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Abstract. In this paper we exploit various aspects of simulation for mobile applications. We briefly 

describe a formal language and a tool that we use for the simulation of mobile applications, showing how to 
analyze their performance. Also, we show how we use our language and tool to represent failure behavior that 
may be present in open systems. This allows one to reason, through simulation, about the robustness of the 
application and fault detection or tolerance mechanisms. A case study on active networks is presented for 
performance analysis and to exemplify failure representation. 
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1. Introduction 

The development of mobile applications is a 
complex task. Such applications are inherently 
concurrent and distributed, having also components 
that may migrate during the execution. In particular, 
guaranteeing the correctness of such applications is far 
from trivial if we consider the characteristics of open 
systems, like: massive geographical distribution; high 
dynamics (appearance of new nodes and services); no 
global control; partial failures; lack of security; and 
high heterogeneity [1]. Among other barriers, in such 
environments (e.g. Internet) it is hard to test mobile 
applications because we cannot be sure whether an 
error is caused by the application itself or by the 
environment in which it runs.  

It is therefore necessary that developers of mobile 
applications have a higher degree of confidence in their 
solutions during the construction phase. To achieve 
that, we have developed methods and tools to assist the 
development phase such that the developer may assure 
that desired properties of the application are present*. 
In this context, the use of formal methods becomes a 
good approach to provide a way to create a precise 
description of the applications. More specifically, we 
have developed [2] and used [3] a formal specification 
language suited for mobile applications. Models 
written according to this formal language can be 
simulated with a simulation tool [4] as well as code for 
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them can be generated following a straightforward 
mapping to Java classes considering the use of a 
mobility support platform [3, 5]. Altogether we have a 
framework for the development of correct mobile code 
applications [6]. The innovative aspect of the 
framework is the use of Object-Based Graph 
Grammars (OBGG) [2] as the underlying unifying 
formal method for a set of integrated tools [6]. Each of 
the tools supports a way of addressing the generation 
of correct mobile applications. While in [4] we have 
focused on the simulation tool itself, in this paper we 
will concentrate on simulation of mobile applications 
for open environments and the various uses of our 
simulation tool. 

Our achievements, so far, can be characterized by the 
mapping of an OBGG specification into a simulation 
model and the generation of code for a mobility 
support platform. Under these assumptions we could 
not find in the literature projects that address the same 
points that our environment does address. According to 
our review, we have found projects that use formal 
methods to develop applications based on code 
mobility, some of them providing analysis tools. 

The KLAIM [7] (Kernel Language for Agent 
Interaction and Mobility) project aims at the creation of 
a language supporting the paradigm of code mobility 
programming. KLAIM explicitly use localities for 
accessing data or computational resources, and has a 
type system to control access rights. In the KLAIM 
structure there is a net coordinator that has control over 
the net (there is a special coordination language) and 
processes. One special feature of KLAIM that 
resembles our project is the possibility to generate code 
through the Java implementation of KLAIM, named 
KLAVA. 

There are also projects found in the literature that use 
formal verification techniques. Although planned, our 
environment does not address this point, so far. The 



main projects under this approach are MobiS [8], 
Mobile UNITY [9] and Mobility WorkBench [10]. 

MobiS is a specification language whose 
specifications denote a tree of nested spaces that 
dynamically evolves in time [8]. There is the 
possibility of automatic verification of specified 
properties. Mobile UNITY, unlike MobiS, is a model 
to reason about key concepts and ideas of mobility. 
The Mobility WorkBench is a tool, not a specification 
language. It’s designed to analyze concurrent systems 
over specifications written in the pi-calculus 
formalism. 

One major advantage of using a simulation model is 
the possibility of validating strategies as well as control 
algorithms for complex cases where the use of formal 
verification could lead to a state explosion problem. 
These models may be used to check if the components 
of an application behave as expected, if they are 
independent from each other such that the replacement 
of a simulated component by a more sophisticated 
version becomes possible, and also to check the 
application behavior under various environment 
conditions. Of special concern for open systems, we 
have a tool and a method that allow us to interactively 
reason through simulation about mobile applications in 
presence of selected failures, helping the developer to 
formally specify robust applications as well as 
mechanisms for fault detection and tolerance. 
Moreover, it is also highly desirable to evaluate the 
performance of solutions before their implementation. 
In fact, in many cases this evaluation can even change 
the use of mobility in the solution under preparation, 
leading to significant improvements in the application. 

The main uses of our simulation environment are 
discussed in this paper. In order to demonstrate these 
uses, we have developed, as a case study of significant 
complexity, an architecture for active networks [11] 
and a routing algorithm [12] to execute over it. 

This paper is organized as follows: Section 2 
discusses about our simulation tool; Section 3 
discusses a case study used to demonstrate the uses of 
the simulator; Section 4 presents some uses of the 
simulator; and Section 5 brings us to the conclusions 
and future work. 

2. The Simulation Environment  

The use of a formal specification language allows 
the creation of a precise description of a system with 
well-defined syntax and semantics. The formal 
specification language used in this work is based on a 
restricted form of graph grammars, called Object-
Based Graph Grammars (OBGG)[2].  

OBGG incorporates object-based concepts, such as 
encapsulation and communication through message-
passing. An OBGG specification is composed by type 
graphs and an initial graph. A type graph describes an 

entity, the names of its attributes, and the types of 
messages that the entity may send or receive. An 
application specification is composed by the 
specification of the various entities involved. The 
behavior of an entity is determined by the rules 
associated to it. A rule can be applied whenever the 
left-side of the rule is a sub-graph of the current system 
state graph – i.e., rules may be applied in parallel - and 
there is no conflict. A conflict exists when two or more 
rules need write access to the same attributes. In case 
of conflict, the choice of which rule will be applied is 
non-deterministic. The application of a rule must 
consume a message and may change the internal state 
of the entity and/or generate new messages. The 
application of rules successively changes the state of 
the system, starting from an initial state, described in 
the initial graph.  

To represent mobile systems, OBGG was extended 
with two specialized entities: places and mobile 
components. Places (represented by the Place entity in 
our simulation environment) represent the possible 
locations where mobile components may execute. A 
place offers basic functionalities like storage and 
communication facilities and computational power. 
Furthermore, places offer message passing and 
migration services to mobile components. Mobile 
components (represented by the MAgent entity in our 
simulation environment) represent software 
components that can migrate between places during 
their execution, using resources and services from the 
places they visit. When creating a mobile application, 
the user may specialize the entities place and mobile 
component, as he/she wants. 

In order to simulate specifications written in OBGG, 
we have conceived a simulation environment and 
described the mapping of specifications in OBGG to a 
simulation model. The simulation environment, 
presented in [13], is implemented in Java [14] and is 
composed by: (i) a library that supports the basic 
OBGG abstractions of entity, attribute, message, and 
rule; and by (ii) the kernel of the simulator, which is 
responsible for message passing and global time 
control. A simulation entity is basically modeled by an 
active object (a Java object with an internal thread) 
where: attributes of the entity are mapped to attributes 
of the object; a message buffer of this object is used to 
store the messages delivered by the kernel to the entity; 
and rules are mapped to associated classes with 
functionality to: (i) test if a rule is enabled for an entity, 
and (ii) apply the transformations stated by the rule on 
the entity. The internal thread of the object selects the 
rules enabled by messages in the input buffer and the 
internal state of the entity and triggers their application 
according to the OBGG semantics. With the 
constructions offered by the simulation environment, 
the mapping of specifications in OBGG to simulation 



models is straightforward.  For more details on the 
structure of the simulation tool please refer to [13]. 

Based on the mapping created to translate OBGG 
specifications into simulation models, we also created a 
mapping to generate code for a mobility support 
platform. This way, it is possible to specify an 
application, simulate it and generate code to execute 
the application in a real environment [3].  

3. A Case Study 

In this section we describe the case study we used as 
example throughout the paper. We developed an active 
network architecture with mobile components. Active 
networks are very flexible in terms of configuration 
and demand an intense use of code mobility. Because 
of its inherent complexity, performance analysis of 
such cases becomes almost not feasible using other 
methods, such as analytical ones, due to the state space 
explosion. Therefore, this is an interesting case for 
performance evaluation through simulation. Moreover, 
since active networks are an emerging area, we believe 
that there is a lack of simulation and analysis tools, and 
that our work could contribute in this aspect too. 

Active networks [11] are named active because the 
routers, in such network, can perform computations 
according to user code carried by packets received by 
them. This way, the user has the possibility of 
“programming” the network, providing the programs to 
be used by the routers to execute their computations. 
Programs can be dynamically inserted in the network 
nodes in order to configure them according to 
requirements of applications.  

The architecture considered is composed by: 
- Active nodes: are the nodes of the network and 

can send and receive capsules in unicast and 
broadcast modes; 

- Capsules: represent the packets transferred over 
the network. They can carry data and code. Each 
type of capsule is handled by a service;  

- Service: are entities that own the code to be 
executed with the data of a specific type of 
capsule, handling it. Services execute in active 
nodes and serve specific types of capsules; 

- Code bases: are entities that maintain the 
available services. They provide instances of 
services to active nodes. 

 
Each entity of the described scenario was mapped to 

an OBGG entity. Active nodes were mapped to places 
(static) whereas capsules, services and code bases were 
mapped to mobile components. According to the 
classification presented in [11], this architecture 
follows the active nodes approach, where the capsules 
carry only the identification of the service they require 
to process their data.   

On top of this architecture we developed the 
Dynamic Source Routing (DSR) [12]. The DSR 
algorithm was developed to route packets between 
nodes of an ad hoc network, whereby the path through 
the network that a packet must follow from the origin 
to the destination node is determined before sending 
the packet. The algorithm is composed by 2 
mechanisms: the route discovery and the route 
maintenance. Route discovery is the mechanism used 
by a node to dynamically discover a route to a 
destination node. Discovered routes are stored in a 
route cache (RC). Route maintenance is the mechanism 
used to detect changes in the network topology, i.e. 
some known routes become invalid or new routes are 
available. 

For exemplification and explanation purposes, we 
present an excerpt of the specification of the DSR 
algorithm, showing some rules. Due to space 
limitations, we do not present the complete 
specification (for more information please refer to [3]).  

When the application has started, data capsules need 
to be routed from one node to another using the DSR 
sevice. The rule of Fig. 1 defines that when the DSR 
service receives a message Packet from a data capsule 
(Packet2), it checks if it is the destination of the 
capsule and it looks for a route to the destination node 
in its cache. If it is not the destination (hid <> d), it 
does not know a route to the destination node (not 
rc.isInList(d)) and this capsule has not been already 
routed (rt.isEmpty(), where rt represents the 
information of a route to follow), then this rule is 
applied. The rule application causes the generation of a 
route request capsule (the dashed entities represent 
entities that are created by the rule application), that is 
initialized with the identification of the node that is 
requiring a route, the identification of the destination 
node to be found, the information of the service that 
will handle this capsule (DSR service) and other 
control information. The route request carries the 
information of which nodes it passed through (attribute 
route). So, the identification of each node visited by 
the request capsule is put in the route information. The 
node that generates the request, includes itself in the 
route (rt.add(hid)), meaning that it is the first node in 
the route. 

The route request is sent in broadcast by the node. 
This way, neighbor nodes in the network receive the 
request and verify if they have a route to the 
destination node in their caches. If a node knows a 
previous route to the destination, it sends a reply to the 
request source node informing the route. If no route is 
known, it propagates the request in broadcast to all its 
neighbors. When the request reaches its destination, the 
rule TargetFound is applied. This rule is presented in 
Fig. 2. 

Once the destination node receives the request, it 
generates a route reply capsule, which receives the 



route from the origin of the request to the local node 
and is sent back to the origin through the inverse route 
followed by the request. 

The route reply is forwarded by the intermediate 
nodes until it arrives at the request origin node. When 
the origin node receives the route to the destination, it 
sends the data capsule through the route obtained. This 
route is stored in the local cache, so next capsules with 
the same destination can be routed without executing 
the route discovery process. The reception of route 
reply enables the application of rule GetReply (Fig. 3). 

The capsule is then forwarded through the nodes 
contained in its route information. 

When it arrives at the destination node, the DSR 

algorithm for this capsule is over. 
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4. Applying Simulation to our Case Study 

Simulation models can be used to achieve an early 
representation of mobile applications, allowing the 
developer to reason about their behavior even before 
their implementation. The ability to resemble various 



scenarios and conditions involving the components of 
the application makes it possible to identify errors that 
would be hardly detected when testing the real system 
execution, especially if one consider open systems with 
mobile components. Our simulation environment 
provides these benefits, allowing one to consider also 
specific aspects such as locality, mobility and failures, 
which are of importance for mobile applications in 
open systems. 

While developing our case study (see section 3) 
relevant specifications errors could be found during the 
specification phase, like for instance: sending a 
message to an entity that is not able to handle it; wrong 
definition of conditions of a rule; dead-lock and live-
lock situations, among others.  

In the following sections, we discuss performance 
measurement of mobile applications through 
simulation, as well as representation of selected 
failures in the simulation model in order to reason 
about the system behavior in the presence of failures. 

 

4.1. Performance Evaluation 
 
Simulation can also be used to analyze the expected 

performance of an application. Although it is possible 
to develop analytical models for mobile applications to 
obtain performance indexes, we can analytically 
represent and analyze only simple applications, with 
low degrees of concurrency, and abstracting from 
various aspects that may be of interest. When 
applications are more complex and we want to analyze 
their behavior in detail, then it is not trivial to 
formulate these applications analytically. Having the 
ability to simulate our specifications makes it possible 
to investigate more complex situations, in a degree of 
abstraction that may satisfy our expectations, and 
turning the analysis process much more comfortable to 
the developer. 

According to the abstractions of our formal 
specification language, components can be mobile or 
not, and communicate through asynchronous message 
passing. Message passing may be local (mobile 
components in the same place, mobile component 
communicating with its current place) or remote. 
Assigning appropriate delays to local and remote 
messages delivery, as well as to the migration of a 
component, allows the developer to represent the 
latency of network links, the amount of time necessary 
to transfer messages and mobile components and other 
time consuming operations. This makes it possible to 
compare the performance of different strategies of 
distribution and mobility in different situations of the 
environment. For instance, different delays according 
to network conditions (congestion, low traffic, light-
loaded, etc.). 

As discussed in Section 2, the OBGG simulator has a 
special entity called kernel that controls the simulation 

time and is responsible for passing the messages 
between entities. Since we have the delays of local and 
remote communication and migration informed to and 
handled by the kernel, we can use the kernel to obtain 
various performance indicators. Some of them are 
generic and can be obtained for all mobile applications 
through the simulator support, without introducing any 
control in the application. The generic information 
provided by the kernel is: 

 
- the total time consumed in local communications; 
- the total time consumed in remote 

communications; 
- the total number of local messages generated; 
- the total number of remote messages generated; 
- the average time spent in local communications; 
- the average time spent in remote communications; 
- the total number of migrations occurred; 
- the total time spent in migrations; 
- the average time spent in migrations; 
- the application execution total time. 
 
Communications that occur at the same simulation 

time (in parallel) are accounted once (the one that lasts 
longer) for the application. The generic performance 
information is calculated based on the values given by 
the developer to the delays associated to the messages.  

The delay for delivering local messages and remote 
messages and the delay for migrating a mobile 
component are defined by the developer in the 
initialization of the kernel, that is responsible for 
adding the correct delay to the timestamp of local and 
remote messages. We are considering approaches to 
represent random values for message delivering delays, 
in order to better represent the execution of 
applications in open environments. For simplicity, we 
assume that the message delivering delay does not vary 
and we do not take into account the size of a message, 
supposing that all messages have the same size. The 
migration time can be calculated based on the size of 
the mobile component (size of its code) and on the 
latency of the network that it will pass through. For the 
analysis in this paper we have assumed that all mobile 
components have the same size.  

Besides the generic information, the simulator 
generates a log file containing all events occurred 
during the simulation of an application. Other specific 
information for an application can also be obtained. 
However, since this information is application 
dependent, the developer would need to include 
explicit controls in his/her application in order to 
obtain the expected performance values. 



4.1.1. Performance Evaluation Results for the Case 
Study 

The tests with the DSR algorithm working over the 
active network architecture were done using the logical 
topology presented in Fig. 4. 

The 10 nodes involved in the topology were active 
nodes. Besides these 10 nodes, a node N0 was created 
to host the network code base. An instance of the DSR 
service was created in node N0 when the application 

was started. No other node initially owned this service, 
so when a node received a DSR capsule for the first 
time, it had to ask the code base for an instance of DSR 
service in order to handle the capsule received. 

The performance measurements of the DSR 
algorithm over the active network with the topology of 
Fig.4 involved the generic information provided by the 
kernel as well as specific indexes gathered through the 
introduction of control points in our application. These 
specific performance indexes were calculated for each 
node of the network were: 

 
1. Total number of capsules handled; 
2. Average time spent to handle a capsule: 

average interval of time from the reception 
of a capsule to the time the required service 
is provided to the capsule; 

3. Total time spent to install the DSR service: 
interval of time from the request of a DSR 

service instance to the code base until the 
installation of the service; 

4. Utilization: Amount of application time that 
a node spent handling capsules; 

5. Average time to route discovery: average 
interval of time to find a route for a capsule. 

 
In order to obtain performance indexes for our 

application, we generated 3 data capsules to be routed 

from each one of the 10 nodes to other 3 different 
nodes. We assumed that a local message takes 5 units 
of time (u.t.), a remote message takes 10 u.t. and a 
migration of a component is assumed to take 30 u.t. 
These values were arbitrarily chosen. The simulator 
allows the developer to select the delays he/she wants 
to use in the beginning of the simulation. The results of 
simulation can be seen in Table 1 (generic information) 
and Table 2 (application specific information). 

N 1

N 2

N 3

N 4

N 5

N 6

N 7

N 8

N 9 N 10

Fig. 4. Logical topology used to simulate the execution of the DSR algorithm. 

We can observe in the results provided by the 
simulator one of the advantages of using mobility: the 
number of remote communications is much smaller 
than the number of local communications (see Table 
1). In our scenario, we had a great number of 
migrations, what was expected once that our 
application demand intense mobility. 

Looking at the nodes utilization (Table 2), we can 
identify which nodes are more visited by the capsules. 
In our testing scenario, we could see that node N3 is 

G e n e ric  p e rfo rm a n ce  i n d e x e s                                 
Tota l n um be r o f lo c a l c om m unic at ion s 2 34 47

Table 1. Results of generic performance evaluation of the mobile.application. 

Tota l t im e  s pe nt in  loc a l c om m un ic a t ion s 1 416 0 u . t .
A verag e t im e for loc a l c om m un ic a t io ns 5 u . t .
Tota l n um be r o f rem ot e c om m u nic a t io ns 3 11 4
Tota l t im e  s pe nt in  rem o te c o m m u nic at io ns 1 123 4 u . t .
A verag e t im e for re m o te  c o m m u nic at ions 10  u . t .
Tota l n um be r o f c om po ne nt  m igra t io ns 67 3
Tota l t im e  s pe nt in  m ig ra t io ns                      951 5 u . t .
A verag e t im e t o  m igra te  a  c o m p on en t 30  u . t .
A p p lic a t io n  ex ec u t io n t o t a l t im e                  3 490 9 u . t .

Performance indexes for nodes N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
Total number of capsules handled   96 109 118 63 61 74 37 54 54 26
Average time to handle a capsule (u.t.) 103,9 118,9 118,98 103,33 103,28 103.58 87,57 103,06 101,11 86,54
Average time to install service (u.t.)       9975 12960 14040 6510 6300 7665 3240 5565 2730 2250
Node utilization (%)                             28,57 37,13 40,22 18,65 18,05 21,96 9,28 15,94 15,64 6,45
Average time to route discovery (u.t.)    3875,67 5879,33 3971,67 6246 3131 5663,33 4331,67 6010 7180 6716,67

Table 2. Results of application specific information. 



the node with the highest utilization. Considering a real 
environment, this information could be used to detect 
possible bottlenecks in the topology. 

Another interesting information is the time spent to 
install a service. In our scenario we have one code 
base, which owns the services available in the network, 
at a separate node, called N0. We suppose this node to 
be equidistant from all network nodes. So, in this case, 
the distance between the node and the code base does 
not influence the time spent to install the service. 
Therefore, the time spent to install the service is 
basically determined by the concurrent requests to the 
code base. Nodes will receive the requested service 
faster or slower depending on the number of requests 
the code base has to answer. Using simulation, we 
could analyze the performance gain of a strategy for 
code base replication. 

The average time of a route discovery process (Table 
2) is totally dependent of the target node. So, the 
results are a consequence of the origin and destination 
nodes we chose for the capsules we generated. 

 
4.2. Failure Simulation 

 
In order to be able to reason about mobile 

applications for open systems, we have first to 
formalize important features of open systems and then 
consider our application under development in the 
presence of these features. One important feature of 
open systems is the presence of partial failures. In this 
section we show that it is possible to represent various 
classical failure models in terms of our formal 
specification language. Also, we show that we can 
introduce the behavior of selected failure models in an 
application specification. With this, we achieve a 
specification that combines the behavior of the desired 
application in the presence of selected failures, 
allowing to reason about the robustness of the 
application as well as detection and tolerance 
mechanism. 

The formal definition of failure, according to [16], is 
based on the observation that a faulty behavior of a 
process is just another kind of a (programmable) 
behavior. Moreover, a failure can be seen as an 
unwanted state transition of a system. These unwanted 
state transitions can be modeled through the use of 
additional (virtual) logical variables, acting like guards 
to activate specific commands (guarded commands). In 
this case, a group of guarded commands represents a 
specific failure model (the manner components of a 
system can exhibit a faulty behavior), being activated 
whenever its associated guard is satisfied, by the 
assignment of the true value to it. 

Formally, a failure model is a function that maps a 
program A without failures into a program A’ with 
failures [16]. This mapping can be done through the 
insertion of guarded commands, where each of these 

guarded commands, when activated, adds some 
particular failure behavior to the original program A.  

The failure models considered in our work are: 
 
- Crash; 
- Fail-stop; 
- Send Omission; 
- Receive Omission; 
- General Omission; 
- Byzantine. 

4.2.1. Representation of Failure Models 

Now we explain the failure representation 
methodology we have developed in our work, giving 
examples as means to clarify important concepts and 
show how to insert failures into an application. 
Although we consider the failure models mentioned 
above, due to space restrictions we will show the 
specifications only for the Crash model. The other 
failure models are similar and will be described 
textually. Crash means that a process fails by halting 
[17 apud in 16], and all other processes are not warned 
about the failure. 

We adopted the same approach in [16] of mapping a 
to map a program A into an A’ with failure behavior. 
Here, a graph1 G representing a system without failures 
is translated into a graph G’ representing a system with 
a selected failure model. Since our specification 
formalism supports implicit parallelism and is 
declarative, it is very suited to represent guarded 
commands (as introduced in [16]): the left-side of a 
rule corresponds to the guard of a command; applying 
the rule transformation (according to the right side) 
corresponds to executing the guarded command.  

In order to control the activation and deactivation of 
failures in the various entities of our mobile 
applications, we have extended the basic Place and 
MAgent entities with functionality for failure 
representation and named these extensions FPlace and 
FMAgent. Fig. 5 shows the FPlace type graph and Fig. 
6 shows the FMAgent type graph. Only the messages 
and attributes relevant to the Crash model are shown.  

The FPlace and FMAgent type graphs show the 
messages needed to activate and deactivate the crash 
behavior on those entities.  Also, the down attribute 
represents the guard for a Crash failure model. 

Now we show how these messages and guard 
attributes are used in the rules describing the crash 
behavior. The rules are showed in Fig. 7 - 9. The 
MACrash rule (Fig. 7) specifies that, when receiving a 
Crash message with a specific time parameter f, the 
FMAgent updates its down attribute to true and 
programs an UnCrash message for itself for the current 
simulation time + f, where f represents the time interval 
                                                        
1 Whenever we mention “graph” in this section, we are 

referring to an OBGG graph. 



the entity will be crashed. We can optionally represent 
a crash forever if needed. After the simulated time 
interval f, the failure behavior will be turned off, which 
is the goal of the MAUncrash rule (Fig. 9). That rule 
specifies that, when receiving an UnCrash message, 
the FMAgent deactivates its guard (down = false) 
proceeding its execution without the crash failure 
behavior. 

While the down guard is true, i.e. the failure is 
activate, the guarded command represented by the rule 
scheme MACrashed (Fig. 8) may apply if a message 
arrives. A rule scheme is a rule structure that is 
expected for a set of concrete rules that follow that 
scheme. Here we are modeling crash in a way that is 
application independent. However, in order to specify 
the behavior of an entity when it receives a message 
and it is crashed, we need somehow to represent the 
application messages that an entity may receive, 
independently of what messages a specific entity may 
handle. In rule scheme MACrashed, Message_In 
represents any application message that the developer 
may specify for an entity, stating that when the crash is 
activate the behavior will be to discard the application 
messages.  

When translating graph G into G' with failures, for 
each message Mi that an entity may receive (Mi 
specified by the developer of the mobile application), 
there will be a rule derived from this scheme where 

message Mi will take the place of Message_In in the 
scheme. 

In order to clarify the concept of rule scheme and 
show how to insert failures into an application, we 
exemplify the creation of a concrete rule following the 
MACrashed rule scheme in Fig. 8. The rule of Fig. 10 
states that if a Reply message is received by DSR and 
down is true, then nothing happens in DSR and no 
messages are generated.  Other rules like Fig. 10 
should be inserted in the model for each message that 
DSR may receive. 

Up to now we considered the representation of a 
failure and the insertion of additional rules to the 
application that represent the behavior when the failure 
is activate. Since the semantics of our formalism 
(OBGG) is declarative and inherently parallel and our 
simulation environment supports these features, the 
additional rules are simply put together with the 
application rules. The environment is responsible to 
find the appropriate matches and to apply the 
appropriate rules.    

We still have, however, to introduce an additional 
guard in each application rule. This is because, in case 
of a crash and a message received by the application, 
up to now, we have both the application rule 
(representing the application behavior on reception of 
that message), for example the rule in Fig. 3, and the 
generated rule enabled (representing the failure 
behavior on reception of that message), presented in 

Fig. 5. FPlace type graph. 

Fig. 6. FMAgent type graph. 



Fig. 8. In this case, in our environment, the choice of 
which rule is applied is non-deterministic.  

Since in the crash failure model we want to have the 
failure behavior and not the applications behavior, we 
introduce an additional guard in each application rule, 

stating that it matches only if there is no crash. Fig.11 
shows the result of adding a guard (down = false) to 
the rule of Fig.3. 

The presented process of rule creation 
(FailedGetReply) and transformation (GetReply to 

Fig. 11. UnFailedGetReply rule. 

Fig. 7. MACrash rule. 

Fig. 8. MACrashed rule sheme. 

Fig. 9. MAUncrashed rule. 

Fig. 10. FailedGetReply rule. 



UnFailedGetReply) exemplifies the failure insertion 
process for a FMAgent or any derived entity, like DSR. 
Rule creation should take place for each incoming 
message, while rule transformation should take place 
for each original rule of the application. For inserting 
failures in a Fplace or any entity that extends it, the 
same process is applied. However, there are some 
intrinsic differences among the way a FMAgent and a 
FPlace drive the failure process. For a failed FMAgent, 
representing the crash failure behavior is just as 
described before. 

Since a FPlace may host FMAgents, then it has to 
propagate the failure to all of them before it turn itself 
failed. This is done by sending a Crash message to 
each FMAgent hosted. After sending the last Crash 
message, FPlace activates its guard and starts the 
failure behavior.  

Deactivating a FPlace failure behavior is done 
analogously.  FPlace will propagate UnCrash 
messages to all the FMAgents it hosts and then 
deactivate its own guard. In our work, we represented 
other failure models beyond the Crash model. These 
failure models are Fail-stop, Send Omission, Receive 
Omission, General Omission and Byzantine. Generally 
speaking, the representation of these other models 
follows the same scheme as for the presented Crash 
model. That means that for each model, we used a 
distinct guard and guarded command(s) to represent 
the faulty behavior. Note that, because General 
Omission is a combination of the Send and Receive 
Omission models, it can be simply performed through 
the simultaneous activation of the two last models, 
dispensing an own guard and guarded command(s). 
The same is true for the Byzantine model, which is the 
combination of all other failure models mentioned [16].  

5. Final Remarks 

We presented some uses of a simulator that offers a 
mapping from OBGG specifications to simulation 
models. The formal proof of this translation is a current 
work. We developed several mobile applications and 
the simulated behavior was always coherent to the 
formal specification, indicating that the simulation 
code is correct. The simulator here discussed has 
demonstrated to be very suitable not only to be used as 
tool to test specifications in OBGG, but also to provide 
performance information. We could also note that we 
could introduce selected failure behavior into an 
application in a straightforward manner. Currently, we 
are making experiences on the use of the simulation to 
analyze faulty applications. 

Through the analysis of the case study developed, we 
could identify interesting aspects of the application 
(such as possible bottlenecks) and we could also take 
conclusions such as the presented in the previous 
section. 

We are currently working towards an integrated 
environment supporting the graphical specification, 
simulation and code generation for OBGG. Also, there 
is current work in the translation of OBGG to pi-
calculus. This could be a starting point to provide 
verification of OBGG specifications, since we could 
use verification environments for pi-calculus. This 
topic needs further investigation. 
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