Real-Time Detection of Planar Regions in Unorganized
Point Clouds

Frederico A. Limberger, Manuel M. Oliveira*

Universidade Federal do Rio Grande do Sul
Instituto de Informdtica - PPGC - CP 15064
91501-970 - Porto Alegre - RS - BRAZIL

Abstract

Automatic detection of planar regions in point clouds is an important step for
many graphics, image processing, and computer vision applications. While
laser scanners and digital photography have allowed us to capture increas-
ingly larger datasets, previous techniques are computationally expensive, be-
ing unable to achieve real-time performance for datasets containing tens of
thousands of points, even when detection is performed in a non-deterministic
way. We present a deterministic technique for plane detection in unorganized
point clouds whose cost is O(nlogn) in the number of input samples. It is
based on an efficient Hough-transform voting scheme and works by cluster-
ing approximately co-planar points and by casting votes for these clusters
on a spherical accumulator using a trivariate Gaussian kernel. A comparison
with competing techniques shows that our approach is considerably faster
and scales significantly better than previous ones, being the first practical
solution for deterministic plane detection in large unorganized point clouds.

Keywords: Hough transform, Real-time plane detection, Unorganized
point clouds

*Corresponding author. Tel.: 455 51 3308 6821; fax: +55 51 3308 7308.
Email addresses: falimberger@inf.ufrgs.br (Frederico A. Limberger),
oliveira@inf.ufrgs.br (Manuel M. Oliveira)
URL: http://wuw.inf .ufrgs.br/ " falimberger (Frederico A. Limberger),
http://wuw.inf.ufrgs.br/~oliveira (Manuel M. Oliveira)

Preprint submitted to Pattern Recognition February 18, 2015

1. Introduction

Automatic plane detection in point clouds is a key component in many
graphics, image processing, and computer vision applications. These include,
among others, model reconstruction for reverse engineering [1, 2, 3, 4, 5],
camera calibration [6], object recognition [7, 8], augmented reality [9, 10],
and segmentation [11, 12]. The recent popularization of laser scanners has
led to an increasingly growth in the sizes of the available datasets, and point
clouds containing tens of millions of samples are now commonplace. Software
applications like SynthEzport [13] and Photosynth [14] also allow us to ex-
tract point clouds from large collections of digital images. However, existing
techniques for detecting planar regions in point clouds are computationally
expensive and do not scale well with the size of the datasets. For performance
improvement, they often exploit non-deterministic strategies, such as work-
ing on a randomly-selected sub-set of the original samples. While this can
reduce execution time, these techniques are still unable to achieve real-time
performance even on datasets containing just tens of thousands of points.
More importantly, their results depend on the selected sample sub-sets and,
therefore, there is no guarantee that all relevant planes will be detected, or
that such results will be consistent across multiple executions.

We present an efficient technique to perform deterministic plane detection
in unorganized point clouds whose cost is O(nlogn) in the number of input
samples. Our approach scales well with the size of the datasets, is robust to
the presence of noise, and handles point clouds with different characteristics
in terms of dimensions and sampling distributions. While the actual running
times depend on specific features of the dataset (e.g., the number of planar
regions), our technique is several orders of magnitude faster than previous
ones. For instance, it processes an entire point cloud with 20-million samples
(Bremen dataset) in just 2.1 seconds on a typical PC. In contrast, efficient
versions of RANSAC can take from 12 minutes to more than 2 hours to
process the same dataset, while the Randomized Hough transform takes 42.8
seconds to process only 10% of the samples.

Our technique is based on a robust and fast algorithm to segment point
clouds into approximately planar patches, even in the presence of noise or
irregularly distributed samples. For this, we use a subdivision procedure
to refine an octree and cluster groups of approximately coplanar samples.
We use the identified clusters to obtain an efficient Hough-transform voting
scheme by casting votes for each of these clusters (instead of for individual

samples) on a spherical accumulator. For voting, we use a Gaussian kernel
centered at the cluster’s best fitting plane, which takes into account the clus-
ter’s variances. In this sense, our approach extends the kernel-based voting
scheme proposed by Fernandes and Oliveira [15] using a trivariate Gaussian
distribution defined over spherical coordinates (6, ¢, p). While, at first, plane
detection in unorganized point clouds might seem as an immediate extension
of line detection in images, the lack of explicit neighborhood information
among samples imposes significant challenges, requiring new clustering and
accumulation-management strategies.

Fig. 1: Example of plane detection using our technique. (left) Museum dataset: point cloud
consisting of 179,744 samples obtained from a set of photographs using SynthExport and
Photosynth. (right) Planes automatically detected by our technique in just 0.025 seconds
on a 3.4 GHz PC. They were manually resized to better represent the original model.

Fig. 1 shows an example of planar regions detected using our technique.
The point cloud shown on the left consists of 179,744 samples obtained from
a set of photographs taken inside a museum. The samples were extracted
using SynthExport [13] and Photosynth [14]. The image on the right shows
the planes detected by our technique in just 0.025 seconds on a 3.4 GHz PC,
and illustrates the effectiveness of our approach.

The contributions of this paper include:

e An O(nlogn) deterministic Hough-transform-based technique for de-
tecting planar regions in unorganized point clouds (Section 3). Our
solution is robust to noise, and to sampling distributions. It is a few
orders of magnitude faster and scales significantly better than exist-
ing approaches. A software implementation of our technique handles
datasets with up to 10° points in real time on a typical PC;

e A fast Hough-transform voting strategy for planar-region detection
(Section 3.3). Our solution uses a robust segmentation strategy to
identify clusters of approximately coplanar samples. Votes are cast for

clusters as opposed to for individual samples, greatly accelerating the
detection process.

2. Related work

The most popular techniques to detect planes in point clouds are the
Hough transform, RANSAC, and region growing. This section discusses these
algorithms and their various optimizations intended to accelerate plane de-
tection in point clouds.

2.1. Hough Transform

The Hough transform (HT) [16, 17] is a feature-detection technique. For
any given input sample, it casts a vote for each instance of the feature one
wants to detect that could possibly contain that sample. The votes are accu-
mulated over all samples, and the detected features correspond to the ones
with most votes. The time and space complexity of the algorithm both de-
pend on the discretization used for the accumulator, whose dimensionality
varies with the number of parameters used to describe the features to be de-
tected. For instance, plane detection requires a 3-D accumulator to represent
the three parameters that characterize a plane.

The Hough transform was introduced by Paul Hough [16] for the detection
of lines in images. Today, the universally used version of the HT is the
generalized Hough transform (GHT) proposed by Duda and Hart [17], which
replaced the slope-intercept with an angle-radius parameterization based on
the normal equation of the line (1):

p=x cos(f) +y sin(0). (1)

Here, z and y are the coordinates of a sample pixel, p is the distance from a
line (passing through the pixel) to the origin of image’s coordinate system,
and 6 is the angle between the normal of the line and the x-axis. This
parameterization naturally extends to 3-D, supporting plane detection in the
(0, ¢, p) Hough Space:

p = x cos(0)sin(¢) +y sin(¢p)sin(f) + z cos(¢). (2)

In (2), z,y and z are the Cartesian coordinates of the samples, § € [0°,360°)
and ¢ € [0°,180°] are the polar coordinates of the plane’s normal vector, and
p € Ry is the distance from the plane to the origin of the coordinate system.

4

The Standard Hough transform (SHT) for plane detection uses (2) and
iterates over each sample in the point cloud casting votes in the accumulator
for all possible planes passing through that sample. More specifically, for
given z, y and z coordinates, it iterates over all combinations of # and ¢,
computing the value of the parameter p (2) and casting a vote at the corre-
sponding accumulator cell (or bin). To make the computation feasible, one
needs to discretize the 6 and ¢ parameter values (defining angular steps).
Thus, the computational cost of the SHT is O(|P|NyNy), where |P| is the
number of points in the point cloud P, and Ny and N, are the number of
bins in the discretization of the # and ¢ angles, respectively.

Given the high computational cost of the SHT, many techniques have
been proposed to accelerate its voting procedure. Common to most of these
techniques is the focus on reducing the execution time by using a subset of the
points in P, as opposed to designing new algorithms that effectively reduce the
asymptotic cost of the voting process. Next, we briefly review these strategies.

The Probabilistic Hough transform (PHT) [18] randomly selects m points
(m < |P|) and uses them, instead of the entire point cloud, for voting. Since
m is a percentage of | P|, the asymptotic cost is still O(|P|NgN,). The PHT
needs to find an optimal value for m to achieve good results. Small values
tend to cause some relevant planes not to be detected, while large values do
not result in significant reduction in execution time. As opposed to the SHT,
the PHT is not deterministic.

Finding the optimal value for m is not a simple task, as it depends on
many characteristics of the point cloud. To overcome this difficulty, the
Adaptive Probabilistic Hough transform (APHT) [19] monitors the accumu-
lator during the voting procedure. As stable structures emerge, they are
stored in a list of potential maximum cells and only this list needs to be
monitored. Since the process is adaptive, there is no need for an initial m
value. The algorithm ends when the list of potential peaks becomes stable
(i.e., when the list does not change for a few iterations). The APHT is sen-
sitive to noise, as the choice of the points is probabilistic and may lead to
the detection of planes not present in the dataset. Its asymptotic cost is the
same as SHT’s.

The Progressive Probabilistic Hough transform (PPHT) [20] tries to avoid
the influence of random noise by only detecting structures whose number of
votes exceeds a threshold defined as a percentage of the total number of
votes. Once a structure has been detected, the votes from all samples that
support it are removed from the accumulator. Like the previous techniques,

PPHT is non-deterministic and its asymptotic cost is the same as SHT’s.

The Randomized Hough transform (RHT) [21] reduces the SHT’s voting-
processing time by exploiting the fact that a plane can be defined by three
non-collinear points. The technique randomly selects groups of three non-
collinear points and casts a single vote to the accumulator cell corresponding
to the plane. This strategy significantly reduces the voting cost. However,
the technique is non-deterministic and does not scale well with the size of the
point cloud. Among all previous HT-based techniques for plane detection,
the RHT is by far the fastest one.

2.1.1. Other Hough Transform Variants

Vosselman et al. [22] proposed a two-step procedure for the Hough trans-
form, exploiting the connectivity of point clouds acquired with laser scanners
to calculate the normal vectors of the points. This way, each sample casts a
single vote. This approach is not as fast as the RHT, and its use with unor-
ganized point clouds requires estimating surface normals. Bauer and Polthier
23] use the Radon transform (continuous form of the HT) to detect planes
on a structured or unstructured grid. They use a subdivided icosahedron,
with a Hamiltonian path over the edge graph, to represent the parameter
space in order to search for all connected components. This technique re-
quires the use of a grid and its performance is similar to the SHT. More
recently, Ogundana et al. [24] used an optimized model for tridimensional
sparse matrix to accumulate votes. They propose a robust peak detection
algorithm using connected-component labeling and weighted average. Ogun-
dana et al. also showed a Hough transform optimization specific to detect
parallel planes, replacing the default accumulator by an unidimensional ar-
ray, since the planes have the same orientation. Nguyen et al. [25] estimate
normals in range images and map such normals to a sphere (a Gauss map)
to define plane orientations. Optimization is then used to segment patches
of coplanar samples in the range image. The authors demonstrated their
technique on simple box-like and polyhedral shapes.

2.2. RANSAC

Another important algorithm for performing shape detection is the Ran-
dom Sample Consensus (RANSAC) [26]. It performs plane detection it-
eratively by randomly choosing three points, calculating the plane defined
by them, and counting how many points (in the dataset) lie on this plane
within some tolerance threshold. The number of points found is called the

score of the plane. The algorithm stops when it reaches stability, based on a
low probability of finding a plane with higher score than the previous ones.
RANSAC’s computational cost for detecting a single plane is then given by
(I (E+|P|F)) = O(I|P]), where I is the number of iterations required to
detect a plane, E' is the cost of estimating a plane from three points, and F
is the cost of checking whether a point lies on a plane. While being robust
to noise, RANSAC’s random nature makes it non-deterministic. Depending
on the choice of its parameter values, the algorithm may detect planes that
are not representative of the original dataset. This is illustrated in Fig. 2 for
a point cloud corresponding to a cube. The dark gray plane was detected by
RANSAC and is one of many planes that could be detected by the algorithm.

Fig. 2: A point cloud representing the faces of a cube, shown in color. Depending on the
used parameters, RANSAC may detected spurious planes, such as the one shown in dark
gray, that do not represent the original dataset.

Schnabel et al. [27] introduced an optimization to RANSAC using an
octree to establish spatial proximity among samples. In their approach, point
selection is performed inside each node, and the score function only tests
a local subset of the samples. Since spatial proximity does not guarantee
coplanarity, the technique needs to estimate normals for the samples, and the
shapes have to be properly sampled. While this approach can significantly
accelerate RANSAC, it inherits RANSAC’s limitations, and its performance
is still far from real time for datasets with a few hundred thousand samples.

2.3. Surface Growing

The third class of techniques used to identify planes in point clouds is
surface growing [28, 29, 30, 31] — the 3-D analogue of region growing in im-
ages. These techniques perform a local search to identify and expand regions
with the same range of characteristics. Surface growing methods require in-
formation about the neighbors of each sample, not being directly applicable
to unorganized point clouds, which lack explicit connectivity information.

Recently, Deschaud and Goulette [32] proposed an algorithm to detect
planes in unorganized point clouds using filtered normals and voxel growing.
Their approach assigns a normal to each point through a normal-estimation
procedure and uses a voxel-growing algorithm based on these normals. Like
other surface-growing techniques, it is slow.

In contrast to the techniques described in this section, our approach is de-
terministic, does not require connectivity information nor information about
sample normals, and its cost is O(nlogn) in the number of samples.

3. Efficient Plane Detection in Point Clouds

This section presents the details of our technique. It has been inspired by
the efficient Kernel-based Hough transform (KHT) for straight line detection
introduced by Fernandes and Oliveira [15]. However, when dealing with un-
organized point clouds, the lack of explicit neighborhood information among
samples (which is available for images) requires new and efficient clustering
and accumulation-management strategies. In a nutshell, our technique per-
forms a fast and robust octree-based segmentation of approximately coplanar
clusters of samples. We then use the identified clusters to perform a Hough-
transform voting procedure where votes are cast by clusters (as opposed to by
individual samples) on a spherical accumulator. For voting, we use a trivari-
ate Gaussian kernel defined over spherical coordinates (6, ¢, p) and centered
at each cluster’s best fitting plane. Peak detection is then performed on the
resulting accumulator. Algorithm 1 summarizes the technique.

Algorithm 1 Plane Detection (3-D KHT) Algorithm

Require: P {point cloud}
nodes < Clustering(P) {cluster approximately coplanar samples}
: for each n in nodes do
q < kernel(n) {kernel estimation (g stores the kernel parameters)}
accumulator < accumulator + voting(q) {voting}
end for
sort accumulator cells by voting importance in descending order
iterate over accumulator detecting cells not adjacent to already inspected
ones {peak detection}

NG Wy

3.1. Clustering of Approximately Coplanar Samples

Clustering of approximately coplanar samples is key to our technique as it
optimizes the voting procedure, which is the Hough transform’s bottleneck.
For unorganized point clouds, no neighborhood information among samples
is available. For efficiency, we perform clustering by spatial subdivision. For
this, we have compared the advantages of using kd-trees and octrees. Kd-
trees provide little control over the dimensions of the nodes. According to
our experience, subdividing the kd-tree cells using the centroid of the samples
tends to lead to thin cells that do not capture the shapes of the planes in
the dataset. In contrast, all nodes at a given level of an octree have 1/8 of
the size of its parent node and better capture the structure of the planes.
Moreover, the costs of creating and manipulating a kd-tree are higher than for
an octree. For these reasons, we have chosen an octree as spatial-subdivision
data structure. It has proven to be a good choice both in terms of efficiency
and quality of the results.

The clustering procedure starts with a root node that includes the entire
point cloud, which is then recursively subdivided to refine the octree. Ex-
cept when the entire point cloud is just a plane, searching for planes in the
initial level(s) of the octree often lends to less effective computations. Thus,
the procedure only checks for approximate coplanarity among samples after
a certain level of the octree has been reached, thus minimizing processing
time. According to our experience, starting checking for approximately sam-
ple coplanarity at level 4 of the octree provides a good compromise between
performance and robustness, and produces good segmentation in practice.
The more detailed the point cloud, the more subdivisions are required, as
nodes must be small enough to contain only approximately coplanar sam-
ples. If no further subdivision is required for an octree node, that branch
stops and the node is stored as a cluster. If, on the other hand, the number
of samples inside the octree node is smaller than a threshold, the node is
marked as not containing a cluster (of approximately coplanar samples).

The procedure for clustering approximately coplanar samples is presented
in Algorithm 2. It uses descriptive statistics to analyze the data and calculate
the variances associated with the point-cloud distribution. For this, we use
principal component analysis (PCA).

Algorithm 2 Clustering

Require: n {current node of the octree }

s {settings to cluster data: S, Sicvels Sa, Sg }

Symbols

*

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Nsamples {Samples in the current octree node }
Niever {level of the current octree node}
Neoplanar 18r€ the samples in current node approximately coplanar?}
Nenitdren {children of the current octree node}
Sms {minimum number of samples required in a cluster}
Siever {first octree level for checking for approximate coplanarity}
sq {relative tolerance associated with plane thickness }
sg {relative tolerance associated with plane isotropy }
Necoplanar — false
if size(Nsampies) < Sms then
return
end if{octree subdivision step}
if Nievel = Slevel then
Y(ay,2) ¢ COU(Ngampies) {covariance matrix in (z,y, 2) space}
(Vayz, Aayz) < eigen(E(gy.2)) {eigen-decomposition }
{approximate coplanarity test }
if (A2 > s,A1) and (sgAe > A3) then
Neoplanar «— true
return
end if
end if
Nehitdren <— children(n) {initialize the node’s eight children}
for each p in nggmpres do
put p in respective child node
end for
for each ¢ in nenitgren, dO
call Clustering(c,Smp, Sievel, Sas Sg) {recursive call for node c}
end for

Since the eigenvalues of the covariance matrix associated to the set of
samples inside an octree node represent the proportions of the variances
of the sample distribution inside that cell, they can be used to filter out
clusters that could not represent planes. In order to check whether a set of

10

Fig. 3: Adaptive octree refinement and sample clustering for the Museum dataset using
Algorithm 2. From left to right, top to bottom, the first five images show the 6th, 7th,
8th, 9th, and 10th levels of the octree. The image at the bottom right shows all nodes at
different octree levels containing coplanar samples. Note that once a planar patch is found
the subdivision stops for that branch. Each color represents one detected plane, whose
reconstructions are shown in Fig. 1.

samples is approximately coplanar, two conditions are verified: the cluster
thickness and its degree of isotropy (the technique should avoid detecting
lines and thin elongated clusters as planes). Thus, let A and V represent,
respectively, the eigenvalues and the eigenvectors of a cluster’s covariance
matrix 2. These eigenvalues are non-negative and we sort them in ascending
order so that \; < A\;y1. A test for approximate sample coplanarity can
be obtained by checking if (A > s,A1) and (sgA2 > A3), where s, and
sp are scaling factors defining relative tolerances for the acceptable amount
off-plane displacement (i.e., noise) and degree of sample anisotropy on the
cluster. According to our experience, s, = 25 and sg = 6 produce good
results and have been used for all examples shown in the paper. The recursive
subdivision performed by Algorithm 2 stops when the current octree cell is
considered to contain approximate coplanar samples (i.e., Neoplanar = true,
line 9) or the cell contains less than a minimum number of samples (s, in

11

line 2). Small number of samples tend to provide less reliable estimates for
the variances of the samples. In our experience, s,,s = 30 provides a good
threshold for large point clouds.

Once an octree cell is considered to contain an approximately coplanar
sample cluster, least-squares is used for plane fitting [33] after discarding
samples at a distance bigger than 7/10 from the plane passing by the centroid
of the cluster and whose normal is given by the eigenvector with smallest
eigenvalue of X. 7 is the current octree-node edge length.

Fig. 3 illustrates the adaptive octree refinement and sample clustering for
the Museum dataset using Algorithm 2. From left to right, top to bottom,
the first five images show the 6th, Tth, 8th, 9th, and 10th levels of the
octree, respectively. The image at the bottom right shows the octree nodes
containing approximately coplanar samples. Note that these nodes might be
at different levels of the octree. A single color has been assigned to each
plane, even when it spans different levels of the octree. This is possible by
keeping track of the clusters who voted for the individual planes.

3.2. Computing Gaussian Trivariate Kernels for Cluster Voting

Let K be a cluster of approximately coplanar samples stored in an octree
node, with covariance matrix ¥, and centroid p = (g, pty,)7 (Fig. 4). Also
let V' = {01, 03,03} be the unit eigenvectors of ¥ and let A = {\1, Ay, A3} be
their respective eigenvalues, so that \; < A\;11. The equation of the plane 7
passing though p and with normal 7 = ¢; = (ng,ny,n,)" is given by:

Ax + By +Cz+D = Ny® + nyy +n.z — (nazﬂx + Ty [y + nz,uz) =0 (3>

Using (2), one can rewrite (3) using spherical coordinates as:

p=—D = iy ng + by Ny + p1, N, = \/p325+p12/+p§7
0 = arctan (&), ¢ = arccos (&), (4)
Dz P

where p € R, 6 € [0°,360°), ¢ € [0°,180°] and ' = (p.,py,)" = pii. For
6 calculation, if the angle between 77 and fi is bigger than 90°, we reverse 7n’s
sense (i.e., multiply it by —1). When voting in an accumulator indexed by
(0,6, p), the vote distribution is based on the uncertainties associated with
each cluster’s best-fitting plane 7 (i.e., the cluster’s variances aé, og, and

12

03)' A cluster with small variances concentrates its votes in a small region of

the accumulator, while a cluster with large variances spreads its votes over
a large region, like in the KHT [15].

Fig. 4: Samples approximating a planar region in a point cloud, shown with its best-fitting
plane (left). Eigenvectors of the covariance matrix 3 associated to the sample distribution
(center). Ellipsoid defined by the eigenvalues and eigenvectors of ¥ (right).

Algorithm 3 Computing Y 4, and the Gaussian kernel voting threshold

Require: X, .) {covariance matrix with respect to x, y and z coordinates}
J < Jacobian() {defined in (6)}

S(0,6.0) < J Loy, JT {cov. matrix in (6, o, p) space from X, .}

Jﬁ — af, + ¢ {add a small value to avoid zero variance}

(Vogp, Nogp) < eigen(X,4,)) {eigen-decomposition of X 4) }

Nogpmin < smallestEigenvalueln(Agy,) {smallest eigenvalue}

Vispmin < Eigenvector(Nogp.min) {normalized eigenvector of Aggp_min }
std_dev < sqrt(Xogp.min) {standard deviation}

Gmin = Gaussian(2 x std_dev X Visp.min) {threshold value for voting}

The variances and covariances defined in the (6, ¢, p) space can be esti-
mated from the covariance matrix Y, ,) defined in Euclidean space, using
first-order uncertainty propagation analysis [34] as:

2 2

Op Opp Opb O} Opy Ogs
2 T 2 T
S0 = | 0pe 0% 0pp | = IS0y " =T [00y 02 o | JT, (5)
2 2
Tpo 0o O Oz Oy. O
where J is the Jacobian matrix:
O9p 9p Ip
dp: Opy Op- Ny Ty n,
J — % a_gg % — p:vsz pypz2 _\/_25 (6)
"o 9y Op | T | VwrE Vuwp? P
00 9 o0 Py pe 0
Ops Opy Op- w w

(pw: Dy, p-) are defined in (4), @ = (ng,ny,n.)", and w = p? + p?.

13

3.8. Cluster Voting using 3-D Gaussian Distributions

Once we have computed the variances and covariances associated with
6, ¢ and p (3(9,6,0)), the votes are cast in the spherical accumulator using a
trivariate Gaussian distribution. For the multivariate non-degenerate case,
i.e., when the covariance matrix ¥ is symmetric and positive definite, its
probability density function is given by [35]

D) = s o (50 WS- 0) @

where |X| is the determinant of ¥. Considering the trivariate case (i.e.,
k = 3), letting §=x— i be the displacement with respect to the center, and
since the votes are already centered at the best-fitting parameters (6, ¢, p),
this equation can be rewritten as

. 1 |
Casting votes for a given accumulator cell requires two matrix-vector mul-
tiplications and one exponentiation, since the determinant of the covariance
matrix and its inverse need to be calculated only once per cluster. While the
values of o7 and 03, are never zero, the value of 0'?) will be zero if all samples
in the cluster are exactly coplanar. In such a case, X 4, becomes singular,
and voting should be done using a bivariate Gaussian kernel defined over
(0,6). We avoid the need to handle such a special case by adding a small
value € to o2 (e.g., € = 0.001, see line 3 in Algorithm 3). Thus, voting can
always use a trivariate Gaussian kernel, without affecting the results.

As planes become more horizontal (i.e., when ¢ approaches 0 or 180
degrees) the variance relative to 6 tend to become large, since at the poles
the parameter 6 does not affect the orientation of a plane. As a result, the
amount of votes in individual accumulator cells near the poles tend to be
smaller than in voted cells in other regions of the accumulator. Although
this does not affect the correct detection of peaks around the poles, sorting
the detected planes taking into account only the amount of votes would lead
to always finding vertical planes before horizontal ones.

When estimating the importance of a cluster (and consequently the im-
portance of its votes), one should consider other properties besides its number
of samples. Aspects, such as area coverage should be given greater impor-
tance as sampling density varies with object distance to the scanner. Thus,

14

we weight votes from a cluster by the relative size of its octree node with
respect to the size of the octree root (in our system, all octree cells, including
the root, are cubic cells). Votes are then weighted using

wcluster(i) = Wq (%) + wyq (ly%") 5 (9)
where nodeg;.. and octrees;,. are, respectively, the edge length of the octree
node containing the cluster and the edge length of the root node. |Cy| is the
number of samples in the cluster ¢ and |P| is the total number of samples
in the point cloud. w, and wy are the weights associated with relative area
and relative number of samples, such that w, +wy = 1. According to our
experience, spatial coverage should be favored over number of samples. While
we have used w, = 0.75 and wy; = 0.25 in all examples shown in the paper,
even w, = 1 and wy = 0 produce good results in practice.

The voting procedure uses a spherical accumulator indexed by (6, ¢, p),
which is described in Section 3.4. Starting at the center of the 3-D Gaussian
kernel representing the position, orientation, and uncertainties of the best-
fitting plane for a given cluster, the voting procedure iterates away from the
kernel’s center up to two standard deviations storing votes in the accumu-
lator’s cells. This provides a 95.4% assurance that the selected region of
the parameter space receiving votes covers the true plane. Sampling is per-
formed in the accumulator at steps of Af, A¢ and Ap. The number of votes

that a cluster casts in a given accumulator cell a is obtained by multiplying
the weight of the cluster’s vote (9) by the evaluation of (8) for the cell’s

(04, Ga, pa) parameter values (i.e., for 5= (0, Day Pa) — (Lo, Ho, 11p))-

3.4. The Spherical Accumulator

While a 2-D array provides a good accumulator for the detection of lines
in images, Borrmann et al. [36] have demonstrated that the use of a 3-D
accumulator array for plane detection may compromise the result of the
HT. They have shown that since polar regions must have fewer cells than
equatorial regions, the use of a full 3-D array may result in cells improperly
receiving less votes than others. To overcome this problem, Borrmann et al.
have proposed a spherical accumulator called the accumulator ball, whose
illustration is provided in Fig. 5.

While Borrmann et al. cast votes in a conventional way (i.e., they cast one
vote for each possible plane passing through each sample in 3-D), we vote for

15

z
Y
X
Fig. 5: A discrete representation of the 3-D spherical accumulator, showing the individual

cells for a given value of the parameter p. The colors represent normal directions. The
coordinate axes on the right indicate directions of the normal vector components.

each entire cluster at once. Thus, we also need to cast votes for cells adjacent
to the one that represents the cluster’s best-fitting plane. This is required to
account for the uncertainty resulting from the variances in the cluster’s sam-
ple positions. We use Borrmann et al.’s spherical accumulator, but normalize
the azimuthal angle 6 € [0°,360°) to [0,1), as its discretization varies with
the elevation angle ¢ (see Fig. 5). For any value of ¢, the 6 index for actually
accessing the spherical accumulator is obtained as 8,40, = round(6 ne(g)),
where nc(¢) is the number of accumulator cells for the elevation angle ¢:
ne(¢) = 2 x length(uector) X sin(@). At the poles, we set nc(¢) = 1.

For identifying adjacent cells, 6;,4., must be incremented/decremented
using modular arithmetic. The ¢;,4.. must be between 0 and the size of the
array (@mqz), which varies with the accumulator discretization. If increment-
ing/decrementing ¢;pqe, should exceed its lower or upper bounds, the sign of
its increment is reversed to guarantee the wrapping around the sphere. Fi-
nally, pindgez must be between 0 and p,,4., which depends on the point cloud
size. If pinger €xceeds the limit of p,,.., the voting process stops; if, however,
it assumes a negative value, 0;,4c, and ¢;nqe. are recalculated for angles 6
and ¢ in the opposite sense along the same direction.

Votes in a HT 3-D accumulator tend to be sparsely distributed. Thus,
during initialization, we only allocate space for the angular discretization of
0 and ¢. The third dimension (p) is allocated as needed during the voting
procedure. Therefore, if a range of p values are only required around certain
values of # and ¢, they will only be allocated there. This strategy lends
to considerable memory savings, allowing such memory to be used towards
better angular discretization, resulting in more accurate detections. Fig. 6
illustrates the data structures used for implementing the spherical accumula-
tor: a 1-D array with size ¢,,q, represents the discretization of the elevation
angle ¢. Each element of this array contains a pointer to another 1-D array
representing the discretization of the azimuthal angle (f) at that specific el-

16

evation. In turn, each element of a # array stores a pointer to yet another
1-D p array that stores the number of votes cast to cells indexed by (0, ¢, p).
Note that the arrays at this last level are only allocated if necessary.

6 P

S 7

oL DL LLLTLTe

Fig. 6: The spherical accumulator and its representation in memory (the bottom half is
just indicated). The angular discretization (6, ¢) behaves like a sphere. The indexing
of the azimuthal angle (0) uses modular arithmetic (i.e., it wraps around). Each (6, ¢)
cell has a points to a vector (allocated as needed during the voting process) storing the
actual votes associated with the distances from the origin (p), thus covering all possible
orientations and positions.

The accumulator discretization can be adjusted by choosing the number
of ¢ cells, since the number of 6 cells is automatically calculated to represent
the same proportion of the arc length discretization. The number of cells
used for radial discretization (p) is adjusted according to size of the point
cloud to emphasize either performance or precision.

Accumulator structures used for HT store a discrete number of votes,
which is true even for the KHT [15]. In our solution, a vote represents a
plane and the uncertainty associated to its exact location and orientation.
Thus, our accumulator uses floats instead of integers to reduce the influence
of rounding errors. This improves the accuracy of our solution allowing the
accumulation of fractional votes, at the expense of a small increment (ap-
proximately 4%) in the execution time. Since our solution already achieves
real-time performance for relatively large datasets, this additional cost is not
perceived by the users.

3.5. Peak Detection

The last stage of a Hough-transform consists of detecting peaks of votes
in the accumulator. We optimize this process by using a 1-D auxiliary array
(AA) to store the (0,0,p) coordinates of accumulator cells as they receive

17

votes for the first time during the voting procedure. Only cells in this array
need to be inspected for peak detection. As demonstrated in the KHT [15],
low-pass filtering the accumulator smooths the voting map, consolidating
adjacent peaks. Therefore, before peak detection is actually performed, we
apply a low-pass filter to the accumulator cells whose indices have been stored
in AA. For this, we use a 3-D isotropic kernel comprised of seven cells (the
central one and its six-connected neighborhood in 3-D). This topology was
used to handle the discretization of the accumulator, which has a singularity
at the poles. The filtered results are stored in the corresponding cells of AA,
thus avoiding the need for an extra copy of the accumulator. The kernel
weights should satisfy w.., w, > 0, w.+ 6w, = 1, and w. > w,, where w. and
w,, are the weights of the central and neighbor cells, respectively. Although
various combinations of w,. and w, values produce good results in practice,
according to our experience the use of w, = 0.2 and w, = 0.133 seem to
provide the best compromise between peak consolidation and smoothness.

For peak detection, the cells in AA are sorted in decreasing order with
respect to the stored filtered values. Iterating over this sorted array, the
algorithm inspects each peak candidate and checks if the corresponding ac-
cumulator cell has already been visited. If not, the cell is chosen as a peak
and its (up to) 26 neighbors are tagged as visited. If the cell has already been
visited, their neighbors are also tagged as wvisited. This procedure guarantees
that only true peaks will be selected to represent the output planes.

The number of votes cast by a plane on the cells of a spherical accumulator
decreases as one moves from the equator to the poles. This is illustrated in
Fig. 7(a), which compares the distribution of votes cast by a cluster as it
is rotated around the origin. The color scale indicates the number of cast
votes, while the thumbnail image on its right shows the best fitting planes
corresponding to the rotated cluster. Note that the number of votes cast
on cells around the poles are significantly smaller than the ones near the
equator. Figs. 7(b) and 7(c) illustrate this behavior, for a fixed value of
the parameter p. Fig. 7(b) shows two versions of the rotated point cloud:
one near the equator and the other near the north pole. The noise in the
point cloud lends to some uncertainty on the plane’s orientation, which is
represented by a cone of normals around the normal of the best-fitting plane
(shown in red). On the equator, such uncertainty causes some votes to be
cast in a small § and ¢ neighborhood around the (6, ¢, p) coordinates of the
best fitting plane. There, equal angular steps in 6 and in ¢ correspond to arc
lengths of equal sizes, resulting in an isotropic Gaussian kernel in the (6, ¢)

18

0.01
0.001

5]
0.0001

(a) (b) (c)

Fig. 7: The number of votes cast by a cluster as it is rotated varies with the position on
the spherical accumulator (a). The color scale indicates the number of votes, while the
thumbnail image on its right shows the best-fitting planes corresponding to the rotated
clusters. (b) On the equator, the uncertainty on the plane orientation lends to votes
on a small isotropic neighborhood in the (6, ¢) subspace. At (next to) a pole, the same
uncertainty on the plane orientation lends to a small uncertainty in the ¢ dimension,
but to a big uncertainty in the 6 dimension, as 6 can range from 0 to 360 degrees. (c)
isotropic (top) and truncated anisotropic (bottom) Gaussian kernels in the (6, ¢) subspace
associated to the cluster near the equator and near the pole, respectively.

subspace. Such a Gaussian is illustrated on the top portion of Fig. 7(c).
Near a pole, on the other hand, the uncertainty on the plane’s normal lends
to a small uncertainty in the parameter ¢, but to a huge uncertainty in the
parameter 6, as at the pole the value of 6 varies from 0 to 360 degrees.
This results in a highly anisotropic Gaussian kernel in the (6, ¢) subspace,
as shown by the truncated kernel at the bottom of Fig. 7(c). This wider
and lower Gaussian covers a large # neighborhood, but the voting procedure
constrains voting to values of at least ¢in. Gmin i Obtained by evaluating
Eq. 8 for § = 2 x std_dev x Vosp.min (see line 8 of Algorithm 3). This explains
the smaller number of votes per cell as a cluster approaches a pole.

Let €7 and (5 be two clusters with the same number of samples and same
variances, (' located near the equator, and C5 near a pole. Considering only
the number of votes, C; would always be detected earlier, as its peak is higher
than Cy’s. To retrieve the detected planes based on how representative they
are for a scene, as opposed to just on the heights of their associated peaks,
the list of detected planes is sorted based on the sum of the weights (9) of all
clusters that voted for each plane m;:

Wsum (ﬂ-z) = Z Weluster - (1())

voted for m;

19

3.6. Algorithm Complexity

The overall steps of our plane-detection technique can be summarized in
Algorithm 4. The cost of constructing an octree for a set of |P| samples
is O(|P|logg |P|). Checking whether a cluster C; with |C;| samples (inside
an octree node) is approximately coplanar requires computing its covariance
matrix 3, .) and comparing its eigenvalues (lines 7 and 8 in Algorithm 2).
These operations are performed in time O(|C;|). Since this operation is used
to decide if a node needs to be subdivided, it has to be performed in all nodes
of the octree, resulting in a total cost of O(|P|logg | P|). Transforming ¥, , .)
to the (6, ¢, p) space requires computing a Jacobian matrix and multiplying
three 3 x 3 matrices (see 5 and 6), which has cost O(1). Computing the eigen-
values of X 4, costs O(1). These operations (lines 5 and 6 in Algorithm 4)
are executed once per cluster, whose number is bounded by O(|P|). Each
cluster C; casts votes over a total ve, cells. Note that since in a spherical
accumulator each cell represents a (set of) plane orientation(s), each cluster
only votes for a relatively small number of cells. Thus, typical numbers for
ve, vary from 20 to 50, depending on the distribution of samples in the clus-
ter, and on the resolution of the accumulator. Let B be the total number of
accumulator bins that received some votes. Since there are O(|P|) clusters
and each cluster votes for a finite number of cells, B = O(|P|). Filtering any
given accumulator cell is performed in O(1) time, for a total cost of O(|P)).
Sorting the B voted cells is accomplished in O(]P|log |P|), and peak detec-
tion has cost O(|P|). Thus, the overall time complexity of the algorithm is
O(|P|log|P]). By restricting the maximum number of levels of the octree,
one also restricts the number of clusters, making the time complexity linear
in the number of samples: O(|P|). While this could accelerate the process,
it may make it harder to detect small (approximately) planar patches.

3.7. Space Complexity

The amount of memory required by our 3-D Kernel-based Hough trans-
form (3-D KHT) consists basically of the octree (used to store point-cloud
samples and indexes), the voting map, the 1-D auxiliary array (AA), and
the trivariate kernels. Except for the root, which stores the samples, each
octree node only stores (integer) indexes for the sample array. Since each
sample stores its (x,y, z) coordinates as doubles, the memory required for
the octree is given by 3 x 8 x |P| bytes for the samples themselves, and
4 x |P| (logg |P| — 1) bytes for the remainder of the octree. The voting map,
in turn, depends on the discretization of the Hough space (6, ¢, p) and on how

20

Algorithm 4 Algorithm Summary and Asymptotic Cost

Require: P {point cloud}

1: Octree generation; {O(|P|logg |P|)}

2: for each octree node do

3: Compute cluster covariance matrix ¥, .y; {O(|Ci])}

4: if cluster is approximately co-planar then

5: Transform covariance matrix X, , .y to (0, ¢, p) space; {O(1)}
6: Compute eigenvalues of ¥4 ,); {O(1)}

7 Cast cluster votes and update the auxiliary array (AA); {O(1)}
8: end if

9: end for

10: Filter accumulator cells pointed by AA, storing result in AA; {O(|P|)}
11: Sort AA; {O(|P|log |P|)}

12: Iterate over sorted AA detecting peaks; {O(|P|)}

many cells receive votes (only voted cells are allocated in memory). Each ac-
cumulator cell consists of one float for storing its votes, and one boolean to
indicate if it has already been inspected by the peak-detection procedure.
Each AA cell stores one double and two shorts for the indexes for 6, ¢, and
p, respectively, and one float for the filtered peak value. Finally, a trivariate
kernel stores a 3 x 3 covariance matrix and the (6, ¢, p) Hough coordinates
of the best fitting plane, resulting in 12 doubles per cluster. While voting
could be performed in parallel on-the-fly as we reach the octree leaf nodes,
we have not implemented concurrency control mechanisms for accessing the
accumulator, and voting is performed in a serial fashion (see Algorithm 4).
The space complexity of the algorithm is then O(|P|logg |P|). Similarly to
time complexity, restricting the maximum level of the octree would make the
space complexity linear in the number of samples: O(|P|).

4. Results

We have implemented our technique in C++, using OpenMP to paral-
lelize the octree generation, and dlib [37] to compute eigenvalue decomposi-
tions. We used OpenGL to render the detected planes. We have used this
implementation to automatically detect planes in a large number of unorga-
nized point clouds, and compared its performance against the state-of-the-art
approaches: the Randomized Hough transform (RHT) and two efficient ver-

21

sions of RANSAC. Since surface-growing techniques are not as fast as RHT
and RANSAC, and require information about neighbor samples (see Sec-
tion 2.3), they were not included in our performance comparisons.

To evaluate the accuracy of our approach, we created a point cloud (Box)
by sampling the faces of a cube centered at the origin and with a side of 400
units. Each face of the cube contains 160,801 samples, to which we added
2.5% of uniformly-distributed noise (i.e., using a uniform distribution of noise
values ranging from 0 to 2.5% of the side of octree root node). This point
cloud is shown in Fig. 8(a) and was also used for the RANSAC experiment
shown in Fig. 2. An unfolded slice of the spherical accumulator displaying
the six peaks detected by our technique is shown in Fig. 8(b). Four of these
peaks are equally distributed on the central line (equator) of the accumulator,
while gray indicates zero votes. Such peaks correspond to the lateral faces of
the cube. The two additional peaks are at the poles (shown as the blue lines
on top and at the bottom of the gray region), and correspond to the top and
bottom faces of the cube. The detected planes are shown in Fig. 8(c). Note
that only six planes were found as our trivariate Gaussian kernel naturally
handles the noise in the dataset. We have also rotated the point cloud by
arbitrary amounts and around arbitrary axes and verified that our technique
accurately detected the six planes in all cases (Fig. 8(d)).

To evaluate the robustness of our technique to missing samples and noise,
we downsampled a noiseless version of the Box dataset to 48,000 points and
added 1% of Gaussian noise (i.e., using a normal distribution with o = 1%
of the side of octree root node). For this experiment, each face of the cube
corresponds to three discontinuous stripes of samples covering approximately
60% of its original area. The resulting point cloud is illustrated in Fig. 8(e)
with six colored squares representing the most important detected planes. As
in the previous experiment, the point cloud was rotated by arbitrary amounts
around arbitrary axes, consistently producing the same results.

For performance comparisons, we used the optimized RANSAC technique
(and code) of Schnabel et al. [27], and the RANSAC implementation for
plane detection in point clouds available in the Point Cloud Library (PCL)
v1.7 [38], a modern C++ library for 3-D point-cloud processing. For RHT,
we used the implementation by Borrmann et al. [36]. These implementations
proved to be the most efficient ones for plane detection using RANSAC and
RHT, respectively. All experiments were performed on an Intel i7-2600 3.4
GHz CPU with 16 GB of RAM. The codes for the four compared techniques
were compiled for 64 bits to exploit the full potential of the hardware. Fig. 9

22

(a) (b) (¢) (d) (e)

Fig. 8: Box dataset. (a) A point cloud representing a cube centered at the origin. Each face
consists of 160,801 points with 2.5% of uniformly-distributed noise. (b) A 3-D visualization
of an unfolded slice of the accumulator representing all pairs (6, ¢) for one value of p after
the voting procedure. There are six detected peaks: four equally distributed on the gray
region represent the lateral faces of the cube, plus two at the poles (shown as the blue
lines) corresponding to the top and bottom faces. (c¢) Reconstructed planes from the peaks
detected by our approach. (d) Detected planes (with random colors) after rotating the
point cloud by 20, 40, 60 and 80 degrees around the z-axis. (e) Downsampled version of
the cube, where each face is covered by three stripes of samples covering approximately
60% of its original area. The squares indicate the detected planes.

shows the datasets used for performance comparisons. On the right, it also
shows the most representative planes detected by our approach (for the more
complex examples, some planes are not shown to avoid cluttering the images).
These datasets include a computer desk (Computer), a room (Room), a set of
fagades from a city block (Utrecht), the interior of a museum (Museum), and
fagades of some buildings in the city of Bremen (Bremen). The Computer
dataset is from [36]. The other point clouds were extracted from sets of
photographs using SynthExport [13] and Photosynth [14]. They were chosen
because they span a large range of parameters, varying in number of points,
sampling rate, occupied volume, and number of detectable planes.

Table 1 presents detailed information about the experiments performed
with our technique on each dataset. These times were computed by averaging
the results of 50 executions. It shows that our approach processes the Com-
puter dataset with its 68K samples in approximately 22 milliseconds, and the
Museum dataset, which contains 179K samples, in 25 milliseconds. For larger
point clouds (e.g., Bremen, with 20 million samples) the octree creation (col-
umn 6) dominates the time of 3-D KHT. Still, our technique processes the
Bremen dataset 353 faster than Schnabel et al.’s RANSAC technique [27],
and 3,586 times faster than PCL’s RANSAC [38]. The available implemen-
tation of the RHT could not handle the entire dataset. Working on the full
dataset, our technique is still 20 times faster than the RHT working on a

23

subset containing only 10% of the original samples (Table 2). Table 1 also
shows that even though the octree might segment large coplanar structures
into several clusters, such clusters vote for the same regions in the accumu-
lator, resulting in the detection of the right planes. In our experiments, all
datasets were processed in their original scales.

Table 1: Data on the experiments performed with our technique. Number of samples in the
point clouds, numbers of detected clusters, number of samples used in the voting procedure,
octree-generation time, voting time, peak-detection time, and number of detected planes.

Point Cloud Octree Time (sec) Result
Name Size Bounding Box Clusters Used Points Rate(%) Clustering Voting Peaks Planes
Computer 68 852 1.3x3.0x0.9 119 30 630 44.48 0.005 0.009 0.008 8
Room 112 586 29.2 x 145 x 3.1 339 66 682 59.22 0.009 0.02 0.012 40
Utrecht 160 256 75.8 x 75.8 x 37.3 393 92 839 57.93 0.024 0.005 0.011 38
Museum 179 744 724 x132.8 x 23.1 232 121 943 67.84 0.013 0.007 0.005 21
Box 964 806 409.9 x 409.9 x 409.9 144 584 028 60.53 0.054 0.008 0.015 6
Bremen 20 332 246 110.2 x 379.3 x 84.6 7489 17 929 145 88.18 2.05 0.033 0.022 202

Table 2: Performance comparison of our approach (3-D KHT) against RHT, Schnabel et
al.’s RANSAC [27], and PCL’s RANSAC [38] for various datasets. The entries of the table
show the execution times (in seconds) of the four techniques for these datasets. (*) The
RHT was computed with a simplified version of Bremen dataset containing only 2 million
samples, because the available implementation did not support larger inputs.

Computer Room Utrecht Museum Bremen

3-D KHT 0.022 0.041 0.040 0.025 2.105
RHT 0.121 6.313 2.814 11.960 42.824*
RANSAC [27] 0.340 0.774 0.919 1.200 745.055
RANSAC [38] 0.424 3.293 15412 302.610 7,531.010

Table 2 compares the performance of our technique to RHT and RANSAC.
These results show that our approach is one to four orders of magnitude faster
than the competing ones. Although RHT and RANSAC are relatively fast
on small datasets containing low noise and just a few planar structures (e.g.,
Computer), they are not as efficient on bigger and noisier datasets (e.g.,
Bremen). Our approach can efficiently handle both large and noisy datasets.

24

Fig. 9: Datasets used for performance comparison. Point clouds (left) and the most
representative planes detected by our technique (right). From top to bottom, the datasets
are: Computer (from [36]), Room, Utrecht, Museum, and Bremen. Their numbers of
samples are shown in Table 1. The detected planes were resized for better visualization.
For all datasets, the accumulator discretization was obtained using ¢4, = 30 and paz =
300. The threshold s,,s was set to 30. Sjepe; Was chosen for each point cloud as 2, 4, 5,
6 and 7 (top to bottom), as at these levels the ratio between the sizes of the octree cells
and the sizes of the planar patches inside them is approximately constant, which lends
to good detection accuracy. These levels can be detected automatically by checking the
sample variances of the detected planes.

While 3-D KHT and RANSAC use the same number of parameters (less
than RHT), the 3-D KHT is less dependent on them. This is because our
approach performs adaptive clustering based on relative measurements of the
samples’ variances, instead of using specific thresholds. Since the running
times of the these algorithms are affected by the selected parameters, we
chose values that optimize the execution times of each individual algorithm.
Fig. 10 compares the planes detected by the three techniques on two datasets.
The results are similar, but our technique is significantly faster (Table 2).

25

Rotating the input point cloud may result in a different sample distribu-
tion in the octree cells. This, however, should have no impact in the detection
of large planes. The detection of small planar patches requires a minimum
number of samples in a cell (i.e., $,,s), and might be affected positively or
negatively by the rotation (similar to the original point cloud case).

Fig. 10: Plane detection for two datasets using our technique (top), RHT (middle), and
RANSAC (bottom). The results are similar, but our technique is significantly faster.

Limitations: Like in all other Hough-transform techniques for plane detec-
tion, the position and orientation of the detected planes is constrained by the
accumulator discretization. This can be improved by refitting the detected
planes using only the inlier samples. If the amount of noise inside the octree
nodes is considerably high, our approach might not be able to detect a plane
there. This would be a restriction for all techniques, Also, if the samples
in an octree node are left-overs from its neighbors, our technique may fit a
spurious plane through these samples. However, according to our experience,
starting the approximate-coplanarity check after the third level of the octree
subdivision tends to avoid this problem.

5. Conclusion and Future Work

We have presented an O(nlogn) Hough-transform technique to perform
deterministic plane detection in unorganized point clouds. Our approach uses

26

a fast and robust algorithm to segment clusters of approximately coplanar
samples, and casts votes for individual clusters, instead of for individual
samples, on a spherical accumulator. For this, we use a trivariate Gaussian
kernel that models the uncertainty about the position and orientation of the
plane represented by the cluster.

While previous approaches for plane detection have basically resorted to
randomly selecting a subset of the samples as a way to reduce execution time,
we have undertaken the more fundamental strategy of designing an efficient
algorithm with lower asymptotic cost.

Probabilistic approaches are good at finding the first few best planes.
However, as the points that lie on these planes are removed, the amount
of noise relative to the number of left samples tend to increase. Thus, the
odds of finding additional relevant planes in the resulting point cloud tend to
decrease. In contrast, our approach scans the entire point cloud without re-
moving partial information, thus keeping the inliners/outliers ratio constant.

Our experiments have shown that our approach is several orders of mag-
nitude faster than existing (non-deterministic) techniques for plane detection
in point clouds, such as RHT and RANSAC, and scales better with the size
of the datasets. It is also robust to noise and to irregularly-distributed sam-
ples. As such, it has the potential to enable a new range of applications that
require fast detection of planar features on large datasets.

Our approach can be further optimized using a more efficient subdivision
procedure. The use of concurrency control mechanisms for accessing the
accumulator would allow voting to be performed in parallel.

Acknowledgments
This work was sponsored by CNPq-Brazil grants 131002/2012-0, 482271 /2012-4,
and 308936/2010-8, and FAPERGS PQG 10/1322-0.

References

[1] G. Vosselman, E. Dijkman, 3d building model reconstruction from point
clouds and ground plans, Int. Arch. of Photogrammetry and Remote
Sensing (2001) 37-43.

[2] R. Kaucic, R. Hartley, N. Dano, Plane-based projective reconstruction,
in: Proceedings of Eighth IEEE International Conference on Computer
Vision, Vol. 1, 2001, pp. 420427 vol.1.

27

3]

[11]

[12]

[13]

F. Tarsha-Kurdi, T. Landes, P. Grussenmeyer, Hough-transform and
extended ransac algorithms for automatic detection of 3d building roof
planes from lidar data, International Archives of Photogrammetry, Re-

mote Sensing and Spatial Information Sciences, ISPRS 3 (2007) 407-412.

H. Huang, C. Brenner, M. Sester, 3d building roof reconstruction from
point clouds via generative models, in: Proceedings of the 19th ACM
SIGSPATTAL International Conference on Advances in Geographic In-
formation Systems, GIS "11, ACM, 2011, pp. 16-24.

H. Fuchs, Z. M. Kedem, S. P. Uselton, Optimal surface reconstruction
from planar contours, Commun. ACM 20 (10) (1977) 693-702.

B. Triggs, Autocalibration from planar scenes, in: Proceedings of the
5th European Conference on Computer Vision, Vol. 1 of ECCV 98,
Springer-Verlag, 1998, pp. 89-105.

C. A. Rothwell, A. Zisserman, D. A. Forsyth, J. L. Mundy, Planar object
recognition using projective shape representation, International Journal
of Computer Vision 16 (1) (1995) 57-99.

M. Peternell, T. Steiner, Reconstruction of piecewise planar objects from
point clouds, Computer-Aided Design 36 (2003) 333-342.

G. Simon, A. W. Fitzgibbon, A. Zisserman, Markerless tracking using
planar structures in the scene, in: Proceedings of IEEE and ACM In-
ternational Symposium on Augmented Reality, 2000, pp. 120-128.

D. Chekhlov, A. P. Gee, A. Calway, W. Mayol-Cuevas, Ninja on a plane:
Automatic discovery of physical planes for augmented reality using vi-
sual slam, in: Proc. of the IEEE and ACM ISMAR, 2007, pp. 1-4.

J. M. Biosca, J. L. Lerma, Unsupervised robust planar segmentation of
terrestrial laser scanner point clouds based on fuzzy clustering methods,

ISPRS J. of Photogrammetry and Remote Sensing 63 (1) (2008) 84-98.

X. Ning, X. Zhang, Y. Wang, M. Jaeger, Segmentation of architecture
shape information from 3d point cloud, in: Proc. 8th Int. Conf. Virtual
Reality Continuum and Its Applications in Industry, 2009, pp. 127-132.

C. Hausner, Synthexport, http://synthexport.codeplex.com/ (2010).

28

[14]
[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

Photosynth, Microsoft, 2008.

L. A. F. Fernandes, M. M. Oliveira, Real-time line detection through an
improved hough transform voting scheme, Pattern Recognition 41 (1)
(2008) 299-314.

P. Hough, Method and means for recognizing complex patterns (1962).

R. O. Duda, P. E. Hart, Use of the hough transformation to detect lines
and curves in pictures, Commun. ACM 15 (1) (1972) 11-15.

N. Kiryati, Y. Eldar, A. M. Bruckstein, A probabilistic hough transform,
Pattern Recogn. 24 (4) (1991) 303-316.

A. Yla-Jaaski, N. Kiryati, Adaptive termination of voting in the prob-
abilistic circular hough transform, IEEE Trans. Pattern Anal. Mach.
Intell. 16 (9) (1994) 911-915.

J. Matas, C. Galambos, J. Kittler, Progressive probabilistic hough trans-
form, in: Proc. of the British Machine Vision Conf., 1998, pp. 256-265.

L. Xu, E. Oja, P. Kultanen, A new curve detection method: randomized
hough transform (rht), Pattern Recogn. Lett. 11 (5) (1990) 331-338.

G. Vosselman, B. G. H. Gorte, G. Sithole, T. Rabbani, Recognizing
structure in laser scanner point clouds, Intern. Archives of Photogram-
metry, Remote Sensing and Spatial Info. Sciences, vol. 46 (2004) 33-38.

U. Bauer, K. Polthier, Detection of planar regions in volume data for
topology optimization, in: Proceedings of the 5th Int. Conference on
Advances in Geometric Modeling and Processing, 2008, pp. 119-126.

0. O. Ogundana, C. R. Coggrave, R. L. Burguete, J. M. Huntley, Au-
tomated detection of planes in 3-d point clouds using fast hough trans-
forms, Optical Engineering 50 (5) (2011) 053609.

H. H. Nguyen, J. Kim, Y. Lee, N. Ahmed, S. Lee, Accurate and fast ex-
traction of planar surface patches from 3d point cloud, in: Proceedings

of the 7th International Conference on Ubiquitous Information Manage-
ment and Communication, ACM, 2013, pp. 84:1-84:8.

29

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]
[38]

M. A. Fischler, R. C. Bolles, Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography, Commun. ACM 24 (6) (1981) 381-395.

R. Schnabel, R. Wahl, R. Klein, Efficient ransac for point-cloud shape
detection, Computer Graphics Forum 26 (2) (2007) 214-226.

M. A. Fischler, R. C. Bolles, Perceptual organization and curve parti-
tioning, IEEE Trans. Pattern Anal. Mach. Intell. 8 (1) (1986) 100-105.

P. J. Besl, R. C. Jain, Segmentation through variable-order surface fit-
ting, IEEE Trans. Pattern Anal. Mach. Intell. 10 (2) (1988) 167-192.

D. S. Chen, A data-driven intermediate level feature extraction algo-
rithm, IEEE Trans. Pattern Anal. Mach. Intell. 11 (7) (1989) 749-758.

J. Poppinga, N. Vaskevicius, A. Birk, K. Pathak, Fast plane detection
and polygonalization in noisy 3d range images, in: IEEE/RSJ Interna-
tional Conf. on Intelligent Robots and Systems, 2008, pp. 3378-3383.

J.-E. Deschaud, F. Goulette, A fast and accurate plane detection al-
gorithm for large noisy point clouds using filtered normals and voxel
growing, in: Proc. 3DPVT, 2010.

C. M. Shakarji, Least-squares fitting algorithms of the nist algorithm
testing system, Journal of Research of the National Institute of Stan-
dards and Technology 103 (6) (1998) 633-641.

L. Parratt, Probability and experimental errors in science: an elemen-
tary survey, Science Editions, Wiley, 1961.

Y. L. Tong, The Multivariate Normal Distribution, Springer, 1990.

D. Borrmann, J. Elseberg, K. Lingemann, A. Niichter, The 3d hough
transform for plane detection in point clouds: A review and a new ac-
cumulator design, 3D Res. 2 (2) (2011) 32:1-32:13.

dlib, dlib ¢++ library, http://dlib.net/ (n.d).

R. B. Rusu, S. Cousins, 3d is here: Point cloud library (pcl), in: Inter-
national Conference on Robotics and Automation, 2011, pp. 1-4.

30

