
University of London

Imperial College London

Department of Computing

Behaviour Model Extraction

using Context Information

Lucio Mauro Duarte

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, November 2007

Abstract

This work describes an approach for behaviour model extraction merging static information,

based on the control flow graph of the system, and dynamic information, obtained from traces

of execution and a set of monitored attributes. The combination of control flow information

and values of attributes forms what is called context information. More specifically, a context

is defined as an abstract representation of a state of a system, composed of the block of code

being executed, the evaluation of its associated control predicate and the current values of

a set of attributes. This information, combined with a set of collected traces, provides the

sequences of contexts reached during the execution and the actions performed in between them.

It is demonstrated how context information can be used to guide the process of constructing

Labelled Transition Systems (LTS) which are good approximations of the actual behaviour of

the systems they describe. These models can be applied for automated behaviour analysis in

a well-known model-checking tool, as well as for checking LTL properties. Augmentation of

the set of values of attributes recorded in contexts produces further refined models and leads

towards correct models, ruling out some false negatives. Completeness of the extracted models

depends on the coverage achieved by the collected samples of execution, and may be slightly

extended through the automatic inference of additional valid behaviours. The approach is

partially automated by a tool called LTS Extractor (LTSE), which internally creates an implicit

Labelled Kripke Structure (LKS) based on the gathered context information. The LKS is then

mapped into a Finite State Processes (FSP) description, which is in turn used to obtain a

graphical representation of the system behaviour as an LTS model. Results of two case studies

are presented and discussed.

2

Acknowledgements

I would like to express my gratitude to:

• My supervisor, Jeff Kramer, for all his support and guidance during the development of

my research. I learnt a lot from his experience and knowledge and I am also thankful for

his friendship and understanding;

• My second supervisor, Sebastian Uchitel, for his friendship and his enthusiasm and de-

dication during our discussions. His invaluable insights and opinions helped me improve

my understanding of my research area;

• Freeman Huang, for letting me use his implementation of the Bully Algorithm as one of

my case studies;

• My colleagues Carlos Eduardo Thomaz, Robert Chatley, Howard Foster, Alberto Schaef-

fer, Eskindir Asmare, Daniel Sykes, Markus Huebscher, Paulo Henrique Maia, Leonardo

Mostarda and Anandha Gopalan for their friendship and support. My special thanks to

Daniel and Anandha for proof-reading chapters of this thesis;

• My sponsor, CAPES, for funding my research and giving me the opportunity to develop

this work in an internationally renowned institution;

• All Nutford House residents who I came across during these years in London. My most

special thanks to Paul Phibbs, Christina Malathouni, Marlène Monteiro, Lauren Trisk,

Moreno Fasolo, Nicola Bianco, Neil Mangrolia and Jazmin Aguado, my family in the UK;

• All my friends, for their support during this entire journey. Their continuous friendship

and care helped me through the times of loneliness;

• My family, for having taught me to remain positive and believe in myself even when

problems come along the way. I am also thankful for their constant care and for under-

standing my reasons for being away for so long while trying to achieve my professional

goals;

• God, for giving me such a wonderful family and for the gift of making another dream

come true.

3

Dedication

Aos meus pais, Dinarte e Amelia, e a minha irmã, Maria Lúcia, com todo o meu esforço e

dedicação.

A Cris, com todo meu amor.

4

‘People might not get all they work for,
but they must certainly work for all they get.’

Frederick Douglass

‘Things turn out best for the people who
make the best out of the way things turn out.’

Art Linkletter

5

Contents

Abstract 2

Acknowledgements 3

1 Introduction 17

1.1 The Need for Behaviour Models . 17

1.2 The Model Construction Problem . 18

1.3 Proposed Approach . 20

1.4 Thesis Outline . 23

2 Background 24

2.1 Behaviour Models . 24

2.1.1 Types of Behaviour Models . 26

2.1.2 Software Model Checking . 30

2.1.3 Faithfulness of a Behaviour Model . 31

2.1.4 Behaviour Model Refinement . 33

2.2 Model Extraction . 36

2.2.1 Based on Static Information . 36

6

CONTENTS 7

2.2.2 Based on Dynamic Information . 38

2.2.3 Hybrid . 39

2.2.4 Categorisation of the Proposed Approach 40

2.3 Summary and Discussion . 40

3 Model Extraction Using Contexts 42

3.1 Contexts . 42

3.1.1 Control Flow Information . 43

3.1.2 Trace Information . 44

3.1.3 Merging Control Flow and Trace Information 47

3.1.4 Context Information . 48

3.2 Extracting Behaviour Models Using Contexts 52

3.2.1 Information Gathering . 52

3.2.2 Context Identification . 59

3.2.3 Model Generation . 64

3.3 Dealing with Concurrency . 75

3.3.1 Model Composition . 75

3.3.2 Active and Passive Processes . 76

3.3.3 Example of Concurrent System . 78

3.4 Summary and Discussion . 81

4 Formal Foundations of the Approach 83

4.1 Formal Mappings . 84

4.1.1 Mapping from Implementation to Abstract Model 85

CONTENTS 8

4.1.2 Mapping from an LKS to an LTS Model 87

4.2 Evaluation of Behaviour Models . 89

4.2.1 Completeness . 89

4.2.2 Correctness . 90

4.2.3 Interpretation of Property Checking Results 91

4.3 Abstraction Refinement . 94

4.3.1 Refinement Relation . 95

4.3.2 Property-Preserving Mapping . 100

4.4 Property Checking . 102

4.4.1 Specification of Properties . 102

4.4.2 Adopted Procedure . 108

4.4.3 Property Checking Example . 111

4.5 Summary and Discussion . 114

5 Tool Support 115

5.1 The LTS Extractor . 115

5.1.1 Implementation . 116

5.1.2 Requirements . 117

5.2 Extracting Models with the LTSE Tool . 118

5.2.1 Providing Parameters . 118

5.2.2 Choosing the Interpretation of Actions 120

5.2.3 Generating an FSP Description . 122

5.3 Model Visualisation and Analysis . 124

CONTENTS 9

5.3.1 Visualising the LTS Model . 125

5.3.2 Property Specification in the LTSA tool 128

5.3.3 Checking Properties . 129

5.4 Summary and Discussion . 130

6 Case Studies 132

6.1 Single-Lane Bridge Problem . 133

6.1.1 Model Generation . 133

6.1.2 Property Checking . 136

6.1.3 Evaluation . 140

6.2 Leader Election Algorithm . 141

6.2.1 Implementation . 142

6.2.2 Model Generation . 145

6.2.3 Property Checking . 150

6.2.4 Evaluation . 154

6.3 Summary and Discussion . 157

7 Evaluation and Conclusions 159

7.1 Evaluation of Approach . 159

7.1.1 Faithfulness of Models . 160

7.1.2 Usefulness for Model Checking . 162

7.1.3 Comparison to Related Work . 163

7.1.4 Main Applications . 174

7.1.5 Limitations . 175

7.2 Evaluation of Tool Support . 177

7.2.1 Usability . 177

7.2.2 Performance and Scalability . 178

7.2.3 Known Limitations . 180

7.3 Summary of Contributions . 181

7.4 Future Work . 183

A TXL Java Grammar and Annotation Rules 186

B Additional Case Studies 205

B.1 Traffic Lights Control System . 205

B.2 Cruise Control System . 208

B.3 Dining Philosophers . 211

C Bully Algorithm Source Code 219

Bibliography 238

10

List of Tables

3.1 Example of context table. 62

4.1 LTL logical and temporal operators. 105

5.1 LTL logical and temporal operators in the LTSA tool. 128

7.1 Comparison to related work on model extraction. 173

7.2 LTSE performance data. 179

11

List of Figures

2.1 Kripke structure for a simple microwave oven. 27

2.2 LTS of the microwave oven. 29

3.1 Running example code. 43

3.2 Control flow graph of the editor code. 44

3.3 Inferred model based on trace information. 45

3.4 LTS of editor without state information. 48

3.5 General view of the model extraction process. 52

3.6 Repetition statements annotation rules. 54

3.7 Selection statements annotation rules. 54

3.8 Method call annotation rule. 55

3.9 Method body annotation rule. 55

3.10 Example of instrumented code. 58

3.11 Example of log file. 59

3.12 Example of context trace. 64

3.13 Example of generated FSP description. 73

3.14 LTS model of the editor. 74

12

LIST OF FIGURES 13

3.15 Source code of producer. 78

3.16 Source code of consumer. 79

3.17 Source code of buffer. 80

3.18 LTS model of the producer. 81

3.19 LTS model of the consumer. 81

3.20 LTS model of the buffer. 82

4.1 Diagram of mappings and relations. 83

4.2 Property-preserving relations diagram. 101

4.3 Example of property specified in FSP. 103

4.4 Example of LTS model of an FSP property. 103

4.5 FSP of process P1. 104

4.6 LTS model of process P1 composed with property IN OUT. 104

4.7 FSP of process P2. 104

4.8 LTS model of process P2 composed with property IN OUT. 104

4.9 Property automata of LTL property. 106

4.10 LTS model of FLTL property. 107

4.11 Initial model of the editor system. 112

4.12 Refined model of the editor system. 113

4.13 Final model of the editor system. 113

5.1 Class diagram of the LTSE tool main classes. 117

5.2 Screenshot of an execution of the LTSE tool. 123

5.3 FSP of the lights example. 125

LIST OF FIGURES 14

5.4 LTS model of the lights example. 126

5.5 Minimised LTS model of the lights example. 126

5.6 FSP of the random choice traffic lights system. 126

5.7 LTS model of the random choice traffic lights system. 127

5.8 Deterministic LTS model of the random choice traffic lights system. 127

5.9 Example of report of no violation found. 129

5.10 Example of report of violation. 130

6.1 Visual representation of the Single-Lane Bridge problem. 133

6.2 Source code of the bridge. 134

6.3 LTS models of (a) the red car and (b) the blue car. 134

6.4 LTS model of the bridge for one car of each type. 135

6.5 FSP specification of property OneWay. 136

6.6 Error trace for property OneWay. 137

6.7 Source code of the safe bridge. 137

6.8 LTS model of the safe bridge for one car of each type. 138

6.9 LTS model of the safe bridge for three cars of each type. 139

6.10 Source code of the fair bridge. 139

6.11 LTS model of the fair bridge for three cars of each type. 140

6.12 Election protocol of the Bully Algorithm implementation. 145

6.13 Example of use of guards in the FSP description. 149

6.14 LTS model of the Election Thread for priority 2 and two members. 150

6.15 FSP specification of property OneLeader. 151

6.16 Error trace for property OneLeader. 152

B.1 Traffic lights control system code. 206

B.2 LTS model of the traffic lights control system. 206

B.3 Refined model of the traffic lights control system. 207

B.4 LTS model of the cruise controller. 210

B.5 Fixed model of the cruise controller. 212

B.6 Modified Philosopher code. 213

B.7 Model of the Fork component. 215

B.8 Model of the Philosopher component. 215

B.9 Fixed Philosopher code. 217

B.10 Model of the FixedPhilosopher. 217

15

List of Algorithms and Procedures

3.1 BuildCT (FProg, P) . 63

3.2 CreateLKS(CF, P, Σ) . 69

4.1 PropertyChecking . 109

16

Chapter 1

Introduction

1.1 The Need for Behaviour Models

Software systems have become an important part of our everyday life. They control cash

machines, telephone systems, medical devices, and many other equipment. Because of their

relevance and wide range of applications, any misbehaviour of such systems could mean loss of

money, shutdown essential services and put lives at risk [Pel01]. For this reason, ensuring the

reliability of software systems is paramount.

Efforts to improve the confidence on software systems include the creation of formal methods,

which have been successfully used for the development and verification of commercial and

safety-critical software systems [CW96]. Formal methods include languages, techniques and

tools based on mathematical concepts that can be applied to the specification and verification

of programs1 in order to check their correctness with respect to what they are expected to do.

Though the use of formal methods cannot guarantee that a system is correct, it can improve

confidence that certain misbehaviours will not occur [CW96].

Amongst the existing formal methods, one of the most used techniques is model checking

[CGP99]. This technique employs the exhaustive checking of a finite-state model of a sys-

1We use the terms ‘system’ and ‘program’ interchangeably to refer to a software system.

17

1.2. The Model Construction Problem 18

tem against properties specified in some temporal logic, such as Linear Temporal Logic (LTL)

[MP92], looking for possible violations. A violation consists of a behaviour proscribed by the

property being checked.

Model checking has some advantages over other known validation techniques, such as simulation

and testing [Pat06]. One of such advantages is that the model checking process can be fully

automatic. This advantage is, to some extent, a consequence of the use of abstract models

rather than concrete programs to analyse the behaviours of systems.

A behaviour model is an abstraction of the system that provides a restricted view of the system

behaviour. This restrictive aspect may seem a disadvantage, since there is loss of information.

Nonetheless, because they are abstract - and, therefore, reduced - representations of systems,

models can normally be handled in situations where the real system could not [Lud03].

One of such situations involves the use of tool support: behaviour models can serve as inputs to

one of the numerous available tools (e.g., Spin [Hol97] and LTSA [MK06]), where the system be-

haviour represented in these models can be analysed. These models have been successfully used

in such tools to uncover errors that would go undetected otherwise, such as the identification

of potential deadlock situations and violations of program properties [CW96].

In order to make use of such tools, it is first necessary to build behaviour models that comply

with their input formal language. The problem is that constructing behaviour models normally

requires some effort and expertise in the modelling language [UKM03]. This task is, therefore,

much too often not trivial, even for experienced designers [Hol01].

1.2 The Model Construction Problem

It is common practice to build a model before implementing the system or in parallel with

it, thus permitting an early analysis of the system behaviour. Properties can then be checked

and the correctness of the model can be verified. Nevertheless, usually after producing a

1.2. The Model Construction Problem 19

corresponding implementation, one cannot guarantee its correctness, as properties may not

have been carried over to the program [GSVV04].

Even when it is possible to achieve a program that preserves the properties verified for a

model, in many situations code and model tend to diverge as the system evolves [SC96]. The

inclusion, removal or modification of parts of the system, in order to accommodate new features

or versions, might happen without revisiting the model. It may also be the case that the model

was not created taking into consideration some necessary features of the system, which were

identified later on. The effort required to go back to the model to apply the changes may

prevent developers from doing so. The mentioned situations may occur as a result of limited

project time and/or budget. In all these cases, the model is rendered useless [Hol01].

In this work, we focus on how to build models of existing systems. The process of obtaining a

model from an actual implementation is called model extraction. It involves using information

from the implementation to construct a model of the system behaviour. Because the model

is built based on the implementation, if any modification is applied in the code, then a new

execution of the extraction process could generate a new model which includes the changes.

Therefore, assuming that the model extraction process generates a correct translation from

code to model, conformance could be easily maintained irrespective of alterations in the code.

There are, however, two essential requirements to be attended to when constructing behaviour

models. Firstly, the construction of the model must be much simpler and less time-consuming

than building the system itself [Hol01]. Otherwise, developers may opt for other types of analysis

just because they require less time, effort or expertise, even though they cannot provide all the

benefits of model checking. As a consequence, it is desirable that this process be executed

(semi-)automatically, since the construction of models by hand is usually expensive and likely

to introduce errors [CDH+00]. Secondly, and more importantly, the model should be a faithful

representation of the system behaviour, because any analysis based on an incorrect model may

mislead the developer into an erroneous understanding of how the system behaves [JD00].

Research has been carried out on techniques for model extraction in recent years (e.g., [CW98],

[HS99], [CDH+00], [BR02] and [CCO+04]) and the results have been encouraging. Nevertheless,

1.3. Proposed Approach 20

the extensive use of model extraction, and, therefore, of model checking for existing systems, has

been slowed down by what Corbett et al. call the model construction problem [CDH+00]. This

problem corresponds to finding a way of bridging the gap between the semantics of current

programming languages and that of the less expressive languages used as inputs in model-

checking tools.

1.3 Proposed Approach

The general objective of this work is to present a possible solution to the model construction

problem, which attends to the necessary requirements of simplicity, low time-consumption and

faithfulness, and also complies with the modelling language of a model-checking tool. We do

so through the use of the concept of context. A context represents a specific situation in the

execution of a system, which is the combination of the execution point in its control flow graph

and its current state, represented by a set of values of selected program variables (attributes).

Therefore, a context combines static and dynamic information to identify sequences of actions

executed by the system and, this way, put these sequences together to build a behaviour model.

To obtain the necessary information, the source code of the program is statically instrumented

with annotations that aim to collect control flow information and the values of a selected set

of attributes. The instrumented version of the code is then executed, generating traces, where

each trace is a sample of execution of the system. A set of test cases is usually employed to

guide the trace generation phase, so that behaviours of interest are observed (e.g., behaviours

that are relevant for the checking of a certain property).

The annotations in the traces are subsequently converted into context information, i.e., the

block of code that created the context, the evaluation of its associated control predicate and

the values of the set of attributes at that particular instant. The sequences of contexts found

in the traces and the actions that appear between each two consecutive contexts are then

translated into a Finite State Processes (FSP) specification [MK06], which describes a Labelled

Transition System (LTS) [Kel76].

1.3. Proposed Approach 21

The behaviour models we build can be used to check temporal properties of single- and multi-

threaded systems. Though different types of systems have been successfully used to test our

approach, it has proved to be particularly suitable for reactive systems [MP92]. The reason is

that in such systems it is possible to control the sequences of inputs. This way, we can choose

the behaviours we would like to observe and record, thus generating a model that is very much

focused on representing a set of behaviours that can affect the checking of a certain property.

We extract one model for each component of the system, so that they can be separately checked

against local properties (properties pertaining to a single component). If the system includes

more than one instance of a component, the observed behaviours of each instance, recorded in

the traces, are combined to form the general behaviour of the component.

Multiple models can then be used to create a model parallel composition using tool support

[MK06], making it possible to analyse how the components of the system work together and

check program properties. Synchronisation on action names permits the representation of

interactions and dependencies between components of a concurrent system.

The use of contexts not only allows us to combine multiple traces but also may result in the

inclusion of additional behaviours to the model. These behaviours, though not observed in

the traces, may be inferred based on the identification of similar contexts reached during the

generation of the traces. For instance, this means that alternative paths may be included in the

model even if each path appears in a different trace. In this case, these additional behaviours

give us relevant information about the system behaviour, which might not be inferred directly

from the traces. This feature is important if one considers that these additional traces may

reveal violations that may not be detected by just looking at the traces.

The analyses using our models have demonstrated, through a number of case studies, that

they are good approximations of the behaviours of the systems they describe with respect to

properties to be checked. They can, therefore, be used to detect LTL property violations,

thus increasing confidence on these systems regarding the absence of undesired behaviours, i.e.,

behaviours that violate the specification of the system.

1.3. Proposed Approach 22

Initial models can be augmented by the addition of more information, thus reducing its level of

abstraction. This process generates a model which is a refinement [Mil71] of the initial model.

The refinement process, by decreasing the level of abstraction, improves correctness with respect

to a property being checked and prevents some false alarms (i.e., property violations in the

model that are not actual violations in the code) from happening during property checking.

A generated model can also be improved through the inclusion of more observed behaviours.

This allows an existing model to be updated using new observed behaviours. The addition

of more behaviours not only improves the view the model provides of the program behaviour,

but also reduces the possibility of missing out behaviours that might violate a property being

checked. Focusing on behaviours that are relevant to check a property (by selecting appropriate

test cases, for instance), it is possible to achieve a model that is complete enough to show

whether the program satisfies or violates the property.

The effort devoted to the model extraction process is reasonably little and requires only basic

knowledge of verification (mostly involving the interpretation of the outcomes of checking a

property). In some situations, the user does not need to know either the programming lan-

guage or the modelling language, as the necessary information can be collected and processed

automatically. A tool called LTS Extractor (LTSE) has been developed to automate most of

the process we describe here. The resulting model can be visualised and analysed using the

LTSA tool [MK06], where linear temporal properties can be checked against it.

The main contribution of this work is, therefore, the development of an approach for behaviour

model extraction that uses the concept of context to combine static and dynamic information

and whose resulting behaviour models can be used for property checking in an existing tool. Sec-

ondary contributions include the development of a tool that implements this model extraction

approach, demonstrating how the approach can be used for behaviour analysis and property

checking and the description of a refinement technique that improves the model correctness

with respect to a given property.

1.4. Thesis Outline 23

1.4 Thesis Outline

The next chapter presents the background theory of this work, discussing some issues related to

behaviour models, including completeness and correctness of the models and model refinement,

and some techniques for model extraction. Chapter 3 describes the proposed approach in more

detail, presenting the types of information involved, introducing the concept of contexts and

using an example to show the model extraction process. It also presents our approach for

dealing with concurrency. In Chapter 4 there is a discussion about the formal foundations of

the approach, mainly focusing on the abstractions used and on the formal definitions of the

mappings applied during the process of constructing the final model.

Chapter 5 presents the tool support provided for the model extraction process and how it can

be used to generate, visualise and analyse behaviour models. To demonstrate the proposed

approach applied in a more complex scenario, Chapter 6 shows the results of two case studies,

one based on the Single-Lane Bridge problem discussed in [MK06] and another involving an

implementation of the Bully Algorithm [GM82] for leader election in a distributed system.

And, finally, Chapter 7 discusses the proposed approach in comparison to existing related work

on model extraction, pointing out its main applications and known limitations. It also presents

an evaluation of the tool support provided according to a set of criteria. The chapter ends with

a summary of the thesis achievements and possible future work.

Chapter 2

Background

This chapter presents the background theory of this work. It includes a discussion on some types

of behaviour models found in the literature and how they are employed to check properties.

A discussion on the faithfulness of behaviour models and how they can be refined to improve

correctness is also presented.

The second part of the chapter contains background information on model extraction tech-

niques, commenting on their advantages and limitations, and a categorisation of our approach.

We discuss our choice and the formalisms we have adopted.

2.1 Behaviour Models

Behaviour models are abstract descriptions of the intended behaviour of a system [UKM03].

They represent, therefore, a restricted view of all possible executions of the system. This view

can be presented in many different ways and levels of abstraction, depending on the purpose

of the model.

A widely used way of modelling behaviours for analysis and property checking is through

finite-state machines. A finite-state machine (FSM) is composed of a finite set of abstract

states Q = {q0, q1, ..., qn}, representing (sets of) possible concrete states of a system, and a set

24

2.1. Behaviour Models 25

of transitions connecting these states. A transition of the form q0 → q1 defines that the system

can evolve from a state q0 to state a q1. Thus, the behaviour of the system is described in

terms of sequences of states that can be obtained by traversing the model using the transitions

connecting these states, starting in some initial state.

Behaviour models described as FSMs have the required formal foundations for being used to

support a rigorous analysis of systems and property checking [CCG+04]. However, some issues

must be taken into account when working with these models:

• Type of model : It is important to choose the appropriate type of behaviour model. This

choice depends on the type of application (e.g., model checking) it will have. In general,

it is also related to the tool that shall be used, since the chosen type must be compatible

with that accepted by the particular tool;

• Expressiveness : The model should provide ways of appropriately expressing relevant fea-

tures of the types of systems to be modelled, such as concurrency, real-time conditions,

probabilities, locations, among others;

• Representation of States : States may represent values of program variables, control lo-

cations (points where the system waits for the next noteworthy event), the value of the

program counter, the contents of registers or any other abstraction used to describe the

current situation of the system. States can also represent local states, describing only

variables related to a specific process, or global states, which define a combination of the

states of all processes composing the system;

• Representation of Transitions: Transitions may represent a variable assignment, the call

or termination of a method, the beginning or end of a task or any other abstraction used

to describe events that cause a change of state;

• Types of Properties: A property is the definition of an attribute that should hold for every

possible execution of a system [MK06]. If the model is to be used for property checking,

it is important to know what types of properties can be checked and what is the meaning

of a violation according to the representation of states and transitions.

2.1. Behaviour Models 26

These and other issues are discussed next, when we present some types of behaviour models

and their application for property checking and look into the question of model faithfulness. It

is also discussed how behaviour models can be refined and the effects of this refinement.

2.1.1 Types of Behaviour Models

As suggested by Hansen et al. [HVV03], there are two basic approaches to represent behaviours

using FSMs: state-based and action-based. These two approaches are presented next.

State-Based Approach

In the state-based approach, the behaviour of a system is represented as the sequence of states

that can be reached according to the transitions available in each state. In this case, a state

represents an instantaneous description of the system in terms of values of variables at a certain

point in time [CGP99]. These variables may include, among others, the program counter, the

execution stack state, the evaluation of program predicates or values of attributes.

Transitions define which states are reachable from the current state, showing how the values of

the variables can change during the execution. Hence, the behaviour of a program is determined

by the possible values these variables can be assigned and which combinations of variable values

are allowed to occur.

One example of a stated-based behaviour model is a Kripke structure (KS) [CGP99]. In a

KS, a state is described by a set of atomic propositions. Each atomic proposition represents a

boolean expression over values of variables. Each state is labelled with the propositions that

are true in that state. Therefore, a state in a KS defines a combination of true propositions at

a certain instant of the execution of the represented system.

Definition 2.1. Kripke Structure. A Kripke Structure M = (Q, Q0, T, AP, L) is a model

where:

• Q is a finite set of states;

2.1. Behaviour Models 27

• Q0 ⊆ S is the set of initial states;

• T ⊆ S × S is a transition relation;

• AP is a set of atomic propositions; and

• L : Q → 2AP is a function that labels each state with the set of true atomic propositions

in that state.

An example of KS is shown in Figure 2.1. It describes a simple microwave oven system, based

on a similar example presented in [CGP99]. Each state is labelled with the values of two

atomic propositions: on, representing whether the microwave has been switched on, and heat,

which indicates whether the microwave is cooking some food. As mentioned before, only true

propositions in a state are used as labels in a KS. However, we also include false propositions

in the labels - marked with the symbol ∼ - just to make it clearer the propositions that are

false in that state.

Figure 2.1: Kripke structure for a simple microwave oven.

The state where both propositions are false represents the initial state of the system. A KS

can have several initial states, describing different possible initialisations of the system.

An execution of the system corresponds to a sequence of assignments to the set of propositions,

causing transitions between states as the values of these propositions change. Note that the

state where on is false and heat is true is not included in the structure presented in Figure 2.1.

Therefore, this state is not part of a feasible execution of the system, i.e., it is unreachable.

Properties to be checked using state-based models describe how the values of the variables can

vary during an execution. A given property is true in a model if the property is true in every

state of the model. Hence, a violation of a property (the property is found to be false in the

model) means that there is at least one state in the model which does not preserve the property

2.1. Behaviour Models 28

being checked. This state constitutes an undesired combination of values of propositions and

should, therefore, be disallowed by the system.

Action-Based Approach

Unlike the state-based approach, in the action-based approach, the behaviour of a system is

described by the sequences of actions that it can execute. An action is an atomic event of the

system that causes an indivisible change on the program state [MK06]. Actions are defined

according to the level of abstraction involved [vG01], representing method calls, variable as-

signments, task completion or any other meaningful event. A sequence of actions describes a

sequence of these events that the system can generate.

States represent points where the system waits for the next noteworthy action to happen.

Thus, a change of state describes the occurrence of an action in the current state that causes

the system to move to a next state.

Labelled transition systems (LTS) [Kel76] are frequently used to model behaviours according

to this approach. As the name indicates, in an LTS, transitions are labelled rather than the

states, as was the case in Kripke structures.

Definition 2.2. Labelled Transition System. A labelled transition system (LTS) M =

(S, si, Σ, T) is a model where:

• S is a finite set of states,

• si ∈ S represents the initial state,

• Σ is an alphabet (set of action names), and

• T ⊆ S × Σ × S is a transition relation.

Transitions are labelled with the names of the actions that cause the system to progress from

the current state to a new one. Therefore, given two states s0, s1 ∈ S and an action a ∈ Σ,

2.1. Behaviour Models 29

then a transition s0
a→ s1 means that it is possible to go from state s0 to state s1 through the

execution of an action with name a. Thus, a transition can only take place if the associated

action occurs.

Figure 2.2 shows the LTS model of the same microwave oven system used to illustrate a KS.

Note that states are labelled with a number just to identify them. Actions swicthedOn and

switchedOff represent the events of turning the microwave on and off, respectively. Action

cook signals the beginning of the cooking process, whereas action done indicates that the food

being cooked is ready.

Figure 2.2: LTS of the microwave oven.

A property to be verified using this approach describes sequences of actions allowed in the

system. If a property is true in a model, it means that the model does not allow any sequence

not allowed by the property. Thus, a violation of a property represents that the model permits

some sequence of actions that should not occur.

Our choice

We build models that follow the action-based approach. More specifically, we construct LTS

models. Our choice is based on the fact that analysing a program in terms of the sequences

of actions it can execute is a more intuitive way of reasoning about its behaviour [CCG+04].

Furthermore, LTS models guarantee an easy way of describing system behaviours and, because

they have well-defined mathematical properties [MK06], they can be used to model check

sequential, concurrent and distributed systems.

The existence of tool support (e.g., the LTSA tool [MK06]) simplifies the process of checking

properties. It also provides the possibility of visualising the generated models and obtaining

the necessary feedback regarding property violations.

2.1. Behaviour Models 30

Following this choice, henceforth, when we mention a model we mean an LTS model. Similarly,

when we talk about behaviours we refer to sequences of actions executed by the system.

2.1.2 Software Model Checking

Model checking refers to an automatic technique used to verify whether a model of a system

satisfies a certain property. According to Clarke et al. [CGP99], the model checking process

consists of the following three steps.

Modelling. The creation of a model that is accepted by a model-checking tool. In practice,

as previously commented, the model is generally built using an FSM-based formalism, as this

type of modelling language is the one used in most of the available tools (e.g. Spin [Hol97] and

LTSA [MK06]). Because a model can be too large and/or too complex (leading to the state-space

explosion problem [CGP99]), some technique may have to be applied to reduce the complexity

and make the model tractable by a tool. Many of the available techniques apply abstract

interpretation [CC77], predicate abstraction [GS97], symmetry reduction [ES96], partial order

reduction [KP89] or slicing [Tip95]. Generally, the techniques are adapted to the properties to

be verified and to the program to be abstracted. Therefore, the main idea is to keep as little

information as possible, so long as this information suffices to verify the necessary properties

about the program.

Specification. The definition of a set of properties the system is expected to satisfy, using the

logic supported by the model-checking tool. The properties to be checked against the model

usually are specified using some temporal logic [MP92]. These properties are formulas that

describe particular behaviours a system is expected to exhibit.

Verification. The process of checking whether the specification is satisfied by the created

model. When a property is checked against a model, there are two possible outcomes: either

the property is satisfied (or preserved) by the model or it is violated by the model. The

satisfaction of a property means that the model does not include any behaviour not allowed

by the property. The violation, on the other hand, indicates that, at least, one behaviour in

2.1. Behaviour Models 31

the model is not permitted by the specification. In this case, tools normally generate an error

trace as output, which shows the behaviour that violated the property.

Issues related to the model checking process include, among others, how to support the specifi-

cation step, in order to make it easier to specify properties and make sure these properties are

accepted by model checking tools, such as through the use of specification patterns [DAC98].

How to provide better error trace interpretation techniques, helping the analysis of the outcomes

of the verification process, is another focus of research [CDH+00].

Although these are relevant issues, we concentrate on the modelling step. More specifically, we

look into the issue of how to create models that are accepted by a model-checking tool (the

LTSA tool [MK06]) and can be used to check properties specified using Linear Temporal Logic

(LTL) [MP92].

2.1.3 Faithfulness of a Behaviour Model

When modelling a system, an important aspect is guaranteeing by construction that the model

is a good approximation of the system behaviour. This requires choosing the appropriate

abstractions to build the model, i.e., how to approximate the behaviour described in the model

to that of the actual program.

If the model is an erroneous abstraction of the system, the fact that it satisfies some properties

does not mean that the system also satisfies the same properties. Thus, if one cannot trust

the model, then one cannot trust any result from any analysis based on it. Though it is not

possible to completely ensure that the mapping from code to model is correct [Pel01], it should

be guaranteed that at least some properties of the concrete system are present in the abstract

model [Lud03].

2.1. Behaviour Models 32

Faithfulness

A behaviour model M is a faithful representation of the behaviour of a program Prog if the

satisfaction/violation of a certain property by M implies that Prog also satisfies/violates the

property. Hence, the objective when building a behaviour model is to achieve a faithful abs-

traction of the system it represents. This way, an analysis on the model would correspond, at

a certain level of abstraction, to an analysis on the actual program.

Faithfulness is, nevertheless, not any easy requirement to fulfil. It essentially depends on the

quantity and quality of the information used to build the model. Because the model is a

restricted view of the complete behaviour of the program, some possible behaviours of the

latter will probably not be represented in the former. As a result, if any significant behaviour

is left out, the model can satisfy a property that is violated by the program.

Another important aspect that affects the faithfulness of a model is the choice of the level

of abstraction, i.e., the level of details used to attribute meanings to states, transitions and

actions. Too detailed information about the system behaviour can lead the model to a level of

abstraction where its complexity and size prevent the use of a model-checking tool (for instance,

a state-space explosion situation [CGP99]). On the other hand, too little information means

that the model may allow behaviours that cannot be executed by the system, simply because

it does not have enough details to identify those behaviours as infeasible.

Completeness and Correctness of a Model

The case where a property is satisfied by the model but violated by the code results in what

is called a false positive. False positives are caused by the model not containing the behaviour

that originates the violation. Hence, we say that the model is incomplete.

Definition 2.3. Completeness. Let M be a behaviour model representing an implementation

of a program Prog. If we represent the set of all behaviours of Prog as L(Prog) and the set of

all behaviours of M as L(M), then M is complete with respect to Prog iff L(Prog) ⊆ L(M).

2.1. Behaviour Models 33

Completeness, therefore, corresponds to the characteristic of a behaviour model that defines

how representative the set of behaviours in the model is in relation to the set of all behaviours

that can be observed in the real system it describes. The more representative this set of

behaviours, the “more complete” is the model.

The situation where the model violates a property not violated by the code is called a false

negative. False negatives are the result of the selection of an inappropriate level of abstraction.

They indicate that the level of details of the model is too low and, for this reason, the model

allows behaviours not allowed by the code. Thus, the model is said to be incorrect.

Definition 2.4. Correctness. Let M be a behaviour model of an implementation of a pro-

gram Prog. If we represent the set of all behaviours of Prog as L(Prog) and the set of all

behaviours of M as L(M), then M is correct with respect to Prog iff L(M) ⊆ L(Prog).

The correctness of a behaviour model is, therefore, related to the existence of invalid behaviours,

i.e., behaviours not allowed by the system it describes. The fewer invalid behaviours it has, the

“more correct” is the model.

Completeness can be improved by the addition of more behaviours of the program to the model,

whereas correctness can be enhanced by adding more details to the model (e.g., adding more

values of variables). Ideally, the set of behaviours should include only the necessary behaviours

to check a property, so as not to significantly affect scalability and tractability by a model-

checking tool. Following the same idea, the improvement of correctness should not increase

complexity and size to levels not acceptable by a tool to be used. We discuss the completeness

and correctness of the models we generate in Chapter 4.

2.1.4 Behaviour Model Refinement

In situations where a model generates false negatives, a change in the level of abstraction is

necessary. Having an abstract model (hereafter called ‘original model’), an abstraction refine-

ment [Dam03] process aims at generating a new, more concrete model (hereafter called ‘refined

2.1. Behaviour Models 34

model’), where by “concrete” it is meant that the new model is a closer representation of the

system [MG96]. In other words, the refinement process is used to improve the precision of a

model that has too coarse a level of abstraction to check a certain property.

If the level of abstraction is too coarse, then the model is incorrect. Therefore, refining a

model is a way of improving its correctness. This improvement involves the addition of more

information about the program during the construction of the refined model, and should result

in the refined model satisfying properties not satisfied by the original model.

The satisfaction of more properties is a consequence of the additional information used to build

the refined model, which rules out some false negatives - i.e., eliminates some behaviours not

allowed by the system. This elimination occurs, for instance, when states previously seen as

equivalent are found to be distinguishable based on the additional information.

In practice, a refinement process is executed after the verification step. At this point, there

are two possibilities: either the property is checked to hold or a violation is found. In the first

case, the model checking process finishes, as the property has been checked to be satisfied by

the model at the current level of abstraction.

If an error trace is obtained as a result of model checking a property, this counter-example

is used to verify whether this is a feasible behaviour of the program. If the error trace is a

feasible behaviour of the program, than a true violation has been found and the implementation

should be modified as necessary. Nevertheless, if the program cannot reproduce the behaviour

contained in the error trace, then one can conclude that it is a false negative and the refinement

process starts. The refinement process may be repeated as many times as necessary until a

suitable abstraction is found.

Refinement Relation

An important requirement of a refinement process, besides generating an abstraction that eli-

minates some infeasible behaviours, is the preservation of properties. The refined model should

preserve all properties that held in the original model. This property-preservation relation can

2.1. Behaviour Models 35

be guaranteed through the establishment of a formal relation between the behaviours described

in the two models. The semantics of some existing formal relations are discussed in [vG01].

One well-known formal relation used to compare behaviour models is simulation [Mil71]. Simu-

lation is a relation that considers the structures of two models, providing a way of relating their

states according to the actions they enable and the states that are reachable from them. This

means that, rather than comparing two models based only on the traces they can produce (as

occurs, for example, in trace equivalence [Hoa85]), a simulation relation compares the systems

according to the set of states and transitions that can produce these traces.

Definition 2.5. Simulation Relation (or Simulation Preorder). Given two LTS models

M = (S, si, Σ, T) and M ′ = (S ′, s′i, Σ
′, T ′), a relation Sim ⊆ S × S ′ is a simulation relation if:

1. (si, s
′
i) ∈ Sim, and

2. for every pair of states (s1, s
′
1), with s1 ∈ S and s′1 ∈ S ′, if s1

l→ s2 then s′1
l→ s′2, for some

s2 ∈ S and s′2 ∈ S ′, such that (s2, s
′
2) ∈ Sim.

M ′ is said to simulate M , denoted by M � M ′, if there is a simulation relation Sim over S×S ′.

A simulation relation over S × S ′ defines that any sequence of actions executed by M can be

matched by M ′. Hence, there is a relation between states of the two models in a way such that,

whatever action M takes from its current state, M ′ can take the same action from its current

state. Moreover, the new state of M ′ retains at least all the options of actions also available in

the new state of M .

As will be discussed in Chapter 4, there is a simulation relation between the original model and

the refined model that our refinement process generates. Though simulation is not as strong a

behaviour relation as bisimulation [Par81], it suffices to guarantee property preservation from

an abstraction of a system behaviour (initial model) to a more concrete representation of the

same behaviour (refined model).

2.2. Model Extraction 36

2.2 Model Extraction

Model extraction is the process of automatically generating a model from an existing implemen-

tation [HS99]. Because it is automatic, it reduces the occurrence of errors and the tedious work

involved in building models by hand. However, the model extraction process should guarantee

a certain level of faithfulness of the model so as to allow the checking of properties. It should

also provide the possibility of refining an initial abstraction, so that some infeasible behaviours

could be eliminated.

Several model extraction techniques have been proposed in the literature. They can be divided

into three main categories, according to the type of information they collect to build a behaviour

model1. We present each category and then insert our approach in one of them. The original

characteristics of the proposed approach are pointed out and briefly compared to existing work

in the same category.

2.2.1 Based on Static Information

In model extraction using static information, information is collected directly from the source

code or compiled code of a program, without executing it. The information can be statically

gathered through a complete control flow or data flow analysis [CDH+00, HJMS02, BR02,

CCG+04] or through the insertion of annotations in the code to mark relevant points of interest

and guide this analysis [HS99].

Information that can be obtained statically is usually related to the control flow of the program.

A control flow graph (CFG) [ASU86] is a directed graph that represents statements of a program

according to possible execution orderings based on the flow of control inside the program

source code. Statements label the nodes and directed edges connect these nodes, showing

the allowed sequences of statements. This graph shows control flow statements (selection and

repetition statements) as points of decision where, depending on the evaluation of the control

1In this classification, we focus on the type of the information collected, regardless of how this information
is obtained and of what sort of analysis will be carried out based on it.

2.2. Model Extraction 37

predicate [RS02] associated with the statement, some paths can be taken and some others may

be made infeasible.

A CFG has an initial node and a final node, representing, respectively, the beginning and the

end of the computation inside the program. Therefore, the reasoning about the flow of control

of a program described in a CFG is based on the paths allowed to be taken across the edges

connecting the nodes in the graph, starting at the initial node and leading to the final node.

Edges that can only be taken according to a control flow statement are labelled with values

of the control predicate that enables that execution path. Edges coming out of nodes labelled

with method names are not labelled, as they do not depend on any condition to be taken.

Having a CFG of a program code, it is possible to obtain a complete view of what the program

can do. Therefore, the use of a CFG supplies valuable theoretical information on all possible

behaviours of the system. If a certain sequence of nodes is not connected by edges, then we

know that it is not a possible execution of the system. This information can then be used to

model, analyse and verify the system.

A model built on static information needs to represent the system states in a way such that the

real values are abstracted. This way, the model is tractable by a tool and the results of an anal-

ysis are true regardless of what these real values are [Ern03]. Though this over-approximation

of the system behaviour guarantees no false positives, it can lead to the construction of a model

that may yield several false negatives during verification [BPSH05] as a result of the decrease

of precision.

This means that some of the paths, though possible according to the CFG, may not be feasible

in the code when it is executed. This is mainly due to changes in the state of the system that

cannot be easily tracked or predicted statically.

The use of symbolic execution [Kin76] can provide the necessary information to rule out some

infeasible paths. However, if the control flow is dependent on inputs, an analysis of each case

might be necessary. Therefore, the set of input classes may make it impossible to test all

possible cases. Furthermore, symbolic execution usually also requires the help of a theorem

2.2. Model Extraction 38

prover, demanding some expertise from the user on how to guide this tool when dealing with

a formula that cannot be solved automatically.

2.2.2 Based on Dynamic Information

Models constructed using dynamic information are the result of an inference process. Informa-

tion on real executions is used to identify patterns of behaviour, which are then included in the

model. These patterns can be obtained through techniques such as grammar inference [CW98]

or machine learning [ABL02].

Information that can be gathered dynamically includes trace information. Trace information

usually represents the behaviour of a system in terms of traces of execution. A trace is an

output from the system generated during a real execution, normally in response to a set of

inputs. Traces show values of program variables, the state of the execution stack, occurrence

of method calls, the state of threads or any other run-time information.

Trace collection is done through the monitoring of the required information while the system

is executed. To permit this monitoring, it is necessary to instrument the source code, the

bytecodes, the virtual machine or the operating system [BPSH05]. During the instrumentation,

annotations are inserted at certain parts of the code to record the necessary data when the

program is running.

The gathering of information regarding actions that occurred during an execution of a program

results in the generation of traces. Since these were observed behaviours of the system, one can

be sure they are feasible behaviours. This is the most important advantage of working with

dynamic information: this information includes only feasible behaviours. If some behaviour

cannot happen, it will not appear in the traces.

Though the information is precise as to what the system can do, the knowledge is restricted

to the particular observed behaviours, making it too dependent on the samples [Ern03]. More-

over, it is far from being a source of accurate knowledge about how some actions depend on

others. Therefore, models created using this approach are under-approximations of the sys-

2.2. Model Extraction 39

tem behaviour and may either include behaviours not allowed by the system, generating false

negatives, or leave out some important aspects of its behaviour, generating false positives.

As commented before, some inference techniques have been proposed to identify patterns of

behaviours and, therefore, allow the generalisation of the behaviour of a program based on the

patterns inferred from a set of traces. Nevertheless, neither the use of statistical information

[CW98] nor of a machine learning technique [ABL02] provided satisfactory results to help

understand the detected patterns and the identification of dependencies between actions. The

main problem with these approaches is that their inference process is based only on sequences

of actions where the reason for the ordering of actions and the meaning of these actions in the

code are not known.

Combining multiple traces, as attempted in [Mar05], is also difficult, since one does not know

when two occurrences of an action in the traces correspond to the same specific action in the

code. The same action may be executed in different parts of the code, under different situations.

For instance, a method might have several call sites in a program, each one of them reached

through different paths in the code. For this reason, relevant relations between actions, such

as an action that can only happen after another or an action that can be repeated because it

is part of a loop, cannot be correctly inferred.

2.2.3 Hybrid

Because using just static or dynamic information has the limitations pointed out before, Ernst

[Ern03] suggested that static and dynamic information could be used in combination, in a

hybrid approach. In this approach, the knowledge gained from one type of information could

be used to complement the knowledge obtained from the other.

Whereas static information can provide a general knowledge about the system behaviour, dy-

namic information could improve precision by supplying knowledge on particular, feasible be-

haviours. At the same time, whilst dynamic information can provide the necessary precision

2.3. Summary and Discussion 40

through feasible behaviours, the static information could be used to permit an accurate gene-

ralisation of the system behaviour based on the collected samples.

An attempt to use such an approach is presented in [NE02], where static information is analysed

to confirm the existence of invariants inferred based on dynamic information. The authors

successfully demonstrate the usefulness of complementing dynamic with static information.

However, their approach applies two types of analyses and, consequently, requires the use of

two different tools: one to infer the invariants from the dynamic information and another to

check these invariants against the static information.

2.2.4 Categorisation of the Proposed Approach

We use a combination of static and dynamic information for the extraction of LTS models

from Java source code, thus following the hybrid approach. The static information we collect is

related to the system control flow, i.e., how the control of the system execution evolves while it

is running. As for the dynamic part, we use trace information, which includes samples of real

executions of the system (traces) and monitored values of program variables (attributes).

Trace information allows us to be precise about the actual behaviours of the system, whereas

control flow information permits us to be accurate as to the relations governing the sequences of

actions the system can execute. With this combination of information, we can identify feasible

behaviours and, based on them, derive other behaviours not included in - or that could not

be easily inferred from - the traces. Such behaviours represent, for instance, alternative paths,

which, though not observed in any particular trace, can be detected by combining traces and

identifying, according to the control flow structure, common subsequences of actions.

2.3 Summary and Discussion

In this chapter, we discussed the underlying theory of the work herein described. We presented

concepts related to behaviours models, model checking, faithfulness of a model, model refine-

2.3. Summary and Discussion 41

ment and model extraction. These concepts will be used as basis for the discussions to be

presented in the next chapters, when we describe our approach in more detail.

In the next chapter, we will show how we apply the combination of static and dynamic infor-

mation to build action-based models, namely LTS models, and Chapter 4 will discuss how their

correctness and completeness can be improved.

Chapter 3

Model Extraction Using Contexts

The proposed approach is now presented in more detail. In particular, we discuss the concept of

context and the information used to identify contexts. We use a simple program as an example

to present the basic ideas and the general process of building models using contexts. We discuss

each part of the process and use the example to show the inputs and outputs in each step.

3.1 Contexts

Our model extraction process is based on the combination of control flow information and

trace information. To support this combination, we also use state information to create our

concept of context. This notion is central to this work, as it allows the combination of static

and dynamic information in a way such that we can identify ordering relations between actions,

connect multiple traces to form a single model and infer additional feasible behaviours.

In order to explain what we can obtain from each type of information and how we combine

them to create our notion of contexts, we will use the piece of code shown in Figure 3.1 as an

example. This is part of the code of a simple text editor, which allows the user to open a text

file and execute operations on it (edit, print, save and close).

42

3.1. Contexts 43

1 public class Editor
2 private boolean isOpen ;
3 private boolean i sSaved ;
4

5 public Editor () {
6 isOpen=fa l se ;
7 i sSaved=true ;
8 int cmd=−1;
9 Str ing name=null ;

10 while (cmd!=4){
11 cmd=readCmd () ;
12 switch (cmd) {
13 case 0 : i f (! isOpen)
14 name=open () ;
15 break ;
16 case 1 : i f (isOpen)
17 ed i t (name) ;
18 break ;

19 case 2 : i f (isOpen)
20 pr i n t (name) ;
21 break ;
22 case 3 : i f (! i sSaved)
23 save (name) ;
24 break ;
25 case 4 : e x i t () ; } }
26 }
27 . . .
28 void e x i t (Str ing n) {
29 i f (! i sSaved) {
30 int opt=readCmd () ;
31 i f (opt==0)
32 save (n) ;
33 }
34 i f (isOpen) c l o s e (n) ;
35 }
36 }

Figure 3.1: Running example code.

This system has two attributes: isOpen indicates whether a file is open and isSaved indicates

whether the file contents have been saved. Method open sets isOpen to true, while close sets

it to false. Method save defines isSaved as true, whereas method edit sets isSaved to false.

If the file has been modified but not saved, the user has the option of choosing whether to save

the document or not before terminating the program (see method exit).

3.1.1 Control Flow Information

Figure 3.2 shows the control flow graph (CFG) of the editor code, including the CFG of method

exit1. The ellipses represent methods, whereas the diamonds define control flow statements.

The arrows indicate the direction of the flow of control, from an entry point (Enter) to an exit

point (Return).

When the system reaches a control flow statement, a control predicate is evaluated. Depending

on its value, the flow of control can follow a different path inside the CFG. These alternative

paths can be seen in the CFG in Figure 3.2 as multiple arrows leaving from the same diamond.

The different values of the predicates label the arrows. We use dashed arrows to show the flow

of control not affected by control flow statements (i.e., not dependent on the evaluation of any

control predicate).

1We do not show the CFGs of the other methods because their implementations are irrelevant to our dis-
cussion.

3.1. Contexts 44

The CFG shows us all possible paths of execution of the editor based on the control flow

information collected from the code. It also reveals the control predicates that define the

system behaviour and which statements and other predicates are dependent on each predicate.

However, as mentioned earlier, this static information can include paths that cannot be taken

during a real execution. Therefore, some of the paths presented in Figure 3.2, though possible

according to the CFG, may not be feasible in the code when it is executed.

Enter

cmd!=4

readCmd()

cmd

!isOpen isOpen isOpen !isSaved

!isSaved

opt==0

open() edit() print() save()

exit()

readCmd()

save()

close()

Enter

Return

Return

isOpen

true true

true true

false

true true

true

true

falsefalsefalse

false

false

false

false

0
1 2 3 4

Enter

cmd!=4

readCmd()

cmd

!isOpen isOpen isOpen !isSaved

!isSaved

opt==0

open() edit() print() save()

exit()

readCmd()

save()

close()

Enter

Return

Return

isOpen

true true

true true

false

true true

true

true

falsefalsefalse

false

false

false

false

0
1 2 3 4

Figure 3.2: Control flow graph of the editor code.

To fully understand the feasibility of a path of execution, we need to know the values of

predicates evaluated along that path, which are normally dependent on values of program

variables. As these values can change during the execution (due to inputs or changes in the

system state), some paths that were feasible at a certain point may become infeasible later on.

If these dynamic changes are not considered, path feasibility can be hard to analyse.

3.1.2 Trace Information

Trace information provides sequences of actions executed by the system in the form of traces of

execution. Thus, a trace represents a real execution of the system and can be used to identify

3.1. Contexts 45

feasible behaviours. However, traces are intrinsically connected to the inputs used to produce

them and to the particular internal state of the system at the moment they were generated.

For example, let us consider the following sequence of inputs to the editor in Figure 3.1: 〈0

1 3 2 1 1 2 3 2 1 4 0〉. This generates the following trace (ignoring calls to method readCmd,

which does not affect the results), where each name represents the occurrence of an action

corresponding to the method with the same name:

〈open edit save print edit edit print save print edit exit save close〉

Looking at this trace, one can try to infer some relations between the actions. For example, one

can see that open seems to be the initial action and close, the last. Actions edit, save and

print appear more than once in the trace, indicating that they may be executed repeatedly.

It also appears that, after saving a file, the next operation may be either print or close.

All these possible relations, however, are based only on the information from this specific trace,

which can be misleading (and, in this particular case, it is). We do not have any concrete

knowledge whatsoever on how the actions are actually related. Because of this, we could

obtain a model like the one in Figure 3.3.

q0 q1 q2 q4q3 q6
open edit

edit

print

printsave

save

close

q5

exit

edit

save

q0 q1 q2 q4q3 q6q6
open edit

edit

print

printsave

save

close

q5

exit

edit

save

Figure 3.3: Inferred model based on trace information.

This model was built just by looking at the sequence of actions in the trace. We created

one initial state from which only operation open is possible. Then, we followed to the next

state with the next action (edit), creating a new state for each transition labelled with a new

action. Whenever an action appeared again, the transition would lead back to the state where

a previous transition labelled with the same action pointed to.

3.1. Contexts 46

This model creates some possible sequences of actions that are not allowed by the system, such

as repetitions of the sequence of actions 〈save print〉. The model also introduces a restriction

that is not part of the system behaviour: contrary to what the model shows, the system allows

that a document be closed at any moment once it has been opened.

The model was built using the assumption that all executions of an action occur under the same

circumstances, thus always leading the system to the same point in its execution (same state

in the model). However, the occurrence of an action may be influenced by the current state

of the system and by previous actions. This information is, therefore, relevant to comprehend

when and why an action can happen and when and why it cannot.

It may be argued that the model was created based only on a single trace, restricting the view

of possible behaviours of the system. Nevertheless, even if we had more traces from which we

could gather different behaviours, it would be hard to find similar subsequences of actions in

order to join them. Because we do not completely understand why and when a certain action

can happen, we cannot, for instance, be sure that the occurrence of an action depends on the

occurrence of another.

The procedure we used to construct this model was an extremely simplified version of more

elaborate approaches to model inference such as [CW98] and [Mar05]. Even these approaches,

nonetheless, also suffer from the same problems previously mentioned. For this reason, their

models can include invalid additional behaviours and impose unreal restrictions. Furthermore,

the combination of multiple traces, supported by Mariani’s work [Mar05], results in the inclusion

of more invalid behaviours and restrictions, exactly because the inference process tries to merge

traces without additional information on how they were produced.

To fully comprehend the relations between actions and how a trace was produced, we need

information on how the code generated that trace for that particular set of inputs and under

which circumstances. Based on this, we could also identify where one trace connects to another

and, therefore, put them together in one single model.

3.1. Contexts 47

3.1.3 Merging Control Flow and Trace Information

We merge the structural and general knowledge gained from control flow information with the

dynamic and specific knowledge obtained from traces. The basic idea is to use the traces to

identify, among all possible paths in the code, some feasible paths. Once we know that a path is

feasible (i.e., there is a set of inputs and values of predicates that causes the system to exercise

it), we can look at the control flow to understand how the trace was generated in the code and

possibly infer alternative paths based on the control predicates.

Besides sequences of actions, we enrich trace information by including state information. State

information, in this work, comprises the values of a subset of the set of program attributes.

Attributes are normally used in control predicates, thus affecting the control flow and, con-

sequently, the traces the system can generate. We call this set of attributes, used as state

information, the system state.

In order to show the importance of using state information, Figure 3.4 shows an LTS that can

be built combining only the CFG in Figure 3.2 and the trace used in the previous section2.

We built the model following the paths in the CFG that needed to be exercised to output the

sequence of actions included in the trace, in that same order. For instance, to generate an

action open, it is necessary to get to the test of control predicate cmd, follow the arrow labelled

with 0 and then take the arrow labelled with true after the test involving control predicate

!isOpen. After that, we follow the dashed line back to the beginning and take the necessary

path to produce action edit. We follow the same idea for all the other actions in the trace.

Note that the loop involving actions open, edit, print and save was correctly identified as a

result of checking the paths in the CFG that originated the sequence of actions. Moreover, it

is also correct that action exit ends the loop.

There is, nevertheless, a problem: the model does not show that some actions are not allowed

to happen under certain circumstances. For instance, action save cannot occur if a document

has not been edited (since control predicate !isSaved is false), but it is shown to be enabled

2State E represents the end of the execution.

3.1. Contexts 48

every time the loop is executed. Therefore, this model only shows that certain actions may be

enabled in a state, not the actions that are actually enabled in that state.

open

edit

save

print

exit save close

0 1 2 E

Figure 3.4: LTS of editor without state information.

As a very abstract representation of the editor, the model in Figure 3.4 would be fine. However,

if we were to check a property stating that save cannot happen before an occurrence of edit,

this level of abstraction would not suffice.

We could only check this property if we knew the values that affect the results of this analysis.

In this case, this would correspond to knowing the value of attribute isSaved, as it controls the

relation between save and edit. The use of values of attributes, in combination with control

flow and trace information, to understand the feasibility of paths and the relations between

actions is the idea upon which we build our concept of contexts.

3.1.4 Context Information

We deal with a control component, based on the implementation control flow, and a data

component, composed of attributes of the system, to build our models. The control flow shows

us the sequences of commands executed, whereas the attributes permit us to identify how the

state of the program affects these sequences.

The control component is, as commented, obtained from a CFG of the implementation of the

system. We now formally define the CFG of a program code:

Definition 3.1. Control Flow Graph. Let Prog be a program. Then CFG(Prog) =

(Q, qi, Act, ∆) is its control flow graph, where:

3.1. Contexts 49

• Q is a finite set of control components of Prog, where each control component q ∈ Q

is a pair (bc, cp), with bc representing a block of code and cp describing the logic test

associated with bc (i.e., its control predicate),

• qi ∈ Q is a control component (bci, true), where bci is the initial block of code,

• Act is the set of actions of Prog, and

• ∆ ⊆ Q × Act∗ × Q is a transition relation.

Because a method call represents the entrance to a new block of code (the method body), a

method m of Prog is also part of the set Q and its control predicate is always true (a method has

no control predicate to prevent it from being executed once called). Moreover, the execution of

a method also represents an action of Prog, such that, for every method m = (bcm, true) ∈ Q,

if we denote the name of m as n(m), then n(m) ∈ Act. Hence, a method call in CFG(Prog)

describes that the control flow has reached a new block of code and that the execution of that

block of code generates an action with the same name as that of the referred method.

Though the default interpretation of an action in this work is the execution of a method, the

set of actions of the system can be expanded to represent other meaningful events, as will be

discussed in 3.2.1. These other events are treated exactly as method executions, except that

they do not represent contexts.

As for the data component, we adopt the values of attributes. Let P (Prog) be the finite set

of data components of Prog and val(p) be the value of an attribute p ∈ P (Prog). A finite

tuple v = {val(p1), ..., val(pn)}, where n ≥ 1, represents one possible combination of values

of attributes p1, ..., pn ∈ P (Prog). The set V (Prog) = {v1, ..., vn} is composed of all possible

combinations of values of attributes of Prog, such that v1 = ∅, representing the beginning of

the execution, when values of attributes are yet unknown. The finite set V (P) ⊆ V (Prog)

represents all possible combinations of values of attributes pk, ..., pm ∈ P , where 1 ≤ k ≤ n and

m ≥ k, such that P ⊆ P (Prog).

3.1. Contexts 50

Definition of Contexts

We define a context as the combination of the current block of code, which is determined by

the evaluated control predicates, and the current values of the attributes that define the system

state. Therefore, a context puts together control and data components and forms our definition

of abstract state. More formally:

Definition 3.2. Context. Given a program Prog, a context C = (bc, val(cp), v) is the com-

bination, at a certain point of the execution of Prog, of the current block of code bc being

executed, the value val(cp) of its control predicate cp and the current set of values v ∈ V (P)

of attributes in P ⊆ P (Prog).

We assume that control predicates do not contain method calls. Hence, a control predicate is

always a boolean expression mentioning only the values of local variables and attributes.

As an example, consider a singleton set of attributes {p}, where p is of boolean type, and the

following control flow statement, which we will identify as the block of code if :

i f (b == 1) {

. . .

}

A possible context C1 = (if, true, {true}) represents a situation where this control flow state-

ment is being executed, the control predicate (b == 1) has been evaluated to be true and

attribute p is also true. The same applies to all other control flow statements of the program.

According to our definition of contexts, the execution of a system can be seen as a sequence

of contexts, with sequences of actions happening between two consecutive contexts. Note

that, even though blocks of code can appear in a nested structure in the implementation, our

definition of contexts only considers the sequence in which these blocks of code are reached

during the execution. Therefore, if two blocks of code are executed sequentially or one inside

the other, it still represents the occurrence of two consecutive contexts.

An execution starts in an initial context, where no control predicates have been evaluated yet

and the initial values of attributes are still unknown. As the execution continues, and control

3.1. Contexts 51

predicates are tested and attributes are assigned new values, the context changes. A transition

in our models, therefore, represents a change of context. In practice, it indicates that at least

one of the components of the current context has been modified. This modification can be

triggered by a new block of code being reached or by a new value being assigned to at least

one of the attributes comprising the system state.

For instance, if we consider the code in Figure 3.1, we say that it was in a certain context

C1 before reaching the while-statement in line 10. At that point, a new control predicate is

evaluated, thus causing a transition where a new context C2 is created for which the predicate

is, for example, true. Once the next input is read, the system reaches line 12, where a new

predicate is evaluated. According to the command entered, the associated actions will be

executed, possibly modifying the system state. Therefore, the next block of code reached will

take into account this new state and, this way, create a different context.

This means that the same block of code may create multiple contexts, depending on the com-

binations of the evaluation of its associated predicate and the possible values of attributes.

Therefore, contexts not only determine whether an action will be executed or not, but also

show when this action happens under different circumstances, which may influence its result

and the next possible actions.

The conjunction of a control component (control flow information) with a data component

(state information) to identify a context is denominated context information. With context

information, we can determine which behaviours are feasible based on the collected traces.

We can also know how these behaviours are generated in the code, according to the control

flow information gathered from the program. Moreover, we can identify the conditions (the

evaluated predicates and the required value of the system state) under which these behaviours

can occur.

3.2. Extracting Behaviour Models Using Contexts 52

3.2 Extracting Behaviour Models Using Contexts

Our model extraction approach builds behaviour models, in the form of LTS models, from Java

source code. We begin the process by instrumenting the code using a source code transformation

language to generate traces, usually, based on a test suite. Using the collected information, we

identify the necessary context information. This information, combined with the sequences of

actions in each context, obtained from the recorded traces, is used to create an FSP specification.

This textual description of the system can then be used in the LTSA tool to obtain a graphical

LTS model. A general view of the process is presented in Figure 3.5.

JavaJava

CodeCode
TXLTXL

EngineEngine

JavaJava

GrammarGrammar
TransformationTransformation

RulesRules

InstrumentedInstrumented

CodeCode

TracesTraces

++

SystemSystem

StateState

TestTest

CasesCases

ExecutionExecution

ContextContext

TableTable

++

ContextContext

TracesTraces

ContextContext

IdentificationIdentification
FSPFSP

GeneratorGenerator

FSPFSP

DescriptionDescription

Information GatheringInformation Gathering LTSELTSE

Context IdentificationContext Identification FSP GenerationFSP Generation

JavaJava

CodeCode
TXLTXL

EngineEngine

JavaJava

GrammarGrammar
TransformationTransformation

RulesRules

InstrumentedInstrumented

CodeCode

TracesTraces

++

SystemSystem

StateState

TestTest

CasesCases

ExecutionExecution

ContextContext

TableTable

++

ContextContext

TracesTraces

ContextContext

IdentificationIdentification
FSPFSP

GeneratorGenerator

FSPFSP

DescriptionDescription

Information GatheringInformation Gathering LTSELTSE

Context IdentificationContext Identification FSP GenerationFSP Generation

Figure 3.5: General view of the model extraction process.

Ellipses represent processing phases and boxes represent inputs/outputs of these processes.

Horizontal arrows show the sequence of information processing, whereas vertical arrows describe

extra inputs needed during the given process execution. The large block on the right-hand side

represents the part of the process automated by our tool (presented in Chapter 5).

This process is described in more detail next. We refer to the code in Figure 3.1 to exemplify

results from each phase.

3.2.1 Information Gathering

To collect context information, we first annotate the Java source code of the necessary classes

of the system and then execute them to generate traces, which are recorded in log files. The

methods used for instrumentation and trace generation are presented next.

3.2. Extracting Behaviour Models Using Contexts 53

Instrumentation

We obtain context information from the system through the instrumentation of the source

code of Java classes that implement components of the system under analysis. All classes that

produce actions mentioned in the properties should be instrumented. Each block of code of the

classes is appropriately annotated during this process.

To carry out the instrumentation, we use the TXL engine [CDMS02] and a Java grammar

specified using the TXL language3. Instrumentation is executed through transformations in

the original code applied by the TXL engine, based on predefined rules. Each rule describes

a pattern to be matched. Whenever one of these patterns is matched, the associated rule is

applied, modifying that piece of code so that it includes the necessary annotations.

Annotation rules. We apply domain-independent rules to annotate control flow statements,

call sites and method bodies. Annotations print out predefined labels identifying the type of

statement to the standard error output, along with the values of attributes and other necessary

information, such as an object ID and a block ID. The former is used to identify traces of

different instances of a class, whereas the latter is a number automatically assigned to each

block of code by the TXL engine and could be interpreted as an abstraction of the program

counter. The TXL code for the rules is presented in Appendix A.

The rules of annotation presented in Figure 3.6 apply to repetition statements, where cp is the

control predicate, listCmds is the list of commands executed in case cp is true, attribs is

the list of values of attributes and bid is the block ID. We use Print to represent the output

command System.err.println to make it shorter.

The annotations are included inside the statements to capture each iteration. Note that, in the

case of a while- or for-statement, if the control predicate is evaluated to be false, then no output

will be generated. This occurs because a false control predicate means that the statement is

ignored, thus not affecting the future behaviour of the system.

3Available from http://www.txl.ca/.

3.2. Extracting Behaviour Models Using Contexts 54

while (<cp>) {
Print (”REP ENTER:(<cp>)#”+this+”#{”+<a t t r i b s >+”}#<bid>”) ;
<l i stCmds>
Print (”REP END:(<cp>)#”+this+”#<bid>”) ;

}

do {
Print (”REP ENTER:(<cp>)#”+this+”#{”+<a t t r i b s >+”}#<bid>”) ;
<l i stCmds>
Print (”REP END:(<cp>)#”+this+”#<bid>”) ;

} while (<cp >);

for (< i n i t >;<cp>;< inc >) {
Print (”REP ENTER:(<cp>)#”+this+”#{”+<a t t r i b s >+”}#<bid>”) ;
<l i stCmds>
Print (”REP END:(<cp>)#”+this+”#<bid>”) ;

}

Figure 3.6: Repetition statements annotation rules.

The rules presented in Figure 3.7 apply to selection statements. In the rules, val(cp) is the

evaluation of cp. In switch-statements, we annotate each case-clause, since their execution

depends on the control predicate and each one of them contains a different list of commands.

Print (”SEL ENTER:(<cp>)#”+(<va l (cp)>)+”#”+this+”#{”+<a t t r i b s >+”}#<bid>”) ;
i f (<cp>)

<l i stCmds>
Print (”SEL END:(<cp>)#”+this+”#<bid>”) ;

Pr int (”SEL ENTER:(<cp>)#”+(<va l (cp)>)+”#”+this+”#{”+<a t t r i b s >+”}#<bid>”) ;
i f (<cp>)

<l i stCmds1>

else

<l i stCmds2>

Print (”SEL END:(<cp>)#”+this+”#<bid>”) ;

switch (<cp>) {
case <v1> :

Pr int (”SEL ENTER:(<cp>)#”+(<va l (cp)>)+”#”+this+”#{”+<a t t r i b s >+”}#<bid>”) ;
<l i stCmds1>

Print (”SEL END:(<cp>)#”+this+”#<bid>”) ;
break ;

. . .
default :

Pr int (”SEL ENTER:(<cp>)#”+(<va l (cp)>)+”#”+this+”#{”+<a t t r i b s >+”}#<bid>”) ;
<l i stCmds>
Print (”SEL END:(<cp>)#”+this+”#<bid>”) ;
break ;

}

Figure 3.7: Selection statements annotation rules.

In if-else-statements, the annotations are included in the same positions as in an if-statement.

We can identify which list of commands (the one associated with the if part or the one

associated with the else part) was executed according to the value of the control predicate.

3.2. Extracting Behaviour Models Using Contexts 55

Figure 3.8 shows the rule used to annotate method calls, where met is the method name. As

commented before, a method call represents a block of code and the execution of an action.

For this reason, it is doubly annotated: annotations for the beginning and end of the method

execution and for the actions related to the call of the method and its termination. We will

discuss the use of the termination annotation in Section 3.3.

Print (”CALL ENTER:<met>#”+this+”#”+<obj>+”#{”+<a t t r i b s >+”}#<bid>”) ;
Pr int (”ACTION:<met>#”+this) ;
<obj >.<met> (<params >);
Pr int (”CALL END:<met>#”+this+”#”+<obj>+”#<bid>”) ;
Pr int (”ACTION:<met>#”+this) ;

Figure 3.8: Method call annotation rule.

We also annotate the bodies of methods. This annotation occurs following the rule shown in

Figure 3.9. For this annotation rule, we assume that the method has only one return statement,

located at the end of the method body. According to the same idea used to annotate method

calls, we include one pair of annotations to mark the block of code and another pair to signal

the occurrence of the associated actions.

<modi f i e r s > <r e t type > <met> (<params>) {
Print (”MET ENTER:<met>#”+this+”#{”+<a t t r i b s >+”}#<bid>”) ;
Pr int (”ACTION:<met>#”+this) ;
<l i stCmds>
Print (”MET END: (”+”<cp>”+”#”+this+”#<bid>”) ;
Pr int (”ACTION:<met>#”+this) ;
return(< r e t va l u e >)

}

Figure 3.9: Method body annotation rule.

Annotating the method body we can capture external calls to that method and represent

this in the model. Because an external method call is annotated in the caller, we can have

synchronisation on action names between the caller and the callee. This is used for modelling

concurrent components, as will be discussed in Section 3.3.

When analysing the annotations generated in the log files (see next sections), we ignore actions

generated by internal method calls (i.e., calls where the caller and the callee are the same).

The reason for this is that we already capture calls to internal methods when the method body

3.2. Extracting Behaviour Models Using Contexts 56

is accessed. Therefore, we can discard the actions created by internal method calls and keep

the ones created by method bodies. However, the annotation of internal method calls is still

important to identify calls happening in different contexts and at different call points.

Because every method execution generates two annotations in the log file, one to indicate

the context generated by the method and another to signal the occurrence of the action it

represents, we will refer to the latter as an action annotation to distinguish it from the former.

Annotations generated by other instrumented blocks of code will be called context annotations.

User-defined actions. Besides the automatically identified actions, we allow the user to

define their own actions. User-defined actions represent actions other than the execution of a

method. They are important in situations where, for example, reaching a given point in the

code has some particular meaning, such as the completion of a task (e.g., a set of methods that

should be executed in order to realise some specific computation). The format of a user-defined

annotation is

#act i on : ”<name>” ;

where name refers to the name of the action being defined. User-defined actions can be manually

inserted in any part of the code, using this predefined format. They are automatically converted

into the appropriate annotation (ACTION annotation) when the code is instrumented. They are

also considered action annotations.

User-defined attributes. In the same way we allow a user to define actions other than

the execution of methods, we provide support for the definition of additional attributes. We

call these user-defined attributes, which represent expressions over the values of the original

attributes. User-defined attributes are, therefore, used to provide a simple form of data abs-

traction. For instance, the real temperature of a boiler is not the main information needed by

the system controlling it; the system needs to know that the temperature is not above/below

some safety threshold. Therefore, being able to code a set of values of an attribute into a

simple expression can reduce the model, as one will not have one separate state (context) for

each possible different value of this attribute. The format of a user-defined attribute is

3.2. Extracting Behaviour Models Using Contexts 57

#at t r i b u t e : ”<name>”=<expres s i on >;

where name is the name of the defined attribute and expression is the expression associated

with this attribute, which should mention only predefined attributes. User-defined attributes

should be manually inserted using this format, in the declaration area of the code, where the

other attributes are defined. They are automatically added to the attribute list when the code

is instrumented. After being added to the attribute list, user-defined attributes can be used to

refine the model just like any other attribute.

Instrumented file. The inclusion of the annotations generates an instrumented file. The

instrumented file can then be used to execute the system and obtain the necessary information

to construct the model. This information is produced in the form of execution traces.

Part of the instrumented version of the code of the editor is shown in Figure 3.10. Action

annotations are clearly identified by the label ACTION. All other annotations, therefore, are

context annotations.

Known limitations. Due to some difficulties using the TXL language, the automatic ins-

trumentation process still suffers from some limitations regarding statements that can be an-

notated. Among these limitations are method calls that include the returned value of another

method call as a parameter (e.g., m1(m2())) and the use of commands that alter the normal

execution flow, such as return-statements, continue-statements and break-statements. The only

situation where a break-statement is currently supported is in case-clauses of switch-statements.

A single return-statement is supported at the end of a method body. Note, however, that these

limitations are not limitations of the annotation formats. Therefore, these problems can be

overcome by manually editing the code to include the necessary annotations where needed.

Moreover, the use of TXL to annotate the code is not mandatory. Any other tool could be

used to execute this task so long as the predefined annotation patterns are followed.

3.2. Extracting Behaviour Models Using Contexts 58

public class Editor {
. . .
public Editor () {

while (cmd != 4) {
System . e r r . p r i n t l n (”REP ENTER: (cmd!=4)#”+this+”#{isOpen=”+isOpen+” isSaved=”

+isSaved+”}#14”) ;
. . .
switch (cmd) {

case 0 :
System . e r r . p r i n t l n (”SEL ENTER: (cmd)#”+cmd+”#”+this+”#{isOpen=”+isOpen

+” isSaved=”+isSaved+”}#7”) ;
System . e r r . p r i n t l n (”SEL ENTER : (! isOpen)#”+(! isOpen)+”#”+this

+”#{isOpen=”+isOpen+” isSaved=”+isSaved+”}#0”) ;
i f (! isOpen)

System . e r r . p r i n t l n (”CALL ENTER: open#”+this+”#”+this

+”#{isOpen=”+isOpen+” isSaved=”+isSaved+”}#13”) ;
System . e r r . p r i n t l n (”ACTION: open#”+this) ;
open () ;
System . e r r . p r i n t l n (”CALL END: open#”+this+”#”+this+”#13”) ;
System . e r r . p r i n t l n (”ACTION: open#”+this) ;

System . e r r . p r i n t l n (”SEL END : (! isOpen)#”+this+”#0”) ;
System . e r r . p r i n t l n (”SEL END : (cmd)#”+this+”#7”) ;
break ;

. . .
}

System . e r r . p r i n t l n (”REP END: (cmd!=4)#”+this+”#14”) ;
}

}

void e x i t () {
System . e r r . p r i n t l n (”MET ENTER: e x i t#”+this+”#{isOpen=”+isOpen+” isSaved=”

+isSaved+”}#8”) ;
System . e r r . p r i n t l n (”ACTION: e x i t#”+this) ;
{

. . .
}
System . e r r . p r i n t l n (”MET END: ex i t#”+this+”#8”) ;
System . e r r . p r i n t l n (”ACTION: e x i t#”+this) ;

}
. . .

}

Figure 3.10: Example of instrumented code.

Trace Generation

The trace generation is done by logging the output produced by executing the instrumented

code. In order to be able to select the behaviours we want to observe, we usually use a test

suite. A test suite is a set of test cases, where each test case contains a sequence of inputs used

to probe the system.

We do not currently use any particular technique for selecting test cases. Our test cases are

chosen based on the knowledge we have of the system and on the behaviours we would like to

observe. These behaviours are usually related to properties we intend to verify, so that we can

observe behaviours that influence the preservation/violation of these properties.

3.2. Extracting Behaviour Models Using Contexts 59

Each class selected for instrumentation must be instrumented and executed in turn to generate

traces. This means that the instrumentation and the trace generation process must be repeated

for each one of them. This is necessary to guarantee that each log file contains only information

about a single class.

The result of executing the instrumented code is the creation of a set of logged traces. One log

file is created for each trace. Part of the log for an execution of the code in Figure 3.1 is shown

in Figure 3.11. It includes the beginning of the log, where the first input was the command to

open a file and the next command was to edit the file. We used the same sequence of inputs

used to obtain the model in Figure 3.3 to generate this log file. Note that, for simplification,

annotations produced by internal calls are not included.

1 REP ENTER: (cmd!=4)#Editor@12b6651#{isOpen=fa l se i sSaved=true}#14
2 SEL ENTER: (cmd)#0#Editor@12b6651#{isOpen=fa l se i sSaved=true}#7
3 SEL ENTER : (! isOpen)#true#Editor@12b6651#{isOpen=fa l se i sSaved=true}#0
4 MET ENTER: open#Editor@12b6651#{isOpen=fa l se i sSaved=true}#8
5 ACTION: open#Editor@12b6651
6 MET END: open#Editor@12b6651#8
7 ACTION: open#Editor@12b6651
8 SEL END : (! isOpen)#Editor@12b6651#0
9 SEL END : (cmd)#Editor@12b6651#7

10 REP END: (cmd!=4)#Editor@12b6651#14
11 REP ENTER: (cmd!=4)#Editor@12b6651#{isOpen=true i sSaved=true}#14
12 SEL ENTER: (cmd)#1#Editor@12b6651#{isOpen=true i sSaved=true}#7
13 SEL ENTER: (isOpen)#true#Editor@12b6651#{isOpen=true i sSaved=true}#1
14 MET ENTER: ed i t#Editor@12b6651#{isOpen=true i sSaved=true}#9
15 ACTION: ed i t#Editor@12b6651
16 MET END: ed i t#Editor@12b6651#9
17 ACTION: ed i t#Editor@12b6651
18 SEL END : (isOpen)#Editor@12b6651#1
19 SEL END : (cmd)#Editor@12b6651#7
20 REP END: (cmd!=4)#Editor@12b6651#14
21 . . .

Figure 3.11: Example of log file.

3.2.2 Context Identification

The output from the information gathering phase consists of log files containing the blocks of

code executed, their respective values of control predicates and the values of the attributes of

the system at that point of the execution. In the context identification stage, this information

is used to discover contexts of the system recorded in the log files.

3.2. Extracting Behaviour Models Using Contexts 60

Each log file records a sequence of contexts reached during the execution and the actions that

occurred in between them. This sequence of alternating contexts and sequences of actions forms

our traces.

Definition 3.3. Trace. Given a program Prog with set of actions Act, a trace t of Prog is

a finite sequence 〈C1α1C2α2...αnCn〉, where C1, C2, ..., Cn are contexts of Prog and α1, ..., αn

are sequences of actions of Prog, such that, for 1 ≤ j ≤ n, αj = {a1...am}, where m ≥ 1 and

a1, ..., am ∈ Act.

We use Tr(Prog) to denote the set of all traces that program Prog can produce when instrumen-

ted and executed. FProg is the set of log files containing traces of Prog. Therefore, Tr(FProg)

represents the set of all traces of Prog recorded in FProg, such that Tr(FProg) ⊆ Tr(Prog).

The Context Table

We now discuss the structure used to record contexts identified during the analysis of the log

files. To simplify the discussion, we will treat the control flow information as two additional

attributes. This way, a context can be seen simply as a combination of values of a set of

attributes, where two of these attributes necessarily encode the control flow information, com-

posed of an identification of the executed block of code (block ID), and the evaluation of the

control predicate associated with this block.

The block ID (BID) is obtained statically during the instrumentation of the code. A unique

sequential number is assigned to each new instrumented block of code. The value of the control

predicate and those of the other attributes are gathered dynamically, i.e., through the execution

of the instrumented code and the monitoring of their values.

The context information collected from context annotations is recorded in a context table CT =

{c1, ..., cn}, where c1, ..., cn are entries of the table. Each entry is assigned a context ID (CID),

which is a unique sequential numeric identifier created whenever a new entry is inserted in the

CT. An entry of the CT contains a set of values of attributes defining a context.

3.2. Extracting Behaviour Models Using Contexts 61

Before executing the procedure to create the context table, each log file is split into as many

files as the number of different instances (object IDs) found in the logs. This way, we can isolate

the particular behaviour exhibited by each instance and, eventually, merge them to create a

single model. Note that this is the same as having multiple traces from a single class, with the

only difference that they were all collected during the same execution.

The CT is initialised with the initial context, which receives CID 0. This is the initial context

for every model we generate. The BID for the initial context is always −1.

The basic procedure to construct the CT is to read each annotation from the log files and collect

the context information from the context annotations. After the context information has been

gathered, the identified context is compared with every other context already recorded. A

context C is identified as in the table if, when compared with a context C ′ (stored as an entry

c′ of the CT), C and C ′ have the same context information, i.e., the same set of values for the

attributes, including the BID and the value of the control predicate.

If no context in the CT is found to have the same context information, the context is new (i.e.,

not in the table yet). A new entry is then created to store its context information, which is

assigned a newly created CID.

Table 3.1 shows part of the CT generated based on the log presented in Figure 3.11. The

first column contains the CIDs. The second column describes the predicates evaluated in the

contexts. No predicate is associated with the initial context and the name of the method

is used for contexts representing a method execution. The last column contains the system

state, where the first value describes the BID, the second value presents the evaluation of the

associated control predicate and the last two values represent the values of attributes isOpen

and isSaved, respectively.

Context Traces

The result of the context identification phase is the creation of a CT and the generation of a

set of context traces for each class of the system. These context traces are sequences of CIDs

3.2. Extracting Behaviour Models Using Contexts 62

Context ID Predicate State

0 - {-1,true,-,-}
1 (cmd!=4) {14,true,false,true}
2 (cmd) {7,0,false,true}
3 (!isOpen) {0,true,false,true}
4 Editor.open {8,true,false,true}
5 (cmd!=4) {14,true,true,true}
6 (cmd) {7,1,true,true}
7 (isOpen) {1,true,true,true}
8 Editor.edit {9,true,true,true}
9 (cmd!=4) {14,true,true,false}
... {...}

Table 3.1: Example of context table.

and actions, representing the contexts the system went through during the execution and the

actions that happened in between them.

Each context trace is a result of the analysis of a log file during the CT construction. As

annotations are read from a log file, a context file is used to record the context trace. Reading

a context annotation causes the corresponding CID to be written on the context file, whereas

reading an action annotation results in the action name being inserted in the file.

Context traces are, therefore, processed traces, where each context annotation is replaced by

a CID and each action annotation is replaced by an action name. The construction of the CT

and the generation of the context traces occur at the same time. Algorithm 3.1 shows this

procedure in more detail.

Note that the attribute comparison is restricted to a set of attributes P ⊆ P (Prog) received as

input (line 11). This is necessary because the value of every single attribute is always recorded

in the annotations, even though just a subset of them might be used to build the model. The

reason for that is that, as we will see in Chapter 4, our refinement process depends on changes

in the set P to modify the level of abstraction of the model. Therefore, having the values of

all attributes makes it easier to build models with different sets of attributes by just providing

a new set P and filtering out those attributes not in it. Otherwise, it would be necessary to

collect the information on the additional attributes by again running the instrumented code.

3.2. Extracting Behaviour Models Using Contexts 63

Algorithm 3.1 BuildCT (FProg, P)

Inputs: FProg: finite non-empty set of log files, P : finite set of attributes, CT : empty context
table

Outputs: CF : a finite non-empty set of context files
1 nextID = 0
2 CF = ∅
3 cinitial = (nextID, {−1, true,−}) // Creates initial context
4 nextID = nextID + 1
5 CT = {cinitial} // Initializes CT with initial context
6 for all log files f ∈ FProg do

7 Create new context file cf
8 for all annotations an ∈ f do

9 Read an = (a, v)
10 if an is context annotation then

11 if ∃c = (sc, vc) ∈ CT s.t. vc == v ∩ P then

12 Write sc in cf // Context found and written in context file
13 else

14 New CID s = nextID
15 nextID = nextID + 1
16 New CT entry c′ = (s, v ∩ P)
17 CT = CT ∪ {c′} // Adds context to the table
18 end if

19 else

20 Write a in cf // Writes action name in context file
21 end if

22 end for

23 CF = CF ∪ {cf}
24 end for

25 return CF

An example of context trace can be seen in Figure 3.12. It represents the context trace generated

using the log file shown in Figure 3.11. CIDs are preceded by the symbol # (e.g, line 1) to

differentiate them from action names (e.g., line 6).

Line 1 of the context trace corresponds to the initial context, which is always automatically

included. The CID in line 2 of the context trace (#1) was created based on line 1 of the log

file (see Figure 3.11). Similarly, the second and the third lines of the log file were translated,

respectively, into the CIDs in lines 3 and 4 of the context trace. Lines 4 and 5 of the log file

were generated when the system entered method open. The context annotation generates the

context identified as #4 in the context trace and the action annotation originates the action

open (lines 5 and 6 of Figure 3.12).

3.2. Extracting Behaviour Models Using Contexts 64

1 #0
2 #1
3 #2
4 #3
5 #4
6 open
7 #5
8 #6
9 #7

10 #8
11 ed i t
12 #9
13 #10
14 #11
15 #12
16 save

17 #5
18 #13
19 #14
20 #15
21 p r i n t
22 #5
23 #6
24 #7
25 #8
26 ed i t
27 #9
28 #16
29 #17
30 #18
31 ed i t
32 #9

33 #19
34 #20
35 #21
36 p r i n t
37 #9
38 #10
39 #11
40 #12
41 save
42 #5
43 #13
44 #14
45 #15
46 p r i n t
47 #5
48 #6

49 #7
50 #8
51 ed i t
52 #9
53 #22
54 #23
55 ex i t
56 #24
57 #25
58 #12
59 save
60 #26
61 #27
62 c l o s e
63 #END

Figure 3.12: Example of context trace.

Note that annotations in lines 6 to 10 in Figure 3.11 do not create any corresponding element

in the context trace. However, the action annotation in line 7 could have caused the inclusion

of an action name in the context trace. In Section 3.3 we will discuss when and how this is

possible. As for the annotations marking the end of control flow statements, they are merely

used to understand the nested structure of these statements.

The context trace puts together the context information, summarised in the CIDs, and the

trace information related to the executed sequences of actions. This means that, analysing its

contents, we can identify the contexts the system went through to be able to execute a certain

action or sequence of actions. Moreover, we can know in which context each execution of an

action happened and, therefore, detect executions of the same action in different contexts.

3.2.3 Model Generation

As previously stated, we generate LTS models using context information. However, in order

to use the values of attributes during the construction of the models, we need an intermediate

structure, which can deal with both actions and states (i.e., contexts). The formalism we have

adopted is described as follows, based on the definition presented in [CCO+04]:

Definition 3.4. Labelled Kripke Structure. A Labelled Kripke Structure (LKS) K =

(S, si, P, Γ, Σ, T) is an abstract model where:

3.2. Extracting Behaviour Models Using Contexts 65

• S is a finite set of abstract states,

• si ∈ S represents the initial state,

• P is a finite set of attributes used to label states in S,

• Γ : S → NP is a state-labelling function, where N is the sum of the ranges of all attributes

in P ,

• Σ is a finite set of actions, i.e., an alphabet, and

• T ⊆ S × Σ+ × S is a transition relation.

Our definition slightly differs from the one presented in [CCO+04] in that we use attributes

instead of propositions. However, the only difference is that attributes are not always boolean

variables and, consequently, may have a wider range of values than that of propositions, which

can only be either true or false.

Because of that, in our case, the state-labelling function Γ always labels every state with the

values of all attributes in P . Therefore, the number of possible labels will be a result of all

possible combinations of values for each attribute in P . Note, however, that even though the

number of combinations is potentially infinite, generally not all of them can actually occur

when the system is executed.

We always use a singleton set of initial states. The reason is that, ultimately, we will generate

an LTS model, which has only one initial state (see Definition 2.2). Therefore, having just a

single initial state in the construction of the LKS makes it easier to convert it into an LTS.

Moreover, the initial state represents the initial context, which is also unique.

Another small difference from our definition to that of Chaki et al. [CCO+04] is that we allow

an atomic sequence of actions to label the transitions. This represents the possibility of more

than one action occurring in between two consecutive contexts. They are atomic because no

other states can happen between actions in a sequence.

3.2. Extracting Behaviour Models Using Contexts 66

It is important to notice that the use of sequences of actions does not affect the LKS definition,

because a transition is still a connection between two states that is labelled with actions from

the alphabet. In our case, this label is a compound label, comprising all actions that can

happen in between two states. Hence, the underlying semantics of a transition in an LKS does

not change.

Basic Definitions

The following definitions apply to an LKS according to Definition 3.4. A behaviour is a finite

sequence of actions π = 〈a1...an〉 such that a1, ..., an ∈ Σ. The set L(K) = {π1, π2, ...} of all

behaviours of K is called its language.

For a state s ∈ S, E(s) = {α ∈ Σ+|∃s′ ∈ S ·(s, α, s′) ∈ T} represents the non-empty finite set of

sequences of actions enabled in s. A path λ = 〈s1α1s2α2s3, ...〉 is a sequence of alternating states

and sequences of actions labelling transitions connecting these states, such that, for i ≥ 1, for

every transition (si, αi, si+1) composing the path, αi ∈ E(si). A path should always start and

end with a state rather than with a sequence of actions. We use Λ(K) to denote the set of all

paths of K.

Parameters

The construction of an LKS model from context traces is executed according to three para-

meters: an alphabet, a set of attributes and a set of traces. As we generate models to check

properties, we attempt to specify these parameters according to a property to be checked.

Alphabet. The actions that are part of the alphabet label the transitions of the model.

The user has total freedom to choose these actions, i.e., the user can select which subset of

the alphabet of the system will compose the alphabet of the model. However, only actions

mentioned in the property are required. Hence, some of the actions in the alphabet of the

system may be irrelevant and can be discarded.

3.2. Extracting Behaviour Models Using Contexts 67

Let us suppose we would like to check a property φ, with alphabet Σ(φ), using a model K to

be constructed using our approach. If Σ(K) is the alphabet of K, then it should include the

alphabet Σ(φ), such that Σ(φ) ⊆ Σ(K).

Moreover, the greater the number of actions chosen, the bigger and more complex the model

will be. Focusing only on the actions required to check a property φ results in a more compact

model, tailored for checking that particular property. This allows a better visualisation of the

model and, therefore, facilitates all types of analysis. Therefore, ideally, Σ(K) = Σ(φ).

System State. The selection of attributes to compose the system state is a simple way of

defining the level of abstraction of the model. If no attributes are selected, the model is at its

most abstract version, since states are defined only by control flow statements (i.e., essentially,

the resulting model represents a CFG). On the other hand, if all available attributes are chosen,

the model is at its most concrete version.

To allow visualisation, we must select a subset of attributes rather than using all the ones

available. A reasonable approach for selecting attributes is to identify which of them affect the

property being checked. Usually, attributes used in control predicates are relevant, because

they influence the decision-making during program execution.

It is also important to consider the range of possible values of an attribute. Attributes of the

boolean type are normally good candidates to be used in the system state because their range of

possible values is very short (just two, in fact) and they are generally used in control predicates.

Attributes that store references, however, should not be included. They tend to change values

quite often during the execution and their contents are usually irrelevant for property checking.

In cases where one just wants to know whether a reference is null or not, user-defined attributes

should be used to model this abstraction.

Set of Traces. The selection of the set of traces has great influence on the results of the

model extraction process. Therefore, they must be chosen in a way such that they offer a

complete coverage of the relevant behaviours of the system. The best criterion is to drive the

trace generation according to the property to be checked. This means that, if we use test cases

3.2. Extracting Behaviour Models Using Contexts 68

to produce traces, the tests should force the observation of those behaviours that could cause

a property violation and of those that show the correct behaviour of the system in relation to

the property. The test suite should, therefore, prevent, or at least minimise, the occurrence of

false positives.

LKS Construction

Once the context traces have been produced, we proceed to the construction of the LKS model,

which is our intermediate representation of the system behaviour and will serve as basis for the

generation of the final model (LTS model). Algorithm 3.2 presents the abstract algorithm used

to generate an LKS model.

The algorithm receives the parameters previously discussed. In our example of the editor, we

used alphabet Σ = {open,edit,print,save,close}, set of attributes P = {isOpen,isSaved}

and the context file presented in Figure 3.12. The context file was created using the log file in

Figure 3.11 and the same set P of attributes.

Note that the algorithm does not explicitly build an LKS model. The construction of the

implicit LKS model actually occurs in two steps:

1. In the first step, states (contexts) are identified and “labelled”. The labelling corresponds

to executing Algorithm 3.1 to identify contexts and include them in the CT according to

the value of the system state. Therefore, the implicit state label is the combination of

values of the attributes. These implicitly labelled states are then used to generate the

context traces;

2. In the second step (implemented by Algorithm 3.2), context traces are analysed to identify

states and transitions. An abstract state is associated with each CID so that each state

of the LKS model corresponds to a context recorded in the CT. If two states s1 and

s2 appear consecutively in a context trace and a finite sequence of actions α occurs in

between them, then a transition (s1, α, s2) is added to the set T .

3.2. Extracting Behaviour Models Using Contexts 69

Algorithm 3.2 CreateLKS(CF, P, Σ)

Inputs: CF : finite non-empty set of context files, P : finite set of attributes, Σ: finite non-
empty alphabet

Outputs: K: an LKS model
1 State initialState, previousState, currentState
2 Set of states S = ∅
3 Set of transitions T = ∅
4 Sequence of actions α = 〈〉
5 Boolean ended =false

6 for all context files cf ∈ CF do

7 initialState = previousState = currentState = −1
8 for all entries e ∈ cf do

9 Read e
10 if e is context ID then

11 currentState = e // Context set as current state
12 S = S ∪ {e} // Adds state to the set
13 if e == END then

14 ended =true

15 end if

16 if initialState == −1 then

17 initialState = previousState = e
18 else

19 if α = 〈〉 then

20 append(α, ǫ)
21 end if

22 New transition t = (previousState, α, currentState)
23 α = 〈〉 // Resets the sequence of actions
24 T = T ∪ {t} // Adds transition to the set
25 previousState = currentState // Updates previous state info
26 end if

27 else

28 if a ∈ Σ then

29 append(α, a) // If part of alphabet, adds to sequence
30 end if

31 end if

32 end for

33 if (not ended) OR (α 6= 〈〉) then

34 New state FINAL // Create final state
35 S = S ∪ {FINAL}
36 New transition tf = (currentState, α, FINAL)
37 T = T ∪ {tf}
38 New transition te = (FINAL, 〈 EXIT 〉, F INAL)
39 T = T ∪ {te}
40 end if

41 end for

42 Create model K = (S, initialState, P, Γ, Σ′, T), where Γ : S → NP , with N representing
the sum of the ranges of all attributes in P , and Σ′ = Σ ∪ {ǫ}.

43 return K

3.2. Extracting Behaviour Models Using Contexts 70

Therefore, Algorithm 3.2 builds an LKS model based on a previously executed implicit state-

labelling procedure. For this reason, it does not mention state labels, using the predefined CIDs

to refer to states when adding states and transitions to the model.

Note, however, that there may not always be actions occurring between two consecutive contexts

in a trace (e.g., lines 1 and 2 of the context trace in Figure 3.12). This is a result of either the

selection of the model alphabet Σ or the existence of nested blocks of code. In this last case,

the control of the execution passes from the outer block to the inner block without methods

being executed (or user-defined actions being reached). For example, the selection statement

in line 2 of the log file in Figure 3.11 is executed inside the repetition statement in line 1, with

no action in between. Therefore, they originate two consecutive CIDs in the context trace that

are not connected by actions (see lines 2 and 3 of Figure 3.12).

To represent that, we use an action ǫ (line 20) to mean an empty action sequence, i.e., a

transition from one context to another with no actions happening in between. Thus, irrespective

of the actions chosen to compose the alphabet Σ of the model, ǫ is always added to this alphabet

(line 42). This is necessary in order to be consistent with Definition 3.4, which states that a

transition is always labelled with some action from the alphabet of the model.

The execution that generated the logs may terminate normally or abruptly. A program exe-

cution may be precociously ended because of user intervention, an exception or any other

situation where the program is aborted. Knowing whether the execution finished successfully

is important during the analysis.

Because it is difficult to know what caused the termination of the program just by analysing

the context traces, we use a special annotation to guide us. This annotation is introduced at

the end of the body of the main method and includes a checking of the termination of the

program4. It produces an END output in the trace, which is interpreted as a context annotation

when creating the context traces. However, it is not added to the context table, but just written

on the context trace.

4In the case of Java, we check that all threads created by the program have terminated.

3.2. Extracting Behaviour Models Using Contexts 71

When the end of a context trace is reached, if the last element found is END, then the execution

ran until the end and, therefore, terminated normally. Note, however, that this means that the

class containing the main method must always be annotated along with the relevant classes.

We use a flag to signal that this annotation was found (line 14 in Algorithm 3.2). In this case,

the produced FSP will contain a transition from the last context to the predefined state END,

which is used to represent a normal termination.

In a situation where END is not found, a final state is created to represent a sink state, indicating

an abnormal termination (line 34). The terminal state FINAL has always only one transition

looping back to it, which is labelled with an exit action (line 38). This guarantees that no false

deadlock alarms are generated when checking the model.

It is possible that, when combining context traces from different files, we find the END annotation

in some of them but not in others. For this reason, we also create a final state if we reach the

end of the context trace and the last element is an action (i.e., the last sequence of actions is

not empty), even if an END had been found before in another context trace. This ensures that

no actions are lost during the process and also that the final model shows the traces leading to

a normal termination as well as the ones that ended abnormally.

Final Model Generation

At this stage, the LKS model is translated into an FSP description. Finite State Process (FSP)

[MK06] is a process algebra for describing LTS models. In FSP, components of a system are

described in terms of processes, where each process represents the execution of a sequential

program. Following the semantics of LTS, the behaviour of a process is represented as a

sequence of actions. A simple process Proc can be defined in FSP as follows

Proc = (a -> b -> Proc).

where a and b are actions. The action prefix -> is used to define that the process executes

a sequence of actions and then behaves like the process at the end of the sequence. In this

3.2. Extracting Behaviour Models Using Contexts 72

case, the process executes action a and then action b and behaves again in the same way, in a

recursive manner.

FSP also allows for local definitions, which are described as subprocesses. A subprocess is used

to describe a specific behaviour of a process. For example, the following process definition

Proc = (a -> b -> SubProc),

SubProc = (c -> Proc).

describes a subprocess SubProc. This defines that process Proc executes actions a and b and

then behaves as described in SubProc, i.e., it executes action c and then behaves as process

Proc again.

The process algebra also provides a choice operator |, which, as the name indicates, allows the

representation of alternative behaviours, such as in the process definition below.

Proc = (a -> b -> SubProc

|d -> Subproc2),

SubProc = (c -> Proc),

SubProc2 = (e -> f -> SubProc

|g -> Proc).

Note that the execution of the behaviour defined in a subprocess can also lead to another

subprocess, and that that subprocesses can have alternative behaviours as well.

We translate the LKS model K = (S, si, P, Γ, Σ, T), which was built by Algorithms 3.1 and 3.2,

into an FSP description in the following manner:

• A process definition Proc(K) is created to represent the behaviour of K;

• For each state s ∈ S, a subprocess SubProc(s) is included in Proc(K);

• For each transition (s, α, s′) ∈ T , where α = 〈a1...an〉 and a1, ..., an ∈ Σ, the behaviour

(a1 -> . . . -> an -> SubProc(s′)) is added to SubProc(s);

3.2. Extracting Behaviour Models Using Contexts 73

• Transitions where α == 〈〉 are labelled with the empty action null, which is the repre-

sentation of the empty sequence ǫ in the FSP description;

• Alternative behaviours of a subprocess are defined using the choice operator.

Figure 3.13 presents part of the FSP description generated for our example of the editor.

Subprocess Q0 represents the initial state.

Editor = Q0,

Q0 = (null -> Q1),

Q1 = (null -> Q2),

Q2 = (null -> Q3),

Q3 = (null -> Q4),

Q4 = (open -> Q5),

Q5 = (null -> Q6

|null -> Q13),

Q6 = (null -> Q7),

Q7 = (null -> Q8),

Q8 = (edit -> Q9),

Q9 = (null -> Q10

|null -> Q16

|null -> Q19

|null -> Q22),

...

Figure 3.13: Example of generated FSP description.

It can be seen that our models may have non-deterministic choices, in particular involving

action null. This is usually a consequence of the chosen alphabet and the level of abstraction.

If a transition should be labelled with an action that is not part of the alphabet of the model,

then it will be turned into a null action, as it will be ignored when processing the context

traces. Therefore, if multiple alternative behaviours of a state involve actions in this situation,

we end up having the non-determinism caused by action null.

In other situations, the lack of the necessary information to distinguish states results in two or

more similar states being merged, which also originates points of non-determinism. This means

that the level of abstraction does not provide sufficient detail about the contexts to resolve

3.2. Extracting Behaviour Models Using Contexts 74

the non-determinism. Note that the necessary additional information may involve the value of

local variables used in the control predicates, which are not considered in our models.

Having the produced FSP description, we generate a graphical representation of the LTS descri-

bed in FSP using the LTSA tool5 [MK06]. With the FSP description of the editor, we produced

the LTS shown in Figure 3.14.

open edit

print edit

print

save

exit save close

0 1 2 3 4 E

Figure 3.14: LTS model of the editor.

Note that, to produce this model, we applied a hiding operation [MK06] to action null. The

hiding operator for this action is introduced automatically on the creation of the FSP descrip-

tion. We also minimised the model and made it deterministic using the algorithms provided

by the LTSA tool6. Although these operations are not required when checking a property,

they allow a better visualisation of the model. Moreover, minimising and making the model

deterministic does not change the analysis results, since these operations produce an equivalent

model that has no empty transitions and no non-deterministic choices.

Even though it is based on a single trace, the model shows some correct relations between

actions of the editor, according to its implementation (Figure 3.1). For example, action save

cannot happen before an occurrence of action edit. Moreover, the model also shows that open

must happen before any occurrence of edit, print, save or close. However, the lack of more

traces prevented the model from including the possibility of exiting the program at any time.

It is also important to note that this model includes behaviours that were not described in the

trace, such as the possibility of repeating the command print infinitely. Actually, the trace

did not even include a sequence of two consecutive actions print. This additional behaviour

5Available at http://www.doc.ic.ac.uk/ltsa.
6See Chapter 5 for more information on these operations.

3.3. Dealing with Concurrency 75

could be inferred because the context trace shows that this action happens inside a loop (the

execution goes back to the same context) and that it is always an enabled action after a file has

been opened (when attribute isOpen is true). For the same reason, print can also be repeated

infinitely on state 2, which represents the context where the file has been edited.

3.3 Dealing with Concurrency

The approach herein presented can also be applied to build models of concurrent systems.

Concurrent systems presuppose the parallel execution of multiple processes that can interact.

This interaction can be direct, through the exchange of messages between them, or indirect,

involving the use of shared resources.

In this work, a process is an executing instance of a component. In Java, a component usually

corresponds to a class and a process is, therefore, an instance of this class running as a thread.

Thus, we model concurrent systems through the construction of multiple models - where each

model represents the behaviour of a component - and their possible interactions through actions.

Actions are, therefore, used to represent dependencies between processes.

3.3.1 Model Composition

The model of a concurrent system is created by composing the models of each component

of the system, generated as described in the previous section. To do so, we apply a parallel

composition operation based on the one defined in CSP [Hoa85], where there is a distinction

between local and shared actions. A local action of a process is an action that is visible only to

the process and, thus, does not affect the execution of other processes. A shared action, on the

other hand, represents an interaction between processes that depend on each other to execute.

This dependence is characterised by a mechanism of synchronisation on shared actions. There-

fore, given two LTS models M1, with alphabet Σ(M1), and M2, with alphabet Σ(M2), they

will synchronise when composed if Σ(M1) ∩ Σ(M2) 6= ∅. In practice, this means that one of

3.3. Dealing with Concurrency 76

the processes described by one of the two models can invoke a method of the other. When

the invocation occurs, the caller process stops, waiting for the callee to respond, after which it

resumes its execution.

Whereas shared actions cause synchronisation between models, the execution of local actions

occurs independently. For this reason, their execution in composed models is described following

the interleaving semantics [Hoa85]. Therefore, they are executed one at a time, in any order.

This idea of synchronisation on shared actions and interleaving of local actions is represented

in FSP using the parallel composition operator ||. Hence, writing P || Q means that a pro-

cess P runs in parallel with a process Q. In this composition, therefore, shared actions cause

synchronisation and local actions are interleaved. A process definition of this form ||R = (P

|| Q) describes a process R that is a parallel composition of processes P and Q.

Note, however, that the model composition is not fully automatic. We build one separate model

for each class of the system, but do not generate the process definition of the composition. Doing

it this way, we allow the user to experiment with different scenarios involving the generated

models.

3.3.2 Active and Passive Processes

As said before, each model represents a component of the system that can originate processes.

According to [MK06], these processes can be of two types:

• Active: An active process is one that runs with its own thread and may interact with

other processes during its life cycle;

• Passive: A passive process does not have an internal thread. Its execution depends on

other processes invoking its methods. A passive process usually represents a monitor that

controls access to a shared resource (e.g., a buffer or a shared printer).

3.3. Dealing with Concurrency 77

Active processes can interact with either other active processes or passive processes. Passive

processes can only interact with active processes. In this case, the interactions are always

initiated by the active process.

As commented before, the interaction between processes occurs through shared actions. It

involves the blocking of its initiator until a response is obtained. This blocking represents a

method call where the caller waits for the callee to complete the execution of the method and

return the control to it. When relating only active processes, a shared action can represent

that a call to a method occurred and the callee immediately executed the method called,

returning the control to the caller. In this case, except for abnormal situations (e.g., abortion

of execution), the action in the model describes a method that was called and executed through.

A different scenario occurs when the interaction involves a passive process. Because they

normally describe shared resources controlled by a monitor, they include an extra blocking

mechanism. This mechanism is implemented within the method body using the wait-notify

scheme, which restricts the access to a method according to a certain condition (guard). In

practice, this means that, though the method is called, its complete execution is not necessarily

immediate, as it depends on the evaluation of the condition guarding the method.

In the above mentioned situation, the active process may call the method but become blocked

inside of it. In this case, we need to use a different approach to be consistent with our repre-

sentation of an action, where the execution of a shared action means the releasing of the caller

process to resume. That is, we cannot abstract actions of a passive process in the same way as

we do for an active process.

For this reason, we provide the possibility of building different models for active and passive

processes. This distinction is determined by the way we use method annotations. Remember

that we insert an action annotation at the beginning and another at the end of a method

body or method call (see Figures 3.8 and 3.9). For active processes, we build the models using

the annotation indicating the beginning of a method execution, whereas we use the annotation

representing the end of the method execution when creating the model of a passive process. This

guarantees that, in both cases, an action means that the corresponding method was executed.

3.3. Dealing with Concurrency 78

Note, however, that it is not easy to automatically identify active and passive processes. In fact,

even deciding which processes will be active and which will be passive during the development

of a system is already a hard task [MK06]. Therefore, we choose to leave the option to the user.

The LTSE tool, presented in Chapter 5, allows the choice of which representation (active or

passive) should be used to build the model. Thus, it is possible to define how to appropriately

interpret the occurrence of an action in the model of a process and its participation in the

interactions in a composed model.

3.3.3 Example of Concurrent System

An example of model extraction applied to a concurrent system is now presented. It is based

on the bounded buffer system described in [HP00]. The system is composed of three processes:

a producer, a consumer and a buffer. Their source codes are shown in Figure 3.15, Figure 3.16

and Figure 3.17, respectively.

1 class Producer extends Thread {
2 stat ic f ina l int COUNT = 6 ;
3 private Buf f e r bu f f e r ;
4
5 public Producer (Buf f e r b) {
6 bu f f e r = b ;
7 System . out . p r i n t l n (”Producer s t a r t ed ”) ;
8 this . s t a r t () ;
9 #act i on : ” p s t a r t s ” ;

10 }
11
12 public void run () {
13 AttrData ad = null ;
14 for (int i = 0 ; i < COUNT; i ++) {
15 ad = new AttrData (i , i ∗ i) ;
16 bu f f e r . put (ad) ;
17 y i e l d () ;
18 }
19 bu f f e r . ha l t () ;
20 System . out . p r i n t l n (”Producer ends ”) ;
21 #act i on : ” p s tops ” ;
22 }
23 }

Figure 3.15: Source code of producer.

The main method, implemented in a separate class, starts one producer and one consumer.

Note that we have introduced some user-defined actions (e.g., lines 9 and 21 of Figure 3.15),

which are used to help understand the behaviour of the processes.

3.3. Dealing with Concurrency 79

1 class Consumer extends Thread {
2 stat ic f ina l int COUNT = 6 ;
3 private Buf f e r bu f f e r ;
4
5 public Consumer (Buf f e r b) {
6 bu f f e r = b ;
7 System . out . p r i n t l n (”Consumer s ta r t ed ”) ;
8 this . s t a r t () ;
9 #act i on : ” c s t a r t s ” ;

10 }
11
12 public void run () {
13 AttrData [] r e c e i v ed = new AttrData [COUNT] ;
14 int count = 0 ;
15 try {
16 while (count < COUNT) {
17 r e c e i v ed [count] = (AttrData) bu f f e r . get () ;
18 count++;
19 }
20 }
21 catch (HaltException e) {
22 #act i on : ” ha l t ex c ep t i on ” ;
23 }
24 System . out . p r i n t l n (”Consumer ends ”) ;
25 #act i on : ” c s top s ” ;
26 }
27 }

Figure 3.16: Source code of consumer.

The producer and the consumer were identified as active processes, whereas the buffer was

considered a passive process. Following our approach, one model is built for each component,

using alphabet Σ = {p starts, c starts, p stops, c stops, put, get, halt, p waits, c waits,

halt exception} and a set of attributes P = {usedSlots, halted}.

Three situations were considered when generating the traces:

1. The consumer waits (no alteration of the code);

2. The consumer starts with a delay and makes the producer wait (delay introduced in the

initialisation of the consumer);

3. There is a delay between each attempt of the consumer to access the buffer, so that the

producer terminates early enough to cause the halt exception (delay introduced before

each call to method get).

The (minimised and deterministic) LTS models of producer, consumer and buffer are shown,

respectively, in Figures 3.18, 3.19 and 3.20. Producer and buffer synchronise on shared actions

3.3. Dealing with Concurrency 80

1 class Buf f e r implements Bu f f e r I n t e r f a c e {
2 stat ic f ina l int SIZE = 3 ;
3 protected Object [] ar ray = new Object [SIZE] ;
4 protected int putPtr = 0 ;
5 protected int getPtr = 0 ;
6 protected int usedS lots = 0 ;
7 protected boolean ha l ted ;
8
9 public synchronized void put (Object x) {

10 while (usedS lots == SIZE)
11 try {
12 System . out . p r i n t l n (”producer wait ”) ;
13 #act i on : ” p wai t s ” ;
14 wait () ;
15 }
16 catch (Inter ruptedExcept i on ex) { }
17 System . out . p r i n t l n (”put : ” + putPtr) ;
18 array [putPtr] = x ;
19 putPtr = (putPtr + 1) % SIZE ;
20 i f (usedS lots == 0)
21 no t i f yA l l () ;
22 usedS lots ++;
23 }
24
25 public synchronized Object get () throws HaltException {
26 while (usedS lots == 0 && ! ha l ted)
27 try {
28 System . out . p r i n t l n (”consumer wait ”) ;
29 #act i on : ” c wa i t s ” ;
30 wait () ;
31 }
32 catch (Inter ruptedExcept i on ex) { }
33 i f (ha l ted) {
34 System . out . p r i n t l n (”consumer gets ha l t except i on ”) ;
35 #act i on : ” ha l t ex c ep t i on ” ;
36 HaltException he = new HaltException () ;
37 throw (he) ;
38 }
39 System . out . p r i n t l n (” get : ” + getPtr) ;
40 Object x = array [getPtr] ;
41 getPtr = (getPtr + 1) % SIZE ;
42 i f (usedS lots == SIZE)
43 no t i f yA l l () ;
44 usedS lots −−;
45 return x ;
46 }
47
48 public synchronized void ha l t () {
49 System . out . p r i n t l n (”producer s e t s ha l t f l a g ”) ;
50 ha l ted = true ;
51 n o t i f yA l l () ;
52 }
53 }

Figure 3.17: Source code of buffer.

put and halt, whereas consumer and buffer synchronise through the execution of actions get

and halt exception.

It is important to notice that the model of the buffer (Figure 3.20) includes alternative be-

haviours in state 2, where actions put, c waits or halt may be executed. This represents the

blocking point in the buffer code (lines 26-32 in Figure 3.17), where the consumer may block,

3.4. Summary and Discussion 81

p_starts put

put

halt p_stops

0 1 2 3 E

Figure 3.18: LTS model of the producer.

c_starts get

get

c_stops

halt_exception c_stops

0 1 2 3 E

Figure 3.19: LTS model of the consumer.

waiting for the producer to insert the next item in the buffer (if all items have been collected,

then action halt is executed). The situation where the producer can also become blocked (lines

10-16 in Figure 3.17) appears in state 5.

Based on this, the composite model ||BoundedBuffer = (Producer || Consumer || Buffer)

(not shown here) includes behaviours where the producer starts before the consumer (i.e.,

p starts happens before c starts) and others where it is the consumer that starts first. Si-

milarly, p stops and c stops can be also interleaved.

3.4 Summary and Discussion

This chapter presented the main ideas of the approach for model extraction using contexts.

Contexts identify particular situations during the execution of a system, considering the current

block of code and the system state, which is composed of values of a selected set of attributes.

We showed how the source code is instrumented using predefined annotations to capture context

information, involving the blocks of code executed and the values of monitored attributes. The

instrumented code is then executed to produce traces, which are recorded in log files.

3.4. Summary and Discussion 82

put

put

get

put

c_waits

halt put

get

get

halt

p_waits

get

halt_exception

0 1 2 E 4 5 6 7

Figure 3.20: LTS model of the buffer.

Using this context information, we produce an implicit LKS model whose states are labelled

with the values of the system state and whose transitions have the executed actions as labels.

Based on this LKS model, we then create an FSP description where a process definition is

generated for each class of the system for which traces were collected.

These models can be combined in a composed model, allowing the application of our approach

to concurrent systems. We use the parallel composition ideas from Hoare’s CSP [Hoa85] deter-

mining that models synchronise on shared actions and local actions are interleaved.

In the next chapter it will be discussed the formal basis of the described approach. The formal

description of the mappings applied during the model extraction process and the relations

between the models we generate are presented. Among these relations, the focus is on the

refinement relation, which allows the augmentation of an existing model with the purpose of

modifying its level of abstraction and yet preserve previously checked properties.

Chapter 4

Formal Foundations of the Approach

This chapter contains a discussion on the formal foundations of our approach, presenting our

general mapping from a concrete system to an LKS model based on context information. We

then show how we map this LKS model into an LTS model by eliminating the state labels.

An analysis on the abstractions our approach produces is also presented, discussing the com-

pleteness and correctness of the models we generate with respect to the concrete systems they

represent. We comment on how completeness can be improved by the addition of new traces

to an existing model and correctness could be achieved by refining the model. We present our

refinement technique and formal proofs that this is a property-preserving process.

To give a general view of the mappings we apply and the relations between the source and the

target of each of these mappings, we present the diagram in Figure 4.1.

ProgP
m1

// KP
m2

//

r1

��

MP

r2

��

ProgP ′
m1

// KP ′
m2

// MP ′

Figure 4.1: Diagram of mappings and relations.

In the diagram, m1 is a mapping that builds an LKS KP based on the context information

extracted from a program ProgP of a system, using a set of attributes P ⊆ P (Prog). MP is

an LTS model obtained from KP through a mapping m2.

83

4.1. Formal Mappings 84

ProgP ′ represents the same program code as ProgP , but using a set of attributes P ′ instead of

P , such that P ⊆ P ′. We build an LKS KP ′ from the context information provided by ProgP ′

through the same mapping m1 applied before. Using mapping m2 again, MP ′ is the LTS model

generated based on KP ′.

Relation r1 corresponds to a property-preserving relation between the LKS models KP and

KP ′, such that the latter preserves LTL properties [MP92] that hold in the former. The same

applies to relation r2, which defines MP ′ as preserving LTL properties of MP . We will show

that both relations are in fact refinements. We assume that the exact same test cases are used

to produce traces in both programs and that the system is deterministic.

4.1 Formal Mappings

When creating a model of a system, we are producing an abstraction. This abstraction is a

representation of something concrete where some details are left out. In our case, a model M

is an abstraction of a concrete system Prog, where M does not include implementation details

such as data structures used in Prog. Therefore, M abstracts Prog.

As previously discussed (see Chapter 2), the use of abstractions helps model checking tools

cope with the complexity and size of systems by allowing the generation of models that are

tractable by these tools. However, the model construction should guarantee enough precision

to allow the checking of the necessary properties.

This section describes the two mappings from the diagram in Figure 4.1. The first mapping

(m1) corresponds to building an LKS model from context information from an existing imple-

mentation. As for mapping m2, it describes how we create an LTS model using the LKS model

generated using mapping m1.

4.1. Formal Mappings 85

4.1.1 Mapping from Implementation to Abstract Model

We use a formalism based on finite-state machines to build models. Thus, we interpret the

behaviour of a system as a set of reachable states and events (actions) that trigger a change of

state. Recalling Section 3.1, we consider states (i.e., contexts) comprising a control component,

which is the combination of a block of code and its associated control predicate, and a data

component, representing the valuation of a set of attributes (system state).

When we identify contexts, we are representing concrete states of the system using abstract

states. Let Prog be a program with CFG(Prog) = (Q, qi, Act, ∆) and set of possible system

states V (Prog). A concrete state θ = (q, v) of Prog comprises a control component q =

(bcq, cpq) ∈ Q, where bcq is a block of code and cpq is its associated control predicate, and a

data component v ∈ V (Prog). We use Θ(Prog) = {θ1, θ2, ...} to denote the set of all possible

concrete states of Prog and Ω(Prog) ⊆ Θ(Prog)×Act∗ ×Θ(Prog) to represent the transition

relation between concrete states.

Our mapping from the context information collected from Prog to an LKS K = (S, si, P, Γ, Σ, T)

(m1 in Figure 4.1) involves translating concrete states of Prog into abstract states of K and

modelling the change from one concrete state to another as transitions in K. This occurs as

described bellow:

• Every concrete state θ = (q, v) ∈ Θ(Prog), where v = {val(p1), ..., val(pn)} ∈ V (Prog), is

modelled by an abstract state s ∈ S. This abstract state s is derived from a context ID ap-

pearing in the context traces generated by Prog and includes only the values of attributes

in a selected set P ⊆ P (Prog), such that Γ(s) = v′, where v′ = {val(pk), ..., val(pm)}, for

1 ≤ k ≤ n and m ≥ k, and val(pk), ..., val(pm) ∈ P . For this reason, each abstract state s

may represent a set of concrete states Θ(Prog)s = {θ1, ...θx}, where Θ(Prog)s ⊆ Θ(Prog).

These concrete states are indistinguishable when the information to be used for compar-

ison is restricted to system states considering only attributes in P ;

• The initial state si ∈ S models a concrete state θi = (qi, vi) ∈ Θ(Prog), where vi = ∅

and, thus, Γ(si) = ∅;

4.1. Formal Mappings 86

• Σ ⊆ Act and, therefore, the alphabet of the model is also restricted to a subset of that of

the program;

• The transition relation T is defined in the following way. Given a set of attributes P ⊆

P (Prog), let s and s′ be two abstract states of K. Abstract state s models a set of

concrete states Θ(Prog)s = {θ1, ..., θn}, such that Θ(Prog)s ⊆ Θ(Prog), where, for

1 ≥ l ≥ n, θl = (ql, {vl} ∩ V (P)). Abstract state s′ models a set of concrete states

Θ(Prog)s′ = {θ′1, ..., θ′m}, such that Θ(Prog)s′ ⊆ Θ(Prog), where, for 1 ≥ j ≥ m, θ′j =

(q′j , {v′
j}∩V (P)). Let α = 〈a1...at〉 be a sequence of actions such that a1, ..., at ∈ Σ∪{ǫ}.

A transition (s, α, s′) ∈ T exists iff there exists a concrete transition (θ, α, θ′) ∈ Ω(Prog)

such that θ ∈ Θ(Prog)s and θ′ ∈ Θ(Prog)s′.

This mapping guarantees that no invalid paths of Prog will be included in K, considering

the level of abstraction provided by the set of attributes P . Hence, at the selected level of

abstraction, there will be no transitions connecting two abstract states if the system does not

allow a transition between two concrete states modelled by these abstract states.

Note, however, that it does not mean that infeasible paths will not be part of the model.

Infeasible paths may be in the model as a result of the selection of the level of abstraction,

which determines the set of concrete states represented by each abstract state. As we will

discuss in Section 4.2, it is possible to decrease the level of abstraction to eliminate some of

these invalid behaviours.

It is also important to emphasise the comment made in the previous chapter that Algorithm 3.2

does not explicitly build an LKS model. Though it applies the mapping described above

to obtain an abstract representation of a concrete system, the LKS model is only used as

an intermediate structure that allows us to store the information contained in context files

and, subsequently, produce an LTS model from it. Transition labels in the LKS model that

the algorithm builds are explicit and correspond to the names of actions happening between

contexts in a context trace. State labels, on the other hand, are implicit and used to uniquely

identify different contexts when converting traces into context traces (Algorithm 3.1).

4.1. Formal Mappings 87

4.1.2 Mapping from an LKS to an LTS Model

We now present the mapping m2 shown in the initial diagram (Figure 4.1), which corresponds

to converting an LKS model, created using mapping m1, into an LTS model. As we do not

explicitly build an LKS model, the mapping described here is a transformation from this in-

termediate structure, which implicitly includes state labels, to a simpler structure - an LTS

model - that does not contain state labels. This process is necessary for the creation of an FSP

description, since FSP is the process algebra we use to describe LTS models. For this reason

and for simplicity, we will call this mapping a state-label elimination (SLE) process.

Let K = (S, si, P, Γ, Σ, T) be an LKS model of a program Prog, as presented in Definition 3.4,

which was obtained through the model construction process discussed before. Using K, we

apply a mapping to generate an LTS model M = (S ′, s′i, Σ
′, T ′).

Essentially, an LKS is an LTS where states are labelled with values of attributes using a state-

labelling function Γ, and thus the definitions previously presented for an LKS (enabled actions,

behaviour, language and path) also apply for an LTS. Therefore, an LTS can be obtained from

an LKS simply by ignoring state labels - i.e., if the values of attributes in P labelling states of

K are not taken into consideration. This can be done in the following manner:

• Every state s′ ∈ S ′ corresponds to a state s ∈ S, such that s′ is the same as s without its

label, i.e., Γ(s′) = Γ(s) \ P ;

• Σ′ = Σ; and

• T ′ = T .

As can be seen, the alphabet and the transition relation do not change when mapping an

LKS into an LTS. Based on that, we claim that this mapping is property-preserving when we

consider LTL properties that do not predicate over attributes of K, but only refer to actions

in Σ.

4.1. Formal Mappings 88

In this restriction of LTL formulas, we follow the ideas presented in [LMC01], where LTL

is applied to CSP according to an association of propositions with actions (called ALTL in

[GM03]). Considering this association, the set of propositions of an LTL formula about a

certain model corresponds to the set of actions in the model alphabet Σ. In this case, LTL

formulas are defined on behaviours (traces) of a model such that a model K satisfies an LTL

property φ over Σ iff, for all π ∈ L(K), π |= φ.

Theorem 4.1. Let K = (S, si, P, Γ, Σ, T) be an LKS. Applying the SLE process to K results in

an LTS M = (S ′, s′i, Σ
′, T ′) such that, given an LTL property φ over Σ, if K |= φ then M |= φ.

Proof. Let us assume that K |= φ, where φ is an LTL property over the alphabet Σ. If

K satisfies φ then, for all π ∈ L(K), π |= φ. This means that all behaviours in L(K) are

behaviours defined according to property φ.

Remember that a behaviour is a possible sequence of actions, determined by a sequence of

transitions labelled with these actions. Hence, the set of behaviours is directly dependent on

the alphabet, which defines the actions used to label transitions, and on the transition relation,

resulting from the actions enabled in each state, which are associated with outgoing transitions,

and the destinations of these transitions.

Because the alphabet and the transition relation do not change when mapping an LKS into an

LTS using the SLE process (Σ′ = Σ and T ′ = T), they share the same set of behaviours, i.e.,

L(M) = L(K). Consequently, for all π′ ∈ L(M), π′ |= φ and, thus, M |= φ.

From this, we can conclude that mapping m2 in Figure 4.1 does preserve LTL properties over

Σ. Note that we could use either the LKS or the LTS model to check properties. We map from

an LKS to an LTS model only because of the formalism used in the model-checking tool we

have adopted. Also remember that we build an implicit LKS and, therefore, the elimination

of state labels in practice only means that we no longer use the CT, but analyse directly the

context traces.

4.2. Evaluation of Behaviour Models 89

4.2 Evaluation of Behaviour Models

In Section 2.1 we discussed the definitions of completeness and correctness of an abstract model

with respect to a given system. We presented completeness as the characteristic that describes

how much of the complete behaviour of the system a model includes. Correctness was defined

as describing how much of the behaviour in a model is not valid (i.e., cannot be executed by

the real system).

Our objective is that the models we build allow us to check the necessary properties and have

the appropriate level of abstraction to guarantee confidence on the results. For this reason,

completeness and correctness (and, therefore, faithfulness) are here considered with respect to

the checking of a property of interest, rather than with respect to all behaviours of the system.

It is now discussed the completeness and correctness of the generated models and possible ways

of improving them. Moreover, situations considering different possible models according to

their completeness and correctness are presented and discussed.

4.2.1 Completeness

The completeness of the generated models depends on the coverage provided by the set of traces

used to build them. If the set of traces provides full coverage of the system behaviour, then

it is possible to identify all reachable concrete states of the system and all valid transitions.

This would allow the construction of a complete model, such that L(Prog) ⊆ L(M). However,

this is normally not the case and, therefore, the model is generally an under-approximation of

the behaviour of the system (i.e., L(M) ⊂ L(Prog)). Thus, it represents only the part of the

behaviour observed during the trace generation phase.

Despite being an under-approximation of the behaviour of the whole system, the produced

model may be an over-approximation of the set of observed behaviours. As commented in

Section 3.2, some additional behaviours may be inferred using the context information, which

allows the merging of multiple traces and the identification of alternative and recurrent be-

4.2. Evaluation of Behaviour Models 90

haviours (loops). This way, the model might include more behaviours than those exhibited by

the system and recorded in the collected traces.

When checking a property, it might not be necessary to achieve a complete model. As Jackson

[JD96] pointed out, many errors can be identified in a small finite portion of a possibly infinite

state space of a program. However, ideally, the model should include all the relevant behaviours

to allow the checking of the property. Therefore, one should aim at observing the behaviours

that might influence the analysis of the system regarding a specific property and include them

in the model.

One possible way of selecting the relevant behaviours is to use a test suite. By choosing test

cases, it is possible to control the inputs to the system and, this way, force it to exhibit some

particular behaviours. Though testing is not directly connected with this work, the use of

test cases to observe specific behaviours can help the construction of models tailored for the

checking of properties of interest. For instance, one of the various existing testing coverage

criteria [Pat06] could be used to provide this focused generation of traces.

Regardless of the technique used to generate the traces (testing, profiling or monitoring), our

approach allows new traces to be incrementally incorporated to the model. Therefore, missing

traces can be added to the model to provide information on executions not considered before.

This way, it is possible to gradually improve completeness even if an initial model fails to

include all the necessary behaviours.

4.2.2 Correctness

A model built using just control flow information is the most abstract model that can be

obtained using our approach. This is a model where the set of attributes is empty, and can

be used as a starting point. Regrettably, such a model tends to generate violations that are

not real; they just occur because the abstraction is too coarse and permits behaviours that

are not actual behaviours of the system. The existence of invalid behaviours can affect the

4.2. Evaluation of Behaviour Models 91

checking of a property because one of these invalid behaviours may violate the property during

the verification, generating a misleading result.

In this work, correctness can be enhanced through the inclusion of more attributes into the set

used to define the system state. Therefore, the correctness of the models depends essentially

on the selection of the attributes to form the system state, used to define contexts.

The addition of new attributes to the state information results in a model that is less abstract

than the original. Hence, it precludes some behaviours that were allowed in the original model.

These precluded behaviours are invalid behaviours that were removed from the model because

of the additional behavioural information.

The augmentation of an initial model permits, for example, to tune the model according to

a property to be checked. This approach can eventually lead to a model that is correct with

respect to a given property (model does not violate the property if it is not violated in the

real system), even though it may still contain behaviours not allowed by the implementation of

the system. These additional behaviours do not interfere in the checking of the property and,

therefore, do not need to be removed.

4.2.3 Interpretation of Property Checking Results

Ideally, if a property φ holds in a behaviour model M , then it should also hold in the program

Prog represented by M . However, this cannot always be guaranteed unless M is complete and

correct with respect to φ. In this case, the set of behaviours of the system that affect φ and

the set of behaviours of the model are the same. Therefore, any LTL property holding in M

would also hold in Prog, and vice-versa.

As commented before, the generated models cannot always be complete and correct. The

quantity and quality of the set of traces used to build them can make them more or less

complete, depending on how much coverage is provided. In the same way, the modification

of the set of attributes forming the system state alters the correctness of the model. This

4.2. Evaluation of Behaviour Models 92

correctness depends on the relevance of the selected attributes with respect to the system

behaviour and the property to be checked.

We now comment on situations where a model is incomplete or incorrect. We discuss the

interpretation of property checking results and how to improve completeness and/or correctness

in each case.

Complete and Incorrect. By definition, a complete model (L(Prog) ⊆ L(M)) does not

necessarily imply a correct model (L(M) ⊆ L(Prog)). The model may not only be able to

completely reproduce all behaviours of the system that are relevant to check a property φ, but

also describe behaviours not belonging to L(Prog). In this case, though the model is complete,

it may also also be incorrect (L(Prog) ⊂ L(M)).

Despite being incorrect, a complete model can be used for checking properties. Because it

describes the complete behaviour of the system (and perhaps some other additional inferred

behaviours), if a property φ holds in the model, it is guaranteed to hold in the system. On

the other hand, property violations detected in the model can be actual violations or just false

negatives, i.e., violations caused by behaviours not in L(Prog) but present in its superset L(M).

False negatives can usually be eliminated from the model using an abstraction refinement tech-

nique. In our approach, as mentioned before, the abstraction refinement process corresponds

to the addition of more attributes to the system state (decreasing the level of abstraction). The

inclusion of additional attributes should rule out some false negatives.

Note that, in spite of the fact that adding all available attributes to the system state would

make the model as closest as possible to the real behaviour of the system, this may be not

desirable. Some attributes may have a wide range of values, causing the model to become too

large. The number of attributes also contributes to making the model more complex to analyse.

Because of the mentioned reason, a subset of the set of the available attributes should be selected

to comprise the system state, instead of just using the whole set. Although this approach does

not guarantee a correct model, it helps maintain the model in a size amenable for verification

and visualisation. Furthermore, as said before, if the model is complete, the lack of correctness

4.2. Evaluation of Behaviour Models 93

does not completely hamper the checking of properties. It just may make the process longer if

false negatives are generated and need to be eliminated.

Incomplete and Correct. A correct model may not be complete. Though it describes only

actual behaviours of the system, it may lack some of the behaviours found in L(Prog) (i.e.,

L(M) ⊂ L(Prog)). In this case, the absence of violations in the model does not necessarily

mean that the property holds in the system. This situation may originate a false positive, i.e.,

the behaviour that violates the property belongs to L(Prog) but not to its subset L(M).

False positives are more difficult to detect than false negatives since there is no indication of a

possible problem with the model (no counter-example). Therefore, the only way of preventing

false positives is to assure completeness. Some techniques for model extraction guarantee

completeness by obtaining the complete CFG of the system [BR02, HJMS02, CDH+00]. As

expected, this results in an over-approximated abstraction of the system, which can yield a

number of false negatives but guarantees the absence of false positives.

In our approach, assuring completeness corresponds to providing complete behaviour coverage

with respect to a property to be checked. If this coverage is not achieved, the absence of

violations during the model checking process does not imply that no violation exists. It only

means that it is guaranteed that no violation is caused by behaviours in L(M)∩L(Prog). Any

behaviour in L(Prog) \ L(M) cannot be guaranteed to not violate the property.

As commented before, it is possible to improve completeness by means of adding new traces

to the model. This corresponds, for example, to adding new test cases to a test suite used to

generate the traces. The addition of test cases increases the tested situations and may reveal

an unknown behaviour, which may violate the property being checked.

Incomplete and Incorrect. In the worst case, a model is incomplete and incorrect. This

situation occurs if the set of traces does not include some relevant behaviours with respect to a

property to be checked and the set of attributes does not provide the right level of abstraction

to avoid false negatives when checking this property.

4.3. Abstraction Refinement 94

Since an incorrect model is likely to generate a false negative, correctness is improved first.

Once a suitable level of abstraction has been found (i.e., one that does not generate false

negatives during the checking of a property), then it is possible to improve completeness with

the inclusion of new traces.

In Section 4.4, it will be discussed the procedure applied to checking properties and dealing

with false negatives and false positives. This will describe the steps taken during the checking

of properties and how to deal with its possible outcomes.

4.3 Abstraction Refinement

This section presents the formal description of the relation between two LKS models generated

using different sets of attributes, where one set is a subset of the other. This relation corresponds

to relation r1 in Figure 4.1.

A generated LKS model has the states identified during the construction of the CT and the

transitions collected from the logs. It is used to generate an LTS model, as described in

Section 4.1, which will be checked against a property. After the model checking process, the

model may prove to be too abstract (i.e., incorrect), yielding false negatives. In this case, we

apply a refinement process to generate a less abstract model that preserves properties of the

original model.

The refinement process is carried out by enlarging the set of attributes used to generate a

model, i.e., we add more attributes to an initial set, while using the same traces as before. This

enlargement causes a change in the labelling of the states, since the labels have to be modified

in order to include the values of the newly added attributes.

Because the state labels change to consider more values of attributes, this can also potentially

lead to an increase in the size of the state space. The reason is that the new attributes can

reveal different states that were not distinguishable before. For instance, let us suppose a state

s labelled with 〈true〉, representing the value of a boolean attribute p1. Now, let us say that a

4.3. Abstraction Refinement 95

new boolean attribute p2 is added. In this case, s could then be seen as two distinct states: s1,

labelled with 〈true, true〉, and s2, labelled with 〈true, false〉, where the second values in the

tuples describe values of attribute p2.

For a more concrete example, consider the model in Figure 3.4. That was the model of the

editor code presented in Figure 3.1, built with an empty set of attributes. In contrast, the

model shown in Figure 3.14 was generated using attributes isOpen and isSaved. Therefore,

the former model is more abstract than the latter, which is its refinement. Note how, for

example, state 0 of the more abstract model was split into states 0, 1 and 2 in the model

considering attribute values.

4.3.1 Refinement Relation

We now present a formal description of the relation between a model and its refinement. This

is used to support our claim that augmenting context information results in a more refined

model which preserves properties that were satisfied in the original model.

In a refinement process, an original model is said to be an abstraction of a refined model, as it

does not include some information included in its refined version. In [CCO+04], the following

definition is presented for an abstraction relation considering LKS models:

Definition 4.1. Abstraction. Let K = (S, si, P, Γ, Σ, T) and KA = (SA, siA, PA, ΓA, ΣA, TA)

be two LKS models. KA is an abstraction of K, denoted by K ⊑ KA, iff:

1. PA ⊆ P ,

2. ΣA = Σ, and

3. For every path λ = 〈s1a1...〉 ∈ Λ(K) there exists a path λ′ = 〈s′1a′
1...〉 ∈ Λ(KA) such that,

for each n ≥ 1, a′
n = an and ΓA(s′n) = Γ(sn) ∩ PA.

Hence, KA is an abstraction of K if the propositional language accepted by KA contains the

propositional language accepted by K when the language is restricted to the set of propositions

4.3. Abstraction Refinement 96

of KA. Ultimately, this means that KA is an over-approximation of K, such that L(K) ⊆

L(KA). Remember that we consider this relation in terms of attributes, which just means that

the set of values for each element of state labels may be different from {true, false}.

Our goal is to demonstrate that our refinement process creates this relation of abstraction

between an initial model and a more refined one using attributes, rather than propositions. We

now show that our refinement process produces a model K that is a refinement of an initial

model KA, given that KA has a smaller set of attributes than K. Hence, we aim to prove the

following theorem:

Theorem 4.2. Let FProg be a set of log files recording traces of a program Prog. KA =

(SA, siA, PA, ΓA, ΣA, TA) is an LKS model obtained from Prog following our mapping, using

the set of traces Tr(FProg), collected from FProg during the context table construction (see

Algorithm 3.1), and a set of attributes PA ⊆ P (Prog). If the same set of traces Tr(FProg)

is used with a set of attributes P ⊆ P (Prog), such that PA ⊆ P , then we obtain an LKS

K = (S, si, P, Γ, Σ, T) such that K ⊑ KA.

Item 1 of the definition of abstraction (Definition 4.1) is satisfied by our definition of refinement.

Since we add more attributes to the initial set, it is always the case that PA ⊆ P . Item 2 is

also satisfied, because we do not alter the alphabet1 and, thus, ΣA = Σ.

Proof of item 3 is broken into three separate proofs, presented next, after which we discuss our

proof of refinement based on them. In all proofs, we will use KA = (SA, siA, PA, ΓA, ΣA, TA)

and K = (S, si, P, Γ, Σ, T) to represent the initial and the refined model, respectively.

Note that, to simplify the discussion, we will refer to states of the models rather than to the

contexts originating these states. Since there is a one-to-one relation between contexts and

states, it does not change the results of the proofs. Therefore, when we talk about a trace, we

will treat it as a sequence of states with actions in between, instead of a sequence of contexts.

1Remember that both alphabets also include action ǫ.

4.3. Abstraction Refinement 97

It is also important to mention that, in the proofs, we will use only transitions labelled with

single actions, rather than sequences of actions. This makes the proofs simpler and yet does

not affect the results, since we are just using sequences of actions that contain only one action.

Proof 1: State Abstraction

The first step is to show that every state of K is related to a state of KA. As states are created

based on the labels they receive, we will use the following relation:

Definition 4.2. State-Labelling Relation. Given two LKS models KA = (SA, siA , PA, ΓA,

ΣA, TA) and K = (S, si, P, Γ, Σ, T), such that ΣA = Σ and PA ⊆ P , SL ⊆ SA × S is a

state-labelling relation such that, given a state sA ∈ SA and a state s ∈ S, (sA, s) ∈ SL iff

ΓA(sA) = Γ(s) ∩ PA.

Lemma 4.1. For every state s ∈ S, there is a state sA ∈ SA such that (sA, s) ∈ SL.

Proof. Let us suppose a state sA ∈ SA labelled with a set vA of values of attributes in a set

PA. Let us also define An = {an1, ..., ann} as the set of context annotations in the set of

traces Tr(FProg) that refer to the context represented by state sA. Since the inclusion of new

attributes expands the labels used to distinguish states, there can be two possible situations

when analysing the context annotations in An if a new attribute p is added to the set PA,

creating a set P :

1. In every context annotation an ∈ An, p has the same value; or

2. p has more than one value registered in context annotations in An.

In situation 1, the addition of p to the set of attributes does not reveal any new state from sA.

Hence, all context annotations in An will result in the inclusion in the model of a single state

s labelled with v = vA ∪ {val(p)}. That is, if the value of p is ignored, sA and s have the same

label and, consequently, are the same state. Therefore, ΓA(sA) = Γ(s) ∩ PA, which confirms

that (sA, s) ∈ SL.

4.3. Abstraction Refinement 98

As for situation 2, the inclusion of p does make a difference. Because p has more than one

value when analysing annotations in An, given two states s, s′ ∈ S, where Γ(s) = vA∪{val(p)},

Γ(s′) = vA∪{val(p)′} and val(p) 6= val(p)′, these states are identified as different. Nevertheless,

it is easy to see that s and s′ are the same state when the value of p is abstracted. Then, if the set

of attributes is restricted to PA, Γ(sA) = Γ(s) ∩ PA = Γ(s′) ∩ PA. Hence, (sA, s), (sA, s′) ∈ SL.

Therefore, every state s ∈ S is related to a state sA ∈ SA in a way such that, if attributes

labelling s and not labelling sA are ignored, then they represent the same abstract state and,

thus, (sA, s) ∈ SL.

Proof 2: Enabled Actions Preservation

The next step is proving that every action enabled in a state sA of KA is also enabled in at

least one of the refined states of K related to sA through relation SL.

Lemma 4.2. Given s1, ..., sn ∈ S and sA ∈ SA such that (sA, s1), ..., (sA, sn) ∈ SL,

n⋃

j=1

E(sj).

Proof. Lemma 4.1 showed that, if an attribute p is ignored, such that p ∈ P and p 6∈ PA,

then a set of states S ′ ⊆ S, will have the same label as a more abstract state sA ∈ SA. When

generating K, the only input to the algorithms that changes is the set of attributes. The

alphabet remains the same and so does the set of traces Tr(FProg) used to build KA.

Let us suppose that a state sA ∈ SA originates a set of states S ′ in K when an attribute p

is added to the set of attributes PA, originating a set P , such that PA ⊂ P (i.e., for every

state s ∈ S ′, (sA, s) ∈ SL). Because the set of traces Tr(FProg) will also be used to construct

K, the effect of using P instead of PA will be that, in every context trace derived from traces

in Tr(FProg), the context represented by sA will now be identified as one of the contexts

represented by states in S ′.

Remember that the algorithm creates a transition between two consecutive contexts (states) in

a context trace and labels it with the sequence of actions happening in between. Thus, given

an action a ∈ ΣA, if there is a transition (sA, a, s′A) ∈ TA, it means that the context represented

4.3. Abstraction Refinement 99

by sA and the context represented by a state s′A happen consecutively in a context trace ctr,

created based on a trace in Tr(FProg), and action a occurs in between them.

If sA is replaced in ctr by a state s ∈ S ′, then a transition (s, a, s′A) is obtained, since the

sequence of contexts in ctr did not change, but just the states used to represent these contexts

(i.e., the CIDs created when building the CT). This means that if a ∈ E(sA) in the more

abstract model, then now a ∈ E(s) in the refined model. Because each refined state in S ′

will take a share of the transitions of sA, the union of all actions enabled in states s1, ...sn ∈

S ′ will result in the same set of actions enabled in the more abstract state sA. Therefore,

E(s1) ∪ ... ∪ E(sn) = E(sA).

Proof 3: Abstract Path Preservation

The last proof involves showing that every refined path in K can be mapped into an abstract

path in KA.

Lemma 4.3. For every pair (sA, s) ∈ SL, if (s, a, s′) ∈ T , then there exists (sA, a, s′A) ∈ TA,

such that (s′A, s′) ∈ SL.

Proof. Given a state s ∈ S, Lemma 4.1 determines that there exists a state sA ∈ SA such that

(sA, s) ∈ SL. Let us now suppose that there is a transition t = (s, a, s′) ∈ T , where a ∈ ΣA

and s′ ∈ S. Based on Lemma 4.2, E(s) ⊆ E(sA). Hence, if a ∈ E(s) then a ∈ E(sA) and,

therefore, there must be a transition tA = (sA, a, s′) ∈ TA, where the more concrete state s is

replaced in t by the more abstract state sA, which it is related to through relation SL.

According to Lemma 4.1, s′ must be state-labelling related to a state s′A ∈ SA. Consequently,

if (s′A, s′) ∈ SL then s′ can be replaced in tA by s′A just as s was replaced by sA. This results

in a transition (sA, a, s′A) ∈ TA, which is the more abstract representation of transition t, such

that (sA, s), (s′A, s′) ∈ SL. Therefore, Lemma 4.3 holds.

4.3. Abstraction Refinement 100

Proof of Property-Preserving Refinement

Proof. Proving Theorem 4.2. As a result of Lemmas 4.1, 4.2 and 4.3, every state of the

more refined model K is related to a state of the more abstract model KA through the state-

labelling relation and all outgoing transitions of a state sA of KA are preserved in K as outgoing

transitions of a set of states related to sA. Furthermore, every transition of the refined model

can be mapped back into an abstract transition. Hence, every path λ = 〈s1a1s2a2s3...〉 ∈ Λ(K)

can be mapped into a path λA = 〈s′1a′
1s

′
2a

′
2s

′
3...〉 ∈ Λ(KA) such that, for n ≥ 1, an = a′

n and

(s′n, sn) ∈ SL. Therefore, Theorem 4.2 holds.

In [CCO+04], the authors present a logic that is a superset of LTL, called SE-LTL. They show

that, if a property φ is expressed in the authors’ logic and mentions only actions in the alphabet

ΣA, then if φ holds for KA, then it also holds for K. Based on this and on Theorem 4.2, we

can conclude that:

Corollary 4.1. For every LTL property φ over ΣA, if KA |= φ, then K |= φ.

Therefore, our refinement process between LKS models preserves LTL properties that consider

only actions of the alphabet of the more abstract model.

4.3.2 Property-Preserving Mapping

The last relation is the one represented by r2 in the diagram at the beginning of this chapter.

It defines that, given two LKS models KA and K, such that K ⊑ KA, if we generate two LTS

models MA and M , respectively from KA and K, then there should be a property-preserving

relation between them. This is shown in the diagram in Figure 4.2, where SLE is the state-label

elimination mapping described in Section 4.1 and Ref is the refinement relation.

We claim that, given that there is a property-preserving refinement relation between two LKS

models built with different sets of attributes and that the mapping from an LKS to an LTS

model is property-preserving, the generated LTS models also have a property-preserving relation

between them. This relation between the LTS models is also a refinement.

4.3. Abstraction Refinement 101

KA
Ref

//

SLE
��

K

SLE
��

MA
Ref

// M

Figure 4.2: Property-preserving relations diagram.

Theorem 4.3. Let KA = (SA, siA, PA, ΓA, ΣA, TA) and K = (S, si, P, Γ, Σ, T) be two LKS

models such that K ⊑ KA. If KA is mapped into an LTS MA = (S ′
A, s′iA , Σ′

A, T ′
A) and K is

mapped into an LTS M = (S ′, s′i, Σ
′, T ′), then, given an LTL property φ over ΣA, if MA |= φ

then M |= φ.

Proof. The proof of Theorem 4.1 (see Section 4.1) demonstrated that eliminating the state

labels from an LKS, we obtain and LTS that preserves the same properties. Hence, given

an LTL property φ over ΣA, if KA |= φ then MA |= φ and if K |= φ then M |= φ. Since

Corollary 4.1 holds, guaranteeing that a refined LKS preserves the same LTL properties of its

abstraction when these properties are restricted to actions in the alphabet of the more abstract

model, if KA |= φ then K |= φ.

Therefore, if KA preserves φ, then the LTS MA it generates will also preserve the property, and

so will its refinement K. Because M is an LTS obtained from K through the same property-

preserving process that generated MA from KA and K |= φ, then M also preserves this property.

As a result, if MA |= φ then M |= φ.

Note that, ignoring the state labels, the relation described in Definition 4.1 is a simulation

relation [Mil71], where the more abstract model simulates the more refined one. Therefore, it

is possible to say that MA simulates M . This relation between the models guarantees inherent

properties of a simulation relation.

4.4. Property Checking 102

4.4 Property Checking

Once a model has been extracted as described in Chapter 3 and formally presented in Sec-

tion 4.1, it can be used for model checking. Checking a property against a model means

comparing the behaviour specified in the property with that permitted by the model.

It is now discussed the types of properties that can be checked against our models. For each

type, it is presented how a property of that type can be specified and how results of the model

checking process are interpreted.

After this, it is presented the procedure applied in this work to check properties and adjust

a model to allow this checking. An example of property checking is discussed to demonstrate

this procedure in practice.

4.4.1 Specification of Properties

Our models can be used to check that safety properties are satisfied. Safety-property checking

is executed using the support provided by the LTSA tool.

A safety property describes a set of behaviours that a system should include. It is used to check

that the system does not engage into any undesired behaviour during its execution [MK06].

Safety properties to be checked against the models we produce can be specified in three different

ways, presented next.

Property Automata

The simplest way of specifying a property is using the FSP process algebra. Properties specified

in FSP correspond to a deterministic process definition, which is marked with the keyword

property. It determines sequences of visible actions allowed to happen (trace semantics).

These sequences may either correspond to the actions in the alphabet of the model or just be a

subset of it. Figure 4.3 shows an example of a property specified in FSP. It describes a simple

4.4. Property Checking 103

property determining that a system should execute an action in and then an action out, in

this order.

property IN_OUT = IN,

IN = (in -> OUT),

OUT = (out -> IN).

Figure 4.3: Example of property specified in FSP.

An FSP property automaton is composed with the model of a system to ensure that the model

does not include behaviours not allowed by the property. In the case of our example, invalid

behaviours would be 〈in in〉, 〈in out out〉 and any other behaviour that does not follow the

pattern of alternating between in and out, where the former is always the first action to happen.

The execution of an invalid behaviour, leads the property model to an ERROR state. An

ERROR state is represented in the LTS model of the property by number -1. All transitions

leading to this state correspond to disallowed transitions, i.e., transitions that cause the exe-

cution of an invalid behaviour. Figure 4.4 presents the LTS model that describes the property

specified in Figure 4.3.

IN_OUT

in

out

in

out

-1 0 1

Figure 4.4: Example of LTS model of an FSP property.

When the property automaton is composed with the system model, if the ERROR state is

unreachable, then the property holds. Otherwise, it is violated and the behaviour that causes

the violation is a sequence of actions that leads from the initial state to the ERROR state.

4.4. Property Checking 104

Consider the process definition presented in Figure 4.5 of a process P1. As it is possible to

see, process P1 does not violate the property. Therefore, the composition of P1 with property

IN OUT does not include the ERROR state, as shown in Figure 4.6.

P1 = (in -> process -> out -> P1).

Figure 4.5: FSP of process P1.

in process

out

0 1 2

Figure 4.6: LTS model of process P1 composed with property IN OUT.

While P1 does not violate the property, the same does not happen with process P2, whose

definition is presented in Figure 4.7. It is easy to see that the process executes the action in

twice before executing out. This is made clear in the composition with property IN OUT, shown

in Figure 4.8. Note that the ERROR state is reachable and, therefore, the model allows an

invalid behaviour, which violates the property.

P2 = (in -> in -> process -> out -> P2).

Figure 4.7: FSP of process P2.

in

in

-1 0 1

Figure 4.8: LTS model of process P2 composed with property IN OUT.

4.4. Property Checking 105

LTL Properties

As discussed before, only LTL properties over actions in the system alphabet are considered.

Therefore, LTL formulas are specified using action names in combination with the Boolean and

LTL temporal operators2 shown in Table 4.1.

Logical Operators Temporal Operators

¬ (logical negation) � (always)
∧ (logical AND) ♦ (eventually)
∨ (logical OR) © (next)
⇒ (implication) U (until)
⇔ (equivalence) W (weak until)

Table 4.1: LTL logical and temporal operators.

Using these operators, one can create LTL formulas (properties) to be checked against LTS

models. The model satisfies the property if every behaviour in its language satisfies the property.

As an example of an LTL property, let us consider the editor presented in Chapter 3. One

property that the system should satisfy is that a document, after having been opened, cannot

be saved if it has not been modified. In other words, one can only save a document that

is currently open and has been edited. This can be expressed in LTL using the property

�(open ⇒ (¬save W edit)).

This property defines that, after the execution of action open, action save cannot happen

before an execution of action edit. The property automaton describing this property is shown

in Figure 4.9.

When composing this property automaton with the LTS model in Figure 3.14, the ERROR

state is not reachable. This means that no behaviour accepted by the language of the model

permits a behaviour that does not comply with the restriction imposed by the checked property.

2Refer to [MP92] for an explanation on the semantics of these operators and to [LMC01] for their meaning
in formulas over actions.

4.4. Property Checking 106

edit

save

open

edit

save

open-1 0 1

Figure 4.9: Property automata of LTL property.

FLTL Properties

The Fluent LTL (FLTL), introduced in [GM03], is a variation of LTL tailored for checking

event-based systems. It expands our previous definition of LTL properties over actions with

the introduction of the concept of fluent.

A fluent is a proposition whose value varies over time according to the execution of actions. A

fluent F l is defined by a set IF l of initiating actions and a set TF l of terminating actions. The

following formal definition is presented in [GM03], considering a system with alphabet Act:

F l ≡ 〈IF l, TF l〉, where IF l, TF l ⊂ Act and IF l ∩ TF l = ∅

Fluents can be initialised as true or false. At some point in time, a fluent is true if it has been

initialised as true or after the execution of an action a ∈ IF l. It becomes false if it has been

initialised as false or when an action a′ ∈ TF l is executed. Therefore, generally speaking, a

fluent is true from the point in time when an initiating action is executed until a terminating

action occurs and it remains false from the moment of the execution of a terminating action

until another initiating action occurs.

An action a ∈ Act naturally defines a fluent that becomes true when a is executed and false when

any other action a′ ∈ Act\{a} occurs. Therefore, properties specified using LTL over Act can be

expressed in FLTL. This means, for example, that the LTL property �(open ⇒ (¬save W edit))

is also an FLTL formula, where, assuming an alphabet Σ ⊆ Act, each action a in the formula

defines a fluent of the form

4.4. Property Checking 107

F luent(a) = 〈{a}, Σ \ {a}〉 Initiallya =false

where Initiallya defines the initial value (true or false) of fluent a.

For the editor system, for example, it would be possible to create the following fluents consi-

dering actions of the system alphabet:

F luent(Closed) = 〈close, open〉 InitiallyClosed =true

F luent(Edited) = 〈edit, save〉 InitiallyEdited =false

F luent(Saved) = 〈save, edit〉 InitiallySaved =true

Using these fluents, we can define an FLTL formula that states that an edited document is

eventually saved before being closed. This formula can be specified in FLTL as follows:

�(Edited ⇒ (¬Closed W Saved))

The property automaton for this property is presented in Figure 4.10. It is easy to see that

the model in Figure 3.14 does not violate the property, as it is not possible to reach the END

state without executing save.

save

edit

open

close

save

edit

open

close save

edit

open

close

-1 0 1 2

Figure 4.10: LTS model of FLTL property.

4.4. Property Checking 108

4.4.2 Adopted Procedure

Following the model checking process described in Chapter 2, we use the algorithms presented in

Chapter 3 to extract a model M from a program Prog (modelling step) and specify a property

φ as described before (specification step). For the verification step, we use a model-checking

tool (LTSA) to check whether M |= φ.

The procedure for property checking applied in this work is described in Procedure 4.1. The

steps are presented in the form of subprocedures.

Note that these steps may be taken for each individual model or directly for the composed

model. Preferably, the model of each component should be checked against local properties - if

they exist - and, after that, then the composed model should be produced and checked against

global properties. This allows the application of techniques of compositional reasoning, such

as the assume-guarantee paradigm [GL94]. Such techniques can be used to alleviate the state

explosion problem [CGP99].

Lines 1 to 7 of the procedure correspond to the steps described in Chapter 3. Firstly, the code

is instrumented. Subprocedure InstrumentCode represents the application of the annotation

rules using the TXL language, where Prog is the original program and Prog′ is its instrumented

version. After the instrumentation, traces are generated. We use TC to represent a set of

test cases used to generate traces from the instrumented version of the code (subprocedure

GenerateTraces). This creates the set of log files FProg.

Next, the alphabet of the model (Σ) is selected as a subset of the alphabet of the system (Act),

such that it matches the alphabet Σ(φ) of a property φ to be checked, which is supplied by

the user according to one of the formats previously presented. The attributes to compose the

system state are selected from the set of attributes of the system (line 4).

Subprocedures BuildCT and CreateLKS correspond to the executions of Algorithm 3.1 and

Algorithm 3.2, respectively. As a result, an LKS model K is generated, which is then mapped

into an LTS model M using the mapping described in Section 4.1.

4.4. Property Checking 109

Procedure 4.1 PropertyChecking

1 Prog′ = InstrumentCode(Prog)
2 FProg = GenerateTraces(TC, Prog′)
3 Select Σ ⊆ Act such that Σ == Σ(φ)
4 Select P ⊆ P (Prog)
5 CF = BuildCT (FProg, P)
6 K = CreateLKS(CF, P, Σ)
7 M = MapToLTS(K)
8 e = CheckProperty(φ, M)
9 if e == 〈a1...an〉 (i.e., ∃e ∈ L(M) s.t. e 6∈ L(φ)) then

10 Violation found :M 6|= φ
11 Create test case tc to try to reproduce e in Prog
12 TC = TC ∪ {tc}
13 Execute tc using Prog
14 if e ∈ L(Prog) then

15 Real violation found : Prog 6|= φ
16 Fix error: modify Prog so that L(Prog) = L(Prog) \ e
17 Go back to 1
18 else

19 False negative occurred : e 6∈ L(Prog)
20 Select P ′ ⊆ P (Prog) such that P ∩ P ′ == ∅
21 P = P ∪ P ′

22 Go back to 5
23 end if

24 else

25 No violation found : L(φ) ⊆ L(M), therefore, M |= φ
26 end if

Subprocedure CheckProperty represents the verification step of the model checking process,

when property φ is checked against model M using the model checker. As in any other property

checking process, there are two possible outcomes: either a violation is found (i.e., M 6|= φ) or

no violation is detected. As discussed earlier in this chapter, the correctness and completeness

of the model decisively influence the results of the verification step.

If a violation is found (lines 9-10, where e is an error trace), it may be real or a false negative.

Using the error trace e generated by the model-checking tool, one can try to replay this be-

haviour using the code, for example, by applying a new test case (line 11). This test case can

then be added to the existent test suite (line 12).

If the real system can behave as described in the error trace (line 14), then we have found an

4.4. Property Checking 110

actual violation and the code needs to be fixed3, after which, we go back to the beginning to

generate a new model.

If the violation is not real (line 19), we enter the refinement process. The model is refined

adding more attributes to the initial set (lines 20-21). This process is manual and requires

knowledge about the implementation of the target system. There are no predefined rules as to

which attributes should be chosen and it may turn out to be a trial-and-error situation.

From the experience gained from the development of several examples during this work, it

seems that attributes involved in control predicates are the choice most likely to provide the

necessary increase in correctness. If the infeasible behaviour caused a point of choice that is not

clear at the current level of abstraction, then adding the attributes that affect this choice might

introduce a split of paths, thus possibly eliminating the invalid behaviour. The information on

the error trace can - and should - also guide this choice.

After the refinement process, which may be repeated as many times as necessary, we go back

to the construction of the LKS model, but now using the new set of attributes. If the resul-

ting model now preserves the checked property (line 25), then the property checking process

terminates and the property holds.

Once again, note that reaching the end of the property checking process only means that an

abstraction suitable for the desired specification was found after possibly successive refinements.

If the model is incomplete with respect to the system behaviour, M |= φ does not necessarily

imply Prog |= φ.

In our procedure, we employ the use of test cases, although this is not required to apply the

proposed approach for model extraction. This is due to two main reasons: firstly, using test

cases, it is possible to control the situations for which traces are generate and, this way, we

can observe behaviours of interest (e.g., behaviours that affect the property being checked);

and, secondly, error traces can serve as a basis for the creation of new test cases, which helps

improve the completeness of the model.

3We assume that the property is always correct and, therefore, a violation is a result of a problem in the
code.

4.4. Property Checking 111

By following this procedure, we believe that it is possible to improve confidence on the correct

behaviour of the systems being analysed. The use of testing to generate the traces allows

an early detection of some errors and their correction even before the model extraction. The

posterior application of model checking can possibly uncover additional errors missed during

the testing phase, if any exists, thus increasing the set of behaviours analysed and, consequently,

reducing the number of non-detected existing errors.

4.4.3 Property Checking Example

We now apply our property checking procedure to check properties of the editor system pre-

sented at the beginning of Chapter 3 (see Figure 3.1). For this experiment, we used the following

initial parameters:

• Set of test cases TC

– T1 = 〈 0 1 3 2 4 〉

– T2 = 〈 0 1 2 4 0 〉

– T3 = 〈 0 1 2 4 1 〉

– T4 = 〈 0 2 1 1 3 4 〉

– T5 = 〈 0 1 1 3 4 〉

• Alphabet Σ = {open, edit, print, save, exit, close}

• Set of attributes P = ∅

The properties we would like to check are defined as follows, where we refer to the fluents

Closed, Edited and Saved previously defined:

φ1 : �(Closed ⇒ ¬(edit ∨ print ∨ save ∨ exit))

φ2 : �(Saved ⇒ �(¬© save W Edited))

4.4. Property Checking 112

Property φ1 determines that actions edit, print, save and exit are not allowed to be executed

before a document has been opened. Property φ2 specifies that, if a document has not been

modified, then action save cannot occur until the document is edited.

Applying the model extraction process, the model presented in Figure 4.11 was produced.

Checking these properties against the model in Figure 4.11, we verify that the model violates

both of them. We first analyse property φ1.

open

edit

save

print

exit

save

close

close

0 1 E 3

Figure 4.11: Initial model of the editor system.

For φ1, the error trace is 〈 edit 〉, which indicates that action edit can happen before a

document has been opened. However, it is not possible to replay this trace in the code in

Figure 3.1. Hence, we have found a false negative.

In this example, there are only two attributes we can use to refine the model: isOpen and

isSaved. Intuitively, attribute isOpen is a good option, since it is used in the control predicate

of the block of code including the call to method edit (see lines 16-17 in Figure 3.1). Also, it

is this attribute that indicates whether a document is open, which affects the value of fluent

Closed. We then update the set P , so that now P = {isOpen}. The alphabet and test cases

remain the same.

After the inclusion of the new attribute in the system state, we generate a new model, shown

in Figure 4.12, which is a refinement of the model in Figure 4.11. Note that the refined model

successfully shows action open as the only enabled action in the initial state. As expected, this

model satisfies property φ1. Unfortunately, it still violates property φ2, producing the error

trace 〈 open save 〉.

4.4. Property Checking 113

open

edit

save

print

exit

save

close

close

0 1 2 E 4

Figure 4.12: Refined model of the editor system.

The error trace shows that it is possible to save a document that has not been edited, contra-

dicting what is stated in property φ2. Once again, we verify that this trace is not feasible using

the implementation in Figure 3.1 and, therefore, we face another false negative.

At this point, we select attribute isSaved to refine the model. Even though it is the only

available attribute to be added to the system state, it would surely be our first choice if the

same heuristic used before were applied again, since it controls whether a document has been

saved or not. Using P = {isOpen, isSaved}, we produce a more refined model, which is

presented in Figure 4.13.

open

edit

print

exit close

edit

save

print

exit

save

close

0 1 2 E 4 5

Figure 4.13: Final model of the editor system.

This model satisfies both properties. Therefore, we have achieved an abstraction that matches

the specification and the property checking process is concluded.

4.5. Summary and Discussion 114

4.5 Summary and Discussion

In this chapter, the formal basis of the proposed approach was described. The mappings from

an implementation to an LKS model and from this model to an LTS model were discussed. We

showed that, when mapping an LKS to an LTS model, all LTL properties over actions in the

alphabet of the LKS model are preserved in the resulting LTS model.

The completeness and correctness of the models and their influence in the results of property

checking were explained. We discussed in more detail the refinement process, formally demons-

trating that it is property-preserving from the more abstract to the more refined model. This

allows us to decrease the level of abstraction of a model to improve correctness and eliminate

false negatives, and yet guarantee that previously proved properties still hold.

Our procedure for property checking was presented. Properties are specified as FSP property

automata, LTL formulas or FLTL formulas. An explanation about the procedure was provided,

discussing issues such as the selection of attributes to refine a model and the use of test cases

to generate traces. We also discussed the use in combination of testing and model checking

using our models as a possibility of increasing confidence on the correct behaviour of a system.

Finally, a practical example of property checking showed the use of our refinement process to

eliminate false negatives. It demonstrated that there is indeed a refinement relation between a

more abstract and a more refined model, where the latter preserves the properties checked to

hold in the former.

Next chapter presents the tool support for our approach. It describes the LTS Extractor

(LTSE), which implements the model extraction processes based on contexts and the LTSA

tool, used to convert the FSP description generated by the LTSE tool into an LTS model, which

can be analysed.

Chapter 5

Tool Support

This chapter presents the tool support provided to our approach by the LTS Extractor (LTSE).

It automates most of the model extraction process, generating a Finite State Process (FSP)

description from a set of inputs, including context information.

We show how the tool can be used and how the FSP description it generates can serve as an

input to the LTS Analyser (LTSA), where its graphical representation can be generated and

analysed. Moreover, we discuss how to use the generated model to check properties using the

features of the LTSA tool.

5.1 The LTS Extractor

The LTSE tool has been developed to give support to the ideas presented here for model ex-

traction. Tool support is always important as it makes the process easier and faster. Moreover,

the user does not need to know the internal computations, but just benefit from the results.

This tool partially automates the model extraction process. As described in the diagram in

Figure 3.5, in Chapter 3, the information gathering phase is not automatic. The tool implements

the part of the process related to the processing of logs to collect context information, the

115

5.1. The LTS Extractor 116

storage of this information as a context table, the creation of an implicit LKS model and the

subsequent generation of an FSP description.

The tool does not directly support the instrumentation of the code. However, as commented

before, we used the TXL engine [CDMS02] to support this task in the development of the

examples presented in this work, including the case studies discussed in Chapter 6.

5.1.1 Implementation

The LTSE tool is implemented entirely in Java. It accepts inputs from a command line and ge-

nerates results to the standard output. These results include messages of successful completion

of tasks, error messages and the contents of the context table created during the execution.

The inputs to the tool are a list of action names, a list of attribute names and a list of log

file names. When building the model, the action names are used as the model alphabet and

the attribute names define the set of attributes forming the system state. The log files should

contain traces of the system, from which context information is extracted. At the end of its

execution, the tool outputs an FSP description based on the inputs provided.

The class diagram in Figure 5.1 shows the main classes of the tool implementation and their

relations. The Interest Filter component implements the creation of a filter to select the model

alphabet, based on the list of action names given as input, whereas the State Refiner provides

the creation of the system state according to the input list of attributes.

The Log Splitter is the component responsible for analysing the log files and identifying anno-

tations related to different instances of a component of the system. This identification is based

on the object ID assigned to the instance during the execution. One new log file is created for

each instance identified and each annotation regarding that instance is copied from the original

log file to the instance log file.

When each log file contains only events of a single instance, the Context Annotator executes

the gathering of context information. This process is the implementation of Algorithm 3.1,

5.1. The LTS Extractor 117

Figure 5.1: Class diagram of the LTSE tool main classes.

presented in Chapter 3. Each annotation of each log file is processed using the filter created

by the Interest Filter component and the system state produced by the State Refiner. This

processing produces the context table and a set of context files.

The FSP Creator uses these context files to build a structure to store an LKS model according

to Algorithm 3.2, discussed in Chapter 3. The resulting LKS is mapped into an LTS model

through an implementation of the formal mapping discussed in Section 4.1, in Chapter 4. This

LTS model is output as an FSP description, so that it can be subsequently used in the LTSA

tool for visualisation and property checking, as will be discussed in Section 5.3.

5.1.2 Requirements

The only real requirement to execute the LTSE tool is the presence of a Java Virtual Machine.

An additional requirement could be the installation of the TXL engine1 to automatically ins-

trument the source code. However, as commented before, it is not essential. Any form of

1Available from http://www.txl.ca.

5.2. Extracting Models with the LTSE Tool 118

instrumentation - even manual - may be used, provided that the appropriate annotations are

introduced in the code following the patterns presented in Chapter 3.

Though those patterns apply to Java only, they could be easily redefined to annotate source

codes written in other imperative languages, such as C. Because the annotations mark control

flow statements, which are common to all imperative languages, an automatic instrumentation

of other languages would just require the adaptation of such annotations to the grammar of

the target language.

The trace generation could also be supported by a test case selection tool, which would help

create the appropriate test cases according to a property of interest. As discussed in Chapter 4,

the correct selection of test cases can originate a set of log files containing relevant traces with

respect to the property one would like to check. Though it is also not a requirement, the use of

an automatic test selector, especially one that could choose test cases based on a given property,

could produce better results.

5.2 Extracting Models with the LTSE Tool

Generating models using the LTSE requires three basic steps. The first one is to provide the

necessary parameters, which will guide the construction of the final model and influence its

subsequent analysis. The second step is to determine the meaning of actions based on the

types of processes involved. The last step consists of creating the FSP descriptions for each

process using the defined parameters and types of processes.

We now present these steps and discuss how parameters are provided and in which format. The

commands and results of generating models using the tool are also part of the discussion.

5.2.1 Providing Parameters

As discussed in Chapter 3, the model extraction process takes three parameters: an alphabet,

a set of attributes (system state) and a set of traces. These parameters are defined according

5.2. Extracting Models with the LTSE Tool 119

to the components of the system selected to compose the model2.

During the processing carried out by the LTSE tool, these parameters are treated as local. This

means that each parameter selection should consider only the component for which a model

will be created. It is important to follow this approach to avoid mistakes such as instrumenting

and collecting traces from more than one component at a time, resulting in mixed log files (i.e.,

logs containing information about two or more components).

Note that mixing annotations from two different components in the same log does not generate

a model that is the composition of the behaviours of these two components. Remember that

annotations regarding different instances are split into new log files and treated as different

behaviours of a single component. Therefore, if annotations produced by different components

are found in the same set of log files, then they will be considered two instances of the same

component, which does not lead to the expected outcome.

Alphabet. The first parameter to be provided is the model alphabet. The LTSE tool receives

the alphabet input in the form of a filter file, which has the extension ‘.flt’. This file contains

the list of actions to compose the model alphabet. Its format is simply a list of action names,

one per line, like this:

<actionName1>

<actionName2>

...

<actionNameN>

The LTSE tool reads the information from the file and creates a filter. Using this filter, action

annotations regarding actions not on the list are ignored. Thus, if the file is empty, then all

actions are ignored. If no such file is provided, the tool includes in the model alphabet all

actions found in action annotations in the log files.

System State. The set of attributes is provided to the LTSE in a refinement file, which has

the extension ‘.ref ’. This file stores a list of attribute names, one per line, like this:

2Refer to Chapter 3 for a discussion on how to select parameters.

5.2. Extracting Models with the LTSE Tool 120

<attributeName1>

<attributeName2>

...

<attributeNameN>

The information contained in this file is used to create a state refiner, which reads the state

information from each context annotation and obtains the values only of those attributes on

the list. If the refinement file is empty, no attributes will be selected. Providing no refinement

file produces the same result.

Set of Traces. As commented before, the set of traces produced during the execution of the

system is stored in log files, whose format was presented in Chapter 3. The LTSE tool receives

the log files directly, using the defined format, and processes each annotation, applying the

filter and the state refiner, if provided.

Unlike the filter file and the refinement file, the tool can receive a list of more than one log file

name as a parameter. Each log file on the list is processed as described in Algorithm 3.1, in

Chapter 3. Therefore, the resulting model will be a combination of the behaviours recorded in

each file.

5.2.2 Choosing the Interpretation of Actions

The LTSE tool allows the representation of actions in three modes. Each mode assigns a

different interpretation to actions, causing the tool to use some action annotations related to

methods and ignore others. This can be applied to a single model only and the meaning of

actions in the model depends on the chosen mode.

Call Mode. The default mode is the call mode (c-mode), which corresponds to interpreting

an action as a method call. In this case, when processing the traces in the log files, the tool

uses the action annotations that refer to the beginning of method bodies for internal methods

and to action annotations of the beginning of a method call for external methods. The actions

5.2. Extracting Models with the LTSE Tool 121

corresponding to the end of a method body and the return of an external method call are,

therefore, ignored in this mode.

Termination Mode. The termination mode (t-mode) corresponds to the opposite of the

c-mode. When processing the logs, the tool uses the action annotations referring to the end

of a method body and the return of an external method call. Thus, an action in the model

represents the termination of a method execution, be it internal or external. The other action

annotations related to methods are ignored.

Enter and Exit Mode. The enter and exit mode (e-mode) combines the c-mode and the

t-mode. All action annotations related to methods are considered. Actions used in c-mode

receive the suffix ‘.enter′, whereas actions used in t-mode receive the suffix ‘.exit′. Therefore,

in this mode, for each action m, where m represents a method body or a method call, there is

an action m.enter to describe its beginning and an action m.exit to represent its end.

The use of these modes provides a different view of the behaviours described in the model.

In general, the c-mode should be used to create models of active processes, whereas the t-

mode should be used with passive processes. As commented in Chapter 3, this allows the

synchronisation between actions of active and passive processes and provides an abstract way

of representing the blocking mechanism usually implemented in passive processes (monitors).

Active processes may be represented using t-mode. Nevertheless, it is necessary to be aware

that, because an action represents the completion of a method, nested method calls will cause

the actions to appear in the reverse order of their actual occurrence (i.e., the call to the inner

method would appear in the model before the call to the outer method). This may cause

confusion during the analysis.

Similarly, the use of c-mode for a passive process model would mean that an action would

appear in the model even though the corresponding method was called but not necessarily

completely executed (e.g., if a method is called but an internal choice prohibits its execution).

Therefore, when using the c-mode, if the system allows a method to be called then there will

always be an action in the model to represent it.

5.2. Extracting Models with the LTSE Tool 122

The e-mode is an alternative to clarify the relation between inner and outer methods in nested

method calls and blocking mechanisms. For example, let us suppose an internal method m2

is called inside an internal method m1. In c-mode, the behaviour to be introduced in the

model would be 〈m1 m2〉, showing the order of calls. In t-mode, the behaviour would be

〈m2 m1〉, thus presenting the order of termination of methods. In e-mode, we can distinguish

a method call from a method termination. For this example, the trace produced would be

〈m1.enter m2.enter m2.exit m1.exit〉. However, this option obviously enlarges the model, as

there are two actions (enter and exit) for each method called.

It should also be noted that, if e-mode is chosen, the model of all processes involved in the

system must adhere to this mode as well so that synchronisation is possible when they are

composed. The same does not apply to the other modes, where models created using c-mode

can be composed with models created using t-mode.

There are no restrictions as to which mode should be used. The option of creating different

combinations of representations and types of processes gives the possibility of trying them out

to identify which combination suits best the problem being analysed. This choice can be made

through a parameter of the LTSE tool. Because all annotations are stored in the log files used

to build a model, the change of views can be carried out without having to re-generate the

traces, just changing the value of the parameter.

5.2.3 Generating an FSP Description

Using the parameters and one of the available modes, the basic command to generate a model

would be:

java ltse.LTSExtractor [filter] [refiner] [-c|-t|-e] <logs> <name>

where filter is a filter file, refiner is a refinement file, logs is a list of log file names of

the form log1.log log2.log ... logN.log and name is the name of the resulting model.

5.2. Extracting Models with the LTSE Tool 123

The interpretation of the meaning of actions is selected using the options -c for c-mode, -t for

t-mode and -e for e-mode.

As an example, let us consider the creation of the model shown in Figure 4.13, in Chapter 4.

For that model, the filter file Editor.flt contained the action names open, edit, print, save,

exit and close and the refinement file Editor.ref contained the attribute names isOpen and

isSaved. These files were used as parameters along with a list of five log files, one for each

trace presented in Section 4.4. The chosen mode was the default (c-mode). The command line

used to generate the model and the outputs for this example are shown in Figure 5.2. This

created a file Editor.lts, which contained the FSP description obtained using the parameters

provided and adapted to the mode selected.

Figure 5.2: Screenshot of an execution of the LTSE tool.

5.3. Model Visualisation and Analysis 124

The outputs essentially present messages regarding the model extraction process and the con-

text table created during the identification of contexts. Column A contains the values of the

attributes isOpen and isSaved, respectively. Note that the control predicates associated with

the contexts are presented as well (column P of the table).

In some situations, looking at the context table and at the resulting FSP description provides

a good understanding of why a certain behaviour was included in the model or even how an

invalid behaviour was generated. For example, it is possible to see that method edit can be

executed in two situations: when a document is open and has not yet been modified (column S

of the table, state 8) or when a previous call to the same method caused the file to be modified

(state 33). The same occurs with method print (states 15 and 23). This shows that they are

allowed to execute irrespective of the value of attribute isSaved. However, this is not true for

method save, which can occur only if isSaved is false (state 12).

5.3 Model Visualisation and Analysis

The FSP description produced by the LTSE tool can be imported into the LTSA tool. There, it

is possible to visualise a graphical representation of the LTS model described using the process

algebra. It also allows the checking of properties against the models. Error traces can be

replayed in the models so that it is possible to identify how violations were produced.

This resulting model can also be used for purposes other than property checking. One of such

purposes is simulation of behaviours. This is done by presenting the user with the alphabet

of the model and allowing them to choose, in each state, one action to be taken among the

actions enabled in that state. Therefore, the user can ‘execute’ behaviours in the model and

analyse whether they are valid or not. It helps understand the system behaviour, especially in

the presence of concurrency.

5.3. Model Visualisation and Analysis 125

5.3.1 Visualising the LTS Model

The model described in FSP can be modified using some operations implemented in the LTSA

tool. These operations are applied before the graphical representation is generated.

Hiding Operator. The user can define a set of actions {a1, ..., an} of the model that are not

relevant - or not visible to other processes - to be hidden using the hiding operator. Applying

the hiding operation /{a1, ..., an} to a process Proc, results in every action ai in the set, for

1 ≥ i ≥ n, being removed from the alphabet of Proc.

When generating the visual model, each occurrence of one of these actions is replaced by a tau

action, which represents a silent action. We use this operation to remove the null actions used

in our models and make them silent. If an action is silent, it means that it is a local action

and does not interfere in the behaviour analysis. During simulation, these actions represent

transitions that are always enabled (i.e., no actions required).

As an example of the use of the hiding operator, consider the FSP description in Figure 5.3 of

a simple traffic lights system, which alternates between green lights and red lights, using yellow

lights as a transition colour. Action change represents the event that triggers the change

of colour, which we choose to hide. This FSP generates the graphical LTS model shown in

Figure 5.4. Note that occurrences of change have been replaced by tau actions.

Lights = (change->yellow->green->change->yellow->red->Lights)

\{change}.

Figure 5.3: FSP of the lights example.

Minimisation. It is also possible to minimise a model so that a more compact version is

obtained. This more compact version corresponds to a model produced applying the obser-

vational equivalence defined by Milner [Mil99]. Essentially, this operation reduces the model

by eliminating tau actions whenever possible, such that observational behavioural equivalence

between the reduced model and the original model is preserved.

5.3. Model Visualisation and Analysis 126

tau yellow green tau yellow

red

0 1 2 3 4 5

Figure 5.4: LTS model of the lights example.

If we apply the minimisation operation to the model shown in Figure 5.4, we obtain the model

presented in Figure 5.5. It is observationally equivalent to the other model but all transitions

labelled with tau have been removed.

yellow green yellow

red

0 1 2 3

Figure 5.5: Minimised LTS model of the lights example.

Deterministic. Another possible operation is the elimination of non-determinism. Consider

now a version of the traffic lights system where a random choice is used to decide which colour

will be selected next. The FSP of this example is shown in Figure 5.6. Note that there is

a non-deterministic choice involving actions change and yellow. We decide not to hide any

action this time.

RandomLights = (change->yellow->green->RandomLights

|change->yellow->red->RandomLights)

\{change,yellow}.

Figure 5.6: FSP of the random choice traffic lights system.

The model produced using this FSP is shown in Figure 5.7. If we try to minimise this model,

the result is the exact same model, as the non-deterministic choice cannot be removed (not

even if actions change and yellow are made silent).

5.3. Model Visualisation and Analysis 127

The LTSA tool provides an operation to convert non-deterministic models into deterministic

ones during the generation of their graphical representation. This operation is applied when the

keyword deterministic is inserted in front of the FSP process definition. The deterministic

model is a result of a Non-Deterministic Finite Automaton to Deterministic Finite Automaton

(NFA-DFA) transformation [HU79]. The deterministic version of the previous non-deterministic

model of the traffic lights system is presented in Figure 5.8.

change

change yellow

red

yellow

green

0 1 2 3 4

Figure 5.7: LTS model of the random choice traffic lights system.

change yellow

green

red

0 1 2

Figure 5.8: Deterministic LTS model of the random choice traffic lights system.

The deterministic model shows the same possibility of turning the lights to either green or red

without the non-deterministic choice. However, the random characteristic of the model still

exists, since after executing the sequence 〈change yellow〉 it randomly chooses between green

and red to execute next.

5.3. Model Visualisation and Analysis 128

5.3.2 Property Specification in the LTSA tool

The types of properties that can be checked using models generated using our approach were

discussed in Chapter 4. These properties can be specified using an FSP property automaton,

an LTL formula or an FLTL formula.

In the LTSA tool, an FSP property automaton is defined as discussed in Chapter 4, prefixing a

process definition with the keyword property. When generating a model this process definition

is converted into a deterministic finite automaton containing an ERROR state, denoted by state

-1 in its graphical representation.

LTL properties are specified using names of actions as propositions and the logical and temporal

operators shown in Table 5.1. These operators correspond to their equivalent symbols presented

in Table 4.1.

Logical Operators Temporal Operators

! (logical negation) [] (always)
&& (logical AND) <> (eventually)
|| (logical OR) X (next)
-> (implication) U (until)
<-> (equivalence) W (weak until)

Table 5.1: LTL logical and temporal operators in the LTSA tool.

Using this operators, an LTL formula is defined as an assertion, as in the example below

assert SaveIfEdited = [](open->(!save W edit))

where SaveIfEdited is the name associated with the property. Multiple properties may be

defined to be checked against a model.

A fluent is defined in the LTSA tool as in the example below

fluent Edited = <edit,save> initially 0

where Edited is the name of the fluent, edit is the initiating action, save is the terminating

action and 0 corresponds to the value false (1 for true).

5.3. Model Visualisation and Analysis 129

Once defined, a fluent is used in a property defined as described for LTL formulas. The fluent

name is used in the very same way as action names:

assert SaveIfEdited = [](open->(!save W Edited))

Any of the discussed formats can be used to specify properties and check them against a

generated model, according to the preference of the user. It is just important to bear in mind

the semantics of each formalism so that results can be correctly interpreted. Next, it will be

discussed how to analyse the results of a property checking process.

5.3.3 Checking Properties

When checking properties against a model, the result can be that either no violation is found

or an error trace is generated. In the first case, the LTSA tool produces an output such as the

one presented in Figure 5.9 to inform the property satisfaction by the model. This example of

report was generated using the formula Allowed = [](!Open -> !(edit || print || save

|| exit)). Part of the report is omitted because it is not important for this discussion.

...

Composition: DEFAULT = Editor || Allowed

State Space:

6 * 2 = 2 ** 4

Analysing...

Depth 4 -- States: 6 Transitions: 15 Memory used: 1740K

No deadlocks/errors

Analysed in: 0ms

Figure 5.9: Example of report of no violation found.

If a violation is found, the report includes the error trace, as shown in Figure 5.10, where

formula SaveEdited = [](Saved -> [](!X save W Edited)) is checked (fluents Saved and

Edited are the ones defined in Chapter 4). If fluents are used in the formula, the error trace

indicates the sequence of actions and also the fluents that were true at each point of the error

trace. Otherwise, it only presents the sequence of actions.

5.4. Summary and Discussion 130

...

Composition: DEFAULT = Editor || SaveEdited

State Space:

5 * 3 = 2 ** 5

Analysing...

Depth 2 -- States: 2 Transitions: 3 Memory used: 3468K

Trace to property violation in SaveEdited:

open Saved

save Saved

Analysed in: 0ms

Figure 5.10: Example of report of violation.

In this example, the error trace violates the property because it demonstrates that save can

happen when Saved is true, contrary to what is specified in the property. The error traces

produced by the tool always show the shortest sequence of actions leading to the error state.

5.4 Summary and Discussion

This chapter showed that the combination of the LTSE tool and the LTSA tool supports a

complete model checking process. The LTSE tool supports the modelling step, whereas the

LTSA provides an environment for the specification and verification steps.

The LTSE creates a model that can be adapted to specific needs. This adaptation is achieved

through the choice of the parameters provided to the tool. Selecting the alphabet and system

state and producing the appropriate set of traces allows the extraction of a model tailored for

a particular system and level of abstraction.

The model constructed by the LTSE tool serves as input to the LTSA tool, where its graphical

representation can be generated and visualised. Properties can be specified using FSP property

automata, LTL formulas or FLTL formulas. This way, the property can be described in the

more convenient formalism according to the user’s expertise and needs.

Finally, properties can be checked against the extracted model. The LTSA tool can identify

property violations and produce error traces to describe the behaviour that violates the pro-

5.4. Summary and Discussion 131

perty. Error traces can guide the identification of invalid behaviours and, subsequently, lead to

modifications in the program code or the refinement of models.

In the next chapter, we combine these tools to develop two case studies. We show how these

tools can help the understanding and analysis of systems which involve the concurrent execution

of multiple threads and their interactions.

Chapter 6

Case Studies

During the development of this work, the approach herein presented was evaluated using several

case studies, some of which are discussed in Appendix B. This chapter presents the results of

two selected case studies with the purpose of demonstrating how the approach can be applied

and its strengths and limitations.

The first case study was based on the Single-Lane Bridge problem described in [MK06]. Though

this system was quite simple, it helped us apply and evaluate our representation of active and

passive processes. Moreover, manually created models are presented in [MK06], allowing us

to compare them with our automatically generated models. The case study also provided a

complete example of our procedure for model extraction and property checking.

The second case study shows the results of our approach applied to a more complex system. The

system was an implementation of Garcia-Molina’s Bully Algorithm [GM82]. The complexity of

the system and some details of the particular implementation used in this case study provided an

interesting challenge for our model extraction process. This case study revealed some unknown

limitations of our approach and yet proved its uselfulness.

132

6.1. Single-Lane Bridge Problem 133

6.1 Single-Lane Bridge Problem

The Single-Lane Bridge problem involves a bridge over a river which has only one lane. Hence,

only cars moving in the same direction are allowed to cross the bridge at the same time. This

scenario can be seen in Figure 6.1, which shows a screenshot of an applet implementing the

problem and discussed in [MK06].

Figure 6.1: Visual representation of the Single-Lane Bridge problem.

In the implementation found in [MK06], cars crossing the bridge from left to right are identified

as red cars and cars moving in the opposite direction are identified as blue cars. Each car is

implemented as a thread that tries to obtain access to the bridge. The bridge is a passive entity

that provides methods for allowing cars to enter and exit it, as shown in Figure 6.2. As one

can see, in this implementation the method bodies are empty.

6.1.1 Model Generation

We defined cars as active processes and the bridge as a passive process. Models were created

for each class involved in the system (RedCar, BlueCar and Bridge). The alphabet of the

models included the names of the methods provided by the bridge to allow cars to enter and

exit, namely redEnter and redExit for red cars and blueEnter and blueExit for blue cars.

The initial set of attributes was empty.

6.1. Single-Lane Bridge Problem 134

class Bridge {

synchronized void redEnter () throws Inter ruptedExcept i on {}

synchronized void redExit () {}

synchronized void blueEnter () throws Inter ruptedExcept i on {}

synchronized void blueExi t () {}

}

Figure 6.2: Source code of the bridge.

The execution of the applet provided the necessary traces to generate the models. The interface

allowed the execution with one, two or three cars in either direction. We executed the system

once using each one of these settings.

The behaviour of the cars does not depend on the numbers of cars crossing the bridge and,

therefore, a single model was built for either type of car. The deterministic models of a red car

and a blue car are shown, respectively, in Figure 6.3(a) and Figure 6.3(b).

redEnter

redExit

0 1

(a)

blueEnter

blueExit

0 1

(b)

Figure 6.3: LTS models of (a) the red car and (b) the blue car.

As for the bridge model, we used the following definitions, adapted from the ones in [MK06]:

const N = 3

range T = 0..N

range ID = 1..N

NOPASSRED1 = C[1],

C[i:ID] = ([i].redEnter -> C[i%N+1]).

NOPASSRED2 = C[1],

C[i:ID] = ([i].redExit -> C[i%N+1]).

6.1. Single-Lane Bridge Problem 135

||RED_CONVOY = ([ID]:RedCar || NOPASSRED1 || NOPASSRED2).

NOPASSBLUE1 = C[1],

C[i:ID] = ([i].blueEnter -> C[i%N+1]).

NOPASSBLUE2 = C[1],

C[i:ID] = ([i].blueExit -> C[i%N+1]).

||BLUE_CONVOY = ([ID]:BlueCar || NOPASSBLUE1 || NOPASSBLUE2).

||CARS = (RED_CONVOY || BLUE_CONVOY).

Processes NOPASSRED1 and NOPASSRED2 define that one red car should not pass another while

on the bridge. Processes NOPASSBLUE1 and NOPASSBLUE2 do the same for blue cars. Note

that an identification was used as a prefix for the names of actions to determine which car

executed which action. Composite processes RED CONVOY and BLUE CONVOY composed the model

of the red cars (RedCar) and the model of blue cars (BlueCar), respectively, with the processes

prohibiting cars to overtake each other. Composite process CARS put both red cars and blue

cars together.

Initially, we generated a model of the bridge for the situation where only one car of each type

was trying to cross it (therefore, N=1 in our definitions). Figure 6.4 shows this model.

[1].blueEnter [1].redEnter [1].blueExit

[1].redExit

0 1 2 3

Figure 6.4: LTS model of the bridge for one car of each type.

6.1. Single-Lane Bridge Problem 136

Note that the original names of the methods have been already relabelled so that they syn-

chronise with the action names used in the composite model CARS. This way, the model of the

bridge also contains the identification of the car originating the action.

6.1.2 Property Checking

The important property that the single-lane bridge should preserve is that cars of different

types should not be on the bridge at the same time. This property specification as an FSP

automaton is presented in [MK06]. We used the same property, just changing the names of

the actions so that they matched those of our previous models (e.g., [ID].redEnter instead of

red[ID].enter). The adapted property specification is shown in Figure 6.5.

property ONEWAY = ([ID].redEnter -> RED[1]

|[ID].blueEnter -> BLUE[1]),

RED[i:ID] = ([ID].redEnter -> RED[i+1]

|when (i==1) [ID].redExit -> ONEWAY

|when (i>1) [ID].redExit -> RED[i-1]),

BLUE[i:ID] = ([ID].blueEnter -> BLUE[i+1]

|when (i==1) [ID].blueExit -> ONEWAY

|when (i>1) [ID].blueExit -> BLUE[i-1]).

Figure 6.5: FSP specification of property OneWay.

This property defines that either a red or a blue car is allowed to access the bridge and, once

one of them has done it, only cars of the same type can enter the bridge until all cars of that

type have left it. Hence, if cars of different types are simultaneously on the bridge at any time,

the property is violated.

Composing this property with processes CARS and Bridge - i.e., the process corresponding to

the model shown in Figure 6.4 -, it is possible to check that the property is not preserved. This

can be seen by using the LTSA tool to create the composition and executing a safety check.

The error trace produced is presented in Figure 6.6.

6.1. Single-Lane Bridge Problem 137

Trace to property violation in ONEWAY:

1.blueEnter

1.redEnter

Figure 6.6: Error trace for property OneWay.

This error trace describes a situation where a blue car enters the bridge and then a red car

can do the same, thus violating the property. This result confirms the violation described in

[MK06] for the same composition but by using a manually created model.

As commented in [MK06], this violation occurs because the methods of the bridge implemen-

tation do not include any control over the cars entering and exiting the bridge. As a solution,

the authors present an implementation of a safe bridge (Figure 6.7), which uses the wait-notify

mechanism and counters to control access to the bridge.

class SafeBr idge extends Bridge {

private int nred = 0 ;
private int nblue = 0 ;

synchronized void redEnter () throws Inter ruptedExcept i on {
while (nblue >0) wait () ;
++nred ;

}

synchronized void redExit (){
−−nred ;
i f (nred==0)

no t i f yA l l () ;
}

synchronized void blueEnter () throws Inter ruptedExcept i on {
while (nred >0) wait () ;
++nblue ;

}

synchronized void blueExi t () {
−−nblue ;
i f (nblue==0)

no t i f yA l l () ;
}

}

Figure 6.7: Source code of the safe bridge.

Generating a new model and executing the safety check again results in no violation found.

The model of the safe bridge is presented in Figure 6.8. For this model, the system state was

composed of the attributes nred and nblue, which count the number of red cars on the bridge

6.1. Single-Lane Bridge Problem 138

and the number of blue cars on the bridge, respectively. These attributes are necessary to

distinguish the context where a car can enter the bridge because no car of the other type is on

it at that moment from the context where the car has to wait for cars of the other type to leave

the bridge (process is blocked). Note that once again the attributes used to refine the model

are part of control predicates in the code.

[1].blueEnter [1].blueExit [1].redEnter

[1].redExit

0 1 2 3

Figure 6.8: LTS model of the safe bridge for one car of each type.

The model shows that the blue car enters first and the red car is only allowed to enter after

the blue car has exited the bridge. The blue car only returns to the bridge when the red one

has left it. The order of the cars was determined by the collected traces and is irrelevant to the

checking of the property, which, in this case, is not violated.

To make sure the system does preserve the property irrespective of the number of cars, we

generated the models for two and three cars of either type. In the case of two cars, no violation

was found. However, the model generated for three cars of either type, shown in Figure 6.9,

described a problem: red cars could never enter the bridge. The property is violated not

because cars of different types are allowed on the bridge at the same time, but because the

actions involving red cars are not part of the alphabet of the model.

This problem is solved in [MK06] by introducing turns for cars of either type entering the

bridge. The code of this fair bridge - obtained from [MK06] - is presented in Figure 6.10 and

the model extracted for this bridge is shown in Figure 6.11.

The system state used for this model was the same used when creating the safe bridge model

plus the new attribute blueturn. This additional attribute allows the identification of the

contexts that described the alternated access to the bridge by either type of car.

6.1. Single-Lane Bridge Problem 139

[1..3].blueEnter [1..3].blueEnter [1..3].blueEnter

[1..3].blueExit

[1..3].blueExit

[1..3].blueExit

0 1 2 3 4

Figure 6.9: LTS model of the safe bridge for three cars of each type.

class FairBr idge extends Bridge {

private int nred = 0 ;
private int nblue = 0 ;
private int waitblue = 0 ;
private int waitred = 0 ;
private boolean blueturn = true ;

synchronized void redEnter () throws Inter ruptedExcept i on {
++waitred ;
while (nblue >0 | | (wai tblue>0 && blueturn)) wait () ;
−−waitred ;
++nred ;

}

synchronized void redExit (){
−−nred ;
blueturn = true ;
i f (nred==0)

no t i f yA l l () ;
}

synchronized void blueEnter () throws Inter ruptedExcept i on {
++waitblue ;
while (nred>0 | | (waitred >0 && ! blueturn)) wait () ;
−−waitblue ;
++nblue ;

}

synchronized void blueExi t () {
−−nblue ;
blueturn = fa l se ;
i f (nblue==0)

no t i f yA l l () ;
}

}

Figure 6.10: Source code of the fair bridge.

The checking of this model did not reveal any violation of the property. This confirms the

results of the authors in [MK06].

6.1. Single-Lane Bridge Problem 140

[1].blueEnter [2].blueEnter [3].blueEnter [1].blueExit [2].blueExit [3].blueExit [1].redEnter [2].redEnter [3].redEnter [1].redExit [2].redExit

[3].redExit

0 1 2 3 4 5 6 7 8 9 10 11

Figure 6.11: LTS model of the fair bridge for three cars of each type.

6.1.3 Evaluation

The Single-Lane Bridge case study provided us with an example where models had been man-

ually created and the results of checking those models were available. This allowed us to

compare the models we generated with those models. Except for the model of the fair bridge

with three cars, all the models reproduced the behaviour modelled by the authors in [MK06],

thus generating the same results during the analysis.

The difference in the model of the fair bridge for three cars was due to the fact that the manually

created model defined the expected behaviour of the code, whereas the extracted models showed

its observed behaviour. Therefore, the results were different because the expected behaviour

included the possibility of red cars accessing the bridge at some point, even though a progress

check could reveal that this actually might never occur. The observed behaviour, on the other

hand, showed this situation directly in the model.

Though the complexity of this application was low, the concurrency aspect was useful to test

our approach when dealing with multiple threads accessing a shared resource. It proved the

applicability of our approach for extracting models of concurrent systems and its usefulness for

detecting invalid behaviours.

6.2. Leader Election Algorithm 141

6.2 Leader Election Algorithm

A leader election algorithm [CDK05] is a distributed algorithm for choosing one of the processes

composing a distributed system to be the leader (or coordinator). The leader works as a server

to all processes - including itself - that share a particular resource. It receives requests from

a process, accesses the resource and possibly returns a confirmation to the process that made

the request. However, unlike the client-server architecture, the leader may change over time if

a current leader fails. In this case, an election occurs to find a new leader.

The election procedure involves the exchange of messages between processes to decide which

one of them will be the leader. The choice is normally based on an identifier assigned to

each process. Identifiers may be values of any type but must be unique and totally ordered

[CDK05]. The leader is usually the process with the highest identifier. Each member has a

variable elected that contains the identifier of the current leader. All processes must agree on

the elected process [CDK05].

The Bully Algorithm [GM82] is a leader election algorithm where a new election starts whenever

a process is detected to have failed or recovered. If a process that had failed recovers and its

identifier is higher than any of those of the processes still alive, then it becomes the leader.

This is the reason for the name of the algorithm: the process with the highest identifier will

always take over as leader, even if a current leader exists and has not failed.

The algorithm makes three main assumptions: 1) message delivery is reliable, so that no message

is lost; 2) the system is synchronous and, therefore, timeouts are used to detect that a process

has crashed; and 3) each process knows all other processes and their respective identifiers, which

allows all processes to take part in the election procedure and rejoin the system after recovering

from a failure.

6.2. Leader Election Algorithm 142

6.2.1 Implementation

For this case study, we used an implementation of the Bully Algorithm available on the Internet1

and presented in Appendix C. This code was developed as part of the Distributed Systems

course at Queen’s University, Canada, to teach the algorithm to students.

Because it was aimed to teach students, the implementation includes not only the components

of the algorithm but also components to support the simulation of failures and recoveries. These

components allow the user to send messages to a process telling it to simulate a failure, which

causes the process to shutdown by stopping all its running threads. The user can also decide

to simulate a recovery of a failed process, thus sending it a message to restart all its threads.

Therefore, even though the threads execute and communicate in an actual distributed system,

the simulation components help analyse the effects of failures and recoveries on the behaviour

of the processes of the system.

The implementation includes two types of components: an election console and election mem-

bers. The election console controls the start and ending of the execution and provides a textual

interface where the user can choose processes to simulate a failure or recovery. An election mem-

ber is a process involved in the election, including threads to check whether other members are

alive, to receive messages from other members and to participate in the election process. There

are also threads that simulate an application where the leader has access to a printer. The

leader receives printout requests from other members and sends back confirmations.

Subsystem Analysed

In order to reduce the complexity of the model to be generated and concentrate on the election

procedure, we chose to analyse only the threads involved in the process of choosing a leader.

Therefore, we focused on a subsystem where each election member runs only the subcomponents

necessary to execute the election process.

1http://www.cs.queensu.ca/∼huang/cisc833/BullyElection.pdf.

6.2. Leader Election Algorithm 143

This subsystem is initialised by starting the console and then starting each member, one by

one. Each member registers with the console, so that, at the end of the registration phase, the

console has the list of all participants and can send it to every member.

Every time a new member registers, it receives an identifier that corresponds to the current

value of a counter controlled by the console. Hence, the first member to register is identified

as 1, the second as 2, and so on. In this implementation, the value of the identifier inversely

corresponds to the priority of a member to become leader during an election process.

We worked with a system consisting of three members. In this case, the third member to

register with the console - thus, being assigned priority 3 - can only be the leader if the other

two members fail. If all members are alive, the leader should always be the one with priority 1.

The member with priority 2 can be the leader as long as the member with priority 1 is down.

The implementation defines two means of communication between threads. Local communi-

cation (i.e., communication between threads of the same member) is via method invocation,

whereas remote communication is via UDP [Pos80] sockets. The component MessageManager

(MM) is responsible for internal communication of a member and communication between it

and the other members. The MM receives messages sent by other members via UDP sockets,

identifies the component the message is addressed to and forwards it to its destination using

method invocation.

When communication is local, the MM invokes a method setMsg of the receiver. This method

causes the message to be stored in a local variable, which works as a single-slot buffer. The

component execution blocks in a loop (where it regularly checks its buffer) until a message has

been received. In remote communication, the sender immediately resumes its execution after

sending a message, while the receiver blocks until a message arrives.

Protocols

In the chosen subsystem, there are three protocols. The first protocol involves the communi-

cation between the console and the election members. The execution starts with the console

6.2. Leader Election Algorithm 144

sending a start command to every member. Each member, upon reception of this command,

initialises all its internal components. If the console then sends a message to simulate a failure,

the member executes the reversed sequence of actions, sending commands to every component

to stop. At this point, a recovery message causes the member to restart its components, whereas

a command to close terminates the execution.

The second protocol corresponds to the election process. This protocol follows the original

definition of the Bully Algorithm and is executed in four phases:

1. Each member sends a check to every member that has higher priority than it. If it receives

at least one response, it aborts the election process and waits to be notified of the new

leader. On the other hand, if no response is received within a certain period of time

(timeout), it assumes that all other candidates have failed and, therefore, it is the leader

candidate, i.e., the member with the highest priority still alive;

2. The leader candidate then sends an EnterElection message to all other running members

telling them that a new leader election is in progress. All other members stop their

execution and wait for the identification of the new leader to be received. They respond

to confirm they are alive and aware of the new election process;

3. After that, the leader candidate sends a SetCoord message to all other members. This

message contains the candidate’s identifier. The other members receive this message, set

their elected variable (coordinator in this particular implementation) to the identifier

received and send a confirmation;

4. Finally, the leader candidate sends the new state of the system to every member. The

state contains the status of each member, which can be “coord”, if the member is the

leader, “normal”, if the member is not the leader but is alive, or “down”, if the member

has failed. Members update their internal view of the state of the system using the state

received and send a confirmation. From this point on, the leader candidate is officially

the new leader.

6.2. Leader Election Algorithm 145

This protocol can be seen in Figure 6.12. At each point of the protocol, if the leader candidate

does not receive a response from at least one of the members supposedly still alive, a new

election begins. A new election also occurs at any time a failed member recovers. The new

election process is initiated by the recovered member.

Figure 6.12: Election protocol of the Bully Algorithm implementation.

The third protocol is executed after an election. Once the election process is finished, the new

leader starts the coordinator component, which is used to regularly check that all members

are still running normally. If a member does not respond to the check in time, a new election

starts. Each member also has a component that keeps checking on the leader. If the leader

does not respond in time, the member that detected the failure initiates a new election.

6.2.2 Model Generation

The model generation involved three tasks: 1) selecting the test cases; 2) defining how to model

the communication between components of a member and between members; and 3) the model

6.2. Leader Election Algorithm 146

creation. These tasks are further described below.

Test Suite Selection

The selection of the test cases was based on the operations allowed by the interface of the

election console. These operations were start, fail, recover and close. They tell a member to

start executing, simulate failure, simulate recovery and shut down completely, respectively.

Using these operations, a set of test cases was created to collect traces from executions involving

one, two and three members. The selected test cases were the following, where S represents the

command to start, F represents the command to fail, R represents the command to recover, C

represents the command to close and the numbers between brackets define the priorities of the

members executing the operations:

1. S(1), F(1), R(1), C(1)

2. S(1), F(1), R(1), F(1), C(1)

3. S(1,2), F(2), F(1), R(1), R(2), F(1), F(2), R(2), R(1), C(1,2)

4. S(1,2), F(1), F(2), C(1,2)

5. S(1,2,3), F(3), F(2), F(1), R(1), R(2), R(3), F(1), F(2), F(3), R(3), R(2), R(1), C(1,2,3)

6. S(1,2,3), F(2,3), R(2,3), F(1,3), R(1,3), F(1,2), R(1,2), F(1,2,3), C(1,2,3)

Each test case involved the abstract states of each executing member, which comprised its

functional status (alive or down) and its membership status (normal or leader). These test

cases were chosen with the purpose of producing traces where each member appears with

different combinations of values of these two types of status.

Note that when a member was down, it did not matter which was its member status. Therefore,

tests with only one member involved the abstract states {alive,leader} and {down}. Tests with

two members included the same abstract states for the member with priority 1 and the abstract

6.2. Leader Election Algorithm 147

states {alive,normal}, {alive, leader} and {down} for the member with priority 2. As for the

tests with three members, we had the same abstract states mentioned before for the members

with priorities 1 and 2. The member with priority 3 had the same abstract states as those of

the member with priority 2.

Modelling Communication

We modelled communications between threads as shared actions, regardless of their type (local

or remote). Because it is important to specify the type, origin and destination of a message, we

could not just synchronise on method names. The method name would tell us only the operation

executed. The rest of the information is sent as parameters and our automatic instrumentation

process does not collect information from parameters.

For this reason, we created user-defined actions to represent communication operations and

included the necessary parameters in the names of the actions. The format of an action repre-

senting a communication was defined as

〈Op〉〈Msg〉[〈orig〉][〈dest〉]

where Op is the operation executed (send or receive), Msg is the type of the message, orig

is the priority of the sender and dest is the priority of the receiver. Therefore, an action

sendAreYouUp[2][1] corresponded to a message AreYouUp being sent from the member with

priority 2 to the one with priority 1. It matched action receiveAreYouUp[2][1] from the

receiver2. Relabelling operations [MK06] were used to synchronise “send” actions with their

corresponding “receive” actions.

Following our definitions of active and passive processes (Chapter 3), we identified that this

implementation contains elements which are both active and passive (see source code in Ap-

pendix C). Each component of the election member runs an internal thread that checks received

messages and executes the necessary operations. In addition, each one of them has methods

2Note that, when the graphical representation is generated in the LTSA tool, the square brackets are replaced
by dots, so that sendAreYouUp[2][1] becomes sendAreYouUp.2.1.

6.2. Leader Election Algorithm 148

that can be called by other components, characterising a passive entity. We, therefore, model-

led each component as the composition of two processes: one that models the internal thread

(active behaviour) of the component and another that represents the access to its methods

(passive behaviour).

We generated models of the active behaviour automatically and manually created the models of

the passive behaviour. We decided to concentrate on the active behaviour because it represents

the more interesting part of the behaviour of the components. Moreover, the passive behaviour

is quite simple, being restricted to receiving external method calls and changing the value of

internal attributes.

The model of the passive behaviour defined actions which synchronised “send” action of exter-

nal components with “receive” actions of the local MM, representing that the local component

received a message and stored it in the local variable (buffer). The collection of a message from

the buffer was modelled as a synchronisation between the component and its local variable.

Some components included methods used by other components to tell them to stop (method

close) or check whether there was any message in the single-slot buffer waiting to be col-

lected (method msgConsumed). In this case, the synchronisation occurred directly between the

component calling the method and the component whose method was being called.

Model Creation and Modification

Although the implementation defined all components as inner classes of a main class (see

Appendix C), we created separate models for each one of them. This allowed us to look at each

individual model and reason about the behaviours it described. Furthermore, with separate

models it was possible to apply different refinements to each model, achieving models with

different levels of abstraction when necessary.

Two values were important when creating the models: the priority of the member being model-

led and the number of members involved in the execution. The priority of the member defined

its specific behaviour and the messages it could send and receive. The number of members

6.2. Leader Election Algorithm 149

was also important to restrict which members other members could send messages to and re-

ceive messages from. The priorities of members were obtained from the value of the attribute

priority, whereas a user-defined attribute members was created to provide the information

about the number of members. These two values were used in the system state of all models.

The models created with these two values as system state showed that, from the initial state,

multiple paths were possible to be taken. Each path represented a combination of the priority

of the member and the number of members, both ranging from 1 to 3. This characterised the

same problem found in the Dining Philosophers example, in Appendix B, where the model

shows that there are different behaviours for philosophers with odd identifiers and those with

even identifiers but either of them can be taken at the beginning.

To make it clear which behaviour a certain path describes, we manually modified the models

by creating parameters for their FSP process definitions. Each process definition received the

priority of the member and the number of members as parameters. Guards where used to

define path restrictions according to the values received. The part of the FSP description of

the Election Thread containing the guards can be seen in Figure 6.13.

deterministic ElectThread (P=1,N=1) = Q0,

Q0 = (when (P==1 && N==1) null -> Q1

|when (P==1 && N==2) null -> Q13

|when (P==2 && N==2) null -> Q48

|when (P==1 && N==3) null -> Q77

|when (P==2 && N==3) null -> Q112

|when (P==3 && N==3) null -> Q155),

...

Figure 6.13: Example of use of guards in the FSP description.

Parameter P is the priority of the member and parameter N is the number of members. There-

fore, we could create different instances of a process using different combinations of values for

these parameters. Figure 6.14 shows the model of the Election Thread for a member with

priority 2 and number of members equals to 2.

6.2. Leader Election Algorithm 150

startElection noCandidateUp

sendAreYouUp.2.1 statusSet

noCandidateUp

sendAreYouUp.2.1

candidateIsUp.1.2

coordStatus

stopElection

0 1 2 3 4 5

Figure 6.14: LTS model of the Election Thread for priority 2 and two members.

Another modification that proved to be necessary was replacing transitions leading to the END

state with transitions leading back to the initial state. This change was due to the dynamic

creation of threads involved in the system. Connecting the final state to the initial state

represented that a thread could finish and then start again, simulating that a new thread had

been created.

The timeouts of the system were not modelled. Rather, user-defined actions were created

to represent the situation where a timeout occurred. The possibility of a normal execution

or a timeout was represented by alternative paths from the same state (e.g., state 3 in the

model in Figure 6.14, where candidateIsUp.1.2 represents the reception of a response and

noCandidateUp represents the timeout).

6.2.3 Property Checking

The essential property of the algorithm is a safety property that should guarantee that there

can only be one leader at all times. Therefore, the property is violated if two members claim

to be the leader at the same time. The FSP specification of this property is presented in

Figure 6.15.

6.2. Leader Election Algorithm 151

property OneLeader (N=3) = NO_LEADER,

NO_LEADER = ({m[i:1..N].monitor.normalStatus,

m[i:1..N].memberFails} -> NO_LEADER

|m[i:1..N].election.coordStatus -> LEADER[i]),

LEADER[i:1..N] = ({m[i].monitor.normalStatus,

m[i].memberFails} -> NO_LEADER

|when (i>1 && i==N)

{m[j:1..N-1].monitor.normalStatus,

m[j:1..N-1].memberFails} -> LEADER[i]

|when (i>1 && i<N)

{m[j:1..i-1].monitor.normalStatus,

m[j:1..i-1].memberFails} -> LEADER[i]

|when (i>=1 && i<N)

{m[j:i+1..N].monitor.normalStatus,

m[j:i+1..N].memberFails} -> LEADER[i]).

Figure 6.15: FSP specification of property OneLeader.

The action named memberFails represents that a member received a command to fail. Ac-

tion normalStatus represents that the member status has been set to “normal”, whereas

coordStatus indicates that the member has been elected leader (coordinator). The names

prefixing the actions correspond to the threads that executed them.

To check the property, the models of all components of each member were composed. Therefore,

there was a composite model representing the complete behaviour of each member. However,

when trying to compose two or more members, the resulting model would become too large

and the LTSA tool would run out of memory. The main factor for that seemed to be the great

number of alternative paths in each model, in particular the model of the MM.

Even though the composite model could not be generated, it was still possible to check the

property, as the safety check of the LTSA tool may not need to generate the whole composition

to detect violations. Applying the safety check to the composition of the composite models of

two members and the FSP automaton of the property, the tool detected a violation. The error

trace reported was the one presented in Figure 6.16. Actions prefixed with m.1 belong to the

member with priority 1 and actions prefixed with m.2 belong to the member with priority 2.

The line numbers have been added to help during the discussion.

6.2. Leader Election Algorithm 152

Trace to property violation in OneLeader(2):

1 m.1.memberStarts

2 m.1.startMonitor

3 m.1.startMM

4 m.1.exp.startElection

5 m.1.election.noCandidateUp

6 m.1.enterElection.1.2

7 m.1.election.timeout.2

8 m.1.election.statusSet

9 m.1.election.coordStatus

10 m.2.memberStarts

11 m.2.startMonitor

12 m.2.startMM

13 m.2.exp.startElection

14 m.2.election.noCandidateUp

15 m.2.election.statusSet

16 m.2.election.coordStatus

Figure 6.16: Error trace for property OneLeader.

This error trace showed that the member with priority 1 (m1) might start earlier than the

member with priority 2 (m2) and proceed to the election process (lines 1-4). Because it was

the candidate with highest priority, m1 ignored any other candidate (line 5) and tried to send a

message to m2 to let it know that an election was in progress (line 6). However, m2 was taking

too long to start and a timeout occurred (line 7). At this point, m1 assumed it was the only

one alive and, therefore, went on to change its status to “coord” (lines 8 and 9).

When m2 started (line 10), it also did all the necessary initialisations and began a new election

process (line 13). Due to a possible delay in the communication, m2 assumed it was the only

member alive (line 14) and claimed to be the current leader (lines 15 and 16). Therefore, there

were two leaders at the same time, thus violating the property.

Two comments need to be made on the error trace found. The first comment regards the

problem it revealed: if communication between members is too slow, the system might reach a

state where there is more than one leader. To check that this is indeed true, we modified the code

so that delays were included before each communication between members. It demonstrated

that small delays in communication did not affect the correctness of the algorithm execution.

6.2. Leader Election Algorithm 153

Nevertheless, from a certain value of delay, the system would fail to elect just one leader, having

two members claiming to have been elected. Therefore, though we could not produce the entire

composition of models and property, we could still find a real error.

The second comment on the error trace is that, even though it prompted us to check a problem

that was proved to exist, the trace itself was infeasible. Looking at the code of the election

thread (class ElectThread, in lines 505-685, in Appendix C), it is possible to identify that,

when the thread starts, it will always check all members that have higher priority (i.e., members

with priority values smaller than its own) by sending them an AreYouUp message (line 522).

Therefore, there should be an action m.2.sendAreYouUp.2.1 in the error trace between lines

13 and 14 to represent the sending of message AreYouUp from m2 to m1.

The model of the Election Thread, presented in Figure 6.14, shows that this error trace is

possible from state 1. Note that, if the model takes the other path, it does include the check

and then allows the trace where the candidate failed to respond in time or the trace where an

answer was received (state 3), which is the expected behaviour of the component.

To understand the origin of the problem, one needs to remember how our approach works.

When annotating a repetition statement, we put an annotation as the first statement of the

loop and another one as the last. This way, every repetition of the loop leads us back to the

same point: the beginning of the loop and our initial annotation marking a context. Because

none of the available attributes (nor possible user-defined attributes) was modified at each new

iteration of the loop, the LTSE tool interpreted all iterations as starting in the same context

(the beginning of the loop), executing some actions and coming back to the initial point.

That is why there is a self-loop in state 3 in the election model (Figure 6.14). It is the situation

where the check message was sent but no response was received. Because the message was sent

to the first member on the list and there were more members to check, the LTSE created a

transition from the previous context (the beginning of the loop) to the next context, which was

the same.

The incorrect path was created in the very same way. The loop began, the member sent a

6.2. Leader Election Algorithm 154

message to a higher-priority member (priority 1) and did not receive a response. Then, it

ignored itself and exited the loop to execute action noCandidateUp, since no candidate with

higher priority replied to the check. Therefore, the last sequence the LTSE tool identified was

that the context marking the beginning of the loop was found, then no action was taken inside

the loop (member ignored itself) and then the execution went on to action noCandidateUp.

Hence, the trace shown in the violation - in which the member seems not to send a check before

assuming no candidate is up - was produced because the context originating the transition

where the check happened and the one originating the one where the member ignored itself

were understood to be the same.

As commented before, no refinement could be found to eliminate the invalid path. However,

an experiment showed that the behaviour could be removed from the model if the value of the

loop counter were used as an attribute. Note that we could not use local variables as attributes

to solve the problem. Attributes are global variables and, thus, their values are accessible

throughout the execution. Local variables, on the other hand, have valid values only in part of

the execution and cannot be added to annotations, which are placed all over the program.

6.2.4 Evaluation

This case study was a great challenge to our approach. Characteristics such as distributed

components and communication, dynamic creation of threads, great number of concurrent

threads and components where two threads can execute at the same time were not involved in

any of the previous systems we applied our approach to.

As expected, distributed components are supported by our technique. Components of the same

type, executing at different locations, produce separate log files. These files can then be put

together to represent different traces of the same type of component, thereby allowing us to

generate a generic model based on the particular behaviour of each instance of the component.

Communication between remote components has to be abstracted using user-defined actions, so

that the type of the message, the sender and the receiver can be identified. If such information

6.2. Leader Election Algorithm 155

is not relevant (for example, in a system with only two components that exchange just one

type of message or where the essential information is that a message has been received), then

method names could be used.

The dynamic creation of threads was an important aspect in the system. The Election Thread,

for instance, could itself create a new election thread. During our tests, this situation did not

happen, probably due to the incompleteness of our test suite. However, had it happened, the

automatic generation of the model would not have inferred that there was a creation of a new

thread. Because we merge the behaviours of all instances to create a model of the component

type, we do not automatically identify distinct instances where one can create the other and

both can execute simultaneously. In [MK06], the authors describe a way of modelling such

behaviour and we intend to investigate the possibility of doing that automatically.

Even though our approach had proved to support the modelling of concurrent behaviour, the de-

velopment of this case study showed some new important issues. The high level of concurrency,

where usually six to seven threads would execute and interact in each member, demonstrated

that our approach indeed produces models that represent abstractions of the behaviour of real

processes. The fact that it was possible to find an existing property violation confirms that the

models are useful for model-checking concurrent systems. Nevertheless, we also encountered

some problems regarding concurrency.

One of such problems was that the value of some control predicates were incorrectly evaluated

in the produced traces. That was not a problem related to the format of the annotations, but

rather a problem related to the fact that their value was dependent on another thread. This

situation appears in the timeout loops, where a thread is controlling the timer while waiting

for a message to be received.

See, for example, lines 528-541 in Appendix C. The timeout loop has an internal test where

the control predicate is (inPacket!=null). The true value of the predicate indicates that a

message has been stored in variable inPacket. Every time the loop executes, the current value

of the predicate is evaluated in the annotation placed right before it in the code and, just

then, evaluated in the actual statement. Since the change of the value of variable inPacket

6.2. Leader Election Algorithm 156

depends on another thread calling method setMsg, the call may happen just after the predicate

evaluation in the annotation terminated. Therefore, the annotation would record the predicate

as being false when it actually was true.

This shows the need for a better strategy of instrumentation to avoid this situation. Although

this disagreement between annotation and actual value of predicate occurred during the de-

velopment of the case study, its impact on the resulting models was not serious. In fact, the

discrepancy could be easily spotted, as obvious invalid sequences appeared in the model, indi-

cating that there was some problem in the traces. Nonetheless, in other situations, this might

not be as easy to detect and have relevant consequences for the model generation and analysis.

Another problem found was related to the components combining active and passive charac-

teristics. The possibility of having an internal thread and an external thread executing at the

same time demonstrated that they should be treated separately. Mixing the behaviours of the

two parts - active and passive - increased the complexity of the model and created some restric-

tions to the behaviour of the components which did not correspond to real restrictions. When

modelling the two parts independently, we could look at each component as if they had two sub-

components: one that actively executed actions in sequence and another that passively awaited

for methods to be called by other components. The impact of the execution of the methods on

the active part was easily modelled as an interaction between the two subcomponents.

The issue of the invalid behaviour in the loop execution provided an insight that some refine-

ments may need to be done only in parts of the code. As commented, the only way of refining

the model to proscribe the invalid behaviour would be using a local variable as an attribute.

However, this is not supported by our definition of system state, where attributes must be

global, and so must user-defined attributes, which can only include expressions over attribute

values. In this specific case, the solution would be a refinement executed only on that particular

area of the code. This would be similar to the approach implemented by BLAST [HJMS03], in

which different regions of the code may have different levels of abstraction.

Apart from the aforementioned problems and the fact that the composite model of two members

could not be entirely generated in the LTSA tool, the approach proved to help the modelling

6.3. Summary and Discussion 157

and analysis of programs. The error trace, though not feasible, indicated a potential violation,

which was confirmed by a practical experiment.

The error found was not actually a problem in the code, but a result of the influence of the

environment on the execution of the system. Although the error may not be fixed by a simple

modification in the code, the awareness of its existence allows users to be prepared for such a

situation and strive to guarantee that the environment provides at least the minimum conditions

to avoid the problem. Thus, the result of the analysis improved the knowledge about the system

and correctly warned users about a possible violation of an essential property.

Note that the models contained some inferred additional behaviours, which were not observed

during the trace generation phase. The addition of behaviours that were not detected using our

test suite extended the coverage of this test suite, thus providing extra information about the

program behaviour. This information is usually important when checking properties, since a

non-observed behaviour might violate the property. If, however, an invalid behaviour is inferred,

then the user may be prompted to further analyse the system and either identify real bugs, as

was the case in this experiment, or detect false negatives. In this last case, a refinement should

be applied to remove the infeasible behaviour.

6.3 Summary and Discussion

In this chapter, we presented the results of two case studies with different levels of complexity

and obtained from two different sources. The major difficulty, however, was to find source codes

to be used in the case studies. Even though many applications can be easily downloaded from

the Internet, it is not usual to find their source code available. This demonstrates that our

requirement of having access to the program source code limits the application of our approach

to situations where either the source code is available, as in our first case study - which is not

usually the case - or where the developer grants us access to it, as was the case in our second

case study.

6.3. Summary and Discussion 158

The case studies confirmed the application and importance of the idea of context when ex-

tracting models. Moreover, the possibility of creating user-defined actions permitted us a high

degree of customisation of the models, so that relevant parts of the code without method calls

could also be represented in the model. User-defined attributes extended this customisation

to the possible expansion of the system state by defining expressions over existing attributes.

This was particularly useful in the leader election application, where we would like to know the

number of members involved in the execution but we only had the attribute which contained

the data structure storing the list of members. An expression over the contents of this structure

(method size) provided us with the necessary information.

Known limitations were also confirmed and will be further studied. Nevertheless, the case stud-

ies unveiled unknown problems as well. Anomalies in the models related to highly concurrent

systems and to the necessity of local refinements revealed the need for further investigation and

possible extension of the approach with mechanisms to minimise or eliminate these problems.

The development of these two case studies and several other examples gave us confidence on

the usefulness of applying our approach for model extraction and subsequent model analysis.

Though we encountered the mentioned limitations, the results of the analysis phase identified

real property violations in both applications. Therefore, despite the existing problems, the

approach proved to achieve its main objective, which is the extraction of models that can be

used for checking properties and reveal potential violations.

Chapter 7

Evaluation and Conclusions

This chapter concludes the presentation of our approach for behaviour model extraction. It

presents an evaluation of the approach according to the faithfulness of the generated models

and their usefulness for model checking.

Our work is compared to other techniques found in the literature with which we share some ideas

and characteristics. Each related work is analysed based on its advantages and disadvantages

in relation to our model extraction process.

This chapter also includes an evaluation of the tool support according to some criteria and a

summary of the contributions of this work. Possible future improvements are discussed.

7.1 Evaluation of Approach

This section presents an evaluation of the proposed approach for model extraction. It discusses

the faithfulness of the generated models, their usefulness for model checking and how the

approach presented compares to existing related work.

159

7.1. Evaluation of Approach 160

7.1.1 Faithfulness of Models

An important aspect of a model extraction process is to know when it can be considered

successful. One way of measuring the success of such a process is to evaluate the faithfulness

of the model it creates in relation to the program this model represents. Following this idea,

the model extraction process is successful if the generated model is a faithful representation of

the program behaviour.

Because completeness is not always possible, due to the size and complexity of current systems,

we consider that our model extraction process is successful if it meets two requirements:

1. The created model includes all the necessary traces for checking a required property; and

2. Given a certain level of abstraction, the model contains only behaviours that are valid

behaviours of the actual system.

Requirement 1 defines that the model does not need to be complete, but should contain the

necessary behaviours to allow the checking of a property of interest. Requirement 2 defines that,

using the information at disposal (i.e., the attributes of the system), it is possible to obtain a

model that does not include any behaviour that the system cannot execute when considering

the property being checked - i.e., the model is correct with respect to the property.

Based on these requirements, the extraction process is considered to be successful if the model

it generates is a correct, though partial, representation of the system behaviour, which can be

used for model checking. According to this, a model is a faithful representation of a program if

it fulfils these requirements.

The development of the case studies presented in the previous chapter and other examples (see

Appendix B for results of some of them) have indicated that the models we generate do fulfil

the requirements when the traces used to build the model provide the necessary coverage with

respect to a property of interest and the appropriate system state is selected. However, there

were cases where the model was not complete or correct enough at first.

7.1. Evaluation of Approach 161

As discussed in Section 4.2, in the cases where the models do not contain all the necessary

traces, violations may not be identified. Though the resulting model might contain more traces

than those observed during the execution, since we can infer some additional behaviours, some

behaviours cannot be inferred if a certain execution path is not exercised. Focusing the creation

of the set of traces on the properties to be verified - perhaps using a test suite - could provide

the necessary coverage to generate the models, thus including the required behaviours.

If an inappropriate set of attributes is selected, the model may contain invalid behaviours,

causing false negatives. Thus far, we do not provide any particular heuristics as to how to

select the appropriate level of abstraction. However, the use of our refinement process has

proven that it can eventually lead to the extraction of a correct model with respect to a given

property if this property is not violated by the implementation.

The creation of user-defined attributes provides the possibility of adding information to the

model that is not directly available from the existing attributes. Furthermore, it represents a

simple means of achieving data abstraction and, thus, a way of reducing the size of the models

whilst still including the necessary information.

The experience gained from developing this work indicates that the correct selection of pa-

rameters (alphabet, traces and attributes) allows the generation of a compact and correct

representation of a system. This representation is an approximation of the program behaviour

and can usually be considered a faithful abstraction according to the established requirements.

It is important to mention that we assume that the systems from which we extract models

are deterministic. This guarantees that every execution using a certain sequence of inputs

will result in the generation of the same trace. In non-deterministic systems, one can obtain

different outcomes for the same sequence of inputs. This means that the same test case would

have to be executed several times in order to produce traces for each possible output. Even

so, guaranteeing coverage of all possibilities could make it impracticable. Moreover, checking

whether an error trace is real or not would also require multiple executions. If none of the

executions reproduce the error trace, it is still not possible to be completely sure that eventually

7.1. Evaluation of Approach 162

that sequence of actions will occur. Therefore, assuming determinism simplifies the process of

improving completeness and correctness.

7.1.2 Usefulness for Model Checking

Our models can serve as inputs to a model-checking tool (LTSA), where temporal properties can

be checked. Besides model checking, the tool allows using the models for behaviour simulation

and model parallel composition.

The characteristic of our approach of creating one separate model for each component (class) of

the system permits a modular checking of properties. If the properties refer to a single compo-

nent (local properties), it is possible to create only the model of this specific component. When

capturing traces, we execute the entire system, even if we are only interested in one component.

This way, all interactions of this component with other components are recorded and, therefore,

the actions included in the model of the component are a result of these interactions.

If multiple instances of a component (i.e., multiple objects of the same class) exist in the system,

our approach permits the gathering of traces from all of them. These traces are then sorted

according to the instance that they refer to, so that each instance behaviour is isolated from

the behaviour of the others. Traces of different instances are treated as different traces from

the same component and, as such, are then combined to form the general observed behaviour

of the component.

Models of single components can be composed to form the behaviour model of the whole

system or part of it. This way, it is possible to focus on the components in isolation, check

the composition of a subset of components or even analyse the complete system. Properties

regarding each subsystem can be checked independently.

The meaning of the actions in the alphabet of the model can be adapted to the type of process

being represented (passive or active). The selection of the alphabet, which can be augmented

using user-defined actions, also permits one to focus on the actions that are meaningful when

7.1. Evaluation of Approach 163

verifying a certain property. This gives our approach a great level of flexibility and customisa-

tion, since the model can be tuned according to the user’s needs.

Note that we normally use test suites to generate traces because they provide control over

the behaviours we would like to observe. Furthermore, new test cases can be created based

on identified violations of properties, thus improving an existing test suite. Nevertheless, the

approach we described here is not necessarily connected to testing. The only requirement is

the generation of traces, which can be done with random inputs to the system or just through

a passive profiling of system actions.

7.1.3 Comparison to Related Work

We now discuss how the approach presented herein compares to some other existing tech-

niques for model extraction. We focus on techniques that are well-known and have somewhat

influenced or inspired our own technique.

For this discussion, we divide the approaches into four categories, based on the type of in-

formation collected to build models. We use the categories presented in Chapter 2 plus an

additional category concerning custom-made model checkers. At the end, we comment on a

general comparison of these techniques to ours.

Based on Static Information

In this category, we consider only techniques using static information, such as control flow

information, to build models. For this reason, all approaches cited in this category differ from

ours in that they do not need to execute the system to collect information. Other differences

and similarities are commented for each related work.

Modex. The Modex approach [HS99, Hol01] was based on the idea of manually annotating

ANSI-C source code for the extraction of high-level verification models. The user annotated

relevant statements of a procedure using a predefined format. A mapping from the ANSI-

7.1. Evaluation of Approach 164

C statements to Promela commands had to be provided by the user to guide the extraction

process. The result of the process was the creation of a Promela description of the system that

was used as input to the Spin model checker [Hol97].

We share the idea of code instrumentation and a mapping from the programming language to

a formal language, which serves as input to a model-checking tool. Using the TXL engine, we

have been able to automatically annotate the source code and still allow the user to include

their own annotations, if necessary.

Unlike the Modex approach, our mapping from the programming language (Java) to the model-

ling language (FSP) is predefined and automatic, which avoids mistakes during the translation.

Moreover, the user usually needs little or no knowledge on either of these languages for most

of the model extraction process. Knowledge on the programming language is only required for

the inclusion of user-defined actions, whereas knowledge on the modelling language is necessary

for the creation of composite models, guards, and other features of FSP.

Bandera. The Bandera toolset [CDH+00] supports a property-driven model construction

from Java code. Properties are specified using predefined patterns [DAC98]. Slicing [DH99] is

used to remove statements and variables that do not matter for checking a given property and

produce a reduced version of the code [HD01]. This reduced version can then be used to create

a Promela model to be checked in Spin, a SMV input model [McM93] or be directly checked

using the Java PathFinder (see Custom-Made Model Checkers category). The domain of values

of variables is restricted using data abstraction.

We also direct our model construction by a property to be verified, but the properties we verify

do not follow any previously created pattern. Furthermore, we do not use a reduced version of

the code to generate models. Rather, we use the complete program to generate the traces and

then apply a selective analysis to them, according to the actions required to be in the model,

and the level of abstraction defined by the set of attributes composing the system state.

The instrumentation of the code to generate traces, without modifying it, guarantees that the

behaviour of the system is not affected. When slicing is applied, it is necessary to verify that

7.1. Evaluation of Approach 165

the reduced version of the code contains all the statements to ensure that no modification of

the control and data flow of the system has occurred.

We apply a simple, manual data abstraction technique. Our technique is essentially based

on the user’s knowledge about the system. In the Bandera tool, however, data abstraction is

automatic and, therefore, does not require user intervention.

SLAM. The SLAM project [BR02] considers sequential C programs to generate abstractions

called boolean programs. Boolean programs [BR00] are programs where the control flow of

the C programs is preserved but all variables are of boolean type. A boolean program is

automatically obtained from a C program using predicate abstraction [GS97] and can be refined

by the addition of new boolean variables representing predicates [BCDR04]. This is done with

the help of a theorem prover and the refinement process follows the Counter-example Guided

Refinement (CEGAR) paradigm [CGJ+03].

Whereas modifying the level of abstraction in our work is simple and involves only the selection

of additional attributes to be monitored, SLAM uses a more complex approach. The automatic

refinement of abstractions permits SLAM to achieve an appropriate level of abstraction without

user intervention.

Statically deciding the feasibility of a path is, however, not always possible, in which case the

SLAM tool returns a ‘don’t know’ result. Though our refinement is manual, feasibility can be

tested by attempting to replay an error trace in the program to check whether the behaviour

is spurious or not. This can also be used to improve an existing test suite.

SLAM supports only sequential programs, as it is directed to the checking of device drivers.

Our approach handles sequential programs as well as concurrent programs, being applicable to

a wider range of types of systems.

BLAST. The Berkeley Lazy Abstraction Software verification Tool (BLAST) [HJMS03] is a

tool written in Objective Caml and aimed to the checking of safety properties of C programs.

The programs are represented as Control Flow Automata (CFA). A CFA is a CFG in which

7.1. Evaluation of Approach 166

edges are labelled with statements executed between two control locations, represented by the

nodes.

The tool implements the lazy abstraction algorithm [HJMS02] in which a reachability tree

is built, representing the reachable abstract states of the program. Each node of this tree

corresponds to a vertex of the CFA and is labelled with a formula. This formula represents

the state of the system at that point, considering a set of predicates. If an error is found, an

analysis of the sequence of states from the root to the error node is carried out to check whether

it is a real counter-example. If it is an actual error, new automatically-identified predicates are

added to refine only the subtree where the spurious error occurred. Similarly to SLAM, they

apply an on-demand automatic refinement.

Instead of predicates, we use attributes to refine a model, although user-defined attributes may

be employed to define predicates over attribute values. Our refinement is applied to the entire

model, as opposed to the BLAST approach, where different areas of the reachability tree may

have different levels of abstraction. Therefore, they reduce the costs of refinement by applying

it only in specific parts of the model.

We do not provide such a selective refinement of a single model, but different precisions can be

achieved for each model to be composed, thus allowing different levels of abstraction (different

set of attributes) for each component of the system. Furthermore, as does SLAM, BLAST relies

on a theorem prover to execute a refinement and, because of that, may encounter problems

scaling to large programs, in particular, if they involve complex data structures [KGC04].

MAGIC. The Modular Analysis of proGrams In C (MAGIC) [CCO+04, CCO+05] tool is a C

model-checker used to check properties of state machines. These state machines are presented

as LKSs, thus combining states and actions (events). The properties are described using a logic

called SE-LTL, which is an extension of LTL to support the use of actions in LTL formulas.

The refinement process follows the CEGAR paradigm [CGJ+03].

As we do, they follow a compositional approach to build models, so that checking and refinement

can be applied component-wise and the complete model can be achieved via parallel composi-

7.1. Evaluation of Approach 167

tion. Though they use an LKS as their final model, we use it as an intermediate representation

before building a final LTS model.

Their refinement process, though applying the same abstract-verify-refine idea as ours, uses

predicate abstraction, whereas we apply a refinement through the expansion of a set of attributes

considered during the model construction. The use of FLTL also allows us to mention actions

in the formulas we check as well as states in very much the same way as they do in SE-LTL.

Model Reduction. In [GSVV04], the authors present an approach for model checking multi-

threaded Java programs. They propose a mapping from Java to CCS [Mil89]. The CCS speci-

fication is then used as input to the CWB-NC model-checking tool [CS96] to check properties

described using selective mu-calculus [BDFSV99].

Rather than performing an abstraction mapping, as we do from the programming language

(Java) to a modelling language (FSP), the authors apply a more syntactical mapping. They

translate Java statements into CCS operations according to some transformation rules. Because

of this translation, they need to use Bandera to obtain a formula-based abstraction of the code.

Though a reduction of the code to obtain a property-based version in our approach could reduce

the costs of the model extraction process, it is not a requirement.

Their translation also requires that they make two assumptions. Firstly, they assume that the

number of objects in the system is fixed and statically defined. This means that attributes

and methods of a class are replicated for each object of this class during the translation. We,

however, do not assume a static number of objects. Since we annotate the class code, any object

created or destroyed dynamically will produce traces. These traces are recorded in the log file

and merged with other traces from other instances when generating the model. Nevertheless,

our approach does not deal well with instances that can create other instances of the same class

(see the Leader Election case study in Chapter 6).

The second assumption is that the domains of values of all variables are finite. They apply a

data abstraction technique to guarantee this. Our approach does not include a data abstraction

technique to control the different values that attributes can be assigned. As previously com-

7.1. Evaluation of Approach 168

mented, we implement a simple technique of data abstraction, which relies on the user creating

expressions over the values of attributes. Though it does not limit the number of different

values an attribute can be assigned, it allows the user to define which information about the

attribute is relevant. For example, it might be more relevant knowing whether a document is

open or not in an editor than knowing the name of the document.

FLAVERS. The FLow Analysis for VERification of Systems (FLAVERS) [TAC04, CCO02]

employs data flow analysis techniques to check behavioural properties of Ada programs. These

properties must be specified in terms of sequences of events, so that it can be translated into

a finite-state automaton. The tool automatically extracts a Trace Flow Graph (TFG) from

the source code and applies an algorithm called state propagation to associate states of the

property with states of the TFG. The checking of the property corresponds to identifying the

set of states of the property associated with the final state of the TFG. If only accepting states

are in this set, then the property is said to hold. Otherwise, a counter-example is provided.

An idea that our approach shares with FLAVERS is the incremental addition of information

to eliminate false negatives. Whereas they add constraints to prevent some paths from being

taken, we add attributes that split states into a set of distinguishable states. In both approaches,

however, this increment of precision is not automatic and requires user intervention.

An important difference between our technique and FLAVERS is that they require the model-

ling of the constraints meant to eliminate spurious errors, in the form of finite-state automata.

Hence, the user needs to know the modelling approach and how to create a model that will

add the expected constraint to the program model. The addition of attributes is simpler and

only requires the user to select one or more attributes from a finite set of attributes the system

possesses or define expressions over them.

Based on Dynamic Information

In this category we consider techniques using dynamic information, such as samples of execution

(traces), to build models. For this reason, all approaches cited in this category differ from ours

7.1. Evaluation of Approach 169

in that they do not require access to the source code. Nevertheless, they do not take into

account the influence of the program control flow to the generation of actions recorded in the

traces. Other differences and similarities are commented for each related work.

Grammar Inference. Cook and Wolf’s work [CW98] proposed the use of grammar inference

for process discovery. They presented three techniques, namely RNet, KTail and Markov, that

could be used to analyse a trace containing a sequence of events (method calls) produced by a

system. Treating the trace as a string, they applied the techniques to infer an FSM from it.

In all techniques, the inference process was based only on the observed sample, making the

resulting model totally dependent on the trace produced. For instance, the Markov technique

used statistical information to identify common subsequences of actions. Subsequences of two

or three events appearing in the trace with a frequency under a certain threshold were discarded

and, thus, not included in the model. This work was then extended by Mariani’s [Mar05] to

allow the merge of multiple traces, also using a statistics-based technique. Common subse-

quences of events in two or more traces are assumed to represent the same sequence of actions

and, therefore, are merged when the model is generated.

Although the models produced with our approach are also somewhat dependent on the input

traces, the use of the concept of context allows us to infer additional behaviours based on

information collected from the source code. Therefore, we do not need any statistical analysis to

discover sequences that indicate an ordering relation between actions, since we can, accurately,

obtain this information from the program control flow graph. Moreover, our merging procedure

is also based on accurate information and does not introduce invalid behaviours at the selected

level of abstraction, as it is the case with the techniques presented in [CW98].

The KTail algorithm has been augmented with information on values of parameters for each

call of a method [LMP06]. The goal is to improve the accuracy of the merging of models

inferred from different traces. Daikon [ECGN01] has been used to calculate invariants over

the values of parameters and, therefore, allow similar traces to be put together. However, it is

still completely dependent on the observed behaviours and does not offer the level of accuracy

necessary to guarantee that no invalid behaviours are included in the model.

7.1. Evaluation of Approach 170

Specification Mining. Specification mining was the approach presented in [ABL02]. A ma-

chine learning technique was used to obtain a model of protocols followed by applications to

interact with an application program interface (API) or an abstract data type (ADT) imple-

mented in C. A tracer was used to instrument the code in order to record interactions of the

program with the API or ADT. The tracing part involved the creation of wrappers to capture

calls to methods of the API or ADT. The system was then executed to generate the traces.

The traces were refined using a flow dependence annotator. Flow dependencies represent the

connection of attributes of interactions that change the state of an object to interactions that

use the state of this object. It was necessary to have an expert who would determine which

attributes of interactions defined objects and which used objects. Interaction scenarios were

obtained from the annotated traces, identifying sets of interdependent interactions. An au-

tomaton learner generated a Probabilistic Finite-State Automaton (PFSA) that accepted a

superset of all the strings in the training interaction scenarios, which was then converted to a

non-deterministic finite automaton (NFA).

The results of this technique, which could be applied only for single-threaded systems, depended

on the length of the scenarios to be inferred from execution traces, which was limited and pre-

defined by the developer. Moreover, they assumed that frequent behaviours are usually correct

behaviours, whereas rare behaviours indicate faulty executions. Based on this assumption, they

would discard the “uninteresting” behaviours, thus losing information that could be relevant

for finding errors.

Regular Extrapolation. Hagerer and et al. [HHNS02] propose a technique called regular

extrapolation for automatically creating models focusing on certain aspects of a system using

machine learning and finite automata theory. They create an automaton that extrapolates from

observed finite executions to infinite behaviours, according to regular patterns. The patterns

they discover depend on the test suite they use to learn frequent sequences of events and on

experts’ knowledge to establish distinctions between states that could not be achieved using

the learning algorithm. Experts also have to rule out some patterns, when necessary.

They also guide the creation of the model by the definition of properties to be checked, just

7.1. Evaluation of Approach 171

as we do. However, as the authors themselves point out, their models are unsafe, since they

do not build models using any safe information. We, on the other hand, take the control flow

graph of the system as our guide to allow us to “extrapolate” from observed behaviours.

To some extent, their use of experts’ knowledge to provide information to distinguish states

and eliminate patterns is similar to the input we use to provide the necessary refinements to

rule out infeasible paths. In our approach, the user cannot influence the behaviours included

in the model, in the sense that all observed sequences are feasible behaviours and, therefore,

must be incorporated into the model. However, the user can define a set of attributes that is

used to distinguish states and, this way, exclude invalid behaviours.

Based on Static & Dynamic Information

To our best knowledge, the only work to effectively attempt to put static and dynamic informa-

tion together to generate an abstraction of the system is the one described in [NE02]. It presents

a combination of static and dynamic information to recover program specifications in the form

of a set of program invariants and verify the absence of runtime errors. Daikon [ECGN01] dy-

namically detects possible program invariants and annotates the detected invariants in the Java

source code and then the static verifier ESC/Java [LNS00] analyses the annotated program to

check which invariants can be statically verified.

Apart from the benefits of combining these two tools, the combination also put the deficiencies

of both of them together. Daikon can detect only a limited number of likely invariants. Out of

the types of invariants detected by Daikon, ESC/Java can verify just a subset of them. This

restricts the use of such tools for testing some invariants that might be of interest.

We share the same underlying idea of [NE02] of putting static and dynamic information to-

gether. However, their focus is on state properties, such as invariants of attributes of a class,

rather than the dynamic behaviour of a component in terms of its required and provided ser-

vices. Furthermore, our combination actually combines static and dynamic information to build

an abstraction, whereas they use results from an analysis on one type of information to con-

7.1. Evaluation of Approach 172

firm the results from an analysis on the other. The actual combination of static and dynamic

information through context information also permits us to work with a single tool.

Custom-Made Model Checkers

Verisoft [God03] and Java PathFinder (JPF) [VHB+03] present the possibility of controlling the

execution through a custom-made environment to verify feasible behaviours. Therefore, they

allow checking properties without having a proper model. For this purpose, they dynamically

store state information about the system and explore possible paths, recording results.

Because these tools are integrated into the execution environment of the system, they are

theoretically independent of programming language. Moreover, because no model is generated,

they also do not require any specific modelling language. Nevertheless, we believe that having a

model is useful for a range of purposes other than just verifying properties, such as simulations,

animations, performance analysis and model parallel composition to be used, for example, for

compositional reasoning and software evolution.

The scalability of these tools and their use for checking distributed systems is restricted by the

amount of information they have to deal with to keep track of paths already taken and avoid

redundant information. The use of our approach can easily scale to large systems, since all the

storage space it requires corresponds only to the length of the log files of the local components

of the system for which we record traces. The use of abstractions produces compact models,

which take considerably little memory space.

General Comparison

We now present a summary of the comparison to the cited work. For this, six criteria will be

used:

1. Type of information (Info): defines which type of information is used to build a model:

static, dynamic or static and dynamic (SD);

7.1. Evaluation of Approach 173

Approach Info PL ML SC Conc. Ref.

Modex Static C FSM
√ √

-

Bandera Static Java Promela
√ √

-

SLAM Static C Boolean program
√

X Auto

BLAST Static C CFA
√

X Auto

MAGIC Static C LKS
√ √

Auto

Model Reduction Static Java CCS
√ √

-

FLAVERS Static Ada TFG
√ √

Man.

Grammar Inference Dynamic - FSM X X -

Specification Mining Dynamic C PFSA X X -

Regular Extrapolation Dynamic - FSM X X Man.

Daikon & ESC/Java SD Java Invariants
√

X -

Verisoft/JPF Dynamic C/Java -
√

X/
√

-

LTSE SD Java LTS
√ √

Man.

Table 7.1: Comparison to related work on model extraction.

2. Programming language (PL): the programming language from which a model is obtained;

3. Modelling language (ML): the language or formalism used to present the resulting model;

4. Source code (SC): defines whether the source code is required;

5. Concurrency (Conc): defines whether the approach provides support for modelling con-

currency;

6. Refinement (Ref): defines the form used to refine initial models: manual or automatic.

Table 7.1 presents the values of these criteria for each work discussed before. The table high-

lights the general idea that approaches based on static information require access to the source

code and are, therefore, dependent on the programming language. Approaches based on dy-

namic information do not require the source code and can usually be applied to any program-

ming language. The table also shows that formalisms based on finite-state automata are the

most used, thus giving support to our option for one of these formalisms.

Our approach provides a type of combination of static and dynamic information that is not

allowed by any previous work. The use of contexts ensures that we can cope with multiple

traces without introducing invalid behaviours, given a certain level of abstraction. Unlike most

of the approaches cited here, we are able to deal with concurrency and allow the user to refine

7.1. Evaluation of Approach 174

an initial model when false negatives are identified. Furthermore, our models can be used to

check properties not supported by other techniques, such as FLTL properties.

Our discussion on related work demonstrated that the proposed approach presents some advan-

tages over other techniques, hence, indicating its relevance and contribution to the area. The

comparison to other techniques also showed that our approach can learn more from related

work, in particular towards providing automatic refinement of initial abstractions.

7.1.4 Main Applications

The proposed approach has, as its main goal, the generation of a model to be used for checking

temporal properties. Therefore, the resulting models are applicable for model checking in the

LTSA tool - or any other tool that could accept an FSP specification as input.

Taking advantage of the features of the LTSA tool, models can also be used to analyse and

understand the behaviour of a system. This applies to sequential as well as to concurrent

systems. The application of our approach for the analysis and model checking of concurrent

systems is important, since some errors related to concurrency are not easily detected and

may generate significant consequences to the overall behaviour of the system. Thus, their

identification and correction is of great relevance.

We have observed that our approach is particularly suitable for reactive systems [MP92]. The

reason for that is that these systems provide a behaviour that corresponds to our way of

generating traces, which is using test cases to send stimuli to the system and collecting its

reactions. Therefore, having a system whose behaviour follows exactly this idea of receiving

inputs and reacting to them in some manner, makes it easier to control the behaviours that

will appear in the traces.

The application of the technique for distributed systems was tested during the development

of the case studies discussed in Chapter 6. Because we can collect information locally and

interactions between distributed components can be identified via action synchronisation, com-

ponents, wherever they may be, can be annotated and executed locally. Once the models for

7.1. Evaluation of Approach 175

each component have been generated, a global model can be obtained by composing these mo-

dels. However, the need for a representation of location still has to be further investigated,

as it may be relevant in the context of certain distributed systems, where components behave

differently when interacting locally or remotely.

Representation of locations is also important to allow the checking of mobile applications

[FPV98], where components can change their locations dynamically. Hence, keeping track

of their moves is essential to understand their behaviour and identify problems.

7.1.5 Limitations

As any other technique, despite its advantages, our approach has some known limitations.

Though they were mentioned in the previous chapters, we here summarise the most important

limitations we are aware of.

It seems that the approach’s main limitation is that it requires access to the source code of the

components of the system - a limitation that it shares with some related work (e.g., SLAM and

Bandera). This requirement restricts its application to systems where the implementation is

available. Moreover, because it relies on the source code to collect the necessary information, the

information gathering process needs to be adapted for each particular programming language.

The influence of the coverage provided by the set of traces on the resulting models has already

been commented on and is another limitation of the approach. The part of the system behaviour

described in the model is directly related to the collected traces. Hence, models generated

using our approach will allow the checking of properties based on the observed behaviours

and, perhaps, some inferred additional behaviours. Therefore, completeness cannot be usually

guaranteed and one should focus on selecting a set a traces which shows the behaviours that

are relevant for checking properties of interest.

Correctness is guaranteed up to the level of abstraction provided by the set of attributes.

Usually, this level corresponds to that necessary to prove that a certain property holds. Hence,

correctness is assured up to the property being checked. For this reason, the adequate selection

7.1. Evaluation of Approach 176

of attributes can eventually produce a model that is correct with respect to the property.

However, finding this adequate set of attributes may not be simple. Currently, our approach

fails to provide appropriate guidelines on how to choose attributes. All we offer are some ideas

on attributes that are likely to help refine the model and those who should be avoided (see

Chapter 4).

As a consequence of not having a well-defined heuristic to select appropriate attributes to

refine a model, our refinement process is still manual. In spite of the freedom it gives to the

user to try different combinations of sets of attributes, it makes the process too dependent

on the knowledge the user has about the system. As in many cases the person executing the

verification is not the same who implemented the system, the essential knowledge to guide this

process may not be at hand.

The leader election case study (Chapter 6) also demonstrated that, on some occasions, the

refinement of contexts does not rule out infeasible behaviours. We limit the possible refinements

to attributes and expressions over their values. However, certain situations may ask for a

refinement which takes into account the value of local variables as well. This is a feature that

our approach currently does not support.

Using our approach to model systems where it is important to distinguish the behaviours of

different instances does not produce good results. The reason is that we assume that the com-

position of the behaviours of various instances makes the general behaviour of the component

being instantiated. Hence, if there is something in the parameters of instantiation that de-

fine different behaviours for instances of the same component, then the model will not include

this information. This can be overcome by using guards in the FSP generated by the model

extraction process, as we did in the Leader Election case study (see Chapter 6).

Our approach does not support the automatic modelling of timed and dynamic systems. Timed

systems require the modelling of timers, used to define time constraints on the occurrence of

certain actions. Dynamic systems involve components that can be dynamically created by the

system and may terminate before the system execution ends. Thus far, timers are represented

by an action describing the occurrence of a timeout, indicating that a time constraint was not

7.2. Evaluation of Tool Support 177

respected. As for dynamic components, the extracted models need to be manually modified to

describe the dynamic instantiation of components.

7.2 Evaluation of Tool Support

This section presents our evaluation of the tool support provided for our approach. Essentially,

we analyse how easy it is to use the LTSE tool and what can influence its performance and

scalability. We also discuss some known limitations.

7.2.1 Usability

The principal aim of a tool is to make easier the execution of a task that would otherwise be

complex, tedious or time-consuming. Hence, a tool should serve to reduce the complexity of

the task and speed up its completion.

In model extraction, the use of a tool is even more important. Converting a program into

a model that is tractable by a model-checking tool is generally complex enough to be time-

consuming and error-prone. By automating this process, one can gain time and decrease the

possibility of errors. Furthermore, it allows even those who are not experts to apply the

approach to obtain models from their codes.

Based on this, we consider that the LTSE tool is adequate for its purpose of implementing

our approach. Although it does not automate the information gathering and trace generation

phases, it provides an automatic way of generating an FSP description based on a set of

traces from the system, guided by parameters provided by the user (alphabet, system state and

interpretation of actions). This is the most difficult step of the approach and likely to introduce

errors. Thus, the process implemented by the LTSE tool is essential and the combination of

this tool with the LTSA tool provides complete support for the model checking process.

7.2. Evaluation of Tool Support 178

An important characteristic of the LTSE tool is its portability. As it is implemented in Java,

it can run in any machine where a Java Virtual Machine has been installed. This is especially

important if one intends to analyse a distributed system running in a heterogeneous network.

7.2.2 Performance and Scalability

Besides being useful and easy to execute, a tool should ideally not require much processing

power and produce results quickly. The process executed by the LTSE tool demands reasonably

little processing effort, being most of its work related to operations on files and access to data

structures (i.e., the context table and the model structure). At most, the tool operates on two

files simultaneously - one to read from and another to write in - when applying one of the

necessary mappings.

Knowing that most of the processing is connected to operations on files and data structures,

it is clear that the general performance of the tool depends on the size of the files and data

structures it has to handle. Long log files will generate long context files. However, long log

files tend to include redundant sequences of actions. Thus, the resulting FSP description file is

much smaller than it could be according to the size of the original logs.

The size of the data structures is, to a great extent, also dependent on the size of the log

files. The more context the traces in the files include, the more entries the context table will

have and the bigger the model structure will be. Redundant information in the logs can also

mean that the structures will not be as large as they could, in particular the context table.

Nevertheless, the size of the model structure is more easily affected by the length of the logs.

Whereas the context table only grows with the discovery of new contexts, the model structure

grows also when new transitions between contexts are detected. In general, this growth is not

very significant and the size of the structures is perfectly manageable.

The types and ranges of the attributes of a system also influence the performance of the tool

and its memory usage. In order to accelerate the refinement process, we collect the values of

all attributes. This means that, irrespective of which attributes will be actually used, each

7.2. Evaluation of Tool Support 179

entry in the log file registers the values of every attribute available. However, this information

overhead is not carried over to the context files, since they only record context IDs and action

names. The ranges of values of the attributes included in the CT affect the CT size, the size

of the context files and that of the resulting model structure.

Table 7.2 shows some performance data collected from the programs used as examples in this

work, including those presented in Appendix B and the case studies discussed in the previous

chapter. These values were obtained executing the tool in a 2.4 GHz Pentium 4 machine with

512 MB of RAM running Windows XP. Rows containing the same log size represent results

from the same program with and without attributes being considered, respectively (e.g., the

first and the second rows).

The sizes of models and context tables and the processing time are approximate. The model

and the context table sizes correspond to the quantity of memory occupied by these structures

during the model creation. The log size is the sum of the size of all logs used in the model

extraction process.

Log size (KB) CT size (KB) Model size (KB) Time (ms)

8 0.8 0.4 31

8 1.5 0.5 31

60 7.5 1.2 63

60 8.9 1.3 62

257 3.7 0.4 63

1,913 21.2 15 312

96,390 18.9 3.1 14,235

462,445 7.7 1.5 58,593

Table 7.2: LTSE performance data.

The table shows how the size of the logs influences the sizes of the CT and that of the model.

Note that, as commented before, the increase in the log size does not necessarily mean an

increase in the size of the other structures.

Let us take as an example the fifth row of the table. It shows that, though the size of the

log is large if compared to other log sizes in the table, the sizes of the CT and of the model

happen to be smaller than, for example, those shown in the row immediately above, where the

7.2. Evaluation of Tool Support 180

log size is about four times smaller. This indicates that the redundancy of information in the

log described in the fifth row is much smaller than that in the log described in the fourth row.

Logs that generate larger models than logs (e.g., the sixth row compared to the seventh) are a

result of the quantity and type of attributes used to refine the model and the fact that these

refinements can create more contexts and, consequently, more states.

7.2.3 Known Limitations

The LTSE tool has some known limitations. One of such limitations is the absence of a graphical

interface. Although it means that the execution of the tool requires less processing power, since

no graphics processing is required, it would be desirable to have a more friendly interface.

The representation of a method execution as an action whose name matches that of the method

it describes seems a natural choice. However, it hampers the use of some features provided by

programming languages, in particular related to object-oriented programming. The overload

of methods cannot be represented in the model, since a call to any version of a method m will

result in the introduction of an action m in the model, regardless of the parameters and return

type. Hence, polymorphism is not represented either.

Support for inheritance is not provided, as it requires access to the code of the superclasses,

which may not be available, especially if they belong to some third-party library. Moreover,

as mentioned before, the tool does not distinguish between methods that have the same name,

even if they are in different classes. Therefore, possible overridings would not be captured.

In order to handle the end of a log file and guarantee that no information is lost, the tool builds

models under the assumption that the execution of a component always terminates (normally

or abnormally). This means that it introduces either a reference to the predefined END state

(if normal termination) or to a FINAL state (for an abnormal termination). In cases where

the execution does not finish (infinite loop) but is interrupted, the inclusion of a FINAL state

means that the tool could not find a next context to connect the last one to and, therefore, it

has connected the last context to the FINAL state. During the analysis, this transition may

7.3. Summary of Contributions 181

be misleading. Nonetheless, thus far, this seems the best solution for this problem and the

users of the tool need to be aware of this assumption.

7.3 Summary of Contributions

The main contributions of this work are summarised below:

• Definition of contexts : Our approach presents the combination of static and dynamic

information. Though this idea had been advocated before [Ern03] and put into prac-

tice [NE02], we propose the concept of contexts as a way of merging the two types of

information as part of a model extraction process. The use of contexts has proven to

allow the creation of models that accurately represent the behaviour (at a certain level

of abstraction) of the systems they describe and has demonstrated to provide a solid

ground for inferring additional valid behaviours. This approach helps bridge the gap

between programming and modelling languages, which have slowed down a wider use of

model-checking techniques and tools;

• Generated models are useful for property checking : The models created following our

model extraction process can be used for checking temporal properties. The possibility

of generating such models, which can serve as inputs to a model-checking tool, makes the

checking process easier and accessible even to non-experts;

• Definition of a refinement process: Initial models can be further refined through a simple

process of adding attributes to the set of attributes included in contexts. The refinement

of models can eventually lead to models that are correct with respect to a given property;

• Compositional modelling and checking : Our approach allows each component of the sys-

tem to be modelled independently, thereby enabling the individual analysis of components

and the checking of local properties. Through parallel composition, which is supported

by the formalism we have adopted, it is possible to combine the models of each compo-

7.3. Summary of Contributions 182

nent into a single model. Global properties can then be checked on this composed model,

which represents the behaviours allowed by the components when executing in parallel;

• Inference of additional behaviours: Models may include more traces than those observed

during the trace generation. This means that the inference process we apply to create the

models may infer additional behaviours from those found in the set of collected traces,

thus improving the completeness of the model. If a test suite is used to generate the

traces, then these inferred behaviours may increase the coverage provided by the test

cases and reveal real errors which may not have been detected during the testing phase;

• Support for concurrency : It is possible to obtain models of components of concurrent

systems. Interactions between components are represented as synchronisations on action

names. The access to shared resources is modelled as active components that interact

with passive components. The support for modelling concurrency is important to detect

errors that could not be easily detected only based on testing;

• Development of tool support : The creation of the LTSE tool to implement the approach

facilitates its application and reduces the complexity of the model extraction task. More-

over, the tool support allows the use of the technique even by users who have limited

knowledge of either the programming or the modelling language, as the mapping from

one to the other is mostly automatic;

• Models can be adapted to user’s needs: The approach provides enough flexibility for the

user to customise the resulting models according to their needs. The model alphabet

can be extended using user-defined actions, which can mark relevant points in the code

that do not correspond to method calls or method bodies. The meaning of actions in

the model can be selected to represent a method call, method completion or to describe

“method enter” and “method exit” events. The system state can also be expanded by

the creation of user-defined attributes. They allow the user to define expressions, using

the available attributes, in case these attributes are not enough to achieve the necessary

level of refinement. Furthermore, the approach can be easily adapted to imperative

7.4. Future Work 183

programming languages other than Java, thus permitting the extraction of models for

virtually any system written in a language falling into this category.

7.4 Future Work

As future work, we plan to improve the approach and the LTSE tool so as to eliminate current

limitations. One of such limitations is the requirement of needing access to the source code.

Particularly, when dealing with Java programs, we could create an instrumentation scheme to

annotate the bytecode rather than the source code. The availability of the necessary context

information in this language requires further investigation.

We also plan to extend the approach to other imperative languages, such as C and C++. This

will require the creation of specific rules of annotation for these languages. If TXL is used,

it will be necessary to construct a TXL grammar for each new language as well. In fact, we

intend to analyse other alternatives to carry out the instrumentation process so that it could

be more precise and overcome current restrictions and problems.

Another future work concerns the possibility of further automating the model extraction pro-

cess. One step would be identifying and selecting the necessary parameters without user in-

tervention. As we direct our model construction by the property we would like to check, the

property specification could be a source of inference of the necessary information. For in-

stance, we could identify the actions that should be part of the model alphabet according to

the alphabet of the property.

The refinement process is another part of the approach that we envisage as a possible automatic

procedure. Before that is possible, we have to create heuristics to guide the selection of candi-

date attributes. Though we have already identified that attributes used in control predicates

are more likely to produce better results during the refinement, we still need to find a more

formal definition of the influence of these attributes regarding the checking of properties.

7.4. Future Work 184

Automatic data abstraction techniques could be studied as a means of allowing the automatic

refinement of models and reducing their size without loss of relevant information. Though we

provide a simple approach for data abstraction, namely user-defined attributes, the definition

of such expressions requires that the user have a good understanding of the system so that they

can choose the appropriate expressions. An automatic control flow analysis could identify the

necessary abstractions. Nevertheless, the support of a theorem prover might be required, as is

the case in tools supporting this feature, such as SLAM.

We intend to investigate how different coverage criteria influences the resulting models. Even

though we might have complete coverage according to a particular criteria, it seems that it does

not guarantee that the model to be generated will be complete. Finding the most appropriate

coverage criterion (or a combination of multiple criteria) is part of our future work. This

investigation will also enhance our knowledge on how much results of an analysis using our

models can improve and/or complement previous analyses based on testing outcomes.

Another possible path to be followed is to study the application of slicing to eliminate unneces-

sary parts of the code and allow the instrumentation and execution of a reduced version of the

implementation. Using a property to be checked as the criterion to create the slices, we might

be able to achieve completeness with respect to this property.

An important issue to be addressed would be the possibility of using parameters in the models

we generate. In cases where the value of parameters passed to process definitions can alter

their behaviour, this possibility would be essential for obtaining precise results (see the Leader

Election case study in Chapter 6 and the Dining Philosophers example in Appendix B). How

to automatically obtain and how to introduce these parameters in the model are questions to

be considered. Thus far, corrections need to be made by hand and might not be simple.

Investigating the introduction of a refinement based on local variables is yet another possible

future work. It may lead to the definition of local system states, providing a different level of

abstraction from the current global system state. This means that the counter of a for-loop,

for example, could be used to refine the specific context created by this statement so that each

iteration could be distinguished when extracting the model.

7.4. Future Work 185

Finally, we plan to improve the LTSE tool by developing a graphical environment to replace the

current command-line interface. The possibility of integration with the LTSA tool will also be

considered, as well as the combination with other tools that could provide support to mitigate

some limitations of our tool, such as a test case generation tool.

Appendix A

TXL Java Grammar and Annotation

Rules

The Java Grammar used in this work to annotate the code so as to produce the context

information is the one available at http://www.txl.ca/nresources.html, which describes a TXL

grammar of Java 1.1. Using this grammar, a list of new definitions and redefinitions, as allowed

by the TXL language, was applied. These modifications aimed to redefine some statements so

that instrumented versions of these statements would be accepted as part of the grammar when

parsing and annotating the code1.

The list of definitions and redefinitions is presented below. The definitions named as “origi-

nal 〈token〉” are used to mark statements of type 〈token〉 as not parsed yet, whereas definitions

named as “processed 〈token〉” mark statements of type 〈token〉 as already parsed. This pre-

vents the TXL engine from annotating a statement more than once. The redefinitions cause

the inclusion of these new definitions in the grammar.

1For an explanation on the construction of definitions, redefinitions and rules in TXL, refer to the TXL
manual available at http://www.txl.ca/docs/TXL104ProgLang.pdf.

186

187

% Def in es p r i n t ab l e tokens

define pr in tab l e

[s t r i n g l i t]

| [c h a r l i t]

| [number]

| [exp re s s i on]

| [a t t r i b u t e]

end define

% Def in es a l i s t o f p r i n t ab l e tokens

define p r i n t a b l e l i s t

[p r i n t ab l e]

| [p r i n t a b l e l i s t] ’+ [p r i n t a b l e l i s t]

| [empty]

end define

% Define a p r i n t statement ,

% used to annotate c on t ro l

% f low statements

define pr in t s tat ement

’ System ’ . ’ e r r ’ . ’ p r i n t l n

’ ([p r i n t a b l e l i s t] ’) ’ ; [NL]

end define

% Create a user−de f i n ed comment

% to i d e n t i f y events

define user s tat ement

’# ’ ac t i on ’ : [p r i n t a b l e l i s t] ’ ;

end define

% Def in es statements as o r i g i n a l

% (used to r ec og n i s e statements not

% yet parsed)

define o r i g i na l s t a t emen t

[labe l s t a t emen t]

| [empty statement]

| [exp re s s i on s tat ement]

| [i f s t a t emen t]

| [sw i t ch s tat ement]

| [wh i l e s tat ement]

| [do statement]

| [f o r s tat ement]

| [break statement]

| [con t i nue s tat ement]

| [r e tu rn s tat ement]

| [throw statement]

| [synch ron ized statement]

| [t ry s tat ement]

| [b lock] [NL]

| [comment NL]

| [u se r s tat ement]

end define

% Def in es statements as p roce s sed

define proces sed s tat ement

[o r i g i na l s t a t emen t]

| [p r i n t s tat ement]

| [empty]

end define

% Redef ines statements as o r i g i n a l ,

% proces sed or empty

redefine statement

[o r i g i na l s t a t ement]

| [p roce s sed s tat ement]

end redefine

% Def in es method d e c l a r a t i on s as

% o r i g i n a l (used to r e c ogn i s e method

% dec l a r a t i on s not yet parsed)

define o r i g i n a l me th od d e c l a r a t i on

[NL] [r epeat mod i f i e r] [t y p e s p e c i f i e r]

[method declarator] [opt throws]

[method body]

end define

% Def in es method d e c l a r a t i on s

% as p roces sed (i . e . , a l r eady parsed)

define proces sed method dec l arat i on

[o r i g i n a l me th od de c l a r a t i on]

| [empty]

end define

% Redef ines method d e c l a r a t i on s

% as o r i g i n a l , p roce s sed or empty

redefine method declarat ion

[o r i g i n a l me th od de c l a r a t i on]

| [p roce s sed method dec l arat i on]

end redefine

% Def in es method bodies as o r i g i n a l

% (used to r e c ogn i s e method

% bodies not yet parsed)

define or iginal method body

[b lock] [NL] [NL]

| ’ ; [NL] [NL]

end define

% Def in es method bodies as

% proces sed (i . e . , a l r eady parsed)

define processed method body

[or ig inal method body]

| [empty]

end define

% Redef ines method bodies as

% or i g i n a l , p roce s sed or empty

redefine method body

[or ig inal method body]

| [processed method body]

end redefine

% Def in es d e c l a r a t i on s as o r i g i n a l

% (used to r e c ogn i s e d e c l a r a t i on s

% not yet parsed)

define o r i g i n a l d e c l a r a t i o n

[l o c a l v a r i a b l e d e c l a r a t i o n]

| [c l a s s d e c l a r a t i o n]

end define

188

% Def in es d e c l a r a t i o n s as p roce s sed

% (i . e . , a l r eady parsed)

define p r o c e s s ed de c l a r a t i o n

[o r i g i n a l d e c l a r a t i o n]

| [p r i n t s tat ement]

| [empty]

end define

% Redef ines d e c l a r a t i on s

redefine de c l a ra t i on o r s t a t ement

[o r i g i n a l d e c l a r a t i o n]

| [p r o c e s s ed de c l a r a t i o n]

| [statement]

end redefine

% Attr i bu te s

define a t t r i b u t e

[id]

end define

% Def in es user−de f i n ed a t t r i b u t e s

define u s e r a t t r i b u t e

’# ’ a t t r i bu t e ’ : [p r i n t a b l e l i s t] ’=

[exp re s s i on] ’ ; [NL]

end define

% Def in es a t t r i b u t e s as o r i g i n a l

% (used to r ec og n i s e a t t r i b u t e s

% not yet parsed)

define o r i g i n a l a t t r i b u t e

[r epeat mod i f i e r] [t y p e s p e c i f i e r]

[v a r i a b l e d e c l a r a t o r s] ’ ; [NL]

| [u s e r a t t r i b u t e]

end define

% Def in es d e c l a r a t i on s as p roce s sed

% (i . e . , a l r eady parsed)

define pr o c e s s e d a t t r i bu t e

[o r i g i n a l a t t r i b u t e]

| [empty]

end define

% Redef ines a va r i a b l e de c l a r a t i on

% so that an a t t r i b u t e can be

% e i t h e r o r i g i n a l or p roce s sed

redefine v a r i a b l e d e c l a r a t i o n

[o r i g i n a l a t t r i b u t e]

| [p r o c e s s e d a t t r i bu t e]

end redefine

% Def in es r e tu rn statement as o r i g i n a l

define o r i g i n a l r e t u r n

’ r e tu rn [opt expre s s i on] ’ ; [NL]

end define

% Def in es p roce s sed re tu rn statements

define pr o ce s sed re tu rn

[o r i g i n a l r e t u r n]

| [b lock]

| [empty]

end define

% Redef ines r e tu rn statement

redefine r e tu rn s tat ement

[o r i g i n a l r e t u r n]

| [p r oc e s sed re tu rn]

end redefine

The rules applied to annotated the code based on the modified grammar (i.e., the Java grammar

including our modifications) are divided into five groups: action rules, attribute rules, method

rules, selection rules and repetition rules.

Action rules describe the rules to convert a user-defined action command into an action anno-

tation. These rules are presented below.

% Traces user−de f i n ed events

rule t r a c e u s e r a c t i o n

replace [statement]

RS [o r i g i n a l s ta t ement]

deconstruct RS

’# ’ act i on ’ : A [p r i n t a b l e l i s t] ’ ;

% Creates annotat ion

construct ACTION [s t r i n g l i t]

”ACTION:”

construct SEP [s t r i n g l i t]

”#”

construct INI MSG [p r i n t a b l e l i s t]

ACTION ’+ A

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct MSG [p r i n t a b l e l i s t]

INI MSG ’+ THIS MSG

construct FINAL MSG [p r i n t a b l e l i s t]

MSG

construct MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (FINAL MSG) ;

189

% Marks statement as p roce s sed and

% in c l ude s annotat ion

construct NS [p roces sed s tat ement]

’{

MSG CMD

’}

by

NS

end rule

Attribute rules are the rules applied to collect attribute information to be used when annotating

control flow statements. The rules are shown below.

% Co l l e c t s i n format i on about s t a t i c

% a t t r i b u t e s and inc lu de s them in

% the l i s t o f a t t r i b u t e s

rule o b t a i n s t a t i c a t t r i b u t e

replace [f i e l d d e c l a r a t i o n]

RS [o r i g i n a l a t t r i b u t e]

deconstruct RS

’ s t a t i c T [t y p e s p e c i f i e r] N

[id] D [r epeat dimension] ’ ;

construct NAME [a t t r i b u t e]

N

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct STR [s t r i n g l i t]

””

construct ATTR MSG [s t r i n g l i t]

STR [quote NAME]

construct VALUE MSG [p r i n t a b l e l i s t]

NAME

construct NewAttribute [p r i n t a b l e l i s t]

ATTR MSG ’+ ”=” ’+ VALUE MSG ’+ ” ”

export a t t r i b l i s t

a t t r i b l i s t ’+ NewAttribute

construct NS [p r o c e s s ed a t t r i b u t e]

’ s t a t i c T N D ’ ;

by

NS

end rule

% Co l l e c t s i n format i on about s t a t i c

% a t t r i b u t e s with mod i f i e r and

% in c lude s them in the l i s t o f a t t r i b u t e s

rule ob t a i n mod i f i e r s t a t i c a t t r i b u t e

replace [f i e l d d e c l a r a t i o n]

RS [o r i g i n a l a t t r i b u t e]

deconstruct RS

M [mod i f i e r] ’ s t a t i c T [t y p e s p e c i f i e r]

N [id] D [r epeat

dimension] ’ ;

construct NAME [a t t r i b u t e]

N

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct STR [s t r i n g l i t]

””

construct ATTR MSG [s t r i n g l i t]

STR [quote NAME]

construct VALUE MSG [p r i n t a b l e l i s t]

NAME

construct NewAttribute [p r i n t a b l e l i s t]

ATTR MSG ’+ ”=” ’+ VALUE MSG ’+ ” ”

export a t t r i b l i s t

a t t r i b l i s t ’+ NewAttribute

construct NS [p r o c e s s ed a t t r i b u t e]

M ’ s t a t i c T N D ’ ;

by

NS

end rule

% Ignore s con stan t s

rule i gn o r e c on s t an t s

replace [f i e l d d e c l a r a t i o n]

RS [o r i g i n a l a t t r i b u t e]

deconstruct RS

’ s t a t i c ’ f i n a l T [t y p e s p e c i f i e r] N

[id] D [r epeat dimension]

E [e q u a l s v a r i a b l e i n i t i a l i z e r] ’ ;

construct NS [p r o c e s s ed a t t r i b u t e]

’ s t a t i c ’ f i n a l T N D E ’ ;

by

NS

end rule

% Ignore s con stan t s with rever sed order

% of mod i f i e r s

rule i gno r e c o n s t an t s 2

replace [f i e l d d e c l a r a t i o n]

RS [o r i g i n a l a t t r i b u t e]

deconstruct RS

’ f i n a l ’ s t a t i c T [t y p e s p e c i f i e r]

N [id] D [r epeat dimension]

E [e q u a l s v a r i a b l e i n i t i a l i z e r] ’ ;

construct NS [p r o c e s s ed a t t r i b u t e]

’ f i n a l ’ s t a t i c T N D E ’ ;

by

NS

end rule

190

% Co l l e c t s i n format i on about s t a t i c

% a t t r i b u t e s with i n i t i a l i s a t i o n

rule o b t a i n i n i t i a l i s e d s t a t i c a t t r i b u t e

replace [f i e l d d e c l a r a t i o n]

RS [o r i g i n a l a t t r i b u t e]

deconstruct RS

’ s t a t i c T [t y p e s p e c i f i e r] N [id]

D [r epeat dimension]

E [e q u a l s v a r i a b l e i n i t i a l i z e r] ’ ;

construct NAME [a t t r i b u t e]

N

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct STR [s t r i n g l i t]

””

construct ATTR MSG [s t r i n g l i t]

STR [quote NAME]

construct VALUE MSG [p r i n t a b l e l i s t]

NAME

construct NewAttribute [p r i n t a b l e l i s t]

ATTR MSG ’+ ”=” ’+ VALUE MSG ’+ ” ”

export a t t r i b l i s t

a t t r i b l i s t ’+ NewAttribute

construct NS [p r o c e s s ed a t t r i b u t e]

’ s t a t i c T N D E ’ ;

by

NS

end rule

% Co l l e c t s i n format i on about s t a t i c

% a t t r i b u t e s with mod i f i e r

% and with i n i t i a l i s a t i o n

rule o b t a i n i n i t i a l i s e d mo d i f i e r s t a t i c a t t r i b u t e

replace [f i e l d d e c l a r a t i o n]

RS [o r i g i n a l a t t r i b u t e]

deconstruct RS

M [mod i f i e r] ’ s t a t i c T [t y p e s p e c i f i e r] N

[id] D [r epeat dimension]

E [e q u a l s v a r i a b l e i n i t i a l i z e r] ’ ;

construct NAME [a t t r i b u t e]

N

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct STR [s t r i n g l i t]

””

construct ATTR MSG [s t r i n g l i t]

STR [quote NAME]

construct VALUE MSG [p r i n t a b l e l i s t]

NAME

construct NewAttribute [p r i n t a b l e l i s t]

ATTR MSG ’+ ”=” ’+ VALUE MSG ’+ ” ”

export a t t r i b l i s t

a t t r i b l i s t ’+ NewAttribute

construct NS [p r o c e s s ed a t t r i b u t e]

M ’ s t a t i c T N D E ’ ;

by

NS

end rule

% Co l l e c t s i n format i on about non−s t a t i c

% a t t r i b u t e s with mod i f i e r and inc lud e s

% them in the l i s t o f a t t r i b u t e s

rule ob t a i n a t t r i b u t e

replace [f i e l d d e c l a r a t i o n]

RS [o r i g i n a l a t t r i b u t e]

deconstruct RS

M [mod i f i e r] T [t y p e s p e c i f i e r] N [id] D [r epeat

dimension] ’ ;

construct NAME [a t t r i b u t e]

N

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct STR [s t r i n g l i t]

””

construct ATTR MSG [s t r i n g l i t]

STR [quote NAME]

construct VALUE MSG [p r i n t a b l e l i s t]

NAME

construct NewAttribute [p r i n t a b l e l i s t]

ATTR MSG ’+ ”=” ’+ VALUE MSG ’+ ” ”

export a t t r i b l i s t

a t t r i b l i s t ’+ NewAttribute

construct NS [p r o c e s s ed a t t r i b u t e]

M T N D ’ ;

by

NS

end rule

% Co l l e c t s i n format i on about i n i t i a l i s e d

% non−s t a t i c a t t r i b u t e s and in c l ude s them

% in the l i s t o f a t t r i b u t e s

rule o b t a i n i n i t i a l i s e d a t t r i b u t e

replace [f i e l d d e c l a r a t i o n]

RS [o r i g i n a l a t t r i b u t e]

deconstruct RS

M [mod i f i e r] T [t y p e s p e c i f i e r] N [id]

D [r epeat dimension]

E [e q u a l s v a r i a b l e i n i t i a l i z e r] ’ ;

construct NAME [a t t r i b u t e]

N

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct STR [s t r i n g l i t]

””

construct ATTR MSG [s t r i n g l i t]

STR [quote NAME]

construct VALUE MSG [p r i n t a b l e l i s t]

NAME

construct NewAttribute [p r i n t a b l e l i s t]

ATTR MSG ’+ ”=” ’+ VALUE MSG ’+ ” ”

export a t t r i b l i s t

a t t r i b l i s t ’+ NewAttribute

construct NS [p r o c e s s ed a t t r i b u t e]

191

M T N D E ’ ;

by

NS

end rule

% Obtains user−de f i n ed a t t r i b u t e s

rule ob t a i n u s e r a t t r i b u t e

replace [f i e l d d e c l a r a t i o n]

RS [u s e r a t t r i b u t e]

deconstruct RS

’# ’ a t t r i b u t e ’ : N [p r i n t a b l e l i s t] ’=

E [expre s s i on] ’ ;

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct NewAttribute [p r i n t a b l e l i s t]

N ’+ ”=” ’+ ’ (E ’) ’+ ” ”

export a t t r i b l i s t

a t t r i b l i s t ’+ NewAttribute

by

end rule

Method rules apply modifications to the code to instrument method calls and method bodies.

These rules are defined as presented below. Note that the rules only apply to methods containing

a single return statement at the end of the method body.

% Ignore s c a l l s to super

% c l a s s con st ructor

rule i g n o r e s up e r c a l l

replace [statement]

RS [o r i g i n a l s ta t ement]

deconstruct RS

ES [expre s s i on s tat ement]

deconstruct ES

’ super ’ ([l i s t argument] ’) ’ ;

% Marks statement as p roce s sed

construct NS [p roces sed s tat ement]

RS

by

NS

end rule

% Ignore s c a l l s to super c l a s s method

rule i g n o r e s up e r c a l l 2

replace [statement]

RS [o r i g i n a l s ta t ement]

deconstruct RS

ES [expre s s i on s tat ement]

deconstruct ES

’ super ’ . [id] ’ ([l i s t argument] ’) ’ ;

% Marks statement as p roce s sed

construct NS [p roces sed s tat ement]

RS

by

NS

end rule

% Ignore s c a l l s us ing ’ th i s ’

rule i g n o r e t h i s c a l l

replace [statement]

RS [o r i g i n a l s ta t ement]

deconstruct RS

ES [expre s s i on s tat ement]

deconstruct ES

’ t h i s ’ . [id] ’ ([l i s t argument] ’) ’ ;

% Marks statement as p roce s sed

construct NS [p roces sed s tat ement]

RS

by

NS

end rule

% Annotates i n t e r n a l method c a l l

rule t r a c e d i n t me t c a l l

replace [statement]

RS [o r i g i n a l s t a t emen t]

deconstruct RS

ES [expre s s i on s tat ement]

deconstruct ∗ [r e f e r en c e] ES

MET [id] ’ (A [l i s t argument] ’)

% Creates annotat ions

construct STR1 [s t r i n g l i t]

”CALL ENTER:”

construct STR2 [s t r i n g l i t]

”CALL END:”

construct SEP [s t r i n g l i t]

”#”

construct INI MSG [p r i n t a b l e l i s t]

STR1 [quote MET]

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct COMP MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct MSG [p r i n t a b l e l i s t]

192

INI MSG ’+ THIS MSG ’+ COMP MSG

construct INI MSG2 [p r i n t a b l e l i s t]

STR2 [quote MET]

construct MSG2 [p r i n t a b l e l i s t]

INI MSG2 ’+ THIS MSG ’+ COMP MSG

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

% Updates ID in format i on

export counter

counter [+ 1]

construct FINAL MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG ’+ ID MSG

construct FINAL MSG2 [p r i n t a b l e l i s t]

MSG2 ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (FINAL MSG) ;

construct MSG CMD2 [p r i n t s tat ement]

System . e r r . p r i n t l n (FINAL MSG2) ;

% Marks statement as p roce s sed and

% in c l ude s annotat ions

construct NM [proces sed s tat ement]

RS

construct NS [p roces sed s tat ement]

’{

MSG CMD

NM

MSG CMD2

’}

by

NS [t r a c ed i n t me t c a l l]

end rule

% EXTERNAL METHOD CALLS

% Annotates e xt e rna l method c a l l

rule t r a c ed e x t me t c a l l

replace [statement]

RS [o r i g i n a l s ta t ement]

deconstruct RS

ES [expre s s i on s tat ement]

deconstruct ∗ [r e f e r e nc e] ES

COMP [id] ’ . MET [id] ’ (

A [l i s t argument] ’)

% Creates annotat ions

construct STR1 [s t r i n g l i t]

”CALL ENTER:”

construct STR2 [s t r i n g l i t]

”CALL END:”

construct SEP [s t r i n g l i t]

”#”

construct EMPTY STR [s t r i n g l i t]

””

construct COMPNAME [s t r i n g l i t]

EMPTY STR [quote COMP]

where not

COMPNAME [= ” In t eg e r ”]

where not

COMPNAME [= ”System ”]

where not

COMPNAME [= ”Float ”]

where not

COMPNAME [= ”Double ”]

where not

COMPNAME [= ”Character ”]

where not

COMPNAME [= ”Thread ”]

where not

COMPNAME [= ”Math”]

where not

COMPNAME [= ” InetAddress ”]

construct INI MSG [p r i n t a b l e l i s t]

STR1 [quote MET]

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct COMP MSG [p r i n t a b l e l i s t]

SEP ’+ COMP

construct MSG [p r i n t a b l e l i s t]

INI MSG ’+ THIS MSG ’+ COMP MSG

construct INI MSG2 [p r i n t a b l e l i s t]

STR2 [quote MET]

construct MSG2 [p r i n t a b l e l i s t]

INI MSG2 ’+ THIS MSG ’+ COMP MSG

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

% Updates ID in format i on

193

export counter

counter [+ 1]

construct FINAL MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG ’+ ID MSG

construct FINAL MSG2 [p r i n t a b l e l i s t]

MSG2 ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (FINAL MSG) ;

construct MSG CMD2 [p r i n t s tat ement]

System . e r r . p r i n t l n (FINAL MSG2) ;

% Creates annotat ion o f method ac t i on s

construct ACTION [s t r i n g l i t]

”ACTION:”

construct ACT [p r i n t a b l e l i s t]

ACTION [quote MET]

construct MSG ACT [p r i n t a b l e l i s t]

ACT ’+ THIS MSG

construct MSG ACT PRINT [p r i n t s tat ement]

System . e r r . p r i n t l n (MSG ACT) ;

% Marks statement as p roce s sed and

% in c l ude s annotat ions

construct NM [proces sed s tat ement]

RS

construct NS [p roces sed s tat ement]

’{

MSG CMD

MSG ACT PRINT

NM

MSG CMD2

MSG ACT PRINT

’}

by

NS [t r a c ed ex t me t c a l l]

end rule

% Annotates e xt e rna l method c a l l i n s i d e

% a va r i ab l e d e c l a r a t i o n

rule t r a c ed e x t me t c a l l 2

replace [d e c l a ra t i o n o r s t a t ement]

RS [o r i g i n a l d e c l a r a t i o n]

deconstruct RS

LV [l o c a l v a r i a b l e d e c l a r a t i o n]

deconstruct ∗ [r e f e r e nc e] LV

COMP [id] ’ . MET [id] ’ (

A [l i s t argument] ’)

% Creates annotat ions

construct STR1 [s t r i n g l i t]

”CALL ENTER:”

construct STR2 [s t r i n g l i t]

”CALL END:”

construct SEP [s t r i n g l i t]

”#”

construct EMPTY STR [s t r i n g l i t]

””

construct COMPNAME [s t r i n g l i t]

EMPTY STR [quote COMP]

where not

COMPNAME [= ” In t eg e r ”]

where not

COMPNAME [= ”System ”]

where not

COMPNAME [= ”Float ”]

where not

COMPNAME [= ”Double ”]

where not

COMPNAME [= ”Character ”]

where not

COMPNAME [= ”Thread ”]

where not

COMPNAME [= ”Math”]

where not

COMPNAME [= ” InetAddress ”]

construct INI MSG [p r i n t a b l e l i s t]

STR1 [quote MET]

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct COMP MSG [p r i n t a b l e l i s t]

SEP ’+ COMP

construct MSG [p r i n t a b l e l i s t]

INI MSG ’+ THIS MSG ’+ COMP MSG

construct INI MSG2 [p r i n t a b l e l i s t]

STR2 [quote MET]

construct MSG2 [p r i n t a b l e l i s t]

INI MSG2 ’+ THIS MSG ’+ COMP MSG

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

% Updates ID in format i on

export counter

counter [+ 1]

construct FINAL MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG ’+ ID MSG

construct FINAL MSG2 [p r i n t a b l e l i s t]

MSG2 ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (FINAL MSG) ;

194

construct MSG CMD2 [p r i n t s tat ement]

System . e r r . p r i n t l n (FINAL MSG2) ;

% Creates annotat ion o f method ac t i on s

construct ACTION [s t r i n g l i t]

”ACTION:”

construct ACT [p r i n t a b l e l i s t]

ACTION [quote MET]

construct MSG ACT [p r i n t a b l e l i s t]

ACT ’+ THIS MSG

construct MSG ACT PRINT [p r i n t s tat ement]

System . e r r . p r i n t l n (MSG ACT) ;

% Marks statement as p roce s sed and

% in c l ude s annotat ions

construct NM [p ro c e s s ed d e c l a r a t i on]

RS

construct NS [p roces sed s tat ement]

’{

MSG CMD

MSG ACT PRINT

NM

MSG CMD2

MSG ACT PRINT

’}

by

NS

end rule

% Annotates e xt e rna l method c a l l s in

% va r i ab l e ass ignments

rule t ra c ed va r i ab l e a s s i gnmen t ex t

replace [statement]

RS [o r i g i n a l s ta t ement]

deconstruct RS

VAR [id] ’= COMP [id] ’ . MET [id] ’ (

A [l i s t argument] ’) ’ ;

% Creates annotat ions

construct STR1 [s t r i n g l i t]

”CALL ENTER:”

construct STR2 [s t r i n g l i t]

”CALL END:”

construct SEP [s t r i n g l i t]

”#”

construct EMPTY STR [s t r i n g l i t]

””

construct COMPNAME [s t r i n g l i t]

EMPTY STR [quote COMP]

where not

COMPNAME [= ” In te g er ”]

where not

COMPNAME [= ”System ”]

where not

COMPNAME [= ”Float ”]

where not

COMPNAME [= ”Double ”]

where not

COMPNAME [= ”Character ”]

where not

COMPNAME [= ”Thread ”]

where not

COMPNAME [= ”Math”]

where not

COMPNAME [= ” InetAddress ”]

construct INI MSG [p r i n t a b l e l i s t]

STR1 [quote MET]

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct COMP MSG [p r i n t a b l e l i s t]

SEP ’+ COMP

construct MSG [p r i n t a b l e l i s t]

INI MSG ’+ THIS MSG ’+ COMP MSG

construct INI MSG2 [p r i n t a b l e l i s t]

STR2 [quote MET]

construct MSG2 [p r i n t a b l e l i s t]

INI MSG2 ’+ THIS MSG ’+ COMP MSG

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

% Updates ID in format i on

export counter

counter [+ 1]

construct FINAL MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG ’+ ID MSG

construct FINAL MSG2 [p r i n t a b l e l i s t]

MSG2 ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

’ System ’ . ’ e r r ’ . ’ p r i n t l n ’ (

FINAL MSG ’) ’ ;

construct MSG CMD2 [p r i n t s tat ement]

’ System ’ . ’ e r r ’ . ’ p r i n t l n ’ (

FINAL MSG2 ’) ’ ;

% Marks statement as p roce s sed and

% inc lud es annotat ions

construct NM [proces sed s tat ement]

RS

construct NS [p roces sed s tat ement]

’{

195

MSG CMD

NM

MSG CMD2

’}

by

NS

end rule

% TRACE INSIDE METHODS

% Annotates method bodies

rule traced method

replace [method declarat ion]

RS [o r i g i n a l me th od d e c l a r a t i o n]

deconstruct RS

M [repeat mod i f i e r] T [t y p e s p e c i f i e r]

Decl [method declarator]

E [opt throws] Body [method body]

deconstruct Decl

MET [method name] ’ (

P [l i s t formal parameter] ’)

% Avoids annotat ing main method

construct EMPTY STR [s t r i n g l i t]

””

construct MET NAME [s t r i n g l i t]

EMPTY STR [quote MET]

where not

MET NAME [= ”main ”]

export MET

construct TYPE NAME [s t r i n g l i t]

EMPTY STR [quote T]

where

TYPE NAME [= ”void ”]

construct ND [proces sed method dec l arat i on]

RS

by

ND [methodAnnotation]

end rule

% Inc ludes messages i n s i d e method bodies

rule methodAnnotation

replace [method body]

RS [or ig inal method body]

import MET [method name]

% Creates annotat ion

construct STR1 [s t r i n g l i t]

”MET ENTER:”

construct STR2 [s t r i n g l i t]

”MET END:”

construct SEP [s t r i n g l i t]

”#”

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

% Updates ID in format i on

export counter

counter [+ 1]

construct MSG [p r i n t a b l e l i s t]

STR1 [quote MET]

construct MSG2 [p r i n t a b l e l i s t]

MSG ’+ THIS MSG ’+ ATTR MSG ’+ ID MSG

construct ENTER MSG [pr i n t s tat ement]

System . e r r . p r i n t l n (MSG2) ;

construct MSG3 [p r i n t a b l e l i s t]

STR2 [quote MET]

construct MSG4 [p r i n t a b l e l i s t]

MSG3 ’+ THIS MSG ’+ ID MSG

construct EXIT MSG [pr i n t s tat ement]

System . e r r . p r i n t l n (MSG4) ;

% Creates annotat ion o f method ac t i on s

construct ACTION [s t r i n g l i t]

”ACTION:”

construct ACT [p r i n t a b l e l i s t]

ACTION [quote MET]

construct MSG ACT [p r i n t a b l e l i s t]

ACT ’+ THIS MSG

construct MSG ACT PRINT [p r i n t s tat ement]

System . e r r . p r i n t l n (MSG ACT) ;

deconstruct RS

’{ D [repeat de c l a r a t i on o r s ta t emen t] ’}

% Inc ludes annotat ion in method body

construct NewBody [processed method body]

’{

ENTER MSG

MSG ACT PRINT

’{

D

’}

EXIT MSG

MSG ACT PRINT

’}

by

NewBody

end rule

% Annotates methods with re tu rn statement

196

rule t raced method wi th re tu rn

replace [method declarat ion]

RS [o r i g i n a l me th od d e c l a r a t i o n]

deconstruct RS

M [repeat mod i f i e r] T [t y p e s p e c i f i e r]

Decl [method declarator]

E [opt throws] Body [method body]

deconstruct Decl

MET [method name] ’ (

P [l i s t formal parameter] ’)

% Avoids annotat ing main method

construct EMPTY STR [s t r i n g l i t]

””

construct MET NAME [s t r i n g l i t]

EMPTY STR [quote MET]

where not

MET NAME [= ”main ”]

export MET

construct TYPE NAME [s t r i n g l i t]

EMPTY STR [quote T]

where not

TYPE NAME [= ”void ”]

construct ND [proces sed method dec l arat i on]

RS

by

ND [methodAnnotation2] [t r a c ed r e tu rn]

end rule

% Inc ludes messages in method bodies with

% retu rn statement

rule methodAnnotation2

replace [method body]

RS [or ig inal method body]

import MET [method name]

% Creates annotat ion

construct STR1 [s t r i n g l i t]

”MET ENTER:”

construct SEP [s t r i n g l i t]

”#”

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

construct MSG [p r i n t a b l e l i s t]

STR1 [quote MET]

construct MSG2 [p r i n t a b l e l i s t]

MSG ’+ THIS MSG ’+ ATTR MSG ’+ ID MSG

construct ENTER MSG [pr i n t s tat ement]

System . e r r . p r i n t l n (MSG2) ;

% Creates annotat ion o f method ac t i on s

construct ACTION [s t r i n g l i t]

”ACTION:”

construct ACT [p r i n t a b l e l i s t]

ACTION [quote MET]

construct MSG ACT [p r i n t a b l e l i s t]

ACT ’+ THIS MSG

construct MSG ACT PRINT [p r i n t s tat ement]

System . e r r . p r i n t l n (MSG ACT) ;

deconstruct RS

’{ D [repeat de c l a r a t i on o r s ta t emen t] ’}

% Inc ludes annotat ion in method body

construct NewBody [processed method body]

’{

ENTER MSG

MSG ACT PRINT

’{

D

’}

’}

by

NewBody

end rule

% Annotates r e tu rn statement in s i d e a

% method body

rule t ra c ed r e tu rn

replace [r e tu rn s tat ement]

RS [o r i g i n a l r e t u rn]

deconstruct RS

’ r e tu rn RV [expre s s i on] ’ ;

import MET [method name]

construct STR [s t r i n g l i t]

”MET END:”

construct SEP [s t r i n g l i t]

”#”

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

197

SEP ’+ ID

% Updates ID in format i on

export counter

counter [+ 1]

construct MSG [p r i n t a b l e l i s t]

STR [quote MET]

construct MSG2 [p r i n t a b l e l i s t]

MSG ’+ THIS MSG ’+ ID MSG

construct EXIT MSG [pr i n t s tat ement]

System . e r r . p r i n t l n (MSG2) ;

% Creates annotat ion o f method ac t i on s

construct ACTION [s t r i n g l i t]

”ACTION:”

construct ACT [p r i n t a b l e l i s t]

ACTION [quote MET]

construct MSG ACT [p r i n t a b l e l i s t]

ACT ’+ THIS MSG

construct MSG ACT PRINT [p r i n t s tat ement]

System . e r r . p r i n t l n (MSG ACT) ;

construct PR [p ro c es s ed r e t u rn]

RS

construct NR [p ro c es s ed r e t u rn]

’{

EXIT MSG

MSG ACT PRINT

PR

’}

by

NR

end rule

% Annotates the main method

rule traced main method

replace [method declarat ion]

RS [o r i g i n a l me th od d e c l a r a t i o n]

deconstruct RS

M [repeat mod i f i e r] T [t y p e s p e c i f i e r]

Decl [method declarator]

E [opt throws] Body [method body]

deconstruct Decl

MET [method name] ’ (

P [l i s t formal parameter] ’)

% Checks whether i t i s the main method

construct EMPTY STR [s t r i n g l i t]

””

construct MET NAME [s t r i n g l i t]

EMPTY STR [quote MET]

where

MET NAME [= ”main ”]

export MET

construct ND [proces sed method dec l arat i on]

RS

by

ND [methodMainAnnotation]

end rule

% Inc ludes commands i n s i d e main method

rule methodMainAnnotation

replace [method body]

RS [or ig inal method body]

import MET [method name]

% Creates annotat ion

construct STR [s t r i n g l i t]

”END”

construct MSG END PRINT

[processed method body]

{ System . e r r . p r i n t l n (STR) ; }

construct TM

[proces sed method dec l arat i on]

pub l i c void run () MSG END PRINT

construct TD [p r o c e s s ed de c l a r a t i o n]

Thread myShutdownThread =

new Thread () { TM } ;

construct RM [proces sed s tat ement]

Runtime . getRuntime () . addShutdownHook

(myShutdownThread) ;

deconstruct RS

’{ D [repeat de c l a r a t i on o r s ta t emen t] ’}

% Inc ludes annotat ion in method body

construct NewBody [processed method body]

’{

’{

D

’}

TD

RM

’}

by

NewBody

end rule

Selection rules are related to the annotation of selection statements, i.e., if-statements and

switch-statements. The rules are presented below.

198

% Inc ludes t ra ce i n format i on

% in i f commands

rule t r a c e d i f

replace [statement]

RS [o r i g i n a l s ta t ement]

deconstruct RS

’ i f ’ (E [exp re s s i on] ’) S [statement]

C [opt e l s e c l a u s e]

% Creates annotat ions

construct SEL [s t r i n g l i t]

”SEL ENTER:”

construct SEP [s t r i n g l i t]

”#”

construct LPAR [s t r i n g l i t]

”(”

construct RPAR [s t r i n g l i t]

”)”

construct AUX [s t r i n g l i t]

LPAR [quote E] [+ RPAR]

construct STR [p r i n t a b l e l i s t]

SEL ’+ AUX ’+ SEP

construct EXP [expre s s i on]

’ (E ’)

construct INI MSG [p r i n t a b l e l i s t]

STR ’+ EXP

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct MSG [p r i n t a b l e l i s t]

INI MSG ’+ THIS MSG

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

construct PART MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

construct COMP MSG [p r i n t a b l e l i s t]

PART MSG ’+ ID MSG

% Updates ID in format i on

export counter

counter [+ 1]

construct END SEL [s t r i n g l i t]

”SEL END:”

construct STR2 [s t r i n g l i t]

END SEL [+ AUX]

construct END MSG [p r i n t a b l e l i s t]

STR2 ’+ THIS MSG ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (COMP MSG) ;

construct END MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (END MSG) ;

% Marks statement as p roce s sed and

% inc lude s annotat ions

construct NI [p roce s sed s tat ement]

’ i f ’ (E ’) S C

construct NS [p roces sed s tat ement]

’{

MSG CMD

NI

END MSG CMD

’}

by

NS

end rule

% Inc ludes t r ac e i n format i on in switch

% commands

rule t ra c ed sw i t ch

replace [statement]

RS [o r i g i n a l s t a t emen t]

deconstruct RS

’ switch ’ (E [exp re s s i on] ’) ’{

A [repeat sw i t c h a l t e r n a t i v e] ’}

% Exports cond i t i on to be used to annotate

% case and d e f au l t c l a u s e s

export cond [exp re s s i on]

E

import counter [number]

export s i d [number]

counter

% Updates ID in format i on

export counter

counter [+ 1]

% Marks statement as p roce s sed

construct NS [p roces sed s tat ement]

’ swi tch ’ (E ’) ’{ A ’}

construct NT [proces sed s tat ement]

NS

by

NT [d e l e t e b r e a k s] [t r a c ed ca s e]

[t r a c ed d e f au l t]

end rule

% El iminate s o r i g i n a l break commands in

% the switch

rule d e l e t e b r e ak s

replace [statement]

RS [o r i g i n a l s t a t emen t]

deconstruct RS

[break statement]

by

% empty

end rule

199

% Inc ludes t ra ce i n format i on in case c l a u s e s

rule t r a c ed ca s e

replace $ [sw i t c h a l t e r n a t i v e]

RS [sw i t ch a l t e r n a t i v e]

deconstruct RS

’ case C [exp re s s i on] ’ :

D [r epeat de c l a r a t i on o r s ta t emen t]

% Imports cond i t i on o f swi tch command

import cond [exp re s s i on]

% Creates annotat ions

construct SEL [s t r i n g l i t]

”SEL ENTER:”

construct SEP [s t r i n g l i t]

”#”

construct LPAR [s t r i n g l i t]

”(”

construct RPAR [s t r i n g l i t]

”)”

construct EXP MSG [s t r i n g l i t]

[quote cond]

construct AUX [s t r i n g l i t]

LPAR [+ EXP MSG] [+ RPAR]

construct STR [s t r i n g l i t]

SEL [+ AUX] [+ SEP]

construct EXP [expre s s i on]

cond

construct INI MSG [p r i n t a b l e l i s t]

STR ’+ EXP

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct MSG [p r i n t a b l e l i s t]

INI MSG ’+ THIS MSG

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

construct PART MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG

% Inc ludes ID in format i on

import s i d [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote s i d]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

construct COMP MSG [p r i n t a b l e l i s t]

PART MSG ’+ ID MSG

construct END SEL [s t r i n g l i t]

”SEL END:”

construct STR2 [s t r i n g l i t]

END SEL [+ AUX]

construct END MSG [p r i n t a b l e l i s t]

STR2 ’+ THIS MSG ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (COMP MSG) ;

construct END MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (END MSG) ;

% Creates new break statement

construct B [proces sed s tat ement]

’ break ’ ;

% Constructs new case c lau s e with

% annotat ions

construct ND

[repeat de c l a r a t i on o r s t a t ement]

MSG CMD

’{

D

’}

END MSG CMD

B

construct NA [sw i t c h a l t e r n a t i v e]

’ case C ’ : ’{

ND

’}

by

NA

end rule

% Inc ludes t r ac e i n format i on in de f au l t

% c l a u s e s

rule t r a c ed d e f au l t

replace $ [sw i t ch a l t e r n a t i v e]

RS [sw i t c h a l t e r n a t i v e]

deconstruct RS

’ d e f au l t ’ :

D [r epeat de c l a ra t i on o r s t a t ement]

% Imports cond i t i on o f swi tch command

import cond [exp re s s i on]

% Creates annotat ions

construct SEL [s t r i n g l i t]

”SEL ENTER:”

construct SEP [s t r i n g l i t]

”#”

construct LPAR [s t r i n g l i t]

”(”

construct RPAR [s t r i n g l i t]

”)”

construct EXP MSG [s t r i n g l i t]

[quote cond]

construct AUX [s t r i n g l i t]

LPAR [+ EXP MSG] [+ RPAR]

construct STR [s t r i n g l i t]

SEL [+ AUX] [+ SEP]

construct EXP [expre s s i on]

cond

construct INI MSG [p r i n t a b l e l i s t]

STR ’+ EXP

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct MSG [p r i n t a b l e l i s t]

INI MSG ’+ THIS MSG

200

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

construct PART MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

construct COMP MSG [p r i n t a b l e l i s t]

PART MSG ’+ ID MSG

% Updates ID in format i on

export counter

counter [+ 1]

construct END SEL [s t r i n g l i t]

”SEL END:”

construct STR2 [s t r i n g l i t]

END SEL [+ AUX]

construct END MSG [p r i n t a b l e l i s t]

STR2 ’+ THIS MSG ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (COMP MSG) ;

construct END MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (END MSG) ;

export SW EXP MSG [pr i n t s tat ement]

END MSG CMD

% Constructs new d e f au l t c l au se with

% annotat ions

construct ND

[repeat d e c l a r a t i on o r s t a t emen t]

MSG CMD

’{

D

’}

END MSG CMD

construct NA [sw i t ch a l t e r n a t i v e]

’ d e f au l t ’ : ’{

ND

’}

by

NA

end rule

% Annotates s e l e c t i o n statements in

% ternary ass ignments

rule t raced te rnary ass i gnment

replace [statement]

RS [o r i g i n a l s ta t ement]

deconstruct RS

VAR [id] ’= ’ (E [c ond i t i on a l e xp r e s s i o n]

’) C [c o nd i t i o n a l ch o i c e] ’ ;

deconstruct C

’? T [expre s s i on] ’ :

F [c o nd i t i o n a l e x p r e s s i on]

% Creates annotat ions

construct SEL [s t r i n g l i t]

”SEL ENTER:”

construct SEP [s t r i n g l i t]

”#”

construct LPAR [s t r i n g l i t]

”(”

construct RPAR [s t r i n g l i t]

”)”

construct AUX [s t r i n g l i t]

LPAR [quote E] [+ RPAR]

construct STR [p r i n t a b l e l i s t]

SEL ’+ AUX ’+ SEP

construct EXP [expre s s i on]

’ (E ’)

construct INI MSG [p r i n t a b l e l i s t]

STR ’+ EXP

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct MSG [p r i n t a b l e l i s t]

INI MSG ’+ THIS MSG

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

construct PART MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

construct COMP MSG [p r i n t a b l e l i s t]

PART MSG ’+ ID MSG

% Updates ID in format i on

export counter

counter [+ 1]

construct END SEL [s t r i n g l i t]

”SEL END:”

construct STR2 [s t r i n g l i t]

END SEL [+ AUX]

construct END MSG [p r i n t a b l e l i s t]

STR2 ’+ THIS MSG ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

’ System ’ . ’ e r r ’ . ’ p r i n t l n

’ (COMP MSG ’) ’ ;

construct END MSG CMD [pr in t s tat ement]

’ System ’ . ’ e r r ’ . ’ p r i n t l n

201

’ (END MSG ’) ’ ;

% Marks statement as p roce s sed and

% in c l ude s annotat ions

construct NT [proces sed s tat ement]

VAR ’= ’ (E ’) C ’ ;

construct NS [p roces sed s tat ement]

’{

MSG CMD

NT

END MSG CMD

’}

by

NS

end rule

Finally, repetition rules annotate repetition statements, i.e., while-statements, do-statements

and for-statements. These rules as described below.

% Inc ludes t ra ce i n format i on in

% while−statements

rule t r a ced wh i l e

replace [statement]

RS [o r i g i n a l s ta t ement]

deconstruct RS

’ whi l e ’ (E [exp re s s i on] ’)

S [statement]

% Creates annotat ions

construct LOOP [s t r i n g l i t]

”REP ENTER:”

construct SEP [s t r i n g l i t]

”#”

construct LPAR [s t r i n g l i t]

”(”

construct RPAR [s t r i n g l i t]

”)”

construct AUX [s t r i n g l i t]

LPAR [quote E] [+ RPAR]

construct STR [s t r i n g l i t]

LOOP [+ AUX]

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct MSG [p r i n t a b l e l i s t]

STR ’+ THIS MSG

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

construct PART MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

construct COMP MSG [p r i n t a b l e l i s t]

PART MSG ’+ ID MSG

% Updates ID in format i on

export counter

counter [+ 1]

construct END LOOP [s t r i n g l i t]

”REP END:”

construct STR2 [s t r i n g l i t]

END LOOP [+ AUX]

construct END MSG [p r i n t a b l e l i s t]

STR2 ’+ THIS MSG ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (COMP MSG) ;

construct END MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (END MSG) ;

% Marks statement as p roce s sed and

% inc lude s annotat ions

construct NB [proces sed s tat ement]

’{

MSG CMD

S

END MSG CMD

’}

construct NW [proces sed s tat ement]

’ whi l e ’ (E ’) NB

construct NS [p roces sed s tat ement]

’{

NW

’}

by

NS

end rule

% Inc ludes t r ac e i n format i on in do−statements

rule t raced do

replace [statement]

RS [o r i g i n a l s t a t emen t]

deconstruct RS

’do S [statement] ’ whi l e ’ (

E [exp re s s i on] ’) ’ ;

% Creates annotat ions

202

construct LOOP [s t r i n g l i t]

”REP ENTER:”

construct SEP [s t r i n g l i t]

”#”

construct LPAR [s t r i n g l i t]

”(”

construct RPAR [s t r i n g l i t]

”)”

construct AUX [s t r i n g l i t]

LPAR [quote E] [+ RPAR]

construct STR [s t r i n g l i t]

LOOP [+ AUX]

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct MSG [p r i n t a b l e l i s t]

STR ’+ THIS MSG

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

construct PART MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

construct COMP MSG [p r i n t a b l e l i s t]

PART MSG ’+ ID MSG

% Updates ID in format i on

export counter

counter [+ 1]

construct NOT COMP MSG [p r i n t a b l e l i s t]

NOT MSG ’+ ATTR MSG ’+ ID MSG

construct END LOOP [s t r i n g l i t]

”REP END:”

construct STR2 [s t r i n g l i t]

END LOOP [+ AUX]

construct END MSG [p r i n t a b l e l i s t]

STR2 ’+ THIS MSG ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (COMP MSG) ;

construct END MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (END MSG) ;

% Marks statement as p roce s sed and

% in c l ude s annotat ions

construct NB [proces sed s tat ement]

’{

MSG CMD

S

END MSG CMD

’}

construct NO [proces sed s tat ement]

’ do NB ’ whi l e ’ (E ’) ’ ;

construct NS [p roces sed s tat ement]

’{

NO

’}

by

NS

end rule

% Inc ludes t r ac e i n format i on in

% for−statements

rule t r a c e d f o r

replace [statement]

RS [o r i g i n a l s t a t emen t]

deconstruct RS

’ f o r ’ (FI [f o r i n i t] FE [f o r e xp r e s s i o n]

FU [for update] ’) S

[statement]

deconstruct FE

E [expre s s i on] ’ ;

% Creates annotat ions

construct LOOP [s t r i n g l i t]

”REP ENTER:”

construct SEP [s t r i n g l i t]

”#”

construct LPAR [s t r i n g l i t]

”(”

construct RPAR [s t r i n g l i t]

”)”

construct AUX [s t r i n g l i t]

LPAR [quote E] [+ RPAR]

construct STR [s t r i n g l i t]

LOOP [+ AUX]

construct THIS MSG [p r i n t a b l e l i s t]

SEP ’+ th i s

construct MSG [p r i n t a b l e l i s t]

STR ’+ THIS MSG

% Inc ludes i n format i on about va lues

% of a t t r i b u t e s

import a t t r i b l i s t [p r i n t a b l e l i s t]

construct ATTR MSG [p r i n t a b l e l i s t]

SEP ’+ ”{” ’+ a t t r i b l i s t ’+ ”}”

construct PART MSG [p r i n t a b l e l i s t]

MSG ’+ ATTR MSG

% Inc ludes ID in format i on

import counter [number]

construct empty str [s t r i n g l i t]

””

construct ID [s t r i n g l i t]

empty str [quote counter]

construct ID MSG [p r i n t a b l e l i s t]

SEP ’+ ID

construct COMP MSG [p r i n t a b l e l i s t]

PART MSG ’+ ID MSG

% Updates ID in format i on

export counter

203

counter [+ 1]

construct END LOOP [s t r i n g l i t]

”REP END:”

construct STR2 [s t r i n g l i t]

END LOOP [+ AUX]

construct END MSG [p r i n t a b l e l i s t]

STR2 ’+ THIS MSG ’+ ID MSG

construct MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (COMP MSG) ;

construct END MSG CMD [pr in t s tat ement]

System . e r r . p r i n t l n (END MSG) ;

% Marks statement as p roce s sed and

% in c l ude s annotat ions

construct NB [proces sed s tat ement]

’{

MSG CMD

S

END MSG CMD

’}

construct NF [proces sed s tat ement]

’ f o r ’ (FI FE FU ’) NB

construct NS [p roces sed s tat ement]

’{

NF

’}

by

NS

end rule

As in any TXL program, a main function is defined to determine what rules are applied and

in what order. The main function for the rules presented before is shown below.

% Escapes quotes i n s i d e s t r i n g s

#pragma −e sc ”\”

% MAIN FUNCTION

function main

% Li s t o f a t t r i b u t e s used in annotat ions

export a t t r i b l i s t [p r i n t a b l e l i s t]

””

% Counter used to cr eat ed a block ID

export counter [number]

0

replace [program]

P [program]

by P

% Att r i bu te s

[i gno re c ons t an t s]

[i g no r e c on s t an t s 2]

[o b t a i n s t a t i c a t t r i b u t e]

[o b t a i n mo d i f i e r s t a t i c a t t r i b u t e]

[o b t a i n i n i t i a l i s e d s t a t i c a t t r i b u t e]

[o b t a i n i n i t i a l i s e d m o d i f i e r

s t a t i c a t t r i b u t e]

[o b t a i n a t t r i b u t e]

[o b t a i n i n i t i a l i s e d a t t r i b u t e]

[ob t a i n u s e r a t t r i b u t e]

% Method Cal l s

[i g n o r e s u p e r c a l l]

[i g n o r e s u p e r c a l l 2]

[i g n o r e t h i s c a l l]

[t r a c e d i n t me t c a l l]

[t r a c e d ex t me t c a l l]

[t r a c ed ex t me t c a l l 2]

% User−de f i n ed ac t i on s

[t r a c e u s e r a c t i o n]

% Se l e c t i on Statements

[t r a c e d i f]

[t r a c ed sw i t ch]

% Method bodies

[t raced method wi th re tu rn]

[traced method]

[traced main method]

% Repet i t i on Statements

[t ra c ed wh i l e]

[t r aced do]

[t r a c e d f o r]

% Assignment Statements with method c a l l s

[t r a c ed va r i a b l e a s s i gnment ex t]

[t r aced te rnary ass i gnment]

end function

The order of application of each rule has been defined so that the execution of one rule does

not interfere in the execution of the following rules. The execution of this main function causes

204

an original Java source code to be replaced by an instrumented version where statements have

been annotated as defined in the applied rules.

Appendix B

Additional Case Studies

We have validated our approach through a number of case studies involving single- and multi-

threaded systems. Here we present the results from three selected case studies.

B.1 Traffic Lights Control System

This case study focuses on a simple traffic lights control system, whose code is presented in

Figure B.1. The system receives inputs from a controller indicating which lights must be on -

GREEN or RED - and finishes its execution when it receives a signal END. The value of attribute

isGreen is used to indicate the current state of the lights. The change in colour is performed

by method changeColour.

This system should preserve a property that states that the system alternates between red

lights and green lights. This can be expressed using fluents as shown below:

fluent GREEN_ON = <greenLights,redLights> initially 0

fluent RED_ON = <redLights,greenLights> initially 1

assert ONE_GREEN = [](GREEN_ON-> X !greenLights)

assert ONE_RED = [](RED_ON -> X !redLights)

assert CORRECT_LIGHTS = [](ONE_GREEN && ONE_RED)

205

B.1. Traffic Lights Control System 206

public class Tr a f f i cL i g h t s {
private stat ic f ina l int GREEN = 0 ;
private stat ic f ina l int RED = 1 ;
private stat ic f ina l int END = 2 ;
private boolean i sGreen ;

public Tr a f f i cL i g h t s () {
i sGreen = fa l se ;
Con t r o l l e r c = new Cont r o l l e r () ;
int opt = −1;
do {

opt = c . nextS igna l () ;
switch (opt) {

case GREEN:
i f (! i sGreen)

gr eenL ights () ;
break ;

case RED:
i f (i sGreen)

r edL ights () ;
}

} while (opt != END) ;
}

private void gr eenL ights () {
i sGreen = true ;
changeColour (” green ”) ;

}

private void r edL ights () {
i sGreen = fa l se ;
changeColour (” red ”) ;

}

private void changeColour
(Str ing newColour) {
/∗ Changes l i g h t s co lour ∗/
. . .
System . out . p r i n t l n (newColour) ;

}

public stat ic void main (Str ing args [])
{

Tr a f f i cL i g h t s t =new Tr a f f i cL i g h t s () ;
}

}

Figure B.1: Traffic lights control system code.

For this experiment, we used the following parameters:

• Alphabet Σ = {greenLights,redLights,changeColour};

• System state P = ∅

• Set of traces

T1= 〈greenLights changeColour redLights changeColour greenLights

changeColour redLights changeColour〉

Using these parameters, the model shown in Figure B.2 was generated. The model produced by

the LTSE tool was made deterministic in the LTSA tool to create this graphical representation.

{greenLights, redLights}

changeColour

0 1

Figure B.2: LTS model of the traffic lights control system.

B.1. Traffic Lights Control System 207

Checking property CORRECT LIGHTS against this model results in the generation of a violation

reported by the LTSA tool:

Trace to property violation in CORRECT_LIGHTS:

greenLights GREEN_ON

changeColour GREEN_ON

greenLights GREEN_ON

This error trace shows that the model allows the lights to turn to a colour they are already set

to. However, inspecting the code, it is possible to see that such a behaviour is not permitted.

This restriction is controlled by the value of attribute isGreen, which determines the value

of the control predicates that allow the access to the methods that change the lights colour.

Therefore, the value of this attribute should be taken into account when creating the model.

We applied the refinement process using the updated system state P = {isGreen} to build the

model this time. The deterministic graphical representation of the refined model is presented

in Figure B.3.

greenLights changeColour redLights

changeColour

0 1 2 3

Figure B.3: Refined model of the traffic lights control system.

Note that now the model allows only the alternated execution of actions greenLights and

redLights. A new check of the property confirms that it is not violated by the model.

B.2. Cruise Control System 208

B.2 Cruise Control System

An automobile cruise control system is controlled by three buttons: on, off and resume.

Pressing on when the car engine is working causes the system to record the current speed and

enables the system that keeps the car at that speed. The same speed is maintained until the car

is accelerated, the speed is reduced pressing the brake or off is pressed, disabling the control

system. If resume is then pressed, the system is re-enabled and increases or decreases the speed

to set it to the previously recorded speed.

The source code and the models for each component of the system are presented in [MK06]. A

property specification and results of checking it against the composed model are also discussed.

Therefore, this a good example to validate our approach by analysing the results of using our

models in lieu of the manually created models.

We opted for replacing only one of the components of the system, the cruise controller (class

Controller), which is called from the user interface on events on, off, resume, accelerate,

brake, engineOn and engineOff. It reacts to these events by enabling or disabling the control

system and recording the cruise speed.

For this experiment, we used the following parameters:

• Alphabet Σ = {engineOn,engineOff,accelarator, brake,on,off,resume,

enableControl,disableControl,clearSpeed, recordSpeed};

• System state P = {controlState}

• Set of traces

T1= 〈engineOn clearSpeed engineOff engineOn clearSpeed engineOff〉

T2= 〈engineOn clearSpeed accelerator brake accelerator brake accelerator

engineOff〉

T3= 〈engineOn clearSpeed accelerator on recordSpeed enableControl brake

disableControl on recordSpeed enableControl accelerator

B.2. Cruise Control System 209

disableControl brake on recordSpeed enableControl off disableControl

engineOff〉

T4= 〈engineOn clearSpeed accelerator on recordSpeed enableControl

accelerator disableControl resume enableControl brake disableControl

resume enableControl off disableControl accelerator resume

enableControl off disableControl engineOff〉

T5= 〈engineOn clearSpeed on recordSpeed enableControl accelerator

disableControl on recordSpeed enableControl brake disableControl

engineOff engineOn clearSpeed accelerator on recordSpeed

enableControl off disableControl resume enableControl engineOff〉

T6= 〈engineOn clearSpeed accelerator on recordSpeed enableControl off

disableControl accelerator resume enableControl off disableControl

brake on recordSpeed enableControl accelerator disableControl on

recordSpeed enableControl brake disableControl resume enableControl

brake disableControl engineOff〉

T7= 〈engineOn clearSpeed accelerator on recordSpeed enableControl

engineOff engineOn clearSpeed accelerator brake accelerator on

recordSpeed enableControl off disableControl resume enableControl off

disableControl engineOff〉

The test cases used to produce the traces were chosen based on a desired safety property

CRUISESAFETY presented in [MK06], which states that the Controller relinquishes control of

the speed as soon as the brake, the accelerator or the button off is pressed.

The logs generated with these parameters were used in the LTSE tool to create the FSP

description of the Controller. The LTSA tool realised the conversion from the FSP description

into its graphical representation. Figure B.4 shows the model that is the deterministic version

of the model derived from the FSP description. Note that, in the original model, the FINAL

state had been inserted to represent that the system was interrupted. Because this termination

B.2. Cruise Control System 210

was not part of the behaviour of the system, we chose to ignore transitions leading to the

FINAL state. This option did not affect the general behaviour of the model.

engineOn clearSpeed

engineOff

accelerator

brake

on recordSpeed enableControl

engineOff

accelerator

brake

off

disableControl

engineOff

accelerator

brake

on

resume

0 1 2 3 4 5 6 7

Figure B.4: LTS model of the cruise controller.

This model is very similar to the one presented in [MK06] when actions clearSpeed, recordSpeed,

enableControl, disableControl are hidden. The only difference is that we did not produce

traces where the buttons were pressed but the system ignored these events, such as pressing

the button on when the engine was off.

For the model checking process, we composed our model of the Controller with those of the

other components of the system as they were described in [MK06]. Even though there was

the mentioned difference between our model and the one proposed in [MK06], we obtained the

same results. As expected, the property CRUISESAFETY was verified not to be violated when

the components of the system were composed. Nevertheless, a progress check provided by the

LTSA tool showed the problem described in [MK06], involving the cruise control system not

being disabled when the engine was switched off. Hence, when the car engine was turned back

on, the car would accelerate automatically to the last recorded speed. The error trace obtained

with our model in the composition showed exactly the described problem, as can be seen below:

B.3. Dining Philosophers 211

Progress violation for actions:

{accelerator, brake, engineOff, engineOn, off, on, resume}

Trace to terminal set of states:

engineOn

on

tau

engineOff

engineOn

Cycle in terminal set:

speed

setThrottle

zoom

Actions in terminal set:

{setThrottle, speed, zoom}

In this case, the problem was twofold: firstly, the system allowed this dangerous situation to

happen; and secondly, the property specification did not include a check of this possible unde-

sired behaviour. To correct this, we applied the necessary corrections to the implementation,

to prevent the system from remaining on once the engine was turned off, and to the property

specification, to guarantee that this check was now included. These changes resulted in the

creation of a model, which, when composed to the other components, generated no violations

during the verification process. This model is shown in Figure B.5.

B.3 Dining Philosophers

The dining philosophers problem is a widely used example to demonstrate how a deadlock

situation may be difficult to identify. The problem is defined as follows: five philosophers are

seated around a table, sharing a plate of spaghetti. Each philosopher alternates moments of

thinking and moments of eating. In order to eat the spaghetti, a philosopher needs two forks.

B.3. Dining Philosophers 212

engineOn clearSpeed

accelerator

brake

engineOff

on recordSpeed enableControl

accelerator

brake

engineOff

off

disableControl

disableControl

accelerator

brake

engineOff

on

resume

0 1 2 3 4 5 6 7 8

Figure B.5: Fixed model of the cruise controller.

However, only five forks are available for use, each one placed in between two philosophers.

Therefore, each philosopher eats using the fork to his immediate right and the fork to his

immediate left.

For this example, we would like to check the absence of deadlocks. As stated in the definition

above, forks are resources shared by philosophers. Hence, forks are passive entities, whereas

philosophers are active entities.

We used the source codes provided in [MK06] to obtain the context information. The code

of the Philosopher was modified to include some user-defined actions with the purpose of

marking events not represented by method calls, such as the philosopher sitting down to eat

and rising to think. Besides that, we used user-defined actions to identify which fork - right

or left - the actions get and put referred to. Note that this is not possible using just method

calls, as they would only tell us the name of the method called but not the name used in the

program as a reference to the instance being activated. The modified code of the Philosopher

from [MK06] is shown in Figure B.6.

No test cases were selected; rather, we executed the program and monitored the events of

B.3. Dining Philosophers 213

class Phi l osopher extends Thread {
private int i d e n t i t y ;
private PhilCanvas view ;
private Diners c o n t r o l l e r ;
private Fork l e f t ;
private Fork r i gh t ;

Ph i l o sopher (Diners ctr , int id ,
Fork l , Fork r) {

c o n t r o l l e r = c t r ;
view = ct r . d i s p l ay ;
i d e n t i t y = id ;
l e f t = l ;
r i gh t = r ;

}

public void run () {
try {

while (true) {
// t h ink ing
view . s e tPh i l

(i d en t i t y , view .THINKING) ;
s l e ep (c o n t r o l l e r . s leepTime ()) ;
//hungry
view . s e tPh i l

(i d en t i t y , view .HUNGRY) ;
#act i on : ” sitdown ” ;
r i gh t . get () ;
#act i on : ” r i gh t . get ” ;
// got r i g h t c hops t i c k
view . s e tPh i l

(i d en t i t y , view .GOTRIGHT) ;
s l e ep (5 0 0) ;
l e f t . get () ;
#act i on : ” l e f t . get ” ;
// eat ing
#act i on : ” eat ” ;
view . s e tPh i l

(i d en t i t y , view .EATING) ;
s l e ep (c o n t r o l l e r . eatTime ()) ;
r i gh t . put () ;
#act i on : ” r i gh t . put ” ;
l e f t . put () ;
#act i on : ” l e f t . put” ;
#act i on : ” a r i s e ” ;

}
}
catch (Inter ruptedExcept i on e) {}

}
}

Figure B.6: Modified Philosopher code.

interest. Thus, the system was executed and actions performed by each instance of Fork and

each instance of Philosopher were recorded in the logs.

We separated the alphabets of either component (i.e., we had one filter file for either component)

so that the calls to methods get and put by the Philosopher instances were not included

in the Philosopher model. Each trace represented the events produced by one instance of

its respective component (all traces were the same for component Fork). Therefore, in this

experiment we used the parameters presented below:

• Alphabets

ΣFork = {get,put}

ΣPhilosopher = {left.get, left.put,right.get,right.put,sitdown,eat,arise}

• System state P = {taken}

• Set of traces of Fork instances: all traces are equal to this one

T= 〈get put get put get put get put get put get put get put get put get

put get put get put get put get put get put get put get put get〉

B.3. Dining Philosophers 214

• Set of traces of Philosopher instances:

T1= 〈sitdown right.get left.get eat right.put left.put arise sitdown

right.get left.get eat right.put left.put arise sitdown right.get

left.get eat right.put left.put arise sitdown right.get left.get

eat right.put left.put arise sitdown right.get left.get eat

right.put left.put arise sitdown〉

T2= 〈sitdown right.get left.get eat right.put left.put arise sitdown

right.get left.get eat right.put left.put arise sitdown right.get

left.get eat right.put left.put arise sitdown right.get left.get

eat〉

T3= 〈sitdown right.get left.get eat right.put left.put arise sitdown

right.get left.get eat right.put left.put arise sitdown right.get

left.get eat right.put left.put arise sitdown right.get left.get

eat right.put left.put arise sitdown right.get left.get eat

right.put left.put arise sitdown right.get〉

T4= 〈sitdown right.get left.get eat right.put left.put arise sitdown

right.get left.get eat right.put left.put arise sitdown right.get

left.get eat right.put left.put arise sitdown right.get left.get

eat right.put left.put arise〉

T5= 〈sitdown right.get left.get eat right.put left.put arise sitdown

right.get left.get eat right.put left.put arise sitdown right.get

left.get eat right.put left.put arise sitdown right.get left.get

eat right.put left.put arise sitdown right.get left.get eat〉

It is important to mention that no deadlock situation was observed during the collection of

traces. Hence, from the observed executions of instances of Fork and Philosopher, deadlocks

did not occur in the system.

B.3. Dining Philosophers 215

Figure B.7 and Figure B.8 present the models extracted, respectively, for the Fork component

and for the Philosopher component. We made both models deterministic and eliminated

transitions to state FINAL, as they were produced by us abruptly terminating the execution

and did not affect the understanding of the behaviour of the components.

get

put

0 1

Figure B.7: Model of the Fork component.

sitdown right.get left.get eat right.put left.put

arise

0 1 2 3 4 5 6

Figure B.8: Model of the Philosopher component.

In order to represent the existence of multiple instances of components and allow interaction

between forks and philosophers, we used the composed model specification presented below:

||Diners(N=5) = forall [i:0..N-1]

(phil[i]:Phil || {phil[i].left, phil[((i-1)+N)%N].right}::Fork).

The FSP operator :: represents that the philosophers share the forks, so that actions get

and put of Fork instances can synchronise with actions left.get, right.get, left.put and

right.put of Philosopher instances. For a complete description of the FSP operators and

semantics, refer to [MK06].

Using the presented models, composed as described above, we checked the composition for

potential deadlocks. Using the LTSA tool, we obtained the following error trace:

B.3. Dining Philosophers 216

Trace to DEADLOCK:

phil.0.sitdown

phil.0.right.get

phil.1.sitdown

phil.1.right.get

phil.2.sitdown

phil.2.right.get

phil.3.sitdown

phil.3.right.get

phil.4.sitdown

phil.4.right.get

The error trace was the same obtained by the authors using manually created models in [MK06].

It showed that a deadlock situation was possible because all philosophers might simultaneously

get the fork to their immediate right and, after that, none of them would be able to get hold

of the fork to their left, thus resulting in the blocking of the whole program.

As suggested in [MK06], we used the fixed source code presented in Figure B.9 to solve the pro-

blem, where philosophers were divided into two groups depending on their identity being even

or odd. Philosophers with even identities take first the fork to their left, whereas philosophers

with odd identities take first the fork to their right.

To produce the model of the FixedPhilosopher we used the system state P = {even} to try

to separate the behaviour of each group of philosophers. The resulting (deterministic) model

is presented in Figure B.10.

Though the model clearly shows two distinct behaviours, unlike the model described in [MK06],

our automatically generated FSP specification does not include parameterised process defini-

tions. Hence, we do not have instances with two distinct behaviours, but instances that can

exhibit either behaviour. For this reason, the checking of the composition using this new model

still resulted in the detection of a deadlock situation. Not even the use of attribute identity

B.3. Dining Philosophers 217

class FixedPhi losopher extends Thread {
private int i d e n t i t y ;
PhilCanvas view ;
Diners c o n t r o l l e r ;
Fork l e f t ;
Fork r i gh t ;
private boolean even = fa l se ;

F ixedPhi losopher (Diners c on t r o l l e r ,
int i d en t i t y ,
Fork l e f t , Fork r i gh t) {

this . c o n t r o l l e r = c o n t r o l l e r ;
this . view = c o n t r o l l e r . d i s p l ay ;
this . i d e n t i t y = i d en t i t y ;
i f (i d e n t i t y%2 == 0)

even = true ;
else

even = fa l se ;
this . l e f t = l e f t ;
this . r i gh t = r i gh t ;

}

public void run () {
while (true) {

try {
// t h ink ing
view . s e tPh i l

(i d en t i t y , view .THINKING) ;
s l e ep (c o n t r o l l e r . s leepTime ()) ;
//hungry
view . s e tPh i l

(i d en t i t y , view .HUNGRY) ;
#act i on : ” sitdown” ;
// ge t f o r k s
i f (i d e n t i t y%2 == 0) {

l e f t . get () ;
#act i on : ” l e f t . get ” ;

view . s e tPh i l
(i d en t i t y , view .GOTLEFT) ;

}
else {

r i gh t . get () ;
#act i on : ” r i gh t . get ” ;
view . s e tPh i l

(i d en t i t y , view .GOTRIGHT) ;
}
s l e ep (5 0 0) ;
i f (i d e n t i t y%2 == 0) {

r i gh t . get () ;
#act i on : ” r i gh t . get ” ;
view . s e tPh i l

(i d en t i t y , view .GOTRIGHT) ;
}
else {

l e f t . get () ;
#act i on : ” l e f t . get ” ;
view . s e tPh i l

(i d en t i t y , view .GOTLEFT) ;
}
// eat ing
view . s e tPh i l

(i d en t i t y , view .EATING) ;
#act i on : ” eat ” ;
s l e ep (c o n t r o l l e r . eatTime ()) ;
r i gh t . put () ;
#act i on : ” r i gh t . put ” ;
l e f t . put () ;
#act i on : ” l e f t . put” ;
#act i on : ” a r i s e ” ;

}
catch (Inter ruptedExcept i on e) {}

}
}

}

Figure B.9: Fixed Philosopher code.

sitdown

left.get

right.get left.get eat right.put left.put arise sitdown

right.get

right.get eat right.put left.put arise sitdown

left.get

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure B.10: Model of the FixedPhilosopher.

in the system state could make any difference in this case, since it did not help us part the

model into two, depending on the identity of the instance.

In a situation like this, the model has to be modified by hand, which is not always simple and

B.3. Dining Philosophers 218

might require too many changes in the original model. In this particular case, the change would

be simply adding a parameterised choice at the point where the behaviour to be adopted is

selected, so that each instance of philosopher would be defined as even or odd at the beginning

of the process definition.

Appendix C

Bully Algorithm Source Code

Source code of an election member of the Bully Algorithm case study including the necessary

user-defined actions and user-defined attributes.

1 import java . net . ∗ ;

2 import java . i o . ∗ ;

3 import java . u t i l . Vector ;

4

5 /∗ ∗∗

6 This c l a s s i s t he implementation of an experiment conso le t ha t

7 i n i t i a l i z e s a d i s t r i b u t e d e l e c t i o n program and i n t e r a c t s wi th the user

8 to s imula t e f a i l u r e and recovery o f var ious e l e c t i o n member processe s .

9

10 @author Freeman Yufei Huang

11 @date Mar.28 ,2001

12 ∗∗ ∗/

13 public class ElectionMember extends Thread {

14 private InetAddress conso l eHos t ;

15 private int conso l ePor t = 3833;

16 private int contro lPor t = 4833;

17 private int memberPort = 5833;

18 private InetAddress l o ca lHos t ;

19 private int p r i o r i t y ;

20 private DatagramSocket con s o l eC l i en t ;

21 private DatagramSocket memberSocket ;

22 private Buf feredReader r eader=new Buf feredReader (

23 new InputStreamReader (System . in)) ;

24 private stat ic f ina l int COMMANDLEN = 16;

25 private stat ic f ina l int START MSG LEN = 512 ;

26 private stat ic f ina l int TIME OUT = 500 ; // in ms

27 private stat ic f ina l int MODULA = 20;

28 private stat ic f ina l int PRINT INTERVAL = 3000; // in ms

219

220

29 private stat ic f ina l int SLEEP INTERVAL = 5 ; // in ms

30 private Str ing s ta tu s = ”down” ;

31 private Member coord inator = new Member () ;

32 private Vector d e f i n i t i o n ;

33 private Vector members = new Vector () ;

34 private Member ha l ted ;

35 #a t t r i b u t e : ”members”=(members . s i z e ()) ;

36

37 public stat ic void main (Str ing [] a rgs){

38 (new ElectionMember ()) . s t a r t () ;

39 }

40

41 public ElectionMember () {

42 super (”ElectionMember”) ;

43 Str ing consoleName = new Str ing () ;

44 try {

45 Str ing l oca lAddres s =

46 InetAddress . getLocalHost () . getHostAddress () ;

47 System . out . p r i n t (”Host name of the con s o l e [”+loca lAddres s+”] : ”) ;

48 consoleName = reader . readLine () . tr im () ;

49 i f (consoleName . equa l s (””))

50 consoleName = loca lAddres s ;

51 System . out . p r i n t (”Port number o f the con s o l e [3 8 3 3] : ”) ;

52 Str ing portChar=reader . readLine () . tr im () ;

53 i f (! portChar . equa l s (””))

54 conso l ePor t = In t ege r . par s e Int (portChar) ;

55 System . out . p r i n t (” Local port number l i s t e n i n g to the

56 con s o l e [4 8 3 3] : ”) ;

57 portChar=reader . readLine () . tr im () ;

58 i f (! portChar . equa l s (””))

59 contro lPor t = In t ege r . par s e Int (portChar) ;

60 System . out . p r i n t (” Local port number f o r e l e c t i o n [5 8 3 3] : ”) ;

61 portChar=reader . readLine () . tr im () ;

62 i f (! portChar . equa l s (””))

63 memberPort = In t ege r . par s e Int (portChar) ;

64 }

65 catch (Exception except i on) {

66 System . out . p r i n t l n (”\nException : user input e r r o r . \n”) ;

67 System . e x i t (1) ;

68 }

69 try { conso l eHos t = InetAddress . getByName (consoleName) ; }

70 catch (UnknownHostException except i on) {

71 System . out . p r i n t l n (”\nException : host f o r con s o l e does not

72 e x i s t .\n”) ;

73 System . e x i t (1) ;

74 }

75 try {

76 l o ca lHos t = InetAddress . getLocalHost () ;

77 memberSocket = new DatagramSocket (memberPort , l o ca lHos t) ;

221

78 con s o l eC l i en t = new DatagramSocket (contro lPor t , l o ca lHos t) ;

79 System . out . p r i n t l n (”\ nSecr et communication with con s o l e at ”+

80 con s o l eC l i en t . getLocalAddress () . getHostAddress ()+” : ”+

81 con s o l eC l i en t . getLocalPort ()+” . ”) ;

82 System . out . p r i n t l n (”Group coo rd i na t i on and e l e c t i o n at ”+

83 memberSocket . getLocalAddress () . getHostAddress ()+” : ”+

84 memberPort+” . ”) ;

85 }

86 catch (IOException except i on) {

87 System . out . p r i n t l n (”\nException : l o c a l IP or por ts not a v a i l a b l e . \n”) ;

88 System . e x i t (1) ;

89 }

90 catch (Secur i tyExcept i on except i on) {

91 System . out . p r i n t l n (”\nException : s e c u r i t y v i o l a t i o n . \n”) ;

92 System . e x i t (1) ;

93 }

94 }

95

96 public void run () {

97 byte [] outMsg = (” r e g i s t e r ”+memberPort) . getBytes () ;

98 DatagramPacket outPacket = new DatagramPacket (outMsg , outMsg . l ength ,

99 consoleHost , conso l ePor t) ;

100 try { con s o l eC l i en t . send (outPacket) ; } catch (IOException except i on) {}

101 byte [] inMsg = waitForReply () ;

102 i f (! (new Str ing (inMsg)) . s tartsWith (” r e g i s t e r e d ”)) {

103 System . out . p r i n t l n (”\nException : r e g i s t r a t i o n to con s o l e timeout . \n”) ;

104 System . e x i t (1) ;

105 }

106 System . out . p r i n t l n (” Reg i s t r a t i on to con s o l e succeeded .

107 Now wait f o r s t a r t command . \n”) ;

108 inMsg = new byte [START MSG LEN] ;

109 Str ing command = null ;

110 DatagramPacket inPacket = new DatagramPacket (inMsg , inMsg . l ength) ;

111 ByteArrayInputStream fromByte = new ByteArrayInputStream (inMsg) ;

112 ObjectInputStream in = null ;

113 while (command == null | | ! command . equa l s Ignor eCase (” s t a r t ”)) {

114 inPacket . setLength (START MSG LEN) ;

115 try {

116 con s o l eC l i en t . r e c e i v e (inPacket) ;

117 in = new ObjectInputStream (fromByte) ;

118 command = (Str ing) in . readObject () ;

119 members = (Vector) in . readObject () ;

120 }

121 catch (Exception except i on) {

122 System . out . p r i n t l n (”Exception : e r r o r when read ing the s t a r t command . ”) ;

123 continue ;

124 }

125 }

126 Member member ;

222

127 for (int i =0; i<members . s i z e () ; i++) {

128 member = (Member) members . get (i) ;

129 i f (member . equa l s (l o ca lHos t . getHostAddress () , memberPort)) {

130 p r i o r i t y = member . p r i o r i t y ;

131 System . out . p r i n t l n (”−> Pr i o r i t y = ” + p r i o r i t y) ;

132 break ;

133 }

134 }

135 try {

136 in . c l o s e () ;

137 fromByte . c l o s e () ;

138 }

139 catch (IOException except i on) {}

140 System . out . p r i n t l n (” Star t command with member l i s t r e c e i v ed .

141 Now s t a r t experiment . . . ”) ;

142 Experiment experiment = new Experiment () ;

143 #act i on : ” startExper iment ” ;

144 experiment . s t a r t () ;

145 while (! s t a tu s . equa l s Ignor eCase (”normal ”) &&

146 ! s t a tu s . equa l s Ignor eCase (” coord ”)) {

147 try { s l e ep (SLEEP INTERVAL) ; } catch (Exception except i on) {}

148 }

149 #act i on : ” s ta tu sSe t ” ;

150 outPacket = new DatagramPacket (s t a tu s . getBytes () , s t a tu s . l ength () ,

151 consoleHost , conso l ePor t) ;

152 try { con s o l eC l i en t . send (outPacket) ; } catch (IOException except i on) {}

153 boolean c l o s e = fa l se ;

154 while (! c l o s e) {

155 inPacket = new DatagramPacket (new byte [COMMANDLEN] , COMMANDLEN) ;

156 try { con s o l eC l i en t . r e c e i v e (inPacket) ; } catch (IOException except i on) {}

157 command = (new Str ing (inPacket . getData ())) . tr im () ;

158 i f (command . equa l s Ignor eCase (” s l e ep ”)) {

159 i f (! s t a tu s . equa l s Ignor eCase (”down”) && experiment != null) {

160 System . out . p r i n t l n (”Got command to f a i l .

161 s top ing group coo rd i na t i on . . . ”) ;

162 #act i on : ” c loseExper iment ” ;

163 experiment . c l o s e () ;

164 memberSocket . c l o s e () ;

165 s ta tu s = ”down” ;

166 }

167 }

168 else

169 i f (command . equa l s Ignor eCase (”wakeup”)) {

170 i f (s t a tu s . equa l s Ignor eCase (”down”)) {

171 System . out . p r i n t l n (”Got command to r ecover .

172 r e s t a r t i n g group coo rd i na t i on . . . ”) ;

173 try { memberSocket = new DatagramSocket (memberPort , l o ca lHos t) ; }

174 catch (SocketException except i on) {

175 System . out . p r i n t l n (”\nException : l o c a l IP or port not a v a i l a b l e . \n”) ;

223

176 System . e x i t (1) ;

177 }

178 experiment = new Experiment () ;

179 #act i on : ” startExper iment ” ;

180 experiment . s t a r t () ;

181 while (! s t a tu s . equa l s Ignor eCase (”normal ”) &&

182 ! s t a tu s . equa l s Ignor eCase (” coord ”)) {

183 try { s l e ep (SLEEP INTERVAL) ; } catch (Exception except i on) {}

184 }

185 #act i on : ” s ta tu sSe t ” ;

186 }

187 }

188 else

189 i f (command . equa l s Ignor eCase (” c l o s e ”)) {

190 System . out . p r i n t l n (”Got command to c l o s e .

191 Shutt ing down complete ly . . . ”) ;

192 i f (experiment != null && experiment . i sA l i v e ()) {

193 #act i on : ” c loseExper iment ” ;

194 experiment . c l o s e () ;

195 }

196 s ta tu s = ” c l o s e ” ;

197 }

198 outPacket = new DatagramPacket (s t a tu s . getBytes () , s t a tu s . l ength () ,

199 consoleHost , conso l ePor t) ;

200 try { con s o l eC l i en t . send (outPacket) ; } catch (IOException except i on) {}

201 i f (command . equa l s Ignor eCase (” c l o s e ”))

202 c l o s e = true ;

203 }

204 try {

205 #act i on : ” c loseExper iment ” ;

206 experiment . c l o s e () ;

207 r eader . c l o s e () ;

208 memberSocket . c l o s e () ;

209 con s o l eC l i en t . c l o s e () ;

210 }

211 catch (IOException except i on) {}

212 }

213

214 public byte [] waitForReply () {

215 byte [] inMsg = new byte [COMMANDLEN] ;

216 Rece iver r e c e i v e r = new Rece iver (inMsg) ;

217 r e c e i v e r . s t a r t () ;

218 long s t a r t = System . cur r entTimeMi l l i s () ;

219 long time = 0 ;

220 while (r e c e i v e r . i sA l i v e () && time < TIME OUT) {

221 time = System . cur r entTimeMi l l i s () − s t a r t ;

222 }

223 i f (r e c e i v e r . i sA l i v e ()) r e c e i v e r . s top () ;

224 return inMsg ;

224

225 }

226

227 protected class Rece iver extends Thread {

228 private byte [] inMsg ;

229

230 public Rece iver (byte [] inMsg) {

231 super (”Rece iver ”) ;

232 this . inMsg = inMsg ;

233 }

234

235 public void run () {

236 DatagramPacket inPacket = new DatagramPacket (inMsg , inMsg . l ength) ;

237 try { con s o l eC l i en t . r e c e i v e (inPacket) ; } catch (IOException except i on) {}

238 }

239 }

240

241 private Pr i n tC l i en t pr intout = null ;

242 private Pr inter p r i n t e r = null ;

243 private ElectThread e l e c t i o n = null ;

244 private CoordThread coordthread = null ;

245 private MonitorThread monitor = null ;

246 private CoordTimeout coordtimeout = null ;

247 private MessageManager mm = null ;

248

249 protected class Experiment extends Thread {

250 private boolean stop ;

251

252 public Experiment () { super (”Experiment”) ; }

253

254 public void run () {

255 #act i on : ” startExper iment ” ;

256 monitor = new MonitorThread () ;

257 #act i on : ” s tar tMoni tor ” ;

258 monitor . s t a r t () ;

259 mm = new MessageManager () ;

260 #act i on : ”startMM” ;

261 mm. s t a r t () ;

262 s ta tu s = ”down” ;

263 e l e c t i o n = new ElectThread () ;

264 #act i on : ” s t a r tE l e c t i o n ” ;

265 e l e c t i o n . s t a r t () ;

266

267 while (! s t a tu s . equa l s Ignor eCase (”normal ”) &&

268 ! s t a tu s . equa l s Ignor eCase (” coord ”)) {

269 try { s l e ep (SLEEP INTERVAL) ; } catch (Exception except i on) {}

270 }

271

272 #act i on : ” s ta tu sSe t ” ;

273

225

274 pr intout = new Pr i n tC l i en t () ;

275 pr intout . s t a r t () ;

276 }

277

278 public void c l o s e () {

279 #act i on : ” c loseExper iment ” ;

280 pr intout . c l o s e () ;

281 i f (e l e c t i o n != null) {

282 #act i on : ” c l o s eE l e c t i o n ” ;

283 e l e c t i o n . c l o s e () ;

284 }

285 i f (coordthread != null) {

286 #act i on : ” c loseCoord ” ;

287 coordthread . c l o s e () ;

288 }

289 #act i on : ”closeMM” ;

290 mm. c l o s e () ;

291 #act i on : ” c l os eMoni tor ” ;

292 monitor . c l o s e () ;

293 i f (p r i n t e r != null) {

294 p r i n t e r . c l o s e () ;

295 }

296 }

297 }

298

299 protected class MessageManager extends Thread {

300 private boolean stop ;

301 #a t t r i b u t e : ”members”=(members . s i z e ()) ;

302

303 public MessageManager () {

304 super (”MessageManager”) ;

305 stop = fa l se ;

306 }

307

308 public void run () {

309 #act i on : ”startMM” ;

310 DatagramPacket inPacket ;

311 Str ing inMsg = null ;

312 while (! s top) {

313 inPacket = new DatagramPacket (new byte [START MSG LEN] ,START MSG LEN) ;

314 try { memberSocket . r e c e i v e (inPacket) ; }

315 catch (IOException except i on) { break ; }

316 Str ing senderName = inPacket . getAddress () . getHostAddress () ;

317 int senderPort = inPacket . getPort () ;

318 inMsg = (new Str ing (inPacket . getData ())) . tr im () ;

319 Member member = null ;

320 for (int i = 0 ; i < members . s i z e () ; i++) {

321 member = (Member) members . get (i) ;

322 i f (member . hostName . equa l s (senderName) &&

226

323 (member . port == senderPort))

324 break ;

325 }

326 i f (inMsg . equa l s Ignor eCase (” pr inted ”)) {

327 while (! pr intout . msgConsumed ()) {

328 try { s l e ep (SLEEP INTERVAL/4 + 1) ; }

329 catch (Exception except i on) {}

330 }

331 pr intout . setMsg (inMsg) ;

332 }

333 else

334 i f (inMsg . startsWith (” pr intout ”) &&

335 p r i n t e r != null && pr i n t e r . i sA l i v e ()) {

336 while (! p r i n t e r . msgConsumed ()) {

337 try { s l e ep (SLEEP INTERVAL/4 + 1) ; }

338 catch (Exception except i on) {}

339 }

340 p r i n t e r . setMsg (inPacket) ;

341 }

342 else

343 i f (inMsg . equa l s Ignor eCase (”IAmNormal”) &&

344 coordthread !=null && coordthread . i sA l i v e ()) {

345 #act i on : ”msgIAmNormal[”+member . p r i o r i t y+”] [”+p r i o r i t y+”] ” ;

346 while (! coordthread . msgConsumed ()) {

347 try { s l e ep (SLEEP INTERVAL/4 + 1) ; }

348 catch (Exception except i on) {}

349 }

350 #act i on : ” receivedMemberIsNormal [”+member . p r i o r i t y+”]

351 [”+p r i o r i t y+”] ” ;

352 coordthread . setMsg (inMsg) ;

353 }

354 else

355 i f (inMsg . equa l s Ignor eCase (”IAmUp”) &&

356 coordtimeout != null && coordtimeout . i sA l i v e ()) {

357 while (! coordtimeout . msgConsumed ()) {

358 try { s l e ep (SLEEP INTERVAL/4 + 1) ; }

359 catch (Exception except i on) {}

360 }

361 coordtimeout . setMsg (inMsg) ;

362 }

363 else

364 i f (inMsg . equa l s Ignor eCase (”IAmUp”) &&

365 e l e c t i o n != null && e l e c t i o n . i sA l i v e ()) {

366 #act i on : ”msgIAmUp[”+member . p r i o r i t y+”] [”+p r i o r i t y+”] ” ;

367 while (! e l e c t i o n . msgConsumed ()) {

368 try { s l e ep (SLEEP INTERVAL/4 + 1) ; }

369 catch (Exception except i on) {}

370 }

371 #act i on : ” rece ivedCandidateIsUp [”+member . p r i o r i t y+”]

227

372 [”+p r i o r i t y+”] ” ;

373 e l e c t i o n . setMsg (inPacket) ;

374 }

375 else

376 i f (inMsg . equa l s Ignor eCase (”AreYouUp”) | |

377 inMsg . equa l s Ignor eCase (”AreYouNormal”) | |

378 inMsg . equa l s Ignor eCase (”EnterE l ect i on ”) | |

379 inMsg . equa l s Ignor eCase (”SetCoord”) | |

380 inMsg . startsWith (”NewState”)) {

381

382 i f (inMsg . startsWith (”NewState”))

383 #act i on : ”msgNewState [”+member . p r i o r i t y+”]

384 [”+p r i o r i t y+”] ” ;

385 else

386 #act i on : ”msg”+inMsg+” [”+member . p r i o r i t y+”]

387 [”+p r i o r i t y+”] ” ;

388 while (! monitor . msgConsumed ()) {

389 try { s l e ep (SLEEP INTERVAL/4 + 1) ; }

390 catch (Exception except i on) {}

391 }

392 i f (inMsg . startsWith (”NewState”))

393 #act i on : ” rece ivedRequestNewState [”+member . p r i o r i t y+”]

394 [”+p r i o r i t y+”] ” ;

395 else

396 #act i on : ” r ece i vedReques t ”+inMsg+” [”+member . p r i o r i t y+”]

397 [”+p r i o r i t y+”] ” ;

398 monitor . setMsg (inPacket) ;

399 }

400 else

401 i f ((inMsg . equa l s Ignor eCase (” InE l e c t i on ”) | |

402 inMsg . equa l s Ignor eCase (”CoordSet”) | |

403 inMsg . equa l s Ignor eCase (”StateUpdated ”)) &&

404 e l e c t i o n !=null&& e l e c t i o n . i sA l i v e ()) {

405 #act i on : ”msg”+inMsg+” [”+member . p r i o r i t y+”]

406 [”+p r i o r i t y+”] ” ;

407 while (! e l e c t i o n . msgConsumed ()) {

408 try { s l e ep (SLEEP INTERVAL/4 + 1) ; }

409 catch (Exception except i on) {}

410 }

411 #act i on : ” receivedMember ”+inMsg+” [”+member . p r i o r i t y+”]

412 [”+p r i o r i t y+”] ” ;

413 e l e c t i o n . setMsg (inPacket) ;

414 }

415 }

416 #act i on : ”stopMM” ;

417 }

418

419 public void c l o s e () { stop = true ; }

420 }

228

421

422 protected class Pr i n tC l i en t extends Thread {

423 private Str ing inMsg = null ;

424 private boolean stop = fa l se ;

425

426 public Pr i n tC l i en t () { super (” Pr i n tC l i en t”) ; }

427

428 public void run () {

429 int count = 0 ;

430 long s tar tWai t ing ;

431 boolean timeout ;

432 int counter = 0 ;

433

434 while (! s top && counter == 0) {

435 while ((! s t a tu s . equa l s Ignor eCase (”normal ”) &&

436 ! s t a tu s . equa l s Ignor eCase (” coord ”)) | |

437 (e l e c t i o n != null && e l e c t i o n . i sA l i v e ()) | |

438 (coordtimeout != null && coordtimeout . i sA l i v e ())) {

439 try { s l e ep (TIME OUT/2) ; } catch (Exception except i on) {}

440 }

441 try { s l e ep (PRINT INTERVAL) ; } catch (Exception except i on) {}

442 send (coord inator , ” pr intout ” + count) ;

443 timeout = true ;

444 s tar tWai t ing = System . cur r entTimeMi l l i s () ;

445 while (System . cur r entTimeMi l l i s () − s tar tWai t ing < TIME OUT) {

446 i f (inMsg != null && inMsg . equa l s (” pr inted ”)) {

447 inMsg = null ; //consume the incoming message

448 timeout = fa l se ;

449 count = (count + 1) % MODULA;

450 break ;

451 }

452 }

453 i f (! s top && timeout && ! i sCoord () &&

454 s ta tu s . equa l s Ignor eCase (”normal ”) &&

455 ((coordtimeout == null) | | ! coordtimeout . i sA l i v e ())) {

456 coordtimeout = new CoordTimeout () ;

457 coordtimeout . s t a r t () ;

458 }

459 }

460 }

461

462 public void c l o s e () { stop = true ; }

463

464 public void setMsg (Str ing msg) { inMsg = msg ; }

465

466 public boolean msgConsumed () { return (inMsg == null) ; }

467 }

468

469 protected class Pr inter extends Thread {

229

470 private DatagramPacket inPacket = null ;

471 private boolean stop = fa l se ;

472

473 public Pr inter () { super (” Pr inter ”) ; }

474

475 public void run () {

476 Member member = null ;

477 Str ing senderName ;

478 int senderPort ;

479 int count = 0 ;

480

481 while (! s top && s ta tu s . equa l s Ignor eCase (” coord ”)) {

482 while (! s top && inPacket == null) {

483 try { s l e ep (SLEEP INTERVAL) ; } catch (Exception except i on) {} }

484 i f (stop) {

485 inPacket = null ;

486 return ;

487 }

488 senderName = inPacket . getAddress () . getHostAddress () ;

489 senderPort = inPacket . getPort () ;

490

491 for (int i =0; i<members . s i z e () ; i++) {

492 member = (Member)members . get (i) ;

493 i f (member . equa l s (senderName , senderPort)) break ;

494 }

495 try {

496 count = In t ege r . par s e Int (

497 (new Str ing (inPacket . getData ())) . s ub s t r i ng (8) . tr im ()) ;

498 }

499 catch (NumberFormatException except i on) {

500 inPacket = null ;

501 continue ;

502 }

503 inPacket = null ;

504 System . out . p r i n t l n (”Here i s the pr intout message f o r ” +

505 senderName + ” : ” + senderPort + ” , #”

506 + count) ;

507 send (member , ” pr inted ”) ;

508 }

509 }

510

511 public void c l o s e () { stop = true ; }

512

513 public void setMsg (DatagramPacket inPacket) {

514 this . inPacket = inPacket ;

515 }

516

517 public boolean msgConsumed () { return (inPacket == null) ; }

518 }

230

519

520 protected class ElectThread extends Thread {

521 private DatagramPacket inPacket = null ;

522 private Str ing s ta tu s ;

523 private int p r i o r i t y ;

524 #a t t r i b u t e : ”members”=(members . s i z e ()) ;

525

526 public ElectThread () { super (”ElectThread ”) ; }

527

528 public void run () {

529 #act i on : ” s t a r tE l e c t i o n ” ;

530 Str ing inMsg = null ;

531 Member member = null ;

532 Str ing senderName ;

533 int senderPort ;

534 long s tar tWai t ing ;

535 for (int i =0; i<members . s i z e () ; i++) {

536 member = (Member)members . get (i) ;

537

538 i f (member . p r i o r i t y>=p r i o r i t y) { continue ; }

539

540 #act i on : ”sendAreYouUp [”+p r i o r i t y+”] [”+member . p r i o r i t y+”] ” ;

541 send (member , ”AreYouUp”) ;

542 s tar tWai t ing = System . cur r entTimeMi l l i s () ;

543 while (System . cur r entTimeMi l l i s () − s tar tWai t ing < TIME OUT) {

544 i f (inPacket != null) {

545 senderName = inPacket . getAddress () . getHostAddress () ;

546 senderPort = inPacket . getPort () ;

547 inMsg = (new Str ing (inPacket . getData ())) . tr im () ;

548 inPacket = null ;

549 i f (member . equa l s (senderName , senderPort) &&

550 inMsg . equa l s Ignor eCase (”IAmUp”)) {

551 #act i on : ” candidateIsUp [”+member . p r i o r i t y+”]

552 [”+p r i o r i t y+”] ” ;

553 #act i on : ” s topE l e c t i on ” ;

554 return ;

555 }

556 }

557 }

558 }

559

560 #act i on : ”noCandidateUp” ;

561 System . out . p r i n t l n (” E l e c t i on ongoing , I am the coord candidate . . . ”) ;

562 s ta tu s = ” e l e c t i o n ” ;

563 for (int i =0; i<members . s i z e () ; i++) {

564 member = (Member)members . get (i) ;

565 i f (member . equa l s (l o ca lHos t . getHostAddress () , memberPort))

566 ha l ted = member ;

567 else

231

568 i f (member . p r i o r i t y<p r i o r i t y)

569 member . s t a tu s = ”down” ;

570 else {

571 #act i on : ” s endEnterE l ect i on [”+p r i o r i t y+”] [”+member . p r i o r i t y+”] ” ;

572 send (member , ” EnterE l ect i on ”) ;

573 System . out . p r i n t l n (”Send EE to ”+member) ;

574 member . s t a tu s = ”down” ;

575 s tar tWai t ing = System . cur r entTimeMi l l i s () ;

576 while (System . cur r entTimeMi l l i s () − s tar tWai t ing < TIME OUT) {

577 i f (inPacket != null) {

578 senderName = inPacket . getAddress () . getHostAddress () ;

579 senderPort = inPacket . getPort () ;

580 inMsg = (new Str ing (inPacket . getData ())) . tr im () ;

581 inPacket = null ;

582 i f (member . equa l s (senderName , senderPort) &&

583 inMsg . equa l s Ignor eCase (” InE l e c t i on ”)) {

584 #act i on : ”memberInElection [”+member . p r i o r i t y+”]

585 [”+p r i o r i t y+”] ” ;

586 member . s t a tu s = ”normal ” ;

587 System . out . p r i n t l n (”Get EE back”) ;

588 break ;

589 }

590 }

591 }

592 i f (member . s t a tu s . equa l s (”down”))

593 #act i on : ” timeout [”+member . p r i o r i t y+”] ” ;

594 }

595 }

596

597 coord inator = ha l ted ;

598 coord inator . s t a tu s = ” coord ” ;

599 s ta tu s = ” reorgan ” ;

600 boolean timeout = true ;

601 for (int i =0; i<members . s i z e () ; i++) {

602 member = (Member)members . get (i) ;

603 i f (member . s t a tu s . equa l s (”normal ”)) {

604 #act i on : ” sendSetCoord [”+p r i o r i t y+”] [”+member . p r i o r i t y+”] ” ;

605 send (member , ”SetCoord”) ;

606 System . out . p r i n t l n (”Send SC to ”+member) ;

607 s tar tWai t ing = System . cur r entTimeMi l l i s () ;

608 while (System . cur r entTimeMi l l i s () − s tar tWai t ing < TIME OUT) {

609 i f (inPacket != null) {

610 senderName = inPacket . getAddress () . getHostAddress () ;

611 senderPort = inPacket . getPort () ;

612 inMsg = (new Str ing (inPacket . getData ())) . tr im () ;

613 inPacket = null ;

614 i f (member . equa l s (senderName , senderPort) &&

615 inMsg . equa l s Ignor eCase (”CoordSet”)) {

616 #act i on : ”memberCoordSet [”+member . p r i o r i t y+”]

232

617 [”+p r i o r i t y+”] ” ;

618 timeout = fa l se ;

619 System . out . p r i n t l n (”Get SC back ”) ;

620 break ;

621 }

622 }

623 }

624 i f (timeout) {

625 #act i on : ” timeout [”+member . p r i o r i t y+”] ” ;

626 #act i on : ” s tar tNewElect i on” ;

627 e l e c t i o n = new ElectThread () ;

628 e l e c t i o n . s t a r t () ;

629 return ;

630 }

631 timeout = true ;

632 }

633 }

634

635 d e f i n i t i o n = members ;

636 ByteArrayOutputStream toByte = new ByteArrayOutputStream () ;

637 try {

638 ObjectOutputStream out = new ObjectOutputStream (toByte) ;

639 out . wr i teObj ect (d e f i n i t i o n) ;

640 out . f l u s h () ;

641 out . c l o s e () ;

642 toByte . c l o s e () ;

643 }

644 catch (IOException except i on) {

645 System . out . p r i n t l n (”Exception : e r r o r when wr i t i ng new s ta t e . ”) ;

646 System . e x i t (1) ;

647 }

648 Str ing outMsg = new Str ing () ;

649 outMsg = ”NewState” + (new Str ing (toByte . toByteArray ())) ;

650 for (int i =0; i<members . s i z e () ; i++) {

651 member = (Member)members . get (i) ;

652 i f (member . s t a tu s . equa l s (”normal ”)) {

653 #act i on : ”sendNewState [”+p r i o r i t y+”] [”+member . p r i o r i t y+”] ” ;

654 send (member , outMsg) ;

655 System . out . p r i n t l n (”Send NS to ”+member) ;

656 s tar tWai t ing = System . cur r entTimeMi l l i s () ;

657 while (System . cur r entTimeMi l l i s () − s tar tWai t ing < TIME OUT) {

658 i f (inPacket != null) {

659 senderName = inPacket . getAddress () . getHostAddress () ;

660 senderPort = inPacket . getPort () ;

661 inMsg = (new Str ing (inPacket . getData ())) . tr im () ;

662 inPacket = null ;

663 i f (member . equa l s (senderName , senderPort) &&

664 inMsg . equa l s Ignor eCase (”StateUpdated ”)) {

665 #act i on : ”memberStateUpdated [”+member . p r i o r i t y+”]

233

666 [”+p r i o r i t y+”] ” ;

667 timeout = fa l se ;

668 System . out . p r i n t l n (”Get NS back ”) ;

669 break ;

670 }

671 }

672 }

673 i f (timeout) {

674 #act i on : ” timeout [”+member . p r i o r i t y+”] ” ;

675 #act i on : ” s tar tNewElect i on” ;

676 e l e c t i o n = new ElectThread () ;

677 e l e c t i o n . s t a r t () ;

678 return ;

679 }

680 timeout = true ;

681 }

682 }

683 s ta tu s = ” coord ” ;

684 #act i on : ” s ta tu sSe t ” ;

685 #act i on : ” coordStatus ” ;

686 i f (p r i n t e r==null | | ! p r i n t e r . i sA l i v e ()) {

687 p r i n t e r = new Pr inter () ;

688 p r i n t e r . s t a r t () ;

689 }

690 System . out . p r i n t l n (” I am e l e c t e d . accept ing p r i n t i ng r eque s t s . . . ”) ;

691 i f (coordthread==null | | ! coordthread . i sA l i v e ()) {

692 coordthread = new CoordThread () ;

693 #act i on : ” startCoord ” ;

694 coordthread . s t a r t () ;

695 }

696 #act i on : ” s topE l e c t i on ” ;

697 }

698

699 public void c l o s e () { stop () ; }

700

701 public void setMsg (DatagramPacket inPacket) {

702 this . inPacket = inPacket ;

703 }

704

705 public boolean msgConsumed () {return (inPacket == null) ; }

706 }

707

708 protected class CoordThread extends Thread {

709 private Str ing inMsg ;

710 private boolean stop = fa l se ;

711

712 public CoordThread () { super (”CoordThread ”) ; }

713

714 public void run () {

234

715 #act i on : ” startCoord ” ;

716 Member member ;

717 long s tar tWai t ing ;

718 boolean int ime ;

719 boolean f i r s t = true ;

720 boolean i nE l e c t i on = fa l se ;

721

722 while (! s top) {

723 while (! s t a tu s . equa l s Ignor eCase (” coord ”)) {

724 try { s l e ep (TIME OUT) ; } catch (Exception except i on) {}

725 }

726

727 i f (f i r s t | | i nE l e c t i on) {

728 #act i on : ” coordStatus ” ;

729 f i r s t = fa l se ;

730 i nE l e c t i on = fa l se ;

731 }

732

733 try { s l e ep (TIME OUT) ; } catch (Exception except i on) {}

734

735 for (int i =0; i<members . s i z e () ; i++) {

736 member = (Member) members . get (i) ;

737

738 i f (member . equa l s (coord inator)) { continue ; }

739

740 #act i on : ”sendAreYouNormal [”+p r i o r i t y+”] [”+member . p r i o r i t y+”] ” ;

741 send (member , ”AreYouNormal”) ;

742 int ime = fa l se ;

743 s tar tWai t ing = System . cur r entTimeMi l l i s () ;

744 while (System . cur r entTimeMi l l i s () − s tar tWai t ing < TIME OUT) {

745 i f (inMsg != null && inMsg . equa l s Ignor eCase (”IAmNormal”)) {

746 #act i on : ”memberIsNormal [”+member . p r i o r i t y+”] [”+p r i o r i t y+”] ” ;

747 inMsg = null ;

748 int ime = true ;

749 break ;

750 }

751 }

752

753 i f ((member . s t a tu s . equa l s Ignor eCase (”normal ”) && ! int ime) | |

754 (! member . s t a tu s . equa l s Ignor eCase (”normal ”) && intime)) {

755 i f (! s top && (e l e c t i o n == null | | ! e l e c t i o n . i sA l i v e ())) {

756 e l e c t i o n = new ElectThread () ;

757 #act i on : ” s t a r tE l e c t i o n ” ;

758 e l e c t i o n . s t a r t () ;

759 i nE l e c t i on = true ;

760 }

761 }

762 }

763 }

235

764 #act i on : ” stopCoord ” ;

765 }

766

767 public void c l o s e () { stop = true ; }

768

769 public void setMsg (Str ing msg , int p) { inMsg = msg ; }

770

771 public boolean msgConsumed () { return (inMsg == null) ; }

772 }

773

774 protected class MonitorThread extends Thread {

775 private DatagramPacket inPacket = null ;

776 private boolean stop = fa l se ;

777

778 public MonitorThread () { super (”MonitorThread”) ; }

779

780 public void run () {

781 #act i on : ” s tar tMoni tor ” ;

782 Str ing inMsg = null ;

783 Member member = null ;

784 Str ing senderName ;

785 int senderPort ;

786 while (! s top) {

787 while (! s top && inPacket == null) {

788 try { s l e ep (SLEEP INTERVAL) ; }

789 catch (Exception except i on) {}

790 }

791

792 i f (stop) { return ; }

793

794 senderName = inPacket . getAddress () . getHostAddress () ;

795 senderPort = inPacket . getPort () ;

796 for (int i =0; i<members . s i z e () ; i++) {

797 member = (Member)members . get (i) ;

798 i f (member . equa l s (senderName , senderPort)) { break ; }

799 }

800 inMsg = (new Str ing (inPacket . getData ())) . tr im () ;

801 i f (inMsg . equa l s Ignor eCase (”AreYouUp”)) {

802 #act i on : ”requestAreYouUp [”+member . p r i o r i t y+”] [”+p r i o r i t y+”] ” ;

803 #act i on : ”sendIAmUp [”+p r i o r i t y+”] [”+member . p r i o r i t y+”] ” ;

804 send (member , ”IAmUp”) ;

805 }

806 else

807 i f (inMsg . equa l s Ignor eCase (”AreYouNormal”)) {

808 #act i on : ” requestAreYouNormal [”+member . p r i o r i t y+”]

809 [”+p r i o r i t y+”] ” ;

810 #act i on : ”sendIAmNormal [”+p r i o r i t y+”] [”+member . p r i o r i t y+”] ” ;

811 send (member , ”IAmNormal”) ;

812 }

236

813 else

814 i f (inMsg . equa l s Ignor eCase (” EnterE l ect i on ”)) {

815 s ta tu s = ” e l e c t i o n ” ;

816 #act i on : ” r eque s tEnte rE l e c t i on [”+member . p r i o r i t y+”]

817 [”+p r i o r i t y+”] ” ;

818 System . out . p r i n t l n (” E l e c t i on ongoing , ”+member+”

819 i s the candidate . ”) ;

820 i f (p r i n t e r != null) { p r i n t e r . c l o s e () ; }

821 i f (coordthread !=null) {

822 #act i on : ” c loseCoord ” ;

823 coordthread . c l o s e () ;

824 }

825 i f (e l e c t i o n != null) {

826 #act i on : ” c l o s eE l e c t i o n ” ;

827 e l e c t i o n . c l o s e () ;

828 }

829 ha l ted = member ;

830 #act i on : ” s endInEl ect i on [”+p r i o r i t y+”] [”+member . p r i o r i t y+”] ” ;

831 send (member , ” InE l e c t i on ”) ;

832 }

833 else

834 i f (inMsg . equa l s Ignor eCase (”SetCoord”)) {

835 #act i on : ” requestSetCoord [”+member . p r i o r i t y+”]

836 [”+p r i o r i t y+”] ” ;

837 i f (s t a tu s . equa l s Ignor eCase (” e l e c t i o n ”) &&

838 ha l ted . equa l s (member)) {

839 coord inator = member ;

840 s ta tu s = ” reorgan ” ;

841 }

842 #act i on : ” sendCoordSet [”+p r i o r i t y+”] [”+member . p r i o r i t y+”] ” ;

843 send (member , ”CoordSet”) ;

844 }

845 else

846 i f (inMsg . startsWith (”NewState”)) {

847 #act i on : ” requestNewState [”+member . p r i o r i t y+”]

848 [”+p r i o r i t y+”] ” ;

849 i f (coord inator . equa l s (member) &&

850 s ta tu s . equa l s Ignor eCase (” reorgan ”)) {

851 d e f i n i t i o n =

852 getNewState ((new Str ing (

853 inPacket . getData ())) . s ub s t r i ng (8) . getBytes ()) ;

854 i f (d e f i n i t i o n==null) {

855 System . out . p r i n t l n (”Exception : e r r o r when

856 r ead ing new s ta t e . ”) ;

857 }

858 else {

859 #act i on : ” sendStateUpdated [”+p r i o r i t y+”]

860 [”+member . p r i o r i t y+”] ” ;

861 send (member , ” StateUpdated ”) ;

237

862 members = d e f i n i t i o n ;

863 System . out . p r i n t l n (member+” i s e l e c t e d .

864 Go on pr i n t i ng . . . ”) ;

865 s ta tu s = ”normal ” ;

866 #act i on : ” s ta tu sSe t ” ;

867 #act i on : ” normalStatus ” ;

868 }

869 }

870 }

871 inPacket = null ;

872 }

873 #act i on : ” stopMonitor ” ;

874 }

875

876 public void c l o s e () { stop = true ; }

877

878 public void setMsg (DatagramPacket inPacket) {

879 this . inPacket = inPacket ;

880 }

881

882 public boolean msgConsumed () { return (inPacket == null) ; }

883 }

884

885 public Vector getNewState (byte [] inMsg) {

886 Vector newDef = null ;

887 ByteArrayInputStream fromByte = new ByteArrayInputStream (inMsg) ;

888 ObjectInputStream in = null ;

889 try { i n = new ObjectInputStream (fromByte) ; }

890 catch (Exception except i on) { return null ; }

891 try { newDef = (Vector) in . readObject () ; }

892 catch (Exception except i on) { return null ; }

893 try {

894 in . c l o s e () ;

895 fromByte . c l o s e () ;

896 }

897 catch (IOException except i on) {}

898 return newDef ;

899 }

900

901 protected class CoordTimeout extends Thread {

902 private Str ing inMsg ;

903

904 public CoordTimeout () { super (”CoordTimeout ”) ; }

905

906 public void run () {

907 send (coord inator , ”AreYouUp”) ;

908 long s tar tWai t ing = System . cur r entTimeMi l l i s () ;

909 while (System . cur r entTimeMi l l i s () − s tar tWai t ing < TIME OUT) {

910 i f (inMsg != null && inMsg . equa l s Ignor eCase (”IAmUp”)) {

238

911 inMsg = null ; //consume the incoming message

912 return ;

913 }

914 }

915 i f (e l e c t i o n == null | | ! e l e c t i o n . i sA l i v e ()) {

916 e l e c t i o n = new ElectThread () ;

917 e l e c t i o n . s t a r t () ;

918 }

919 }

920

921 public void setMsg (Str ing msg) { inMsg = msg ; }

922

923 public boolean msgConsumed () { return (inMsg == null) ; }

924 }

925

926 public void send (Member member , Str ing msg) {

927 InetAddress destHost = null ;

928 try { destHost = InetAddress . getByName (member . hostName) ; }

929 catch (UnknownHostException except i on) { return ; }

930 byte [] outMsg = msg . getBytes () ;

931 DatagramPacket outPacket =

932 new DatagramPacket (outMsg , outMsg . l ength , destHost , member . port) ;

933 try { memberSocket . send (outPacket) ; }

934 catch (IOException except i on) {}

935 }

936

937 public boolean i sCoord () {

938 return coord inator . equa l s (l o ca lHos t . getHostAddress () , memberPort) ;

939 }

940 }

Bibliography

[ABL02] G. Ammons, R. Bod̀ık, and J. R. Larus. Mining Specifications. In ACM Symp. on

Principles of Programming Languages, pages 4–16, Portland, USA, January 2002.

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.

Addison-Wesley, 1986.

[BCDR04] T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining Approximations in Software

Predicate Abstraction. Lecture Notes in Computer Science, 2988:388–403, January

2004.

[BDFSV99] R. Barbuti, N. De Francesco, A. Santone, and G. Vaglini. Selective mu-calculus

and Formula-Based Equivalence of Transition Systems. Journal of Computer and

System Sciences, 59:537–556, 1999.

[BPSH05] S. Boroday, A. Petrenko, J. Singh, and H. Hallal. Dynamic Analysis of Java

Applications for Multithreaded Antipatterns. In Workshop on Dynamic Analysis,

pages 1–7, May 2005.

[BR00] T. Ball and S.K. Rajamani. Bebop: A Symbolic Model Checker for Boolean

Programs. In SPIN, pages 113–130, 2000.

[BR02] T. Ball and S. K. Rajamani. The SLAM Project: Debugging System Software via

Static Analysis. In ACM Symposium on Principles of Programming Languages,

pages 1–3, Portland, OR, USA, January 2002.

[CC77] P. M. Cousot and R. Cousot. Automatic Synthesis of Optimal Invariant Assertions.

In ACM Symposium on Artificial Intelligence and Programming Languages, pages

1–12, Rochester, USA, August 1977.

239

BIBLIOGRAPHY 240

[CCG+04] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular Verification of Soft-

ware Components in C. IEEE Transactions on Software Engineering, 30(6):388–

402, June 2004.

[CCO02] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. FLAVERS: A Finite State

Verification Technique for Software Systems. IBM Systems Journal, 41(1):140–

165, 2002.

[CCO+04] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/Event-

Based Software Model Checking. Lecture Notes in Computer Science, 2999:128–

147, April 2004.

[CCO+05] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. Concurrent Software

Verification with States, Events and Deadlocks. Formal Aspects of Computing

Journal, 17(4):461–483, December 2005.

[CDH+00] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby,

and H. Zheng. Bandera: Extracting Finite-State Models from Java Source Code.

In International Conference on Software Engineering, pages 439–448, Limerick,

Ireland, June 2000. IEEE Computer Society Press.

[CDK05] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and

Design. Addison-Wesley, 4th edition edition, 2005.

[CDMS02] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider. Source Transforma-

tion in Software Engineering Using the TXL Transformation System. Journal of

Information and Software Technology, Special Issue on Source Code Analysis and

Manipulation, 44(13):827–837, October 2002.

[CGJ+03] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided

Abstraction Refinement for Symbolic Model Checking. Journal of the ACM,

50(5):752–794, September 2003.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,

Cambridge, Massachusetts, USA, 1999.

[CS96] R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In CAV’96,

volume 1102, pages 394–397, New Brunswick, NJ, USA, July 1996.

BIBLIOGRAPHY 241

[CW96] E.M. Clarke and J.M. Wing. Formal Methods: State of the Art and Future Direc-

tions. ACM Computing Surveys, 28(4):626–643, 1996.

[CW98] J. E. Cook and A. L. Wolf. Discovering Models of Software Processes from

Event-Based Data. ACM Transactions on Software Engineering and Methodology,

7(3):215–249, July 1998.

[DAC98] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property Specification Patterns

for Finite-State Verification. In FMSP ’98: Proceedings of the Second Workshop

on Formal methods in Software Practice, pages 7–15, New York, NY, USA, March

1998. ACM, ACM Press.

[Dam03] D. Dams. Comparing Abstraction Refinement Algorithms. Electronic Notes in

Theoretical Computer Science, 89(3):405–416, July 2003.

[DH99] M. B. Dwyer and J. Hatcliff. Slicing Software for Model Construction. In ACM

SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manip-

ulation, pages 105–118, San Antonio, USA, January 1999.

[ECGN01] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically Discovering

Likely Program Invariants to Support Program Evolution. IEEE Transactions on

Software Engineering, 27(2):1–25, 2001.

[Ern03] M. D. Ernst. Static and Dynamic Analysis: Synergy and Duality. In Workshop

on Dynamic Analysis, pages 24–27, Portland, OR, USA, May 2003.

[ES96] E.A. Emerson and A.P. Sistla. Symmetry and Model Checking. Formal Methods

in System Design, 9(1-2):105–131, 1996.

[FPV98] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE

Transactions on Software Engineering, 24(5):342–361, 1998.

[GL94] O. Grumberg and D.E. Long. Model Checking and Modular Verification. ACM

Transactions on Programming Languages and Systems, 16(3):843–871, May 1994.

[GM82] H. Garcia-Molina. Elections in a Distributed Computing System. IEEE Transac-

tions on Computers, C-31(1):48–59, January 1982.

BIBLIOGRAPHY 242

[GM03] D. Giannakopoulou and J. Magee. Fluent Model Checking for Event-Based Sys-

tems. In ESEC/FSE, pages 257–266, Helsinki, Finland, September 2003.

[God03] P. Godefroid. Software Model Checking: The Verisoft Approach. Bell Labs Techni-

cal Memorandum ITD-03-44189G, Bell Laboratories, Lucent Technologies, August

2003.

[GS97] S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. Lecture

Notes in Computer Science, 1254:72–83, June 1997.

[GSVV04] S. Gradara, A. Santone, M.L. Villani, and G. Vaglini. Model Checking Multi-

threaded Programs by Means of Reduced Models. Electronic Notes in Theoretical

Computer Science, 110:55–74, 2004.

[HD01] J. Hatcliff and M. Dwyer. Using the Bandera Tool Set to Model-Check Properties

of Concurrent Java Software. Lecture Notes in Computer Science, 2154:39–58,

2001.

[HHNS02] A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model Generation by Moderated

Regular Extrapolation. In FASE, pages 80–95, Grenoble, France, April 2002.

[HJMS02] T.A. Henzinger, R. Jahla, R. Majumdar, and G. Sutre. Lazy Abstraction. In ACM

Symposium on Principles of Programming Languages, pages 58–70, Portland, OR,

USA, January 2002. ACM Press.

[HJMS03] T.A. Henzinger, R. Jahla, R. Majumdar, and G. Sutre. Software Verification with

BLAST. Lecture Notes in Computer Science, 2648:235–239, 2003.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,

Englewood Cliffs, N.J, 1985.

[Hol97] G.J. Holzmann. The Model Checker Spin. IEEE Transactions on Software Engi-

neering, 23(5):279–295, 1997.

[Hol01] G.J. Holzmann. From Code to Models. In ACSD, pages 3–10, Newcastle upon

Tyne, UK, June 2001.

BIBLIOGRAPHY 243

[HP00] K. Havelund and T. Pressburguer. Model Checking Java Programs Using Java

PathFinder. Intl Journal on Software Tools for Technology Transfer, 2(4):366–

381, March 2000.

[HS99] G.J. Holzmann and M.H. Smith. A Practical Method for Verifying Event-Driven

Software. In International Conference on Software Engineering, pages 597–607,

Los Angeles, USA, May 1999.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, 1979.

[HVV03] H. Hansen, H. Virtanen, and A. Valmari. Merging State-Based and Action-Based

Verification. Third International Conference on Application of Concurrency to

System Design (ACSD’03), pages 150–156, 2003.

[JD96] D. Jackson and C.A. Damon. Elements of Style: Analyzing a Software Design

Feature with a Counterexample Detector. IEEE Transactions on Software Engi-

neering, 22(7):484–495, July 1996.

[JD00] D. Jackson and C.A. Damon. Software Analysis: A Roadmap. In Intl Conf. on

Software Engineering, pages 133–145, Limerick, Ireland, June 2000. ACM Press.

[Kel76] R.M. Keller. Formal Verification of Parallel Programs. Communications of the

ACM, 19(7):371–384, July 1976.

[KGC04] D. Kroening, A. Groce, and E.M. Clarke. Counterexample Guided Abstraction

Refinement via Program Execution. Lecture Notes in Computer Science, 3308:224–

238, November 2004.

[Kin76] James C. King. Symbolic Execution and Program Testing. Communications of

the ACM, 19(7):385–394, July 1976.

[KP89] S. Katz and D. Peled. An Efficient Verification Method for Parallel and Distributed

Programs. In Linear Time, Branching Time and Partial Order in Logics and

Models for Concurrency, School/Workshop, pages 489–507, London, UK, 1989.

[LMC01] M. Leuschel, T. Massart, and A. Currie. How to Make FDR Spin: LTL Model

Checking of CSP by Refinement. Lecture Notes in Computer Science, 2021:99–118,

March 2001.

BIBLIOGRAPHY 244

[LMP06] D. Lorenzoli, L. Mariani, and M. Pezze. Inferring State-Based Behavior Models. In

WODA ’06: Proceedings of the 2006 International Workshop on Dynamic Systems

Analysis, pages 25–32, New York, NY, USA, 2006. ACM Press.

[LNS00] K.R.M. Leino, G. Nelson, and J.B. Saxe. ESC/Java User’s Manual. Technical Re-

port 2000-002, Compaq Systems Research Center, Palo Alto, California, October

2000.

[Lud03] J. Ludewig. Models in Software Engineering - An Introduction. Journal on Soft-

ware and System Modeling, 2(1):5–14, February 2003.

[Mar05] L. Mariani. Behavior Capture and Test: Dynamic Analysis of Component-Based

Systems. PhD, Università degli Studi di Milano Bicocca, 2005.

[McM93] K.L. McMillan. Symbolic Model Checking: An Approach to the State Explosion

Problem. Kluwer Academic, 1993.

[MG96] G. Malcolm and J.A. Goguen. Proving Correctness of Refinement and Implemen-

tation. Technical Monography PRG 114, Oxford University, 1996.

[Mil71] R. Milner. An Algebraic Definition of Simulation Between Programs. In

British Computer Society, editor, 2nd IJCAI, pages 481–489, September 1971.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1989.

[Mil99] R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge

University Press, New York, NY, USA, 1999.

[MK06] J. Magee and J. Kramer. Concurrency: State Models and Java Programming.

Wiley and Sons, 2nd edition, 2006.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[NE02] J.W. Nimmer and M.D. Ernst. Automatic Generation of Program Specifications.

In Intl Symp. on Software Testing and Analysis, pages 232–242, Rome, Italy, July

2002.

BIBLIOGRAPHY 245

[Par81] D.M.R. Park. Concurrency and Automata on Infinite Sequences. Lecture Notes in

Computer Science, 104:167–183, March 1981.

[Pat06] R. Patton. Software Testing. Sams, 2nd edition, 2006.

[Pel01] D.A. Peled. Software Reliability Methods. Texts in Computer Science. Springer-

Verlag, 2001.

[Pos80] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[RS02] T. Robschink and G. Snelting. Efficient Path Conditions in Dependence Graphs.

In International Conference on Software Engineering, pages 478–488, Orlando,

Florida, USA, April 2002.

[SC96] Sane A. Sefika, M. and R.H. Campbell. Monitoring Compliance of a Software Sys-

tem with Its High-Level Design Models. In International Conference on Software

Engineering, pages 387–396, Berlin, Germany, March 1996.

[TAC04] J. Tan, G.S. Avrunin, and L.A. Clarke. Heuristic-Based Model Refinement for

FLAVERS. In International Conference on Software Engineering, pages 635–644,

Washington, DC, USA, May 2004.

[Tip95] F. Tip. A Survey of Program Slicing Techniques. Journal of Programming Lan-

guages, 3(3):121–189, 1995.

[UKM03] S. Uchitel, J. Kramer, and J. Magee. Behaviour Model Elaboration Using Par-

tial Labelled Transition Systems. In ESEC/FSE, pages 19–27, Helsinki, Finland,

September 2003.

[vG01] R.J. van Glabbeek. The Linear Time – Branching Time Spectrum I: The Semantics

of Concrete, Sequential Processes. Elsevier Science, Amsterdam, The Netherlands,

2001.

[VHB+03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Pro-

grams. Journal of Automated Software Engineering, 10(2):203–232, 2003.

