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Abstract We present an efficient approach for high-
quality non-blind deconvolution based on the use of

sparse adaptive priors. Our regularization term enforces
preservation of strong edges while removing noise. We
model the image-prior deconvolution problem as a lin-

ear system, which is solved in the frequency domain.
Our approach’s clean formulation lends to a simple and
efficient implementation. We demonstrate its effective-
ness by performing an extensive comparison with exist-

ing non-blind deconvolution methods, and by using it
to deblur actual photographs degraded by camera shake
or motion. Our experiments show that our solution is

faster and its results tend to have higher peak signal-
to-noise ratio (PSNR) than the state-of-the-art tech-
niques. Thus, it provides an attractive alternative to

perform high-quality non-blind deconvolution of large
images, as well as to be used as the final step of blind-
deconvolution algorithms.

Keywords non-blind deconvolution, adaptive priors,

deblurring, computational photography.

1 Introduction

Deconvolution is a fundamental operation in image pro-
cessing, with applications spanning a large number of
areas, ranging from microscopy [27] to astronomy [28].
In computational photography, deconvolution algorithms
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are at the heart of several techniques, including depth
estimation from single photographs [19,12], defocus

deblurring [37], and motion deblurring due to camera
shake [11,26,4,6] or object movement [25,20].

Image deconvolution tries to obtain a sharp image
f having as input a blurred version g, and possibly
a convolution kernel h. If h is available, the process

is called non-blind deconvolution. Both blind and non-
blind deconvolution are highly ill-posed problems, ac-
cepting a large or infinite number of solutions. Given
its importance, image deconvolution has received sig-

nificant attention from the image and signal processing
communities [1,5]. Recently, several techniques explor-
ing natural-image statistics to constrain the problem

have been proposed [18,26,33,16]. They exploit the use
of a sparse distribution of image derivatives as natural-
image priors and achieve good results for non-blind im-
age deconvolution.

We present an efficient approach for high-quality
non-blind deconvolution that is faster and whose results

tend to present higher PSNR than the ones obtained
with state-of-the-art methods. Our solution is based on
a regularization technique using sparse adaptive priors,
and its clean formulation lends to a very simple imple-
mentation. A key aspect of our technique is a formula-
tion for the sparse image-prior deconvolution problem
that can be expressed as a linear system and, therefore,
be efficiently solved. Our adaptive priors penalize small
derivative values, which tend to be associated to noise,
but preserves large derivatives associated to image bor-
ders. Due to its efficiency and high-quality results, our
approach is an attractive alternative to perform non-
blind deconvolution of large images, as well as to be

used as the final step of recent blind-deconvolution al-
gorithms, such as [11,26,6].
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Fig. 1 Examples of non-blind deconvolution obtained with our method. The blurred images on the left (lighthouse) and
bottom right (parrot) were created convolving two images from the Kodak Lossless True Color Image Suite with the 19× 19
blur kernel of Krishnan and Fergus [16] and adding 1% of Gaussian noise. The results recovered by our method are shown
on the center and on the top right, respectively. Note the proper reconstruction of fine image details. For these color images
(768× 512 pixels) our method takes approximately 0.82 seconds using a MATLAB implementation on a 3.4 GHz i7 CPU.

We demonstrate the effectiveness of our approach

by performing extensive comparisons against existing
methods, and by using our technique to deblur actual
photographs degraded by camera shake or motion. Fig. 1
shows examples of deconvolved images obtained with

our technique. Note how fine details in the lighthouse’s
handrail and on the parrot’s head are properly recon-
structed. They illustrate the ability of our technique to

produce high-quality deconvolutions.

The contributions of our work include:

– An efficient approach to perform high-quality non-
blind deconvolution based on adaptive-prior regu-
larization (Section 4). Our approach is faster and
its results tend to present higher PSNR than state-
of-the-art methods. It also has a simple implemen-
tation;

– A formulation for the sparse image-prior deconvolu-
tion problem that is expressed as a linear system and
efficiently solved in frequency domain (Section 4);

– A padding technique to allow deblurring to be per-
formed using frequency domain deconvolution with-
out introducing border ringing artifacts (Section 4.1).

2 Related Work

There is a substantial amount of literature on image
deconvolution. Here, we discuss the non-blind image-
deconvolution techniques that are closely related to ours.
For a review of blind-deconvolution methods we refer

the readers to [5], whereas a discussion of classical non-
blind-deconvolution algorithms can be found in [1].

Recently, several techniques exploring natural-image
statistics as image priors to constrain the deconvolution
problem have been proposed [18,26,33,14,16]. Levin et
al. [18] discuss the use of both Gaussian and hyper-

Laplacian priors. Gaussian priors lend to a linear sys-
tem that can be efficiently solved, but tend to introduce
excessive blurring and ringing artifacts. Better results

are achieved with hyper-Laplacian priors, which require
solving a non-convex optimization problem. Levin et al.
approximate its solution using iterative reweighted least
squares (IRLS) [29], a process typically taking hundreds

of iterations to converge.

Shan et al. [26] separate convolution from other op-
erations, performing the former in frequency domain.
Their technique is faster than Levin et al.’s IRLS ap-
proach, but still about ten times slower than ours.

Yuan et al. [34] use a multi-scale approach for image
deconvolution intended for reducing the occurrence of
ringing artifacts. The inter-scale step of the algorithm
combines Lucy-Richardson deconvolution [23] with bi-
lateral filtering [32]. At each scale, an iterative residual
deconvolution is performed. While the method succeeds

in reducing rings, it suffers from the same sensitivity to
noise as Lucy-Richardson, and requires a large number
of parameters (ten).

Joshi et al. [14] use local color statistics as priors
for deblurring and denoising. The technique uses hyper-

Laplacian priors, and the solution of the resulting non-
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convex optimization is also approximated using IRLS,
which affects its performance.

Two related techniques were presented by Wang et
al. [33] and by Krishnan and Fergus [16]. Both meth-
ods exploit half-quadratic minimization (HQM) [13] for
accelleration. HQM is a technique that replaces a non-
convex minimization problem with a new one that has
the same global minimum, but is easier to compute.
This new problem can be split into two parts containing
decoupled variables, which are jointly optimized using
alternating phases. Wang et al. [33] showed how HQM
can be applied to image deconvolution using total-varia-
tion (TV) regularization. A variant of their method us-
ing a Laplacian (`1) prior is also available.

The technique by Krishnan and Fergus [16] uses a
hyper-Laplacian prior. Their second phase of the HQM
requires estimating the values of two variables, for which
they present two alternative solutions: an analytical (re-
stricted to the hyper-Laplacian values of α = 1/2 and
α = 2/3), and one based on a lookup table (LUT) con-
taining 2.56-million entries. The LUT approach is pre-

ferred, as it is about 5 times faster than the analytic
one, while supporting any value of α (by interpolation).

Cho et al. [8] try to enforce that the reconstructed
image has a gradient distribution similar to the ref-
erence one. Their approach tends to better reproduce
mid-frequency textures, but the resulting PSNRs are

lower than those obtained using other methods.

In contrast to all previous approaches, our technique

is based on a sparse adaptive-prior regularization and
solved as a linear system. Our priors are adaptive in the
sense that they are based on estimates of the image’s

derivatives. We present a comprehensive comparison
of non-blind deconvolution techniques and show that
our method is faster and our results tend to achieve
higher PSNR than previous solutions.

3 Image Capture and Deconvolution

The image-capture process is traditionally modeled as
the convolution of a blur kernel h with an ideal sharp

image f, plus some noise n:

g = h⊗ f + n. (1)

Assuming n is a Gaussian white-noise process consist-
ing of independent random variables, g is the realization
of a random array with probability distribution deter-

mined by the ideal image f and kernel h. The random
variables gi,j are independent and normally distributed.

Given the ill-posed nature of the problem repre-
sented by Eq. (1), it can be stably solved using regu-

larization methods [31,9]:

f̂ = arg min
f

(δDATA(f) + λ δREG(f)). (2)

Here, f̂ is an estimate of f. The first term in Eq. (2) en-
forces faithfulness to the captured image g (data), while
the regularization term adds some penalty based on
constraints imposed on f. λ defines the relative weights
for the two terms. For the data term, the negative log-
likelihood (i.e., − log p(f|g, h)) is the natural choice.
Thus, given the image degradation model with white
Gaussian noise of Eq. (1), the data term is often mod-
eled as δDATA(f) = ||h ⊗ f − g||22, where || · ||2 is the
`2 norm. If the regularization term is also quadratic,
Eq. (2) can be evaluated as a linear system obtained
from the corresponding normal equation.

4 Efficient non-Blind Deconvolution

Our goal is to obtain a sharp image f̂ that explains the

acquired image g under convolution with kernel h, such
that f̂ qualifies as a natural image. To avoid exces-
sive blurring and remove noise, we formulate our prior
in such a way that it preserves strong edges, while pe-

nalizing ones below a given threshold (noise level). We
express Eq. (1) in matrix form as:

g = h f + n, (3)

where h is a square matrix representing the linear con-
volution operation with h. Terms g, f , and n are vec-
torized versions of g, f, and n, respectively (Eq. (1)).
Assuming that the captured image g has R rows and

C columns, h is an (R × C)-square matrix, and f , g
and n are column vectors with (R × C) elements. Our
approach then computes f̂ as:

f̂ = arg min
f

δ(f), (4)

δ(f) = ||hf − g||22 +
5∑
s=1

λs ||ds f − ws||22, (5)

where f , h and g have the same meaning as in Eq. (3).
The matrices ds, s ∈ {1, .., 5}, represent the first and

second-order-derivative filter operators: dx, dy, dxx, dyy
and dxy, respectively. λs are positive weights, and ws
are the expected or specified responses of these filters
for the ideal image f (i.e., ws = ds f). The use of ws
in Eq. (5) allows us to specify a set of priors on the
derivatives of f . Thus, let τ be a threshold represent-
ing some noise level, and let dfi,j = (ds f)i,j be some
derivative of image f at pixel coordinates (i, j). For
such a pixel, we let ws = 0 if |dfi,j | < τ ; otherwise,
ws = dfi,j . Thus, Eq. (5) selectively penalizes the oc-
currence of pixels with small derivatives (considered as



4 Horacio E. Fortunato, Manuel M. Oliveira

noise), while preserving strong edges. We solve Eq. (4)
by differentiating Eq. (5) with respect to each desired
pixel fm, and requiring the resulting expressions to be
zero. This produces the following linear system, where
2T indicates matrix transpose:

(hTh +
5∑
s=1

λsd
T
s ds) f̂ = hTg +

5∑
s=1

λs d
T
s ws. (6)

Eq. (6) can be rewritten as

a f̂ = b, (7)

where

a = hTh +
∑5
s=1 λs d

T
s ds,

b = hTg +
∑5
s=1 λs d

T
s ws.

(8)

The square matrix a is a convolution operator, as it is
the sum of products of convolution operators. Eq. (7)
can be expressed in the frequency domain as

A ◦ F̂ = B, (9)

where

A = H∗ ◦ H +

5∑
s=1

λs Ds
∗ ◦ Ds, (10a)

B = H∗ ◦ G +
5∑
s=1

λs Ds
∗ ◦ Ws. (10b)

Here, 2∗ represents complex conjugate, and ◦ is the
element-wise matrix-product operator. B = F(b), H =
F(h), G = F(g), Ds = F(ds), and Ws = F(ws) are the

frequency domain counterparts of b, h, g, ds, and ws,
respectively. F(·) is the Fourier transform operator. f̂
can then be obtained as

f̂ = F−1(B ./A), (11)

where ./ stands for element-wise matrix division. Now,
it is instructive to analyze some properties of Eq. (5):

– If all ws coefficients are set to zero, it reduces to a
standard Tikhonov regularization (i.e., the Gaussian-
prior formulation of Levin et al. [18]), which intro-
duces ringings and other distracting artifacts;

– On the other extreme, if one could know in advance
the derivatives of f and use them as ws, Eq. (11)
would give a very good approximation to f . The
quality of such an approximation is limited by the
standard deviation of the noise added to g (Eq. (1)).

Thus, it is key to our approach to obtain an accurate
estimate of ws, the derivatives of the ideal image f ,
which, of course, is not available. We solve this problem
using a four-step process, which is illustrated in Fig. 3
and Algorithm 1:

Algorithm 1: Our non-Blind Deconvolution

Data: g: captured image, h: blurring kernel,
λs: regularization weights
Result: f̂ : deblurred image
Step 1: Gaussian deconvolution
Evaluate f̂(0) using Eq. (10a, 10b and 11) with
Ws = 0;
Step 2: Edge-preserving smoothing filter
f̂(1) ← EPS(f̂(0)); // EPS: edge-preserving filter
Step 3: Evaluate priors
Compute ws using f̂(1) and Eq. (12);
Step 4: Actual deconvolution
Evaluate f̂ using Eq. (10a, 10b and 11) with
Ws = F(ws); // F : Fourier transform

Step 1: We obtain an initial approximation f̂ (0) to f
by deconvolving the blurred image g using stan-
dard Tikhonov regularization (i.e., ws = 0). We call
this step Gaussian deconvolution in Algorithm 1. Al-
though f̂ (0) suffers from ringings and noise, it pro-
vides a good estimate for the edges of f (Fig. 3);

Step 2: A new estimate f̂ (1) is obtained by applying
an edge-preserving smoothing filter to f̂ (0) to reduce
noise while preserving important edges (Fig. 3);

Step 3: We compute the actual regularization priors
ws (Eq. 5) as a set of sparse first and second-order
derivatives of f̂ (1) using Eq. (12) (Fig. 3);

Step 4: The deconvolved image f̂ is finally obtained

from g and ws using Eqs. 10a, 10b, 11 (Fig. 3).

The regularization priors ws are computed as

ws = Φ(ds f̂
(1)) =

ds f̂
(1)

( τ
ds f̂(1)

)4 + 1
, (12)

where ds = {dx, dy, dxx, dyy, dxy}, and the exponentia-
tion ( τ

ds f̂(1)
)
4

is element-wise. Eq. (12) gradually zeroes

the ws prior values corresponding to pixels in f̂ (1) for
which |ds f̂ (1)| < τ (see Fig. 4), thus penalizing their
occurrence in Eq. (5). Such a gradual transition is re-
quired as, according to our experience, deconvolution

results obtained by abruptly zeroing derivative values
near τ tend to achieve lower PSNR when compared to
the use of Eq. (12). There is a significant PSNR im-
provement from step 2 to step 4. For the example of
Fig. 2, PSNR(f̂ (1)) = 32.33 while PSNR(f̂) = 33.19.

4.1 Removing Border Ringing Artifacts

Frequency-domain deconvolution produces correct re-
sults when applied to images created through circular
convolution. However, the blurring introduced by the
image-capture process (Eq. (1)) does not correspond
to circular convolution. As a result, frequency-domain
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Fig. 2 Example of image deblurring using our technique.
(top) Blurry image g obtained by convolving the original
sharp image with the 19×19 blur kernel of Krishnan and Fer-
gus [16] and adding 1% of Gaussian noise. (bottom) Resulting

deblurred image f̂ . Fig. 3 illustrates the steps of Algorithm 1
with the highlighted portion of the yellow cap.

deconvolution tends to introduce ringing artifacts at
the borders of the reconstructed images [26,33,16]. To

minimize the impact of these artifacts, Krishnan and
Fergus [16] use edge-tapering operations, and Shan et
al. [26] use a technique by Liu and Jia [22]. Since the
problem is restricted to image borders, we use a sim-

pler, but effective solution: pad the input image before
performing deconvolution, and crop its result to remove
the extra pixels (Fig. 5). Padding is done by replicating
the image’s first and last columns and rows k times.
The minimum value for k should vary with the size of
the kernel h. In all of our experiments, we use k = 2m,
where m is the maximum between the kernel’s width
and height. We then multiply the padded image by a
fading mask that gradually transitions from one, over
the original image region, to almost zero towards the
padded image borders. After deconvolution, we reverse
the process by dividing the results by the mask and
crop the image, thus removing the padding. The fading

mask has the same dimensions as the padded image,
and resembles a low-pass Butterworth filter with the

Fig. 3 Step-by-step illustration of Algorithm 1 for the high-
lighted portion of the yellow cap shown in Fig. 2 (top). Step 1:

initial approximation f̂(0) to f obtained by deconvolving the
blurred image g using ws = 0 (Gaussian deconvolution). Step

2: new estimate f̂(1) obtained applying an edge-preserving
smoothing filter to f̂(0) to reduce noise while preserving im-
portant edges. Step 3: compute regularization priors ws from
the derivatives of f̂(1); Step 4: the actual deconvolved image
f̂ is obtained from g and ws using Eq. (11).

Fig. 4 Plot of Eq. (12) for a threshold τ = 0.065. Values of

the first and second order derivatives dsf̂(1) of f̂(1), whose
absolute values are less than τ are gradually set to zero. An
example of its use is shown in Fig. 3, Step 3.2.

cutoff over the image borders:

mask(r, c) =
1

(1 + ( r−rcR/2 )2nr )(1 + ( c−ccC/2 )2nc)
, (13)

where r and c are the row and column of a pixel in the
mask, rc and cc are the mask’s central row and column,
R and C are the dimensions of the unpadded image, and
nr and nc are selected to ensure a soft transition from
1 (over the image) to almost zero at the padded im-
age borders: nr = d0.5 log((1− α)/α)/log(rc/(R/2))e
and nc = d0.5 log((1− α)/α)/log(cc/(C/2))e, where α
is the desired value at the mask borders. In our exper-
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Avoiding ringing artifacts at image borders when per-
forming deconvolution in frequency domain. (a) Original im-
age. (b) Blurred image obtained by convolving the image in
(a) with the 19× 19 blur kernel of Krishnan and Fergus [16]
and adding 1% of Gaussian noise. (c) Deconvolved image us-
ing our method without padding. Note the ringing artifacts
due to frequency-domain deconvolution. (d) Blurred image
padded and faded out on the borders. (e) The resulting decon-
volved image without ringing artifacts (before unpadding). (f)
Final deconvolved image without ringing artifacts obtained
from (e) after unpadding.

iments we used α = 0.01. The entire process is illus-
trated in Fig. 5.

5 Results

We have implemented the described technique using

MATLAB and used it to deconvolve a large number
of images. This section describes some of these experi-
ments, and provides an extensive comparison with eight

non-blind image-deconvolution techniques. They include
classical deconvolution algorithms, such as Lucy-Rich-
ardson (Lucy) and the generalized Wiener deconvolu-

tion method by Zhou et al. [37] (Zhou); Levin et al.’s
Gaussian prior (`2) deconvolution, plus several sparse-
image-prior solutions: Levin et al.’s sparse prior (`1)
deconvolution (IRLS α = 4/5) [18], Wang et al.’s [33]
total variation (TV) and L1 (`1), Shan et al.’s [26] tech-
nique (Shan), and Krishnan and Fergus’s LUT-based
approach for α = 2/3 (Krishnan LUT α = 2/3) [16]. All
comparisons were performed using software provided in
the authors’ websites. For each technique, we used pa-
rameter values that produce best quality results. For
Levin et al.’s hyper-Laplacian method, we used their
implementation that includes second-order derivatives
and 200 iterations, as it achieved higher PSNR values.
All measurements use MATLAB R2010b on a 3.4 GHz

i7 CPU, 16 GB of RAM, and Windows 7 64-bits.

We compare the various deconvolution methods us-
ing the Kodak Lossless True Color Image Suite from
PhotoCD PCD0992 [15], a dataset of 24 images (768×
512 or 512×768 pixels). The input images were blurred

using the 19 × 19 blur kernel of Krishnan and Fer-
gus [16] and received 1% Gaussian white noise. Since
these are color images, deconvolution is performed in-
dependently for each color channel. Examples of decon-
volved results from this dataset obtained with our tech-
nique are shown in Figs. 1 and 2. Note how fine details
in the lighthouse and in the parrot’s head in Fig. 1 are
properly reconstructed. Similar comments can be made
about the caps in Fig. 2. These results illustrate the
effectiveness of our technique to produce high-quality
deconvolutions.

Fig. 7 illustrates the results of the nine deconvolu-
tion algorithms applied to the image shown in Fig. 6
(right). These results show that some techniques are
more sensitive to noise: Lucy-Richardson, Zhou et al. [37],
Levin et al.’s Gaussian prior (`2) [18], and Wang et
al.’s [33] `1 and TV. Other techniques exibited higher
tolerance to noise and produced cleaner reconstructions:
Levin et al.’s hyper-Laplacian prior (IRLS), Shan et
al’s [26], Krishnan and Fergus’s [16], and our adaptive-
prior regularization method. Fig. 8 compares the his-

tograms of the first-order horizontal derivatives for some
of the results shown in Fig. 7 against the correspond-
ing histogram of the original image (Fig. 6 (left)). The

comparison includes a noisy result (Zhou et al.) and
three cleaner ones (Krishnan and Fergus’s, Levin et al.’s
hyper-Laplacian prior (IRLS), and ours). Note how the
cleaner ones closely match the distribution of small gra-

dients of the original image.

Fig. 6 (left) Original image. (right) Blurred image used as
input for the experiment in Fig. 7. It was obtained by con-
volving the image on the left with the 19× 19 blur kernel of
Krishnan and Fergus [16] and adding 1% of Gaussian noise.

As a quality metric for the deconvolved images, we

use peak signal-to-noise ratio: PSNR = 10 log10
I2max

MSE ,
where Imax is the maximum signal extent (e.g., 255
for eight-bit images), and MSE (mean-square error) is

evaluated as MSE = 1
n

∑
x [Î(x)− I(x)]

2
. Î(x) is the

deconvolved image and I(x) is the ground truth. For
color images with R rows and C columns, the summa-
tion includes the three color channels, so n = 3×R×C.

Table 1 summarizes the results of the experiment

involving the Kodak Lossless True Color Image Suite.
Our method achieves higher or same PSNR for 18 out
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Lucy-Richardson Zhou et al. Levin et al. (`2)

Wang et al. (`1) Wang et al. (TV) Levin et al. (IRLS α = 4/5)

Shan et al. Krishnan and Fergus LUT (α = 2/3) Our

Fig. 7 Comparison of nine non-blind deconvolution techniques applied to the image shown in Fig. 6 (right). The first five
techniques tend to produce noisier results, while the other ones exhibit higher tolerance to noise.

Fig. 8 Histogram of the first-order horizontal derivatives for
some of the deconvolved images shown in Fig. 7, compared
with the original one (Fig. 6 (left)). Our results reproduce the
sparse derivative distribution of the original image.

of the 24 images (i.e., 75%), against 2 for Levin et al.’s
IRLS, 3 for Krishnan and Fergus’s technique, and 1 for
Wang et al.’s total variation (TV), while being faster
than all of them (on average, 2.4× faster than Krishnan
and Fergus’s, up to 764× faster than IRLS). PSNR gain

is calculated as the difference between the PSNR of the
deblurred image and the PSNR of the blurry image.

Table 2 shows the running times (in seconds) for
the four deconvolution techniques most robust to noise

(Levin et al.’s IRLS, Shan et al.’s, Krishnan and Fer-
gus’s, and ours) applied to five color images whose sizes
vary from 256×256 to 3, 072×3, 072. The input images
were blurred by a 13 × 13 blur kernel. Our technique
is the fastest, with running times ranging from 0.16 sec
for the 2562 image, to 14.7 sec for the 3, 0722 one.

Table 3 compares the PSNR and running-time re-
sults for the nine non-blind deconvolution techniques
applied to a 768×512 color image (Fig. 2 original color
image) blurred with eight different kernel sizes, ranging
from 13×13 up to 41×41, plus 1% Gaussian noise. Our
method achieves higher PSNR for seven of the eight ker-

nel sizes. It is also faster than all methods, except for
`2, but ours achieves significantly higher PSNR.
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5.1 Camera-Motion Debluring

We have also used our technique to deblur actual pho-
tographs affected by camera motion. Examples of these
experiments are presented in Figs. 9 and 10, which show
two blurry photographs with the corresponding recov-
ered kernels (shown as insets at their bottom left), pro-
vided by Shan et al. [26]. Fig. 9 (left) shows two leaves,
whose edges and stem are barely visible. The image
on the right shows the deblurred result obtained with
our technique. Note how the edges as well as the spots
on the leaves became clearly visible. It is even possible
to identify some darker plant structures (closer to the
brick wall), which could not be perceived before.

Fig. 10 (left) shows a blurry tree. The deblurred re-
sult obtained with our technique is shown on the right.
Our deconvolved images are qualitatively similar to the
ones shown in [26]. Due to the lack of a ground truth,
however, an objective comparison between our results

and Shan et al.’s is not possible for these examples. We
encourage the reader to perform a visual inspection of
the corresponding images.

Fig. 9 Example of camera-motion deblurring. (left) Blurry
photograph with corresponding camera-motion kernel (shown
as an inset) provided by Shan et al’s [26]. (right) Deblurred
result produced by our technique. Note the clearly visible
edges and spots on the leaves.

Fig. 10 Another example of camera-motion deblurring.
(left) Input photograph and camera-motion kernel pair (by
Shan et al [26]). (right) Recovered image obtained with our
technique. Note the considerable improvement in sharpness.

5.2 Parameter Determination

The regularization parameters λs control the weight of
each derivative in the regularization term of Eq. (5). For
the experiments with the Kodak Image Suit reported in
Table 1, we used the same value of λs for all values of s
(all first and second-order derivatives). We found that
λ = 0.001 for the Gaussian-deconvolution step (Step
1 of Algorithm 1 and Fig. 3) and λ = 0.05 for the
actual deconvolution step (Step 4 of Algorithm 1 and
Fig. 3) gave the best PSNR results. These values may
need to be adjusted for other noise levels and decon-
volution kernels. As for the edge-preserving smoothing
filter, we used the domain-transform-based RF filter by
Gastal and Oliveira [10], due to its computational effi-
ciency and high-quality results. It uses two parameters:
σs and σr, the spatial and range standard deviation,
respectively. We used σs = 20 and σr = 0.033.

For the camera-motion-deblurring example shown
in Fig. 9, we used the same parameters used for the Ko-
dak Suit. For Tree example in Fig. 10, we used slightly
different parameter values: λ = 0.0001 for the Gaussian-

deconvolution step, λ = 0.01 for the actual deconvolu-
tion step, σs = 20, and σr = 0.01.

Finally, to compute our sparse priors ws (Eq. (12))

for all experiments, we used τ = 0.065 for first-order
derivatives and τ = 0.0325 for second-order ones. The
supplementary materials include the MATLAB code
and scripts used in our experiments (Tables 1-3).

5.3 Discussion and Limitations

Like other deblurring techniques, ours assumes a linear
blurring model with Gaussian white noise (Eq. (1)).
In natural images, the presence of saturated regions or
pixels with uncorrelated values tend to introduce ar-

tifacts in the deconvolved images that are common to
all deconvolution methods. A possible treatment to this
problem is presented by Cho et al. [7]. Another devi-
ation of the linear model results from the nonlinearity
of the camera response function (CRF). It is usual to
undo the nonlinearity by assuming a gamma function or
to use the raw output of the digital camera. A detailed

discussion of this subject can be found in [30].

PSNR values obtained for RGB images are slightly
higher than for grayscale ones. This is because the edge-
preserving smoothing filter that we use computes the
distance between adjacent pixels using the `1 norm in
XYRGB space. This distance is used to filter the three
channels, taking advantage of the inter-channel coher-
ence to reduce noise.
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Image
size

IRLS
α = 4/5

Shan Krishnan
LUT
α = 2/3

Our

256× 256 39.46 1.23 1.01 0.16
512× 512 154.40 5.70 1.36 0.55

1024× 1024 626.75 17.48 3.27 1.61
2048× 2048 2871.22 - 13.18 6.66
3072× 3072 5875.10 - 27.98 14.07

Table 2 Running times (seconds) for the four deconvolution
techniques most robust to noise applied to color images of
different sizes convolved with a 13 × 13 blur kernel. Shan’s
code reported an error for the 20482 and 30722 images.

6 Conclusion

We have presented an efficient approach for high-quality
non-blind deconvolution based on the use of sparse adap-
tive priors. We model the problem as a linear system
and solve it in the frequency domain. Our approach’s
clean formulation lends to a simple and efficient im-
plementation. We have performed extensive compar-

isons of our technique with eight non-blind deconvo-
lution methods, which included image-quality assess-
ment using PSNR, and running time. We have com-
pared the performance of the techniques considering

various image sizes, as well as blur-kernel sizes. We
have also used our technique to deblur photographs af-
fected by camera motion. These experiments demon-

strate the effectiveness of our solution, showing that it
produces higher PSNR and is faster than all evaluated
noise-tolerant techniques. Given such desirable proper-

ties, our technique provides an attractive alternative to
perform high-quality non-blind deconvolution of large
images, as well as to be used as the final step of blind-
deconvolution algorithms [11,26,6].
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Image
#

Blurry Lucy Zhou `2 IRLS
α = 4/5

TV `1 Shan Krishnan
LUT
α = 2/3

Our

01 21.24 23.71 26.46 26.09 26.81 26.92 26.11 26.84 27.00 27.23
02 27.83 24.64 28.42 28.07 32.15 30.49 29.39 31.92 32.01 32.25
03 28.18 24.65 28.60 28.22 33.07 30.98 29.80 32.81 32.88 33.18
04 27.00 24.59 28.51 28.12 32.05 30.34 29.27 31.72 31.78 32.04
05 20.05 23.91 26.22 26.09 26.91 27.30 26.36 26.89 27.17 27.34
06 23.23 24.29 27.14 26.81 27.85 27.79 26.98 27.90 28.01 28.18
07 24.63 24.46 28.44 28.05 31.66 30.22 29.10 31.02 31.06 32.08
08 18.30 23.71 25.49 25.27 26.30 26.41 25.56 26.33 26.71 26.58
09 25.49 24.53 28.39 27.97 32.41 30.49 29.32 32.12 32.19 32.57
10 26.19 24.60 28.47 28.06 32.57 30.65 29.47 32.23 32.36 32.44
11 23.85 24.55 27.57 27.27 29.49 28.96 28.00 29.48 29.66 29.73
12 27.60 24.65 28.47 28.10 32.56 30.71 29.61 32.30 32.42 32.73
13 19.64 23.69 25.17 25.11 25.04 25.85 24.98 25.34 25.62 25.20
14 22.94 24.38 27.50 27.22 29.02 28.60 27.69 28.93 29.04 29.16
15 27.06 25.09 28.63 28.34 32.53 30.77 29.68 32.25 32.34 32.53
16 26.74 24.35 28.09 27.69 30.38 29.43 28.33 30.30 30.34 30.60
17 25.91 24.81 28.31 27.97 31.56 30.25 29.13 31.39 31.56 31.66
18 23.06 24.43 27.29 27.03 28.70 28.52 27.54 28.77 28.92 28.74
19 22.42 24.29 27.36 26.96 29.13 28.54 27.59 28.99 29.30 29.63
20 25.41 26.15 29.31 29.02 32.42 31.41 30.44 32.24 32.47 32.54
21 23.04 24.38 27.38 27.04 28.96 28.63 27.68 28.97 29.15 29.25
22 24.88 24.58 27.93 27.63 30.33 29.42 28.45 30.24 30.33 30.36
23 27.25 24.67 28.68 28.30 33.80 31.26 30.00 33.27 33.54 34.13
24 22.00 24.33 26.69 26.51 27.98 28.21 27.13 28.17 28.52 28.09

Av. PSNR
gain

0.15 3.36 3.04 5.82 4.92 3.90 5.69 5.89 6.01

Av. Time
(secs)

5.45 1.87 0.50 626.56 5.51 62.19 8.22 (exe*) 1.99 (mex*)
3.33

0.82

Table 1 PSNR and running time for nine non-blind deconvolution techniques applied to the 24 images from the Kodak
Lossless True Color Image Suite [15]. Higher PSNR highlighted in bold. The input images were blurred using the 19× 19 blur
kernel of Krishnan and Fergus [16] and received 1% Gaussian white noise. The image numbers match the numbers in the file
names (kodim#.png). * exe and mex: Pre-compiled C code (all other measurements and techniques use pure MATLAB code).

Kernel
#/ size

Blurry Lucy Zhou `2 IRLS
α = 4/5

TV `1 Shan Krishnan
LUT
α = 2/3

Our

#1: 13× 13 29.54 24.44 28.95 28.43 33.61 31.29 30.01 30.09 33.37 33.73
#2: 15× 15 29.01 24.64 28.88 28.46 33.40 31.43 30.41 30.24 33.25 33.46
#3: 17× 17 28.57 24.81 28.80 28.46 33.17 31.41 30.48 30.05 33.04 33.26
#4: 19× 19 28.18 24.65 28.60 28.23 33.06 30.98 29.79 32.81 32.87 33.18
#5: 21× 21 27.85 25.08 28.52 28.39 32.70 31.48 30.80 32.62 32.63 32.80
#6: 23× 23 27.53 25.49 28.41 28.43 32.48 31.64 31.05 32.40 32.41 32.56
#7: 27× 27 26.96 26.40 28.36 28.56 32.11 31.73 31.23 32.04 32.00 32.20
#8: 41× 41 25.39 28.24 28.08 28.70 31.13 31.43 30.43 29.69 30.89 31.24

Av. PSNR
gain

-2.41 0.70 0.58 4.83 3.55 2.65 3.36 4.68 4.93

Av. Time
(secs)

5.32 1.73 0.47 451.95 5.91 58.21 8.05 1.96 0.80

Table 3 PSNR and running times for nine non-blind deconvolution techniques applied to the original (sharp) version of the
image shown in Fig. 2, blurred with eight different kernel sizes plus 1% Gaussian noise. Our method achieves higher PSNR for
seven of the eight kernel sizes. It is also faster than all methods, except for `2, but ours achieves significantly higher PSNR.
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