Integrated Design and Process Technology, | DPT-2002
Printed in the United States of America, June, 2002
a 2002 Society for Design and Process Science

A FRAMEWORK FOR SUPPORTING THE DEVELOPMENT OF
COORECT MOBILE APPLICATIONS BASED ON

Fernando Luis Dotti, Lucio Mauro Duarte®

[fldotti, Iduarte] @inf.pucrs.br
Pontificia Universidade Catolica do Rio Grande do Sul
Faculdade de Informéatica - PPGCC
Av. Ipiranga, 6681 - CEP 90619-900 - Porto Alegre - RS - Brazil

Flavio M. Assis Silva™, Aline M. Santos Andrade

[fassis , aline] @ufba.br
Universidade Federal da Bahia
LaSiD - Laboratério de Sistemas Distribuidos
Av.Adhemar de Barros, S/N - CEP 40170-110 - Salvador - BA - Brazil

ABSTRACT

The development of complex mobile applications,
i.e., applications based on software components that can
migrate through a distributed environment, is a difficult
task. Mobility increases the complexity of testing
applications in real conditions, introducing a new
dimension in the behavior of programs. This difficulty
becomes even higher when an application is composed
of several different mobile components, which might
migrate in an autonomous way, independently one from
the others. In this context the use of formal methods
becomes increasingly important, since they provide a
sound and precise way of specifying applications and
enable the development of tools for correctness
verification. The goal of the project ForMOS - Formal
Methods for Mobile Code in Open Systems - is to
analyze the application of forma methods to support the
generation of correct mobile applications and to provide
an integrated infrastructure for the development of
correct mobile systems. This paper introduces a
framework based on Object-based Graph Grammars that
is being developed in the context of this project and
describes two of its tools: a simulator and an application
code generator.

* Thiswork is partialy supported by projects:
ForMOS (Forma Methods for Mobile Code in
Open Systems) - grants CNPg/ProTeM-Brazil and
FAPERGS-Brazil; 1Q-Mobile (Improving the
Quality of Open Systems with Code Mobhility
through Rigorous Development) - grant
CNPg/CNR (Brazil/ltaly); and PLATUS (Formal
Development and Simulation of Reactive Systems)
- grant FAPERGS-Brazil.

" The work of this author was partially supported by

CAPES, Brazil
™ The work of this author was partially supported by
CNPQ, Brazil

1. INTRODUCTION

Supported by the current state of development of
processing and communication technologies, today's
distributed environments such as the Internet allow
complex forms of integration and cooperation between
systems and organizations. Frequently referred to as
open environments, these environments are typically
characterized by: massive geographical distribution;
high dynamism; no global control; partial failures; lack
of security; high heterogeneity; and presence of
autonomous organi zations.

Building distributed applications for such environments
is a complex task. Research efforts have been directed
to managing this complexity by, for example,
developing new paradigms, improving theory, and
developing more powerful and flexible technologies for
distributed applications. Within this context, code
mobility (Fuggetta, Picco and Vigna, 1998) emerged as
a promising paradigm for designing and building
distributed systems.

Code mohility refers to the concepts and technologies
that enable pieces of code to be sent through the
network to be executed at remote locations. An example
of technology enabling code mobility are the mobile
agent systems. A mobile agent is a piece of software
that is able to autonomously migrate through the nodes
of a distributed system. A mobile agent might migrate
multiple times during its execution. Mobile agents have
received specia attention of the research community
and of the industry due to its flexibility and potential use
in various application fields, e.g. network management,
electronic commerce, distributed information retrieval,
advanced telecommunication services, active networks,
and workflow management systems (Fuggetta, Picco
and Vigna, 1998). Code mobility is also well suited for
the field of physical node mobility because of its
support for disconnected operation (agents might
execute activities on a network on behalf of a
disconnected host).

However, there are important research issues related
to the development of mobile agent-based applications
for open environments that must still be further
investigated. Among these issues are the development
of concepts and tools for guaranteeing security,
reliability, and - of main interest in this paper -
correctness of these applications.

Guaranteeing correctness of mobile-agent based
applications is a non-trivial task. Mobile applications
are inherently distributed and concurrent. Additionally,
a mobile application can be structured in parts that can
migrate autonomously through the distributed
environment, completely independent one from the
other. In open environments, not only the mobility
aspect makes the task of guaranteeing correctness of an
application harder, but also aspects such as the existence
of organizational boundaries, the unpredictability of
failure patterns in such environments, among others.

The use of forma methods is one of the ways of
addressing the generation of correct systems, and we
concentrate on this approach in this paper. Formal
methods have been traditionally applied to concurrent
and distributed systems both as a tool for precisely
describing the interactions between parts of a system as
well as for enabling the development of automatic
verification tools.

Although much effort has been applied to develop
formal methods for mobile systems (Milner, 1999;
Cardelli and Gordon, 1998; Fournet, Gonthier, Lévy,
Maranget and Rémy, 1996; Sewell, Wojciechowski and
Pierce, 1999), an integrated framework for supporting
the development of correct mobile applications is still
missing. One of the objectives of the ForMOS project
(Formal Methods for Mobile Applications in Open
Environments) is to develop such a framework. The
innovative aspect of the framework we are developing is
the use of Object-Based Graph Grammars (Dotti and
Ribeiro, 2000) as the underlying unifying formal
method for a set of integrated tools. Each of the tools
supports a way of addressing the generation of correct
mobile applications. The framework encompasses a
simulation tool and a code generator, and efforts are
being invested towards a verification tool. In this paper
we describe the current state of the simulation tool and
of the code generator.

The paper is structured as follows. In section 2 we
describe the related work. In section 3 we describe the
framework tools (simulation tool and code generator).
Finally we conclude the paper in section 4.

2. RELATED WORK

A set of formal methods has been proposed for the
specification of mobile systems, such as p-calculus
(Milner, 1999), mobile ambients (Cardelli and Gordon,
1998), Distributed Join Calculus (Fournet, Gonthier,
Lévy, Maranget and Rémy, 1996), Nomadic p-calculus
(Sewell, Wojciechowski and Pierce, 1999), among
others. The formalisms differ in the way they model
mobility or in their ability to explicitly model specific

aspects of the mobile
applications/protocols.

The p-calculus, for example, alows the specification of
changes in the configuration of communication channels
between processes. The location of a process at a given
instant can be specified by the configuration of
connections (communication channels) it has with other
processes at that instant. As long as a mobile process
migrates in an environment, its connections with other
processes might change. Mobility is thus represented
implicitly.

In Mobile Ambients, Nomadic p-caculus and
Distributed Join Calculus explicit notions of agents and
locations exist. Mobile ambients explicitly takes into
consideration administrative domains. The main
abstractions are the so-called ambients, where agents are
contained in and which can migrate in the distributed
environment. Explicit primitives for modelling
permissions in the environment are provided (so-called
capabilities). The Nomadic p-calculus is a variation of
p-calculus in which lower level basic and smple
constructs for specifying mobility are defined. This
formalism is being used to analyze and develop ways of
transparent communication between mobile agents. The
Distributed Join Calculus is a formalism that
incorporates a simple model of failure. This model
defines a simple semantic for the effects of failures on
locations.

The framework described in this paper is based on
the use of a special kind of Graph Grammars to specify
mobile code applications, caled Object-Based Graph
Grammars (OBGG), as proposed in a previous work of
one of the authors of this paper (Dotti and Ribeiro,
2000). In (Dotti and Ribeiro, 2000) OBGGs were
extended to become a suitable specification technique
for mobile code applications. This extension introduced
the notions of locality and mobility in OBGGs. Graph
grammars are quite appeadling as a specification
formalism because they are formal, they are based on
simple but powerful concepts to describe behavior, and
at the same time they have a nice graphical layout that
helps even the non-theoreticians understand a graph
grammar specification. The latter argument was of
particular importance for our choice of using graph
grammars as specification formalism for mobile code
systems because it helps for a good acceptance of a
method in practice.

We are developing a framework where different
tools for helping the generation of correct mobile
applications coexist (a simulator, a code generator and -
under analysis - a verification tool). These methods and
tools are all based on a single formalism, object-based
graph grammars. Although there exist programming
languages and verification tools based on other formal
methods that support mobility, such as Pict (Pierce and
Turner, 1997), Nomadic Pict (Wojciechowski and
Sewell 1999) (programming languages based on p-
calculus and nomadic p-calculus, respectively) or the
Mobility Workbench (Victor, 1994) (a tool for
manipulating and analyzing mobile systems specified in

development of

(polyadic) p-calculus), we are not aware of the
existence of an integrated system based on a single
formalism such as ours.

3. THE FRAMEWORK

In this section, we briefly outline object-based graph
grammars (section 3.1), give an example of its
utilization (section 3.2), and present the simulation tool
(section 3.3) and the code generation tool (section 3.4).

31. OBJECT-BASED GRAPH GRAMMARS
(OBGGS)

OBGGs are a restricted form of graph grammars,
where the notion of entities that communicate through
messages is introduced (Dotti and Ribeiro 2000). In
terms of modelling, an entity is similar to objects in
object oriented design. The basic notion of OBGGs, as
for any graph grammar, is that the state of a system can
be represented by a graph, the system state graph. From
the initial state of the system, given by an initial graph,
the application of rules successively changes the system
state. Since the system state is given by a graph,
changing it means to change the graph configuration.

The system state graph and the initia graph are
graphs where the nodes are represented by entities or
messages. Entities and messages may have attributes.
An attribute of an entity or message might be an entity
or an elementary data type (integer, rea, etc.).
Attributes are represented as labeled arcs in graph
grammars (in the graphical notation adopted in this
paper attributes are not always represented by edges, see
section 3.2 for further details on the graphical notation).

An OBGG specification is composed by:

- for each entity, a type graph and the entity’s initial

graph;

- aspecification of the system initial graph;

- aset of rules.

Each of these components is described in the following.

Entity’s Type Graph and Initial Graph

In an application specification, each entity involved is
specified by its type graph and its initial graph. A type
graph describes the entity, the names and types of its
attributes, and the types of messages that the entity may
send or receive. The entity’s initial graph specifies the
value of each attribute of the entity when one instance
of thisentity is created.

System Initial Graph

The system initial graph describes the state of the
system when a computation specified with OBGG
starts. The composition of the system initial graph is
done by taking the entity initial graph for each instance
that must be present in the beginning of the system and

completing them with the expected instantiation values
to build the initial state of the system.

Rules

The behavior of the system is determined by a set of
rules. Graphically a rule is specified by two graphs,
connected by an arrow (see, for example, figure 5). A
rule can be applied (executed) when the graph at its left
side is a subgraph of the current system state graph.
Optionally an additional condition can be specified that
restricts the execution of the rule (graphicaly, the
condition is specified below the arrow linking the left to
the right side of arule — see, for example, figure 5). If a
condition is specified, a rule can only be applied when
the condition is true. When arule is applied (executed),
the system state graph is changed according to the right
side of the rule. Components of the graph (vertices,
edges and messages) that exist at the |eft side and do not
exist at the right side are excluded from the graph, while
components that exist at the right side and do not exist
at the left side are included.

A computation is triggered by the reception of a
message by an entity. So, each rule must aways have
an incoming message to one entity at its left side, and at
the right side this message must be consumed - meaning
that the computation described by the transformation
rule took place due to the reception of the respective
message by the entity. The transformations from the | eft
to the right side may only modify attributes of the
entity, which receives the message, to ensure
encapsulation. If the computation upon receiving a
message should affect other entities, then this should be
modeled as the generation of messages to other entities
at theright side.

The execution of rules is also dependent on the
occurrence of conflicts. A conflict exists involving
various enabled rules when their transformations modify
both a same set of items. Rules can be applied
simultaneously when there is no conflict. In case of
conflict among various enabled rules, the choice of
which rule is applied is non-deterministic. Since we are
dealing with OBGG and the left side of a rule is
restricted to refer to only one entity, conflicts never
involve various entities.

Extending OBGGs for specifying mobile applications

To represent mobile systems, OBGGs were extended
to include two specialized entities (Dotti and Ribeiro,
2000): places and mobile components. Places represent
the possible locations where mobile components may
execute, offering basic functions such as storage and
communication facilities, computational power, and
access to services. Furthermore, places offer message
passing and migration services to mobile components.
Mobile components represent software components that
can migrate from place to place during their execution,
using resources and services from the places they visit.

In the following section an example specification in
OBGG is given. In this example we focus on the
specifier point of view, and assume the basic
functionality of Place and Mobile Component as
provided, i.e., we assume that Mobile Components may
move from Place to Place using the move service that
Places offer. For further details on the
formalization of this basic service as well as on the
message passing characteristics, please refer to (Dotti
and Ribeiro, 2000).

3.2. AN EXAMPLE: AN AGENT LOOKING FOR
THE BEST PRICE OF A PRODUCT

In this example we consider an electronic market
scenario composed by a set of places that can be visited
by mobile agents. Each place has an Information
Service that provides the price of a product. In this
scenario, a mobile agent is used on behalf of a customer
to look for the place, out of a set of places to be visited,
that has the best price for a given product.

This example involves four entities: Place, MC
(Mobile Component), IS (Information Service) and
Customer. Figures 1 to 4 show the type graphs of these
entities. As can be seen, we adopt a convention for
specifying type graphs:

- an entity is represented by a rectangle, with its

name on the top;

- entities that extend Places have double border lines;

- entities that extend Mobile Components have single
border lines;

- messages are represented by the shaded symbol
shown in the figures;

- attributes of an entity that are nodes of the graph
are connected to the entity by an edge, while
attributes that are elementary data types are listed
inside the rectangle;

- each entity is associated with a number, written
inside a circle. This number can be used to refer to
the entity in different parts of the specification;

- the messages that the entity might generate, as well
as other entities used (referred to by numbers) in
the specification of its type graph, are represented
below the dotted line in the figures.

Thus, in Figure 1 it is specified that the entity Place
has two attributes: hostedl S and nextPlace. The attribute
hostedI S refers to the Information Service of the Place
(the number 3 in the circle is the number associated with
the entity 1S, shown below the dotted line). The attribute
nextPlace is a reference to another place (the number 1
in the circle is the number associated with a Place
entity). This parameter is used to build a sequence of
places, used by the agent to visit the places. Figure 1
shows also that a Place entity might receive NextVisit
and GetlS messages (represented by the shaded
symbols). Each of these messages might be sent by an
MC entity. A NextVisit message is sent by an MC to the

place when it wants to move to the place indicated by
the attribute nextPlace. The message GetlSis sent by an
MC to aplace to get areferencetoits|S.

Please note that a message can carry information about
its sender as one of its attributes, but it is not necessary.
A message that only reports some information to the
receiver will not need to carry data about the sender. On
the other hand, a service request message needs to
identify the sender such that the response can be
addressed to the requiring entity.

Place M
.__hostedIS L—< NextVisit="

C nexiPlace somb
GetlS ®

MC @ < Localls |2 @ Is @

Fig. 1: Type Graph for entity Place

Figure 2 shows the type graph for the Mobile
Component entity. An MC has to visit numPlaces
places to discover the best price (stored in bestPrice -
real) for a product with name prodName. The attribute
bestPrLoc, which refers to a node of type Place of the
graph, is used to store a reference to the place with the
best price. An MC aso has parameters to indicate its
origin place (origin), its current location (location), and
the customer to which it has to report the results of the
search on the market (respCustomer).

The location of an MC is an attribute of every mobile
component, independently of its application. It is
modified when a move operation takes place.

MG @ F—<Continue
@ bestPrLoc| <NOG°
. . |prodName: String
. origin] loclS
@ Jocation numPlaces: Natural LocallS) @
@®) newLoc
bestPrice: Real @D
respCusiomer]| - fice
(@tespEusiomer —<_ Price -2 fea
PlacelD Getls (="
com
Move |oes Customer@
I
NextVisit=22) Resp b
s ®
< Cost? fimmnaZ,

Fig. 2: Type Graph for a Mobile Component

As can be seen in Figure 2, beyond a Getl S message
(explained above), an MC might issue a Move message
to the place where it resides, asking to move to a
destination dest (parameter of the Move message), and
referencing itself as the component to be moved. An
MC might also send messages to the IS and Customer
entities (Cost?, Resp). When these message are used is
explained below, when the type graphs of their

receiving entities are described. Four messages can be
received by an MC (Continue, LocallS Next, and
Price). The roles of al these messages are explained
below, when the rules are described.

s @

product: String

price: Real pnarte g@ng
location
D=
Place!l) MC @

Price 1®fea

Fig. 3: Type Graph for an Information Service (15)

The type graph of IS is depicted in Figure 3. An IS
has as attributes the place where it resides (location), the
identification of a product (product), and the price of
this product (price). The IS is a simple service that,
when inquired about the cost (message Cost?) of
product by a component MC, it answers with the value
of price (sending message Price).

Finaly, the entity Customer (see Figure 4) has
attributes for storing the best price found (price), the
location which offers the best price (bestPricelLocation)
and the location where the customer is (myLocation). A
Customer entity might receive the message Resp, which
is the response of MC, &fter it has finished the search.

Customer®

price: Real

bestPricelocation

@ myLocation

Fig. 4: Type Graph for entity Customer

The specification of the behavior of each entity is
made by defining rules. Due to space limitations we do
not provide here the complete set of rules for the
example, but only some of them to illustrate the use of
the formalism. These rules are shown in figures 5 to 8.

The rule in figure 5 states that if an MC receives a
Continue message (indicated in the graph at left side of
the rule) and the number of places to visit (numPlaces)
is not zero (condition under the arrow linking the left
and right side of the rule), then MC will consume that
incoming message and generate a message (GetlS) to
the current place (P_A) asking for the IS in that place.

FA MC

location

PA MC

location

numPlaces: n

Fig. 5: GetLocall Srule

numPlaces: n|

As aresult of the GetlS message sent by the MC in
the GetLocallS, a message LocallSis eventualy sent to
the MC. This message has as parameter the IS in the
local place. The rule that generates this message is not
shown here. As depicted in rule QueryPrice in Figure
6, when an MC receives the Locall S message, it asks the
IS about the cost of the product it is searching for

(message Cost?).

1S MC 1S MC
numPlaces: n| |QueryPrice numPlaces: n
prodName: prodName:
“product1™ “product!”

\
\uc\S

Fig. 6: QueryPricerule

comp
pramaproductl

When an MC discovers a lower price for the product,
then it has to update its bestPrice attribute to the new
price found out and the best price location bestPrLoc to
refer to the current place, as depicted in Figure 7 (Px
and Py are places). Also, MC asks the current place for
the next place to visit (for simplification purposes, in
our scenario the current place has a reference to the next
place to be visited).

Px MC Px location MC
location ice: bestPrL AP e
bestPrice: b AskNext SO astPrice: I
gnumPlaces: n| numPlaces: n
_F
§
Py |&) Py

Fig. 7. AskNext rule

The current place informs the next place to continue
the search with the message Next - see Figure 8.

Px MC Px MC
location location|

. MoveNext
numPlaces: n r‘lLII'I'IP|aCSS:1
e

Py Py
dest

Fig. 8: MoveNext rule

The result of the Move request is either a Continue
message, as appears in Figure 5, left side, or a NoGo
message. The NoGo message means that the MC can
not be hosted in the destination place for some reason
like, for instance, some of the necessary resources are
not available. The rules that describe the movement
were not shown here since we have only focused on the

aspects that the specifier has to deal with. These rules
define the handshake performed between the origin, the
destination place and the MC in order to move MC - see
(Dotti and Ribeiro, 2000) for further details. From the
point of view of the specifier a mobile component will
issue a Move request at the left side of one or various of
itsrules. The result of the movement is returned to the
mobile component through either the Continue or NoGo
messages. These messages must be present in the left-
side of rule(s) of the mobile component in order to
continue the computation.

As described in section 6.1, a complete specification of
an entity includes the specification of its initial graph.
Theinitial state graph of entity MC is given by the MC-
InitGraph in figure 9 (the elements in gray denote
instantiation variables).

MC
Place bestPrlLog
origin prodNamse:
numPlaces:

location

CustomerrespCustomer bestPrice: MaxReal

MC—InitGraph

Fig. 9: MC InitGraph

According to Figure 9, when an instance of an MC is
created, values for the attributes bestPrLoc, origin,
location, respCustomer, prodName and numPlaces are
provided, and the message Next is sent to MC to start
its computation.

The initial state of the whole system specifies all

entities that must exist in advance and the relationships
among them. The initial state graph of the system is
achieved by including the appropriate initial state graph
of the entity for each instance needed in the beginning
of the system. In this process, instantiation variables
receive the appropriate values for the initial state of the
system.
Figure 10 depicts the initial state of a system comprised
by four places (one original place, P_Orig, and three
additional places, P_1, P_2 and P_3), where the agent
will search for the best price of a product, an MC and a
Customer. Each of the places has its own Information
Service (IS Orig, IS 1, 1S 2 and IS 3, respectively).

Customer -
IS_Orig IS _1 IS 2 1S 3
lprice: MaxReal
lpice: 20.0 price:20.0 lrice: 10.0 price: 30.0
Yooy lproduct: “productx product: “product product: “producti product: “product
%,
3 o
% X
@ e, ¥, sl |e g |2 o |2 g |2
) gl |2 g gl |2 LIE
MC 5| |12 £ £ 2
prodName:“productt s P_Orig P_1 P2 P_3
ol 5 bestPrloc nextPlace nextPlace nextPlace
numPlaces.
location
bestPrice: MaxReal
XtP:

Fig. 10: System Initial Graph

Figure 10 shows also a message Next being sent to MC
which will trigger the computation in the system. As its

next step, MC will apply the rule MoveNext, shown in
Figure 8 (since the left side of this rule is a subgraph of
the graph in Figure 10). The computation then continues
according to the specified rules.

3.3. SSIMULATION TOOL

The main advantage of using simulation is the
possibility of testing the behavior of a system and
finding errors in its conception before doing the
implementation. In our environment we use an
extension of the simulator developed in the PLATUS
project (Copstein, Mdra and Ribeiro, 2000). This
simulator is written in the Java language (Gosling and
McGilton, 1996) and simulates models described in
OBGG. It works with entities that communicate with
each other by exchanging messages.

A speciad module called kernel is responsible for
message delivery and for the globa time control. The
kernel algorithm follows a conservative approach and
the simulation time has a centralized control.
Conservative approach means that the simulation time is
advanced to the next one only when all entities finished
processing the messages relative to the current time.

Considering the functions of the kerne, OBGG
specifications are mapped to the simulation environment
in a straightforward way:

- OBGG entities, with their attributes, map one-to-
one to simulation entities, with corresponding
attributes;
each rule specifying part of the behavior of an
OBGG entity is mapped to a class (at the
implementation language level) representing it. A a
class that describes a rule has attributes and
methods to:

i) test if the left-side of the rule is true for the
associated entity;

i) testif the condition (issued on the arrow from
left to right side graphs) holds for the
associated entity; and

iii) apply the rule, whereby: attributes of the
associated entity may be changed; new entity
instances may be created; messages to other
entities may be created.

messages handled by OBGG entities; with the

respective attributes, map to simulation messages

with their corresponding attributes;

theinitial state of the system is mapped accordingly

to a initial state of the simulation environment

through the creation of the appropriate entity
instances, messages and attributes initialization.

An entity is basicaly modeled by an active object (a

Java object with an internal thread). A receive buffer of

this object is used to store the messages delivered by the

kernel, which correspond to the messages at the
specification level. The interna thread of the entity
selects the rules enabled by messages in the input buffer

and trigger their execution, respecting the non-
deterministic behavior given by graph grammars.

The internal thread of the entity follows the algorithm
of Figure 11. The genera idea of the agorithm is as
follows: for each message in the input buffer (line 6) all
candidate rules to handle that message are collected
(line 9). For each of these rules it is checked whether it
conflicts with other rules already selected to be applied
(lines 10 to 12). If there is no conflict then the rule is
selected to be applied, handling message m (line 13). If
no rules are selected for a message, the message is
postponed to be a candidate for execution in the next
simulation time (line 15 to 19). After checking all
messages from the input buffer, the set exec has all non
conflicting rules that may then be applied concurrently.
Separate threads are started to apply each rule in exec
(line 21). After the end of these threads, a new state of
the entity has been constructed (line 22) and new rules
may be selected for application considering the new
state (returning to line 2).

The non-deterministic behavior is modeled through a
randomic choice of rules among those that are enabled,
inline 11: choose rule r of R.

The function conflict(rule, exec) encodes the decision if
arule may or may not be applied concurrently with the
rules in exec, which is a set of rules chosen for
execution with the respective messages they handle.
Ideally, only rules that write on the same attributes are
not alowed to proceed. Currently we have
implemented a version that performs such control on an
entity (or object) based and not based on the attributes
of the entity, i.e. we have a notion of blocking at the
object level.

1 While the end of simulation was not notified by the kernel

2 construct the set M of all messages posted by the kernel
3 /I Choose rules to treat each message,

4 Il building the set exec={(r1,m1),(r2,m2),...}

5 error :=false; exec:={};

6 while (M= and (not error))

7 choose a message m in M; M:=M-m;

8 chosen := false;

9 construct set R with all enabled rules that handle m;

10 while ((R!= Aand(not chosen))

11 choose rule r of R;

12 if not conflict(r, exec)

13 then exec:=exec U (r,m); choosen := true;
14 R:=R-r;

15 If (not choosen)

16 then if (tmax(m)>T) then

17 send the message back to the kernel with
18 timestamp (T+tunit);

19 else error ;= true

20 if error abort the system;

21 launch processes to execute all rules in exec;

22 construct the next state with the results of all processes;

Fig. 11: Internal Algorithm of an Entity

The simulator alows one to represent minimum and
maximum timestamps for a message, meaning that the
message has to be treated at the destination entity
between current time + minimum and current time +
maximum. The minimum time allows one to represent
delays of real channels, if the case. The maximum time
is supported for situations where one wants to specify
systems with temporal restrictions, i.e. if a message is
not consumed in a certain time interval, the system fails.
Since we are looking at an asynchronous scenario, we
do not use maximum times. Minimum times may still be
used to model minimum delays. Lines 15 to 19 means
that if a message m has not been chosen to be processed
by some rule, then it will be postponed to be considered
for the next simulation time (lines 16-18). If a message
has a maximum time which is less than the current
simulation time, then the simulation is stopped raising
an error, since it was not possible to keep the time
restrictions stated in the model.

Graphic tools are under development to alow the

graphical creation of simulation models and their
automatic conversion to the corresponding simulation
code.
In order to support the simulation of mobile applications
specified using OOBG, the simulator was extended by
creating special entities that represent the behavior of
places and mobile components. We have used the
simulator to test the behavior of various sample
applications. The tool proved to be valuable since
relevant specifications errors could be found during the
specification phase - e.g., messages sent to entities that
did not handle them; live-lock or dead-lock situations
caused by wrong definitions of rule conditions;
synchronization errors, among others.

3.4. CODE GENERATION

To accomplish the objective of trandating a formal
specification into executable code for mobile
applications, we have further extended the translation
process usedin the PLATUS simulator, discussed in the
previous section. In a simulated situation, the time, and
therefore al events in the system, are ruled by the
simulation agorithm. In this process, the kernel plays
the important role of passing events (messages) between
entities, and of giving a temporal coherence to these
events. The goa is to resemble the time of a red
situation. In a real situation the time is implicit, i.e. the
events of the system are naturaly ordered in time as
they occur. Messages can be passed directly from entity
to entity asthey are generated.

So, our first step to generate a real application out of an
OBGG specification is to take the same mapping of
OBGG erntities to Java classes established for
simulation, but excluding the simulation time control
aspects and the message passing functionality of the
simulation kernel, having entities communicating
directly. To do this for a distributed scenario, we
decided to adopt an underlying platform that ensures

distribution transparency and FIFO (first-in-first-out)
semantics for message delivery, therefore keeping the
kernel semantics for message passing. The chosen
platform was Voyager (ObjectSpace, 2000). This
platform provides the necessary support for distributed
communication with location transparency and
component mobility with reference resolution.
Although we have used this specific platform, we have
conceived the modifications in the code to easily allow
the implementation to be ported to other support
platforms with anal ogous functionality.

The platform plays the same role of message passing
provided by the simulation kernel. Concerning time
aspects, the simulation time can not be considered
anymore at the entity algorithm of figure 11. This
algorithm is therefore revisited.

The main modification is that lines 17 and 18 do not
handle message timestamps since they do not further
exist, the message is simply let in the input buffer of the
entity to be further treated.

Also, the handling of error situations does not exist
anymore (affecting lines 5, 6, and 16 to 20) since we are
dealing with asynchronous systems that have no
maximum time for their messages to arrive.

The next important aspect to be introduced is the
implementation of real entity migration. This can be
decomposed in the following sub-aspects:

1) stop theentity in the origina place;

2.a) save theinterna state aswell as

2.b) execution state of the entity;

3) transfer it to the destination;

4) resolve references, i.e. make the migrating entity

continue to be addressed from other entities;

5) resume the activities of the entity a the

destination.

Voyager is able to migrate passive Java objects
(without internal activities) between distinct locations.
The platform supports steps 2.a (it saves only the
internal state of the object that represents the entity), 3
and 4. In order to handle active objects (objects with
internal activities - one or more threads), which is the
case for entities, we have to build the support for steps
1, 2.b and 5. Step 1 guarantees that, when the migration
process begins, no internal activity is being performed
and the entity is in a consistent state. After migration
(using the support platform), step 5 resumes the entities
execution, which starts to process the messages
available in the input buffer. Since the platform assures
that messages are delivered, without losses, even if the
destination entity is moving, the behavior of the entity
remains the same. The behavior described above was
implemented in the specialized entities Place and
Mobile Component. The mobile components and places
defined by the developers are mapped to the above
described implementations of Place and Mobile
Component.

4. CONCLUSIONS AND FUTURE WORK

We have developed some case studies with our
framework, including: a simple market application; the
specification of an active network architecture (Duarte,
2001); the dynamic source routing protocol for active
networks (Duarte, 2001); as well as other test situations
involving concurrency of mobile components on places
and other important features. The development of these
case studies included the specification of the application
in OBGG, the trandation of the specification into
simulation code, the simulation of the application to test
its behavior, the trandation of the specification into
executable code and its execution. The results obtained
in the execution of the generated code are coherent with
the simulation results and with the formal specification
of the applications. Although this is a positive indication
about the correctness of these tools and methods, a
formal proof that both simulation and real execution of
entities keep the semantics of OBGGs is till missing.
We are working on this topic since it is necessary in
order to give forma guarantees that the analyses
(verifications) performed on the specification hold for
the simulation as well as for the real execution.

Our approach to the generation of an executable
application is through a direct mapping of its OBGG
specification, without further complementing the
specification during this mapping. At the one side, this
is a positive aspect because we eliminate the possibility
of introducing errors in the application during the
mapping process. At the other side, all aspects of the
application must be resolved at the specification phase.
Some aspects of an application, however, may be non
natural to be represented with the adopted formalism.
For instance, the representation of sequences of
activities needs an additional control by the developer.
Although this is not a prohibitive aspect, we will
investigate it as we gain experience with various
application scenarios. A possible alternative approach
would be to specify with OBGG to some abstraction
level, which can be simulated since the simulation
model may abstract from various details. At this
abstraction level we would have the various entities
with their interface behavior defined, however some
might not have the interna behavior specified
completely. In an additional step a complementary
approach would be needed to describe the interna
behavior of the entities and then show the equivalence
of the internal behavior with the interface behavior
already specified in OBGG. The complementary
approach adopted could then be engineered to ease its
mapping to current programming languages and run-
time environments.

Among the additional aspects being investigated in the
context of the framework are also the introduction of
inheritance in the formalism (what would allow better
reuse and specialization of entities) and the modeling of
failures. The need for inheritance, or even a way of
parameterizing defined modules, is clearly needed.
Since OBGGs as defined are strongly typed, the simple
reuse of an entity in a scenario where it would have to
exchange the same messages, but with other entities,
leads to modifications in the entities definition. Thisis

because often we have as message attributes the
originator or destination entities. As an example
consider that in our example of section 3.2 MC does not
answer back to Customer the best price it found, and
where, but it answers to another mobile component, say
MC-X, which is responsible for gathering the results of
various searches it launched. Then we would need to
modify the definition of MC to send the answer
message to MC-X and instead of having attribute
respCustomer of type Customer it would have to be
defined as of type MC-X. This is too strong a
restriction if we consider the specification of
applications to work in open environments. Introducing
inheritance would help to deal with this problem.

As described in this paper, the place and mobile
component abstractions define the expected
communication and migration characteristics. The
definitions of these abstractions reflect the expected
environment for mobile applications. We could modify
such abstractions to represent other types of
environments. One possibility is to represent the
existence of some kinds of failures. Although thisis an
issue we are working in, we believe it is possible to
represented faulty environments and therefore alow
specifiers to reason about specifications of fault
tolerance mechanisms.

REFERENCES

Fuggetta, A., Picco, G. P., Vigna, G, 1998,
“Understanding Code Mohility”, IEEE Transactions on
Software Engineering, Vol. 24, pp. 342-361.

Milner, R., 1999, “Communicating and Mobile
Systems: the Pi-calculus’, Cambridge University Press.
Carddlli, L., Gordon, A., 1998, “Mobile Ambients -
Foundations of Software Science and Computational
Structures’, Lecture Notes in Computer Science,
Vol.1378, Springer-Verlag, pp. 140-155.

Fournet, C., Gonthier, G., Lévy, J-J, Maranget, L.,
Rémy, D. A., 1996, “Caculus of Mobile Agents’,
Proceedings of CONCUR96, Lecture Notes in
Computer Science, Vol. 1119, Springer-Verlag.

Sewell, P., Wojciechowski, P.T., Pierce, B.C., 1999,
“Location-Independent Communication for Mobile
Agents: a Two-Level Architecture”, Technical Report
462, Computer Laboratory University of Cambridge.
Godling, J., McGilton, H., 1996, “The Java Language
Environment - A White Paper”, Sun Microsystems.
Pierce, B., Turner, D., 1997, “Pict: a programming
language based on the pi-calculus’, Technical Report
476, Indiana University.

Wojciechowski, P., Sewell, P., 1999, “Nomadic Pict:
language and infrastructure design for mobile agents’,
Proceedings of the ASA/MA'99.

Dotti, F. L., Ribeiro, L., 2000, “Specification of Maobile
Code Systems Using Graph Grammars’. Formal
Methods for Open Object-Based Distributed Systems 1V,
Kluwer Academic Publishers, Stanford, USA, pp. 45
63.

Copstein, B., Mdra, M. C., Ribeiro, L., 2000, “An
Environment for Formal Modeling and Simulation of
Control Systems’. Proceedings of the 33 Annual
Smulation Symposium, SCS, pp. 74-82.

ObjectSpace, Inc., 2000, “Voyager ORB 4.0 Developer
Guide”, Objectpace, Inc.

Victor, B., 1994, “The Mobility Workbench User's
Guide: Polyadic Version 3.122", Available at
http://www.docs.uu.se/~victor/mwb.shtml

Duarte, L.M., 2001, "Desenvolvimento de Sistemas
Distribuidos com Codigo Movel a partir de
Especificagdo Formal (Developing Distributed Systems
with Code Mobility from Forma Specifications)".
M.Sc. Thesis, in Portuguese, PUCRS - PPGCC.

