s - gmn in Smpn - gmn, except for its 0-th
harmonic («, 0, 0, 0), which becomes (0, 0, 0, 0).

Bmn - gmn |f4;(a,b)> . (8)

4.3 Aligning Remapped Waves

The phase spectrum 6 defined in Section 3 carries much of the
essential information of a signal s, especially for visual data such
as digital images [Oppenheim and Lim 1981]. The phase shifts in 0
define the alignments among waves, determining the locations of
constructive and destructive interferences that build-up s.

In our space-frequency decomposition, 6 is encoded in the phase
values c of the waves (, a, b, ¢) in ‘Wp,,. Since many of those waves
have their frequencies remapped by ¢, their corresponding phases
must also be re-computed in order to preserve their alignments. We
do this by first detecting which pairs of remapped waves need to be
aligned, and then solving a linear system for the remapped phases,
so that all important alignments are preserved.
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Fig. 5. Graph topology defined by the sets ‘W,,,,,.

4.3.1 Detecting alignment. Two waves w1 = (a1, a1, b, c1) and
wy = (ag,az, by, c2) have an alignment at (m, n) if their values match
in a 3 X 3 pixel neighborhood Ny, around (m, n). Note that waves
only provide a locally-valid description of s (due to the windowing)
and one should not require perfect alignment. Thus, we define a
positive measure fiy,n (W1, W2) = exp (—52/12) in [0, 1] (a Gaussian
function on §, with variance controlled by A) for their degree of
alignment at (m, n), where

1
6= Gy, 2

(m’,n')€Nmn

2
[w, (m”. 1) = vy, ()"

wy; (m’,n’) is a short notation for Waja5.bpc; (m’,n’) (Eq. 6). The
factor outside the sum makes the alignment measure y proportional
to the amplitude of the waves (note that there is an inverse relation-
ship between § and p due to the exponential function). This is done
in order to consider the alignment between larger amplitude waves
as more important, seeing that y is used as a weight in the least-
squares system defined by Eq. 10. We use A = 0.5, as it produces
good results in practice.

4.3.2 Computing remapped phases. For all pixels (m, n) in s, the
sets ‘W, define a graph topology based on direct pixel neighbor-
hoods (Fig. 5). Let w; and w3 be two distinct waves in the union
Wnn U Wy of any two sets Wy, and W,y that are con-
nected by an edge in this graph, and such that both w; and wy
require frequency remapping to, respectively, ¢(w1) and ¢(wz).
This abuse of notation in the argument of ¢ should be interpreted as
o(wj) = (aj, ¢(aj,bj), cj). If an alignment exists between w; and
w2, we would like to similarly create an alignment between ¢(w1)
and ¢(w3) as this will preserve the continuity of the pixels’ inten-
sities for the reconstructed waves (described in Section 4.4). Thus,
we require the remapped waves to match at point (1, i) halfway
between (m, n) and (m’, n’), the centers of the neighborhoods of
Wpn and Wi,y (recall that spectral remapping is performed at
the original image resolution):

m=(m+m')/2,

We(ws) (11, 1), where . 9)

Wep(wy) (7 ) = =(n+n)/2.

Finding the phase values of all waves that simultaneously solve
this equation for all possible pairs w; and wy is a highly nonlinear
problem, especially due to the oscillating nature of the complex
exponential originating from Eq. 6. Furthermore, an exact solution
may not exist. Thus, we instead find an approximate solution by
making the assumption that any two waves wj and wy that have a
large alignment measure ji,7 (W1, w2) will most likely have similar
amplitudes. Indeed, assuming a; = a greatly simplifies the issue, as
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per Eq. 6, Eq. 9 becomes (a; m+bwn+c(p)m—dl(a m+b(pn+c¢) where

(a(p bq)) = ¢(aj,bj) are the known remappedfrequenctes and c are
the destred remapped phases. Since the validity of this approxlmatlon
depends on the magnitude of the alignment measure, we model
the remapping-phase problem as a weighted least-squares system,
resulting in the following functional which should be minimized
with respect to the desired remapped phases c‘f and cg) :

2
[y,;,ﬁ(wl,wz)|(a§"m 11l +c?) - @l + bl + cg’)” . (10)

The minimization of the sum of all such functionals for all possible
pairs of waves wy and wy that require remapping is a quadratic
problem on their phases, solvable through a sparse system of linear
equations. To reduce the system’s size as well as to not force the
alignment of waves with a small value of i, we clamp pn7 (W1, W)
to zero whenever § > 31.

4.4 Image Reconstruction with Remapped Waves

After frequency and phase remapping, one can synthesize a new
version § of the signal s with the remapped waves. We call s the
spectrally-remapped image obtained from s. Thus, let ‘W%, be
the subset of remapped waves C Wiy (from s - gmp), and let
‘Wm(’an Wynn — W, be its complement. Furthermore, for a wave

= (a,a,b,c), let p(w) denote the version of w with frequencies
remapped to ¢(a, b) and with phase computed by the least-squares
system described in Section 4.3. We erte $ as the sum of vector g,
obtained from the original waves ("Van) and a scaled version of
vector r, constructed from the remapped waves (‘W,",):

S=q+pr

def
where, for gfnn = 9mn * 9mn>

= S G = D G

Vm,n VYweW,$, vm,n yywews,

In practice, g is computed as the residual obtained after removing
from s all the remapped waves:

q=s—Z Z WW'ngnn'

VYm,n VYwe W,

These summations are the reconstructlons of the space-frequency
decompositions defined by the sets ’M/m‘p,, and ‘W, similar to Eq. 3.
Note that undoing the windowing effect in wy, - gmn requires an
elementwise multiplication by the dual g, of gmn (see Appendix D).
For a normalized window with unitary translations, Gmn = gmn. This
explains the g2,,, terms in the expressions for g and r. The value
of f > 0 is chosen as to preserve the norm of the original signal,
resulting in an isometry s + s where ||s|| = ||g + Br|l = |Is||. The
computation of f§ is discussed in Appendix C.

Fig. 6 illustrates the image-reconstruction process with remapped
waves, and Fig. 7 shows the result of downscaling using four resam-
pling algorithms. The spectrally-remapped image of Fig. 1 (left) is
shown in Fig. 2 (right) (5). The supplementary materials include the
spectrally-remapped images of all examples shown in the paper.

Since our image-downscaling process consists of frequency remap-
ping followed by resampling, the spectral-remapping process should
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Fig. 6. Original image s (a chirp) defined by the equation cos(x? + y?) and
centered at (0, 0), and its spectrally-remapped version s. The spectrum s
clearly shows all non-representable waves in § effectively remapped inside
the spectral circle € (R = 4 and o = 3.5). Vector r is shown normalized to
the range [0, 1].

Z(s) O(s) W(s) TI(s) Z(s°) o) Ww(@) IIE)

Fig. 7. Downscaling of the original image s and of its spectrally-remapped
version s (Fig. 6) to 64 x 64 pixels (R = 4 and o = 3.5), using algorithms
listed in Section 5.3. The downscaling obtained from $ provide more faithful
representations of the image s.

be specific for the desired downscaling factor R. Note that depend-
ing on the frequency content of the input image, using a spectrally-
remapped image obtained for a scaling factor R to create a down-
scaled image by a different factor R’ may result in aliasing artifacts
or unnecessary trade of higher by lower frequencies. Thus, if R > R
and the spectrally-remapped image contains frequencies in the in-
terval (0.4/R’,0.4/R], the result should exhibit aliasing. If, however,
R’ < R, the resulting image might unnecessarily replace higher
frequencies by lower ones.

5 IMPORTANT COMPUTATIONAL ASPECTS

The decomposition defined by Eq. 3 is highly redundant. Indeed, for a
real signal, such as a digital image, N real elements in s are converted
to N? complex coefficients in §. One question is whether it is possible
to obtain a non-redundant space-frequency decomposition (with
exactly N coefficients in §), since this would significantly reduce the
required computational effort. Unfortunately, this is only possible
for windows g that are poorly localized in either space or frequency,
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as described by the Balian-Low theorem [Heil 2007]. Thus, for the
Gaussian window (which is optimally localized in both space and
frequency), some redundancy is necessary and provides stability to
the reconstruction of s from s.

In practice, we reduce the computational cost of Eq. 3 by subsam-
pling the space-frequency plane [Mallat 1998], yet still providing
the necessary redundancy. Thus, let T and L be natural numbers
that satisfy TL > N, and such that T divides N (mirror padding of s
works around this restriction). We decompose s as

T-1L-1 T-1L-1
s = Z Zg("’k)gnr,k = Z Z<s|gnr,k>gn1,k’ (11)
n=0 k=0 n=0 k=0

where 7 = N/T is the integer step size used for the spatial transla-
tions of the atoms g, ;_r, whose harmonics are now multiples of the
fundamental frequency 1/L instead of 1/N:

Ine,k(m) = g(m—nr) % exp 2mimk/L).

As the vectors g,  do not form a tight frame, the expansion in
Eq. 11 must use a dual frame composed of the vectors g, ;  [Zibulski
and Zeevi 1994]. Appendix D shows how to compute g, . From
Eq. 11, a signal s containing N elements can be represented by T
sets of L complex coefficients each: a Gabor decomposition obtained
by windowing s with T equally-spaced Gaussian windows, and
sampling their elementwise product at L equally-spaced frequencies.
This generalizes the decomposition in Eq. 3, for which T = L = N.
If TL = yN, 1<y <N, the redundancy in the representation of s
reduces by a factor of N/y. The analysis of 2-D signals is similar.

The choices of T and L depend on the space-frequency spread
of the Gaussian g(m) = exp (—0‘5 mz/az) [Mallat 1998], which is
controlled by its standard deviation o. For image downscaling, o
in turn depends on the downscaling factor R, since R dictates the
spectral radius % of €, which separates representable from non-
representable waves (see Section 4.2). The frequency spread of g
should be selected in order to properly resolve waves whose fre-
quencies lie outside the spectral circle €. According to the guidelines
described by Harris [1978], we select o such that §’s 6-dB bandwidth
is small enough to avoid spectral leakage between conjugate fre-
quencies outside € (see relation (16) in Appendix B). In practice,
this means that ¢ should be larger than R/2 pixels.

The simple choice of o = R/2 is not necessarily the best option,
unfortunately, as the space-frequency spread of the Gaussian must
also be specifically adapted to each signal s. If waves in a local
portion of s have nearby frequencies, then the value of o must
be increased to improve frequency resolution [Harris 1978; Mallat
1998]. Thus, the rule of thumb is to start with ¢ = R/2 and increase
its value until a satisfactory decomposition is obtained. The values
of o used to generate the results in the paper are listed under each
figure, except for Fig. 1, for which 0 =3 and R = 4.

Given a choice of ¢ and noting that g(m) is practically zero for
|m| > 40, we set L to the odd integer nearest to 8. Thus, we may
truncate the window vector g at L elements, where m € Z ranges
from —|L/2] to |L/2] (approximately —4o to 40). To guarantee
that ||g]] = 1, we construct the discrete window g by sampling
g(m) = exp (—0.5 mz/az) at the specified values of m and then nor-
malizing the obtained vector. Similarly, for numerical accuracy we
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use a redundancy factor of y = 8 for the subsampled transform in
Eq. 11, and set T to the smallest integer that satisfies TL > 8N.

5.1 Complexity Analysis

For fixed n, we compute all L coefficients (s| g, ) using a fast
Fourier transform (FFT). Since n = 0..T — 1, the time complexity
of the method is O(TLlog L)=O(N log o). The linear system from
Section 4.3 has O(T) = O(N/o) non-zero ele- ments, which we
solve using a sparse QR factorization [Davis 2011].

5.2 Color

Natural images have correlated color channels. We decorrelate them
with principal component analysis [Reinhard et al. 2001], and per-
form spectral remapping only on the coefficients 7., associated with
the maximal direction vy of color variation. Thus, sygp, = [sr Sg Sp]
is mapped to pca = [0, N, Nv; ], then the monochromatic coeffi-
cients 7y, undergo spectral-remapping to 7j,, and s°rgb is obtained
from fipea = [0, Mo, No;] by undoing the principal- component ba-
sis change. This procedure reduces the computational cost of pro-
cessing multichannel images and is used for all results shown in
the paper. As humans are more sensitive to contrast in lightness,
it is possible to use CIELAB and work only with the L' channel;
however, the principal-component approach works better in corner
cases, such as constant-lightness synthetic color images.

5.3 Downscaling Algorithms

Spectral remapping is performed at the original image resolution.
Subsequently, a suitable resampling strategy may be employed to
downscale the image, without the risk of introducing aliasing or
losing high-frequency structured detail. The resampling algorithms
used in the paper are: Lanczos (Z), Cubic O-MOMS (D) [Blu et al.
2001; Nehab and Hoppe 2014], Kopf et al. [2013] (K), Oztireli and
Gross [2015] (O), Weber et al. [2016] (W), and nearest-neighbor
subsampling (III). For Lanczos we use a 5-lobed kernel which has a
passband loss of 0.8 dB at the spectral radius % of €. For classic an-
tialiasing, however, we recommend the use of generalized-sampling
strategies with efficient digital filters [Nehab and Hoppe 2014], such
as the Cubic O-MOMS (loss of 0.4 dB at %). Subsampling (IIT) has
0 dB loss at all frequencies and thus may introduce aliasing due to
high-frequency residues. The other listed algorithms are non-linear
and cannot have their frequency response characterized. In gen-
eral, choosing a resampling strategy is a subjective choice, and each
algorithm provides best results for different kinds of images.

6 RESULTS

We have successfully applied our technique to a large number of
natural and synthetic images. Here we show a few representative
examples obtained through uniform downscaling (for a reported
downscaling factor R, the total number of pixels is reduced by R?).
Non-uniform scaling is straightforward, as discussed in Section 4.2.
In all comparisons with other techniques, the images were gen-
erated using software provided by their own authors. Finally, we
encourage the readers to zoom in on the PDF (full-resolution images
embedded) and explore the supplementary materials for these and
other examples in their original sizes.
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ViTroRe CARPACCIO
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Fig. 8. Several downscaling techniques applied to the image s (top, public
domain) and to its spectrally-remapped version s. Resampling with: Lanczos
(L), O-MOMS (D), Oztireli and Gross (O), Weber et al. (W), Kopf et al. (K),
and Subsampling (I1I). Downscaling to 112 x 150 pixels (R = 6 and o = 4.5).

Fig. 1 illustrates the use of our technique to downscale the im-
age on the left to 180 X 144 pixels (using R = 4, 0 = 3). Note that
our method provides a faithful representation for the image’s high-
frequency content: the woman’s pants, scarf, books, and table cloth.
While this kind of result cannot be obtained with previous tech-
niques, our approach successfully represents the original textures.

Our method handles both natural and synthetic images. Fig. 6
illustrates the spectral-remapping process for a radial chirp centered



Fig. 9. A fish with wiggly stripes downscaled to 63 x 50 pixels (R = 8 and
o = 6). (top) Applying the resampling methods to the original image (s)
results in alisasing artifacts (stripes in wrong direction and/or checkerboard
pattern). (bottom) The same methods produce appropriate results with our
spectrally-remapped image ($). Original photograph © Monceau on Flickr.
Used with permission.

at (0, 0) and defined by the equation cos(x? +y?). The corresponding
spectrally-remapped image s = q + fir is shown on the top right.
q is the residue image consisting of all non-remappable waves. In
this example, g only contains frequencies inside the spectral circle
€. r consists of all the remapped waves with frequencies on the
border of €, making it appear as a circular wave with constant
frequency %. A visual inspection of the power spectra |§|? and
5|2 shows that s’s high-frequency content has been completely
remapped inside €. Fig. 7 compares the downscaled results of both
s and § using four resampling methods: Lanczos (L), Oztireli and
Gross (O), Weber et al. (W), and Subsampling (I1I). When applied
to s, Lanczos resampling removes the high-frequency details, while
the other techniques introduce severe aliasing artifacts. These same
techniques applied to our spectrally-remapped image s produce
more faithful representations of the original image s.

Fig. 8 shows a hand-drawn portrait of the Italian painter Vittore
Carpaccio. The small images at the bottom contain 112 X 150 pixels
(including a relatively thick white border around the drawing itself).
The capital letters under the resized images indicate the used resam-
pling algorithm following the convention in Section 5.3. The symbol
inside parentheses indicate whether the resampling was applied to
the original image (s) or to our spectrally-remapped image (s). The
inspection of these thumbnails is quite instructive, as they reveal
the robustness of our technique as well as its independence from
resampling methods. For instance, Lanczos resampling applied to
the original image (Z(s)) smooths out salient features, such as the
hatching from the background and details in Vittore’s hair and beard.
However, when applied to the spectrally-remapped image (Z(s)),
Lanczos resampling nicely preserves these features. The same obser-
vation applies to Cubic O-MOMS (D). The technique by Oztireli and
Gross (O(s)) shows some high-frequency content, but the resulting
image looks noisy. When applied to s (O(5s)), however, all features
are properly preserved. The technique by Weber et al. (W(s)) pro-
duces a result somewhat in between Lanczos’s and Oztireli and
Gross’s. Again, when applied to our spectrally-remapped image, all
relevant features are nicely represented. The result produced by the
technique of Kopf et al. (K(s)) resembles Z(s) and D(s). Like the
previous ones, when used with s, it preserves the key aspects of
the original hatching. Even subsampling, which tends to introduce
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D(s) O(s)  W(s)  K(s)

D(s) O(s) w(s) K(s)

Fig. 10. Retaining very-high frequency details of different kinds of fabrics.
(top) A shirt downscaled to 75 X 75 pixels (R = 8 and o = 8). (bottom) Some
jeans reduced to 80 X 60 pixels (R = 5 and o = 5). Our spectral-remapping
technique retains the structure of these fabrics, even in such extremely low
resolutions. Images from MSRA Salient Object Set [Liu et al. 2007].

severe aliasing artifacts (II(s)), can represent relevant features rea-
sonably well when combined with our technique (IT1(s)). For the
remaining examples, we limit the comparisons to four resampling
methods: Cubic O-MOMS [Nehab and Hoppe 2014], Oztireli and
Gross [2015], Weber et al. [2016], and Kopf et al. [2013]. Subsam-
pling tends to produce lower-quality results, and Lanczos’s results
are somewhat similar to Cubic O-MOMS’s.

Fig. 9 shows a fish with a wiggly-striped pattern. The input image,
seen on the left, was reduced to only 63 X 50 pixels. On the top
right, one sees the results produced by the four selected resampling
methods applied directly to the original image. All of them exhibit
severe aliasing artifacts, even Cubic O-MOMS—which makes use
of an antialising pre-filter. Such artifacts cause the stripes to be
perceived in a different direction and/or as a checkerboard pattern.
At the bottom right, we show the results obtained with our technique.
Note that the stripes have been properly preserved in all cases.

Fig. 10 illustrates how our technique properly represents even
very-high-frequency details, such as the weaving pattern of different
kinds of fabrics. The top image shows a shirt, which has been down-
scaled to 75 X 75 pixels. The image at the bottom shows some jeans,
which has been reduced to 80 X 60 pixels. While previous techniques
cannot preserve the original textures on their own, our spectral
remapping (bottom rows on the right) retains the structure of the
fabrics. Note, however, that in order to preserve the texture in such
extremely low resolutions, our method may make the texture appear
bigger relative to other elements (e.g., the buttons). Thus, due to
subjective reasons, some people may prefer the downscaled images
with texture removed (D(s)) or with noise-like texture (O(s)).

Our technique works for all kinds of high-frequency details and
not only for stripes. Fig. 11 shows a mosaic made of tiny pieces,
defining a complex texture (a myriad of thin piece boundaries). The
original image has been downscaled to 200 x 133 pixels, making it

ACM Transactions on Graphics, Vol. 36, No. 4, Article 145. Publication date: July 2017.



145:10 « Eduardo S. L. Gastal and Manuel M. Oliveira

Fig. 11. A mosaic formed by tiny pieces (tesserae) and downscaled to 200 x 133 pixels (R = 8 and o = 6). (top) Resampling applied to the original image (s).
D(s), W(s), and K(s) cannot capture the fine mosaic texture. O(s) represents it as noise-like structures. (bottom) When applied to a spectrally-remapped
image (s), all these methods properly represent the texture (see the angel’s face). Original photograph courtesy of Lawrence Rice (used with permission).

extremely hard for previous techniques to properly represent such
details. In fact, the results for D(s), W(s), and K(s) do not capture
the boundaries of these fine structures. The result for O(s) repre-
sents them as noise. Using these same techniques with a spectrally-
remapped image (S), all these methods properly represent the mosaic
texture (see the angel’s face for all results).

Fig. 12 shows a scene with various high-frequency periodic pat-
terns: the blinds, the small checkerboard on the bear’s hat, and the
stripes on the face of the dog (sun shining through the blinds). The
original image has been reduced to only 60 X 80 pixels, thus provid-
ing a very hard test for all techniques. As one can observe, none of
the resampling methods could handle this scene on their own (top
right). While Cubic O-MOMS introduces less aliasing in comparison
to the others, it does so at the cost of blurring the image. The other
techniques introduce severe aliasing in the blinds region, are unable
to represent the sunny stripes on the dogs face, and either remove
or alias the checkerboard. Our spectral-remapping approach avoids
aliasing when combined with all of these techniques. As an impor-
tant observation in favor of the robustness and effectiveness of our
approach, we are able to represent the tiny checkerboard pattern
even when resampling with Cubic O-MOMS (D(s)).

Fig. 13 shows three challenging examples exploring different
kinds of high-frequency contents and patterns. (top) A shirt with
stripes downscaled to 200 X 150 pixels. Previous downscaling tech-
niques either remove the stripes (D(s), and K(s)), or introduce alias-
ing artifacts (O(s), W(s), K(s)). (middle) “Brothers”, hand drawing
by artist Tyler Hobbs, reduced to 135 X 171 pixels. Its thin features
(hatching) and blue-noise-like background are not adequately han-
dled by previous techniques. (bottom) Picture of a lizard scaled
down to 256 X 341. Note the high-frequency details on its belly and
legs, which cannot be captured by previous approaches. The insets
provide zoomed in views of important parts of these images and
illustrate the ability of our spectral-remapping approach to faith-
fully retain these various forms of fine details, even in such small
resolutions. Please zoom in to see the details.

Our technique handles structured patterns at multiple scales, as
well as arbitrary downscaling factors. Fig. 14 shows a photograph of
aRomanesco broccoli, which has been reduced to 102X 68 pixels. Due
to the broccoli’s fractal nature, this example illustrates our method
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Fig. 12. Scene with various kinds of high-frequency patterns: blinds, check-
board on the bear’s hat, and sun stripes on the dog’s face. Original image
reduced to 60 X 80 pixels (R = 20, o = 12). None of the resampling methods
are able to handle this scene on their own (top row). Our spectral remapping
even allows for the checkerboard to be retained by O-MOMS (D(s)).

applied to the same structure at multiple scales simultaneously, prop-
erly preserving them all. Fig. 15 shows a light-house image down-
scaled by six different factors (R € {1.35,2.25,2.84,4.2,5.94,11})
using our technique in combination with Lanczos resampling (Z(s)).
o = 4 for all R values, except for R = 11, in which case ¢ = 6 to
guarantee that o > R/2. Note how it can properly represent the
high-frequency details (e.g., fence, texture of the grass and light-
house, parallel lines on the wall of the first house) at all downscaled
images, including the smallest one (R = 11) with only 47 X 70 pixels.
For comparison, the two images marked with red dots were down-
scaled (R = 4.2) without spectral remapping and exhibit aliasing
artifacts or excessive blurring (e.g., see the house on the left).

Fig. 17 shows a camera test-resolution chart downsized from
3,783 2,856 to 252 x 190 pixels (R = 15 and o = 15). Note how our
technique preserves fine structured patterns that would otherwise
appear blurred or subject to strong aliasing by other techniques.

6.1 Discussion

Despite its apparent complexity (due to the rigor of the underlying
formalism used in its derivation), the actual implementation of our
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D(s) 0(s) W(s) K@)
Fig. 13. Challenging examples exploring different kinds of high-frequency contents and patterns. (top) A shirt with stripes downscaled to 200 x 150 pixels
(R =8 and o = 6). (middle) “Brothers”, hand drawing by artist Tyler Hobbs (used with permission), reduced to 135 X 171 pixels (R = 9 and o = 9.75). (bottom)
Picture of a lizard (courtesy of William Warby) scaled down to 256 X 341 (R = 6 and o = 8). Note the high-frequency details on its belly and legs. None of
these examples can be handled by previous approaches. Our spectral-remapping technique retains these fine details even at such a coarse resolution. We
recommend viewing the original-sized images in the supplementary materials.
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Fig. 14. Photograph of a Romanesco broccoli exhibiting a fractal structure,
downscaled to 102 X 68 pixels (R = 10 and o = 7). Original photograph,
“Romanesco Vortex”, by Keld Bach (used with permission).

Fig. 15. Downscaling the same image (“Lighthouse” by Alan Fink, on the
left) to several sizes using our spectral remapping and Lanczos resampling
(Z(3)). For these images, R € {1.35, 2.25, 2.84, 4.2, 5.94, 11}. Note how
structured details are correctly preserved. For comparison, the two images
marked with red dots have not been spectrally-remapped before downscal-
ing and exhibit aliasing or excessive blurring. Zoom in to see the details.

method is fairly straightforward. The most complex components
are the detection of local waves, and the computation of remapped
phases. The detection of local waves only involves standard oper-
ations, such as fitting a quadratic function, and finding its maxi-
mum (Algorithm 1, Appendix B). The computation of the remapped
phases, in turn, requires solving a sparse linear system. Our method
is, nevertheless, computationally more intensive than traditional
image-downscaling techniques (i.e., low-pass filtering + resampling)
and the recent techniques of Oztireli and Gross [2015] and Weber
et al. [2016]. Its cost is driven by the Gabor space-frequency de-
composition, which is O(TLlog L). However, since each one of the
T fast Fourier transforms (in Eq. 11) and T decompositions Wy,
(Appendix B) can be computed independently, our technique can be
parallelized, bringing its execution time to a theoretical O(LlogL).
Our current implementation (written in Julia) has not been opti-
mized nor parallelized, taking the order of seconds to minutes to
spectrally-remap an image, depending on its size and spectral con-
tents. For instance, on a 4.2 GHz CPU, it takes 0.75 second to process
the chirp image (Fig. 6), 5.9 seconds to process the image in Fig. 1,
and 39.8 seconds for Fig. 11. Furthermore, by adjusting the redun-
dancy y of the Gabor transform, it is possible to control the balance
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Fig. 16. The redundancy factor y controls the trade-off between computa-
tion time and spectral-remapping numerical accuracy.

between computation time and spectral-remapping numerical ac-
curacy (Fig. 16). With proper optimization and parallelization, our
technique might achieve real-time rates. Finally, while the ability to
preserve high-frequency details is certainly desirable, there might
be situations for which one may prefer not to represent them, due
to artistic or subjective reasons.

6.1.1 Limitations. While our technique produces good results
in general, it may occasionally over-emphasize some directional
component of a structured texture at the expense of others. This is
illustrated in Fig. 18, for which the downscaled version of a tiled roof
appears as a diagonal texture. Synthetic circular test patterns with
spatial frequency increasing towards the center present a challenge
for all downscaling algorithms. This is illustrated in Fig. 19. For this
example, the original image on the left was reduced from 4,725 X
4,725 to 236 X 236 pixels (R = 20 and o = 20). Previous approaches
either discard high-frequency information (D(s) and W (s)), and/or
introduce aliasing artifacts (O(s) and K(s)). Our wave alignment, as
described in Section 4.3, also fails in this case due to the impossibility
of properly aligning such a circular wave of constant remapped
frequency 0R+4 (middle row). However, by manually introducing a
cut in the graph illustrated in Fig. 5 (see supplementary materials for
details), our wave alignment system returns a solution that retains
the convergence of the stripes at the cost of a visual discontinuity, as
shown by the results for “S with cut” (last row). Neither our spectral-
remapping nor existing approaches produce optimal results for this
challenging example.

7 CONCLUSION AND FUTURE WORK

We presented an image-downscaling technique capable of appro-
priately representing high-frequency structured patterns. Unlike
conventional techniques based on sampling theory, which discard
high-frequency information to avoid aliasing, our approach remaps
such frequencies to the representable range of the downsampled
spectrum. This creates an intermediate image with the same spa-
tial resolution as the original one, which is then resampled to the
target dimensions. The resampling process causes the remapped
frequencies to be represented as high frequencies in the downscaled
image. As such, our approach generates more faithful representa-
tions of the original content, retaining visually-important details
that would otherwise be lost, or subject to undesirable aliasing arti-
facts. To achieve such goals, we have introduced new techniques



145:13

Spectral Remapping for Image Downscaling  «

Fig. 17. A camera test-resolution chart (public domain) downscaled from 3,783 x 2,856 to 252 X 190 pixels (R = 15 and o = 15). Our technique preserves fine
structured patterns that would otherwise appear blurred or subject to strong aliasing by other techniques. Due to the low target resolution, our technique
maps the converging lines inside the circles to sets of parallel antialiased lines (better seen on the supplementary materials).

Fig. 18. Roof photograph downscaled from 1,911 x 1,412 to 159 x 118 pixels (R = 12 and ¢ = 10). For this example, our technique has over-emphasized the
diagonal-like pattern observed in the tiled roof. Original photograph from Chi King on Flickr.

and algorithms for estimating the frequency, amplitude, and phase
of spatially-localized waves; for performing frequency remapping;
for re-aligning the phases of the remapped waves; and for preserv-
ing the original image’s brightness in its downscaled version. Our
technique handles arbitrary-frequency content, is applicable to both
natural and synthetic images, and can be used in combination with
any resampling method. We have demonstrated its effectiveness on
a large number of images downscaled in combination with different
resampling strategies.

Our technique is completely automatic. However, as discussed
in Section 5, some local regions in the input image s may contain
nearby frequencies that require remapping. In this case, best re-
sults are obtained with ¢ > R/2. While a larger o value allows
for better frequency localization, its corresponding larger Gaussian
window affects spatial localization and execution time. Thus, we
would like to adaptively compute the smallest o required to distin-
guish relevant nearby frequencies for each local region in s. Video
downscaling is also an interesting direction for future exploration.
While directly applying our technique to individual video frames
should be straightforward, we speculate that maintaining temporal

coherence for some dynamic non-rigid objects (e.g., a waving flag)
may be challenging and require inter-frame phase alignment.

Our technique provides an alternative solution for along-standing
problem in image processing. As such, it has the potential to open
up opportunities for further theoretical advances, as well as for the
development of new applications.
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A 2-D FOURIER AND GABOR ANALYSIS
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The spectrum § of the 2-D image s defined in Section 4 is given by

sty = (s fM @ fN), for k=0.M-1,1=0.N-1;

where ka (n) = —& exp (2i nk/0). Similarly, its Gabor decompo-
. Vo
sition § is a quadruple-indexed vector:

smon kD) = (s gmn | [ ® ) = § gmn(k.1),

where gmn = gm ® gn is the 2-D Gaussian window.
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B ALGORITHM FOR DETECTING LOCAL WAVES

Our goal is to find the set “W,,,, that minimizes E(‘W,) in Eq. 5.
A perfect decomposition ‘W, yields E(Wx,,) = 0, which gives

S 9Imn = Z Wa,a,b,c “ Imn-
(a,a,b,c) €Wy,

We may expand both sides of this equality in the Fourier basis,
resulting in the well-known equivalence between the convolution
product * and windowing [Harris 1978]:

SGmn = ). Waabe Gmn = Y. Waabe*Imn (12)
(at,a,b,c) €W, (a,a,b,c)eWp,

For a moment, let us consider all sequences as continuous functions,
since this simplifies the math. In this case, Wy , b, ¢ is the Fourier
transform of the wave function wy_, p, ¢, given by

Wa,abc(§,v) = ad(a—§)6(b-v) exp (2zic),
where § is the Dirac delta. The convolution in Eq. 12 becomes

Gap(£,v) = (Wa,a,b,c * Gmn)(§, V) = Gmn(a — §,b —v) a exp (27ic) ,

(13)
where gmp is the Fourier transform of the Gaussian window g,
whose absolute value |gmn(a — £,b — v)| is also a Gaussian with
peak at (a, b). Thus, the right-hand side of Eq. 12 decomposes s~ gmn
as a sum of functions G,y (each corresponding to a wave («, a, b, c)),
such that |G, (&, v)| has a Gaussian peak at (£,v) = (a,b). This
conclusion leads to a simple algorithm for finding the frequen-
cies (a,b) of the waves in W%, , which consists of searching for
Gaussian peaks in |S - gmn| [Jacobsen and Kootsookos 2007; Smith
and Serra 1987].

B.1 The Decomposition Algorithm

Back to periodic complex sequences s, let Sy = S+ gmn be the DFT
of s*gmn- Smn(k, 1) is a double-indexed vector with the same number
of elements as s, where k = 0..M — 1 and [ = 0..N — 1. Starting with
an empty set Wy, = &, we iteratively find the waves that should
be added to it. Algorithm 1 summarizes the process, whose steps
are detailed next.

Step 1. Find the integer indices (k’,1”) where Sy, (k’,1")| is
maximal. Note that we are interested in detecting the non-representable
waves that exist in W, since these are the ones that require fre-
quency remapping (see Section 4.2). Thus, we limit the search to
indices (k’,1”) associated with non-representable harmonics whose
frequencies fall outside of the spectral circle € (see Section 4.2).

Step 2. Find the frequencies (a’,b’) such that G, gives the best
possible fit to the neighborhood of | Sy, | around (k’, I”). Since |Gy |
is Gaussian, its logarithm is a parabola with a maximum at (a’,b’).
Thus, inspired by Smith and Serra [1987], we find the quadratic
surface Q(k, I) that gives the best least-squares fit to log(|Synl) in
the 3 x 3 neighborhood centered at (k’,1”). (a’,b’) is then the fre-
quency location of the maximum of Q (if it exists; see the numerical
considerations below). Furthermore, the height of the surface at its
maximum directly gives the amplitude of the wave:

, _ exp(Q(a’.b’))

C T i (0.0) a9
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Algorithm 1 Detecting Local Waves

Wmn «— O
Smn < DFT(Smn - 9mn)

# Initialize set of waves locally describing s

Qmax < 0

while |'W,,,| < 10 do

# Find indices of maximum value in |Sp,p |

(k" 1") « arg max(xs 1y¢6 |Smn (K, 1)] # Step 1
# Compute parameters (a’,a’,b’, c’) of the wave
fit quadratic Q to log(|Smnl) around (k’,1’) # Step 2

break if Hessian of Q is not negative definite

compute frequencies (a’,b’) « argmaxy ) Q(a’,b’)
break if (a’,b’) falls outside 3 X 3 neighborhood of (k’,1’)

compute amplitude a’ using Eq. 17

break if o’ < %amax; else amax <« max(a’, amax)

compute phase ¢’ using Eq. 15 # Step 3
# Remove detected wave from Sy
Smn < Smn — W a b - Imn # Step 4

break if the energy ||Smn |12 did not decrease

Winn « Wpnn U{(a’,a’,b’,c)}
end while

# Add wave to Wy

return Wy,

The exponential is needed as Q is fitted to the logarithm of |G,y |.
The division by §,n(0,0) compensates for the multiplication of
a by the Gaussian §pp, in the rightmost part of Eq. 13. Note that
Gy (@,5)] = Gmn(0,0) & = exp (Q(a’, b)),

Step 3. At this point, to reconstruct the wave (a’,a’,b’,c’), the
only missing parameter is its phase ¢’ € [0, 1). To obtain it, we use
the following program which has a closed form solution in ¢’, where
Winn = Wor 1.0 - mn (note the zero phase in wave w):

. 2
mc}n [1Smn — Wa',a' b, ¢’ “Imnll (15)

min [|Spmn — exp (27ic’) Winll?  (by Egs. 12 and 13)
v

min [[Spnll” + [ Winnl* = 2R exp (27ic") Wonn | Smn)

max R exp (27ic’) (Wmn | Smn)
2

max cos(27¢’) R Wmn | Smn) — sin(2rc’) 3 Winn | Smn)
v
= max F(c).
2

The objective F is continuous for ¢’ in [0, 1], and thus attains a
maximum in this interval. It is also differentiable on the whole real
line, with critical points ¢; and ¢y in [0, 1) given by

c1 = atan2(— I Wnn | Smn), R Winn | Smn))/ 2 mod 1,

e = atan2( IWn | Smn)» — RWimn | Smn))/ 2 mod 1.

The solution is ¢ = ¢; if F(c1) > F(c2), or ¢’ = ¢ otherwise.
Step 4. Add the detected wave (a’,a’,b’,c’) to Wy, If the
stopping criterion has not been reached (see below), we remove
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such wave from the spectrum by the update rule S;;,, «— Smn —
Wo' ' b, - Gmn, and restart from Step 1. In the end, the set W,p
will contain a suitable decomposition of s - gmp, according to Eq. 5.

B.1.1  Stopping Criteria and Numerical Considerations. The waves
with largest amplitudes contribute the most to the image’s local con-
trast, a principal stimulus sensed by the human visual system [Adel-
son 1995]. Since Step 1 of the decomposition algorithm searches for
maximal coefficients in |S;,p|, larger amplitude waves are, luckily,
the first to be detected. So, we stop the search whenever the current
wave’s amplitude is smaller than ;ll—th of the maximum detected am-
plitude so far (since it and all subsequent waves will contribute little
energy to the local contrast). Furthermore, to have an upper bound
on the total computation time, we limit the size of each set Wy,
to a maximum of 10 waves, a number that works well in practice.
Recall that each set ‘W, only provides a local description of s (i.e.,
a description to a windowed portion of s around pixel s(m, n)), and
the total number of sets grows with the number of pixels in s.

We stop the search for Gaussian peaks in S, if: (i) the Hes-
sian of Q is not negative definite, meaning that Q has no maxi-
mum and thus is not a good estimator for a Gaussian peak; (ii) Q
has a maximum, but it falls outside of the 3 X 3 neighborhood
of (k’,1’), meaning that (k’,l”) is probably a small noise peak;
or (iii) if the energy of Sy, fails to decrease after the wave’s re-
moval (i.e., [|Smn —Wo/ o by’ - Gmn 12 = ISmnll?), meaning that the
decomposition given by wys o 1y, is highly non-orthogonal and
badly conditioned, in which case we do not add wy’ y 1y, oo t0 Winy.
Note that whenever the waves in ‘W%, form an orthogonal system,
then the energy necessarily decreases since [|Syn — »T-mlll2 =
1Smn |2 =11~ gmnll? < l1Smnl|?. Finally, we start the decomposition
algorithm with S,,, = m where §,,, is the mean-centered
signal from Eq. 8. This removes the spectral energy of the 0-th har-
monic (mean intensity of the image) [Mairal et al. 2014], leading to
better numerical stability.

Finally, digital images have pixels that are real, not complex. Thus,
waves in ‘WX, necessarily occur as conjugate pairs:

(a,a,b,c) € (VV,Z" — (a,—a,—b,—c) € W,Zn. (16)

Since the DFT is defined as the periodic summation of the (sampled)
continuous transform in Eq. 13, there may occur noticeable “self-
leakage between positive and negative frequencies” [Harris 1978].
Thus, as the periodic copies of the Gaussian G_,_}, overlap with the
center of G,p,, they may drastically affect the computed value for
the peak of G, and vice versa. Since the peaks of G_,_}, and Gy,
are spaced apart by (—2a, —2b), the nine periodic copies of G_,_y,
closest to G}, are spaced from G}, by (—2a + 8, —2b + &), for
8a, 0p € {—1,0,1}. Thus, for computing a’, we replace Eq. 14 by

o exp (Q(@", b)) W

Gmn(0,0) + D" Igmn(=22" + 8, =2b" + )|
8as Sy €{~1,0,1}

The partial sum in the denominator gives a good approximation
of the true periodization of Eq. 13, and effectively corrects any
noticeable discrepancies in the detected waves’ amplitudes. As such,
it greatly improves the quality of the reconstructed images. Note the
absolute values in the terms of the sum, since, except for §pmn (0, 0),
all values of g, have an imaginary part.
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C COMPUTING p
We wish to find § > 0 such that ||s|| = ||s|| for s = q + fBr. Since the

norm || - || = V(- |-) is a positive function:
g+ pril =llsll & C+Bp+Ap* =0, (18)
where A = ||[r]|2, B = 2R{q|r), and C = |qlI®> - [Is||>. The

solution of this quadratic equation falls into a few cases.

Case 1(C =0). If non-representable and non-ensemble waves
do not exist in s, then Wy, is empty V (m, n), resultingin A = B =
C = 0. Thus, any value of § gives ||s|| = [|s|| since s ='s.

Case 2 (C < 0). If C < 0, then AC < 0 and the quadratic in
Eq. 18 has two real roots 1 and S since A = B — 4AC > 0 and

-B+ VA -B-+VA

h=—a > P~ =

Furthermore, f; is positive since VA > VB? = |B| and thus —B +
VA > —B+|B| > 0. B, is negative since the quadratic in Eq. 18 may
be written as A(f — f1)(B — B2), which implies that Af; 2 = C < 0.
Thus, the solution we are looking for is f = f;.

Case 3 (C > 0). C will never be positive in exact arithmetic since
we stop the algorithm described in Appendix B whenever ||Sp,;5 ||
fails to decrease, meaning that necessarily ||q||2 < |IslI?. In floating
point arithmetic, however, C may become positive. In this case, the
wave decomposition is most likely noise, and thus we set s = s.

D DUAL-FRAME COMPUTATION

Since the vectors g,  in Eq. 11 define a non-tight frame, the syn-
thesis of s from the coefficients (s | g, ) requires the use of a dual
frame g, . Fortunately, such vectors are similarly given by spatial
and frequency translations of a dual window g:

Gnr,k(m)=g(m-nr) é exp (2rimk/L). (19)

Denote gnr(m) = g(m —nrt)and fi = \/LI exp (2ri mk/L). We may
re-write Eq. 11 as:
T-1L-1

Z(s | gnr,k>g~n‘r,k

2 (s gne | fi) fr

Similarly, given the knowledge of a tight frame h,, j = flm’k
(defined by the spatial and frequency translations of a self-dual
window h = h), we may also write

=

T—1L—
Z Z (Slgnr* fi) gnr - S
T-

Z S 9nr - gnr- (20)

n=0

~
»—AO

HM

T-1L-1 —
s—ZZ<s|hmk>hmk—Zs~hm-hm. (21)
n=0 k=0 n=0
One way of obtaining h from g is [Mallat 1998, Thm. 5.8]:
m
h(m) = gim) . m=-lLj2).L/2],

YneA,, 9(m—nt)?
where the index set A;, = {n€Z : —|L/2] < m—nt < |L/2]}.
Finally, since Eqs. 20 and 21 imply (9 - §)nr = 9nr - Gnr = hnr -
hur = (h- B)nr = (W?)nr, we obtain § = h? + g, where + denotes
elementwise vector division.
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