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Abstract

Experimental data is subject to uncertainty as every measurement apparatus is in-
accurate at some level. However, the design of most computer vision and pattern
recognition techniques (e.g., Hough transform) overlook this fact and treat inten-
sities, locations and directions as precise values. In order to take imprecisions into
account, entries are often resampled to create input datasets where the uncertainty
of each original entry is characterized by as many exact elements as necessary. Clear
disadvantages of the sampling-based approach are the natural processing penalty
imposed by a larger dataset and the difficulty of estimating the minimum number
of required samples. We present an improved voting scheme for the General Frame-
work for Subspace Detection (hence to its particular case: the Hough transform)
that allows processing both exact and uncertain data. Our approach is based on
an analytical derivation of the propagation of Gaussian uncertainty from the input
data into the distribution of votes in an auxiliary parameter space. In this parame-
ter space, the uncertainty is also described by Gaussian distributions. In turn, the
votes are mapped to the actual parameter space as non-Gaussian distributions. Our
results show that resulting accumulators have smoother distributions of votes and
are in accordance with the ones obtained using the conventional sampling process,
thus safely replacing them with significant performance gains.
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1 Introduction

Voting-based techniques for fitting instances of a model to experimental data
are widely used in computer vision, pattern recognition and image process-
ing. The most popular of these approaches is undoubtedly the Hough trans-
form (HT). It was first designed for detecting the straight lines that best fit
points on the plane [1,2]. Later, the HT was specialized for detecting other
analytical shapes, such as circles, parabolas and ellipses, and also generalized
for detecting arbitrary non-analytical shapes in images [3,4]. More recently,
a generalization of the HT concept has been presented to detect any data
alignment that can be represented analytically and characterized as a linear
subspace embedded in spaces with arbitrary dimensionality [5].

The HT works by mapping each primitive from the input dataset to points (in
a parameter space) representing the shapes potentially passing through that
primitive. Thus, shape detection is converted into the problem of identifying
peaks in an accumulator array representing the discretized parameter space.
The strong aspects of the HT are its robustness to noise, clutter, and missing
data. However, improper discretization of the parameter space may lead to
unsharp or multiple peaks of votes [6,7]. In particular, if the discretization
is too fine, votes are likely to fall in neighboring bins, thus reducing the vis-
ibility of the main peaks. This problem gets aggravated when experimental
data, which often contains errors due to imprecisions in the measuring in-
struments, are treated as exact entries. For instance, raster images captured
by digital cameras are resolution dependent. Likewise, computed tomography
captures images of regularly-spaced slices of a subject and hence represents
inter-slice data by some approximation. Another source of uncertainty is the
error associated with the estimation of the real camera parameters, which are
usually obtained using image-based calibration procedures. Although uncer-
tainty is intrinsic to experimental data, this fact has been neglected by most
researchers during the development of shape and subspace detectors due to
the difficulty of handling it. If the HT voting procedure does not take into
account the uncertainty present in the input data, the resulting accumulator
array is likely to contain spurious peaks of votes, making the identification of
the actual peaks more difficult. The quality of the detection procedures can be
improved by considering the role of uncertainty in the detection mechanisms.

In this paper we extend the mapping and voting procedures presented in [5]
to handle input containing Gaussian distributed uncertainty. The extended
mapping procedure is based on first-order error propagation analysis [8]. It
propagates the uncertainty of each input element throughout the computa-
tions into an auxiliary parameter space where the uncertainty is described
by a multivariate Gaussian distribution (Fig. 1b). In turn, such distribution
is mapped to the actual parameter space by the extended voting procedure.
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This lends to warped (non-Gaussian) distributions of votes in the accumulator
array (Fig. 1a) resulting in accurate distribution of votes over the bins.

In order to handler uncertain data, existing voting-based techniques need to
be applied to datasets that replace the actual uncertain input entries by as
many samples as needed to characterize the distribution of uncertainty of
each original entry. It is clear that such an approach imposes a processing
penalty as the number of samples increase. Also, the smoothness of the result-
ing accumulator array may be affected even when a large number of samples
is generated (Fig. 5f). Our approach, on the other hand, treats each original
uncertain input entry directly and propagates its uncertainty throughout the
computation chain, producing smoother distributions of votes (Fig. 5c).

Our technique can be applied without changes and using a single implemen-
tation to the detection of all kinds of data alignments representable as linear
subspaces in any complete metric spaces. When the subspaces are interpreted
as shapes, our formulation becomes a general analytical shape detector that
outperforms conventional HTs by being able to concurrently detect multiple
kinds of shapes, in datasets containing multiple types of data.

The central contribution of this paper is a more flexible voting scheme for the
detection framework presented in [5]. It can handle both exact data as well
as data containing Gaussian-distributed uncertainties. In addition, we define
an auxiliary space where the uncertainty of p-dimensional subspaces residing
in some n-dimensional space is related to the uncertainty of r-dimensional
random subspace under first-order error propagation, for 0 ≤ r ≤ n. This in-
teresting property may lead to new insights on how to extend other subspace-
clustering techniques to include error propagation into their formulations.

We formulate our subspace detector using geometric algebra [9–12], tensors [13],
and error theory [8]. In order to validate it, we performed three set of exper-
iments that verify that our uncertain-based voting scheme generates the ex-
pected voting distributions. As a result, our technique reduces the scattering
of votes in the accumulator, lending to superior detection results.

2 Related Work

Linear subspace learning (LSL) techniques aim to find linear projections, of
sets of training samples, satisfying some optimality criteria [14]. They map
input data from a high-dimensional space to a lower-dimensional one where
space partitioning and clustering can be performed more conveniently. Prin-
cipal component analysis (PCA), linear discriminant analysis (LDA), general
averaged divergence analysis (GADA) [15,16], and locality preserving projec-
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tions (LPP) [17] are examples of LSL algorithms. Isomaps [18], locally linear
embedding (LLE) [19], and their variations, such as the local linear transfor-
mation embedding (LLTE) [20], extend the dimensionality-reduction problem
to dataset entries that lie in nonlinear-manifold structures [21]. Recently, Zhou
and Tao formulated the double shrinking model (DSM) [22], which aims to
compress data by simultaneously shrinking both dimensionality and cardinal-
ity. All those techniques use points or vectors in Rn as input. Multilinear sub-
space learning (MSL) techniques are higher-order generalizations of LSL [23].
They use nth-order tensorial samples as input data, thus enhancing their rep-
resentation power. When used for clustering, the goal of all dimensionality-
reduction techniques is to simplify the identification of nearby entries.

In contrast to dimensionality reduction techniques, our approach aims to find
the p-dimensional subspaces that accommodate as many database objects as
possible. Thus, it can be seen as a subspace-clustering approach (see [24] for a
review of such techniques). A key difference is that, with the exception of [5],
all existing subspace-clustering techniques are tailored for specific applications
or input data types. Günnemann et al. [25] has recently proposed the first
subspace clustering approach for uncertain data. Their technique is designed to
detect linear subspaces aligned to the axis of the space where input uncertain
points reside. Our approach, on the other hand, inherits from [5] the ability
to systematically adapt itself to handle r-dimensional input subspaces (0 ≤
r ≤ n). In contrast to our previous approach [5], the proposed technique was
designed to handle input entries containing Gaussian distributed uncertainty.

As pointed out in [5], our voting-based solution is a generalization of the HT.
The literature covering applications and variations of HT-based techniques is
vast [3,4]. The following section focus on techniques that, like ours, treat each
input entry as some distribution during the voting procedure.

2.1 Uniform Distribution of Uncertainty

O’Gorman and Clowes [26] set a uniform distribution of uncertainty on the
angular parameter of the normal equation of the line in order to limit the
amount of bins that are incremented for each input pixel during the voting
procedure. By doing so, each input point votes for a subset of the sinusoidal
line resulting from its mapping to the parameter space. Kimme et al. [27] use
a similar idea to reduce the amount of votes spread in the detection of circles.

Cyganski et al. [28] use unit-area squares corresponding to feature pixels in-
stead of lattice coordinates. They show that mapping square pixels to the
parameter space of the slope-intercept form of the line results in a convex
region that can be efficiently stored in a new data structure proposed in [29].
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In contrast to these techniques, our formulation assumes Gaussian (as opposed
to uniformly) distributed uncertainty in the input. Moreover, it is not tailored
to a single kind of input and, therefore, is a more general and flexible solution.

2.2 Gradient Weighted Hough Transform

Inspired by the optimization proposed in [26], van Veen and Groen [6] designed
a weighting function to map an input pixel to the accumulator array taking
into account the gradient of the pixel to limit the number of bins receiving
votes. With their function, a different weight is given to each vote according to
a Gaussian distribution centered on the angular parameter computed from the
gradient angle of the point on a reference line with known normal direction.

Our approach also uses a weighting function for distributing votes in the ac-
cumulator array. For this, we use first-order error propagation to compute the
appropriate vote distribution to each mapped entry.

2.3 Kernel-Based Hough Transform

The use of first-order error propagation in HT was introduced by Fernandes
and Oliveira in the context of Kernel-Based HT (KHT) [30]. The approach
operates on clusters of approximately collinear edge pixels. For each cluster,
votes are cast and weighted using an oriented elliptical-Gaussian kernel that
models the uncertainty of the best-fitting line with respect to the cluster. This
lends to a much cleaner voting map that is robust to the detection of spurious
lines, and allows a software implementation to perform in real time.

The pipeline presented in [30] is specifically designed to detect straight lines
from image pixels. The present work, in contrast, extends the framework de-
scribed in [5] to handle uncertainty in the detection of arbitrary shapes. It is
independent of the geometric properties of the data alignments to be detected,
and handles heterogeneous datasets comprised by uncertain input entries, and
with possibly different dimensionalities and geometrical interpretations.

It is important to note that the approach introduced in this paper is not in-
tended to perform in real-time like the KHT. The performance of the KHT
results from an efficient clustering procedure and a culling strategy that avoids
voting for kernels that are less likely to result in peak formation. Their gener-
alization to our technique is a promising direction for future exploration.
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3 Mathematical Background

In this section we briefly introduce the mathematical background used in the pa-
per. A more detailed introduction to these topics can be found in the provided
references. Supplementary Material A summarizes the notational convention.

3.1 Geometric Algebra

The Clifford algebra of a vector space over a field of real numbers endowed
with a quadratic form is called a geometric algebra (GA). It is an alterna-
tive to conventional vector algebra. In additional do scalars and vectors, GA
defines a new structure called k-blade, which resents a k-dimensional sub-
space. The integer value 0 ≤ k ≤ n is said the grade of the blade, and n is
the dimensionality of the overall vector space Rn. Thus, 0-blades and 1-blades
correspond, respectively, to scalar values and vectors. A 2-blade embedded in
some Euclidean vector space can be interpreted as a plane that passes through
the origin, and a n-blade represents the whole space.

GA inherits from Clifford algebra its fundamental product, i.e., the Clifford
or geometric product (2), which is strongly motivated by geometry and can
be taken between any two objects. From the geometric product of two blades
one can build a new blade that represents their common space (e.g., the plane
that is common to two orthogonal vectors), or a blade that represents the
complement of a subspace that is contained inside another (e.g., the vector
that is orthogonal to a plane inside a volume), or even a structure that encodes
orthogonal transformations, i.e., a versor.

The set that is closed under finite addition and geometric product multiplica-
tion is called a multivector space (

∧Rn). Blades and versors are numbers in∧Rn. One may build a basis for
∧Rn by taking the k-combinations of vectors

from the set of basis vectors {eeei}ni=1 of Rn. Altogether, such a basis has 2n

basis elements (i.e.,
∑n
k=0

(
n
k

)
= 2n). As an example, the basis of

∧R3 is

{
1, eee1, eee2, eee3, eee1 ∧ eee2, eee1 ∧ eee3, eee2 ∧ eee3, eee1 ∧ eee2 ∧ eee3

}
. (1)

The symbol ∧ denotes the outer product, which will be defined latter in (3)
as a special case of the geometric product. For orthogonal basis vectors eeei and
eeej, eeei eeej is equal to eeei ∧ eeej for all i 6= j and zero for i = j.

A linear combination of the basis elements of
∧Rn is called a multivector.

For the basis (1) of
∧R3, the multivector structure can be written as
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M = µ1 1+µ2 eee1+µ3 eee2+µ4 eee3+µ5 eee1∧eee2+µ6 eee1∧eee3+µ7 eee2∧eee3+µ8 eee1∧eee2∧eee3,

where µi ∈ R is the i-th coefficient of M . Blades and versors can be encoded
as multivectors. Once the multivector space is defined, the geometric product
between two numbers in

∧Rn is completely described by the rules

eeei eeei = Q (eeei,eeei) , (2a)

eeei eeej = −eeej eeei, (2b)

eeei α = αeeei, (2c)

(AB) C = A (B C ) = AB C , (2d)

(A + B) C = AC + B C and C (A + B) = C A + C B , (2e)

where α ∈ R is a scalar value, A, B and C ∈ ∧Rn are general multivectors and
Q is the quadratic form (i.e., metric) of the space. Without loss of generality,
since one can always find an orthonormal basis {eeei}ni=1 for Rn, the rules in (2)
assume that Q (eeei,eeej) = 0 for all i 6= j and Q (eeei,eeei) ∈ {−1, 0, 1} [31].

Many bilinear products in GA are special cases of the geometric product. In
this paper we are concerned with three of them: the outer product (3), the
scalar product (4), and the left contraction (5).

AAA〈r〉 ∧BBB〈s〉 =
〈
AAA〈r〉BBB〈s〉

〉
r+s

(3)

AAA〈r〉 ∗BBB〈s〉 =
〈
AAA〈r〉BBB〈s〉

〉
0

(4)

AAA〈r〉 cBBB〈s〉 =
〈
AAA〈r〉BBB〈s〉

〉
s−r

(5)

In (3)–(5), AAA〈r〉 and BBB〈s〉 denote a r- and a s-blade, respectively. 〈�〉t denotes
the take grade operation. It retrieves the t-dimensional part of the geo-
metric product of AAA〈r〉 and BBB〈s〉 (i.e., the portion of the multivector resulting
from AAA〈r〉BBB〈s〉 that is comprised of basis blades having dimensionality t). The
definitions above can be extended to general multivector.

The outer product (3) is used to span a (r + s)-dimensional subspace from
blades of dimensionality r and s. If there is at least one common (concurrent)
vector factor in the multiplied terms the outcome is zero. In case of indepen-
dent vector factors, the resulting (r + s)-blade is spanned by the r vectors
spanning the first and by the s vectors spanning the second multiplied blades.
Thus, a k-blade can be define as the outer product of k independent 1-blade.

The scalar product (4) generalizes the vector inner product to arbitrary sub-
spaces with same dimensionality (i.e., r = s). If r 6= s, the outcome is zero.
The scalar product can be used to compute the squared norm of a blade

∥∥∥AAA〈k〉∥∥∥2
= AAA〈k〉 ∗ Ã̃ÃA〈k〉, (6)
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where
Ã̃ÃA〈k〉 = (−1)k (k−1)/2 AAA〈k〉 (7)

is the reverse operation. A blade is invertible if it has a nonzero norm. The in-
verse AAA−1

〈k〉 of a blade AAA〈k〉 satisfies AAA〈k〉AAA
−1
〈k〉 = AAA−1

〈k〉AAA〈k〉 = 1. It is computed as

AAA−1
〈k〉 = Ã̃ÃA〈k〉

∥∥∥AAA〈k〉∥∥∥−2
. (8)

The left contraction can be used to compute the dual representation of a
subspace. The dual representation of a subspace AAA〈k〉 is its (n− k)-dimensional
orthogonal complement with respect to the total (n-dimensional) space

AAA∗〈k〉 = AAA〈k〉 c III−1
〈n〉, (9)

where �∗ denotes the dual operation, III〈n〉 = eee1 ∧ eee2 ∧ · · · ∧ eeen is the unit pseu-
doscalar of the n-dimensional space, and �−1 is given by (8). The complement
of taking the dual is the undual operation

DDD−∗〈n−k〉 = DDD〈n−k〉 c III〈n〉. (10)

By using this operation, the dual representation of a blade can be correctly
mapped back to its direct (or primal) representation (i.e., (AAA∗〈k〉)

−∗ = AAA〈k〉).

From a computational point of view, this duality allows geometric algorithms
to do the work of two (e.g., by computing the Voronoi diagram one also gets the
Delaunay tesselation). In Sections 4 and 5, we use the dual (9) and undual (10)
operations of GA to define a closed-form solution for subspace detection in-
volving input and output blades of arbitrary dimensionalities. Also, the dual
and undual operations are useful for defining the regressive product

AAA〈r〉 ∨BBB〈s〉 =
(
BBB∗〈s〉 ∧AAA∗〈r〉

)−∗
, (11)

which can be regarded as the dual operation to the outer product in some
Euclidean space. When the disjoint and common parts of AAA〈r〉 and BBB〈s〉 span
the whole space, the outcome of the regressive product is the subspace that is
shared by AAA〈r〉 and BBB〈s〉. Otherwise, the resulting value is zero.

A rotor is defined as the geometric product of an even number of unit invert-
ible vectors. Under Euclidean metric, rotors encode rotations and generalize
quaternions to Rn. The transformation encoded by a rotor RRR is applied to a
k-blade AAA〈k〉 using a sandwiching construction involving the geometric product

AAA′′〈k〉 = RRRAAA〈k〉 R̃RR, where AAA′′〈k〉 is the transformed subspace, and R̃RR denotes the

reverse of RRR. The inverse of a rotor equals its reverse, thus AAA〈k〉 = R̃RRAAA′′〈k〉RRR.

A more practical way to define rotors is by using the exponential of 2-blades
that act as rotation planes. Under Euclidean metric, the rotor RRR encoding a
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rotation of θ radians on the unit plane PPP〈2〉 is given by

RRR = exp
(
−θ/2 PPP〈2〉

)
= cos (θ/2)− sin (θ/2) PPP〈2〉. (12)

Using (12) one can define a rotation on an arbitrary plane without worrying
about the space handedness. This exponential form is particularly useful in
this work because the parameterization of blades in the general framework for
subspace detection (Section 4) is based on the rotation of a canonical subspace.

The books by Dorst et al. [11], Perwass [10], Sommer [12] and Hestenes [31,32]
provide in-depth treatments to GA. The tutorials by Fernandes and Oliveira [9]
and Doran et al. [33,34] present a detailed introduction to the subject.

3.2 First-Order Error Propagation

Any computation propagates the error associated with its input to its out-
put [8]. Since the exact error in the input is often unknown, the error in
the computed values can only be estimated with some probability. An exper-
imental uncertain value can be expressed by a random variable, where the
uncertainty is described by some probability distribution function (PDF). We
assume that the uncertainty is always Gaussian, so the PDF is fully determined
by its expectation and covariance matrix. The distribution used for modeling
uncertainty determines the propagation model. Since we assume Gaussian un-
certainty, this work uses the first-order error propagation model [8].

Let y = (y1, y2, · · · , ys)T be a vector calculated as a function of x = (x1, x2, · · · , xt)T .
By expressing the uncertain data as a vector-valued random variable y, it fol-
lows that the expectation (mean) of y is given by y = f(x). For the case where
the input components of x are correlated, the covariance matrix of y can be
approximated using the first-order error propagation model for vector-valued
random variables with Gaussian distributed uncertainty

Σy ≈ Jy Σx JT
y , (13)

where Σx is the covariance matrix of the vector-valued random variables x, and
Jy is the Jacobian matrix for the function f that computes the expectation y
of y from the terms of the expectation x of x.

It is important to comment that a function of Gaussian distributed random
variables may produce a non-Gaussian distribution. First-order error propa-
gation provides, in that case, an approximation of the resulting uncertainty.
As pointed out by Cowan [8], it should be checked whether the resultant dis-
tribution can be approximated well by a Gaussian distribution. The amount
of tolerable error depends on the actual application. For cases where the re-
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sulting distribution is Gaussian, a better approximation of the uncertainty
can be achieved by extending the first-order error propagation model (13) to
higher orders. Note that (13) considers only the first-order derivatives of the
function f that computes y. Exact results are obtained when all derivatives up
to order four are considered because the derivatives of orders higher than four
are equal to zero for functions producing Gaussian distributed uncertain [10].

In this paper, we show that the first-order error propagation (i.e. (13)) fits our
subspace detection framework well. This is because input entries are processed
individually by the mapping and voting procedures of our detection scheme. In
this case, if an input has Gaussian distributed uncertainty, such uncertainty
will be kept Gaussian up to a well-known stage of the computational flow.
After that, the distribution is naturally converted to non-Gaussian through
the correspondence between the auxiliary and the actual parameter space.

3.3 Tensor Representation of Geometric Algebra Operations

First-order error propagation (Section 3.2) can be applied to GA equations
(Section 3.1) by expressing multivectors as component vectors and GA op-
erations as tensor contractions [10]. Using such a representation, the Jaco-
bian matrix in (13) can be calculated as for linear algebra equations. In or-
der to express multivectors as component vectors, let {EEEi}2n

i=1 be the basis of
a multivector space

∧Rn. A multivector M ∈ ∧Rn may then be written as
M =

∑2n

i=1 (µiEEEi), where µi is the i-th component of a vector in R2n .

The geometric product between two multivectors A and B may be written as

C = AB =
2n∑

i,j,k=1

(
αj βk Γi,j,kEEEi

)
, (14)

where {αj}2n

j=1 and {βk}2n

k=1 are the coefficients of A and B , respectively, and

Γ is a 3rd-rank tensor encoding the geometric product (2). If C =
∑2n

i=1 (γiEEEi)

then γi =
∑2n

j,k=1

(
αj βk Γi,j,k

)
, ∀ i ∈ {1, 2, · · · , 2n}. The tensor Γ does not de-

pend on the arguments A and B in (14). Its entries are obtained as

EEEj EEEk = Γi,j,kEEEi ∀ j, k ∈ {1, 2, · · · , 2n}. (15)

Thus, Γ is constant for the purpose of computing the derivatives in the Jaco-
bian matrix (13). The principle depicted in (15) can be used to compute a dif-
ferent tensor for each bilinear product presented in Section 3.1. This is achieved
just by replacing the geometric product in (15) by the intended product.
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4 General Framework for Subspace Detection

The subspace detection scheme presented in [5] is a general procedure that
systematically adapts itself to the intended detection case. The user only needs
to choose a model of geometry (MOG) for which the type of data alignment
to be detected is characterized by a p-dimensional linear subspace (i.e., a
p-blade) in some n-dimensional metric space. Given some input dataset X ,
the detection is performed in three steps: (i) create an accumulator array (a
discretization of the parameter space characterizing p-blades); (ii) perform a
voting procedure where the input dataset is mapped to the accumulator array;
and (iii) search for the peaks of votes in the accumulator, as they correspond
to the p-blades that best fit the input dataset X , and output them.

In [5] it is shown that a p-dimensional subspace BBB〈p〉 in a n-dimensional space
can be represented by a set of m = p (n− p) rotations applied to a canonical
subspace used as reference. Such a representation leads to the model function

BBB〈p〉 = TTT EEE〈p〉 T̃TT , (16)

where EEE〈p〉 is the reference subspace (defined in (19)), and

TTT = RRRmRRRm−1 · · ·RRR1 (17)

is a rotor encoding a sequence of rotations

RRRt = cos (θt/2)− sin (θt/2) PPP
(t)
〈2〉, (18)

of θt radians on the unit planes PPP
(t)
〈2〉 = eeej+1 ∧ eeej with j = h (h+ 2 q − n)− t+ 1,

where h is the lowest value in the strictly increasing sequence {1, 2, · · · , n− q}
that satisfies the condition t ≤ h (h+ 2 q − n), for q = max(p, n− p). Please,

see [5, Eqs. (17)-(23) and (34)] for a comprehensive definition of PPP
(t)
〈2〉.

The canonical reference subspace in (16) is given by

EEE〈p〉 =


∧
v∈V eeev for p 6= q∨
v∈V eee∗v for p = q

. (19)

∧
v∈V is the outer product (3) of vectors eeev, and

∨
v∈V is the regressive prod-

uct (11) of pseudovectors eee∗v (the dual (9) of vectors eeev), for V = {2 (q + i)− n}n−qi=1 .

By taking EEE〈p〉 and the rotation planes PPP
(t)
〈2〉 as constant values, it is clear that

the m rotation angles (θt) related to the sequence of rotation operations can be
used to unequivocally characterize a p-dimensional subspace in the underlying
n-dimensional space. Therefore, it is possible to define a parameter space

Pm = {(θ1, θ2, · · · , θm) | θt ∈ [−π/2,π/2)}, (20)
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Fig. 1. The red spots in (a)-(c) represent the uncertainty of a given input blade. The
distribution is shown as points computed by sampling the input blade according to
its Gaussian distributed uncertainty and mapping each sample to P2 (a) and to
A2 (b). The envelopes in (a) and (b) were obtained analytically by our approach.
The points Θi

face at the center of the bin’s face (a) are mapped to the open affine
covering for G(2,3) as points aiface (b). In turn, the points aiface are mapped to the
basis defined by the eigenvectors of the probability distribution (c). An axis-aligned
bounding box is computed for aiface in such a basis. The number of votes to be
incremented to a given bin of the accumulator array is proportional to the weight
of the input blade and the probabilities of an intended p-blade be inside of the box.

where each parameter vector (θ1, θ2, · · · , θm) ∈ Pm characterizes a p-blade.

In the original formulation of our subspace detection framework [5], the vot-
ing procedure essentially takes each r-dimensional subspace XXX〈r〉 in the input
dataset X and identifies the parameters (coordinates in Pm, (20)) of all p-
dimensional subspaces related to it. When r ≤ p, the mapping process identi-
fies in Pm all p-dimensional subspaces containing XXX〈r〉. By duality, when r ≥ p,
the procedure identifies in Pm all p-dimensional subspaces contained in XXX〈r〉.
As the input entries are mapped, the bins of the accumulator related to such
a mapping are incremented by some importance value of the entry.

In conventional voting-based approaches, such as the HTs, the input data type
is known a priori. Thus, conventional mapping procedures predefine which
parameters of the related parameter vectors must be arbitrated and which
ones must be computed. The general approach, on the other hand, does not
have prior information about input data. It decides at runtime how to treat
each parameter. Such a behavior is key for the generality of this detection
framework, providing a closed-form solution for the detection of subspaces of
a given dimensionality p on datasets that may be heterogeneous and contain
elements (i.e., subspaces) with arbitrary dimensionalities (0 ≤ r ≤ n).

The last step of the subspace detection framework consists in identifying the
bins that correspond to local maxima in the accumulator array. It returns a
list with all detected peaks, sorted by number of votes. The coordinates of
such bins (i.e., parameter vectors) identify the most significant p-blades.
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5 Extended Framework to Handle Uncertain Data

First-order error propagation (Section 3.2) provides a good approximation for
Gaussian distributed uncertainty [8,10]. However, Fig. 1a clearly shows that
the resulting distribution of votes in the parameter space is non-Gaussian.
For instance, it is not symmetric around the mean (indicated by a + in
Fig. 1a), and the main axes are bent. Hence, standard first-order error prop-
agation cannot be applied directly to the computation chain of the mapping
procedure discussed in Section 4. The technique described in Sections 5.2
and 5.3 provides an alternative computation flow to propagate the uncer-
tainty through the algorithms shown in Fig. 2 (Mapping Procedure) and
Fig. 3 (Calculate Parameters). These algorithms represent a resulting pa-
rameter vector Θ(0) mapped as the point at the origin of an m-dimensional
open affine covering Am for the Grassmannian G(p,n) (Section 5.1 introduces
the concept of Grassmannian). This way, the uncertainty of Θ(0) is described
by a multivariate Gaussian distribution at the origin of Am. Fig. 1b illustrates
the affine space and the probability distribution for the example in Fig. 1a.

5.1 A Coordinate Chart for the Grassmannian

The multivector representation of k-blades resides in
∧k Rn (i.e., the portion

of
∧Rn with k-dimensional basis elements). However, not every number in∧k Rn is a blade, except for k ∈ {0, 1, n− 1, n}. As pointed out in Section 3.1,

blades can be built as the outer product of k independent vectors. The set of
all k-blades of Rn defines a projective variety of dimension k (n− k) in the(
n
k

)
-dimensional space of

∧k Rn [35]: the Grassmannian G(k,n).

A natural consequence of the dimensionality of G(k,n) is that an arbitrary
k-blades requires at least k (n− k) coordinates to be addressed in such va-
riety. By choosing a reference blade, one may define an open affine covering
Ak (n−k) for G(k,n). The covering is open because the k-blades orthogonal to
the reference are not properly represented in Ak (n−k) (i.e., they reside at in-
finity). The remaining k-blades in G(k,n), on the other hand, are represented
uniquely as points in Ak (n−k), where the reference blade is related to the point
at the origin. To see this in coordinates, consider the subspace spanned by
{eee1,eee2, · · · ,eeek} as the reference. It follows that any k-blade in the open affine
covering of G(k,n) may be represented as the row space of a unique matrix

1 · · · 0 α1,1 · · · α1,n−k

...
. . .

...
...

. . .
...

0 · · · 1 αk,1 · · · αk,n−k

 , (21)
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where the entries αi,j define a location in Ak (n−k) [35]. Thus, a subspace may
be mapped from a point in Ak (n−k) to a blade BBB〈k〉 ∈

∧k Rn through

BBB〈k〉 =
k∧
i=1

eeei +
n−k∑
j=1

(
αi,j eeek+j

) .

BBB〈k〉 may be mapped from
∧k Rn to Ak (n−k) by decomposing BBB〈k〉 into vector

factors and computing the row reduced echelon form of its k × n matrix repre-
sentation. This lends to (21) when BBB〈k〉 is not orthogonal to eee1 ∧ eee2 ∧ · · · ∧ eeek.

According to [5], the parameter space Pm (20) provides a coordinate chart
for G(p,n). In such a coordinate system, a p-blade is addressed by a set of
p (n− p) rotation angles in the [−π/2, π/2) range (a parameter vector). In
contrast to the open affine covering Ak (n−k) of G(k,n), this parameterization
can represent all the p-blade in

∧pRn.

5.2 Mapping Procedure for r ≥ p

We extend the mapping procedure described in [5] from exact to uncertain in-
put data. Due to space limitations, we only discuss the changes to the original
algorithms. Please, refer to [5] for more details about our previous work.

The procedure that maps input r-blades with uncertainty to the parameter
space Pm characterizing p-dimensional subspaces is presented in Fig. 2 as the
Mapping Procedure algorithm, for r ≥ p. The function called in line 6 is pre-
sented in the algorithm Calculate Parameters (Fig. 3). TheMapping Procedure
algorithm takes as input a random multivector variable XXX〈r〉, whose expecta-

tion XXX〈r〉 is a blade and whose covariance matrix is ΣXXX〈r〉 . The procedure returns

a set of 2-tuples comprised by a parameter vector Θ(0) ∈ Pm (Fig. 2, line 10),
and a vector-valued random variable a. By definition, the expectation of a is
at the origin of Am (i.e., a = (0, 0, · · · , 0)T ∈ Am). The covariance matrix of
a is computed with the first-order error propagation model (13)

Σa = Ja ΣXXX〈r〉 JT
a . (22)

In order to evaluate (22), one needs to compute the Jacobian matrix Ja for the
equation that calculates the mean point a in terms of the input mean blade
XXX〈r〉. However, it is impractical to obtain a single equation that expresses the
entire computation chain and from it compute Ja. Note that intermediate
variables can be combined in different ways. The combination depends on
which parameters must be arbitrated and which ones must be computed while
mapping the input data to the parameter space. As a result, the definition of

14



Algorithm: Mapping Procedure

Require: A random multivector variable XXX〈r〉 described by XXX〈r〉 and ΣXXX〈r〉

1: P(m) ←
{

(XXX〈r〉, I, 1, 0,∅)
}

2: for t = m down to 1 do
3: Let PPP

(t)
〈2〉 be the rotation plane of the t-th rotation applied to EEE〈p〉 in (16)

4: P(t−1) ← ∅
5: for all (XXX

(t)
〈r〉, JXXX

(t)

〈r〉
,KKK (t), JKKK (t) ,Θ(t)) ∈ P(t) do

6: T ← the result of Calculate Parameters having XXX
(t)
〈r〉 and J

XXX
(t)

〈r〉
as input

7: P(t−1) ← P(t−1)∪
{

(XXX
(t−1)
〈r〉 , J

XXX
(t−1)

〈r〉
,KKK (t−1), JKKK (t−1) , (θt,Θ

(t)
1 ,Θ

(t)
2 , · · · ,Θ(t)

m−t))

| (θt, Jθt) ∈ T , and XXX
(t−1)
〈r〉 , and KKK (t−1) are defined in (26) and (29)

}
8: end for
9: end for

10: return
{

(Θ(0), a) | a is computed according to (33),

Σa = Ja ΣXXX〈r〉 JT
a , and (XXX

(0)
〈r〉, JXXX

(0)

〈r〉
,KKK (0), JKKK (0) ,Θ(0)) ∈ P(0)

}
Fig. 2. The procedure that extends the algorithm presented in [5] to blades with
uncertainty. It takes as input an random r-blade XXX〈r〉 and returns a set of pairs

comprised by a parameter vector Θ(0) ∈ Pm characterizing a p-blade in XXX〈r〉, and a
vector-valued random variable a describing the Gaussian uncertainty of the p-blade
represented as the origin of the open affine covering of the Grassmannian.

Ja must handle all possible computation flows. The solution for this problem
is to solve the partial derivatives in Ja using the chain rule, step-by-step,
until the final result is found. In Figs. 2 and 3 the derivatives of intermediate
computation steps are kept as the Jacobian matrices of intermediate variables.
The following derivations show how these matrices are evaluated.

The mapping starts by initializing a set P(m) (Fig. 2, line 1) with a 5-tuple

(XXX
(m)
〈r〉 , JXXX

(m)

〈r〉
,KKK (m), JKKK (m) ,Θ(m)) ∈ P(m), (23)

where XXX
(m)
〈r〉 = XXX〈r〉 is the input (mean) blade, J

XXX
(m)

〈r〉
= I is the Jacobian matrix

of XXX
(m)
〈r〉 with respect to XXX〈r〉 (i.e., an identity matrix), and KKK (m) = 1 is an

identity rotor denoting that no rotor RRRt was computed yet. In subsequent
steps of the algorithm, KKK (t) is a rotor obtained as the geometric product of
the last (m− t) rotors RRRt applied to EEE〈p〉 in (16), i.e., KKK (t) = KKK (t+1)RRRt+1,
for 1 ≤ t ≤ m, and KKK (m+1) = 1. At the end of the mapping process, KKK (0) = TTT
(TTT is defined in (17)) is the rotor used to transform the reference blade EEE〈p〉
into the blade characterized by the resulting parameter vector Θ(0) (line 10).
In (23), JKKK (m) = 0 is the Jacobian matrix of KKK (m) (i.e., a zero row vector), and
Θ(m) = ∅ is an empty set denoting that no parameter was calculated yet.
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At each iteration of the procedure (lines 2 to 9), the function called in line 6
and defined in Fig. 3 (Calculate Parameters) returns a set T of 2-tuples
(θt, Jθt) ∈ T , where θt is the t-th parameter of some p-blade related to XXX〈r〉,
and Jθt is its Jacobian matrix, whose definition is presented later in (47). The
rotation angle θt is used in line 7 of Fig. 2 to compute the rotor RRRt as

RRRt = cos (θt/2)− sin (θt/2) PPP
(t)
〈2〉 = cos (θt/2)− sin (θt/2)

2n∑
i=1

(
φitEEEi

)
. (24)

PPP
(t)
〈2〉 is a constant rotation plane with coefficients {φit}2n

i=1, leading to

Ji,zRRRt
=
∂ρit
∂χz

= −1

2
Ji,zθt

sin (θt/2) for i = 1

φit cos (θt/2) otherwise
. (25)

Following the tensor representation introduced in Section 3.3, {ρit}2n

i=1 and
{χz}2n

z=1 in (25) denote the coefficients of, respectively, RRRt and XXX〈r〉. The rotor
RRRt is used in line 7 to compute

XXX
(t−1)
〈r〉 = R̃RRtXXX

(t)
〈r〉RRRt =

2n∑
i,j,k,l=1

(
ρjt λ

k
t ρ

l
t Ψi,j,k,lEEEi

)
, (26)

where {ρit}2n

i=1 and {λit}2n

i=1 denote the coefficients of RRRt and XXX
(t)
〈r〉, respectively.

The tensor

Ψi,j,k,l = Υj,j
2n∑
h=1

(
Γh,j,k Γi,h,l

)
(27)

is comprised by constant values computed from the tensors Γ and Υ encoding
the geometric product and the reverse operation, respectively. The derivatives
in the Jacobian matrix of XXX

(t−1)
〈r〉 (Fig. 2, line 7) are given by

Ji,z
XXX

(t−1)

〈r〉
=
∂λit−1

∂χz
=

2n∑
j,k,l=1

((
ρjt Jk,z

XXX
(t)

〈l〉
ρlt + λkt

(
Jj,zRRRt

ρlt + ρjt Jl,zRRRt

))
Ψi,j,k,l

)
. (28)

The Jacobian matrix of RRRt (JRRRt , in (28)) is defined in (25). The rotor RRRt is
also used in Fig. 2 (line 7) to compute

KKK (t−1) = KKK (t)RRRt =
2n∑

i,j,k=1

(
κjt ρ

k
t Γi,j,kEEEi

)
. (29)

The coefficients of KKK (t−1) are denoted by {κit−1}2n

i=1 and its Jacobian matrix is

Ji,z
KKK (t−1) =

∂κit−1

∂χz
=

2n∑
j,k=1

((
Jj,z
KKK (t) ρ

k
t + κjt Jk,zRRRt

)
Γi,j,k

)
. (30)
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After all θt parameters of the p-blades related to XXX〈r〉 have been calculated,
one also has computed their respective rotors KKK (0) = TTT . Recall from (16) that
a rotor TTT transforms the reference blade EEE〈p〉 into the blade CCC〈p〉 related to
a given parameter vector Θ(0). The last step of the mapping procedure is to
define the open affine covering Am for the Grassmannian (Section 5.1) in such
a way that CCC〈p〉 (and Θ(0)) is represented as the point at the origin of Am.
Such origin point is denoted by a. The computation of its coordinates leads
to the Jacobian matrix Ja (see (34)) used in (22) to compute the covariance
matrix of a vector-valued random variable a (line 10).

The coordinates of a are equal to zero. According to (21), the origin of Am is
actually related to the blade AAA〈p〉 = eee1 ∧ eee2 ∧ · · · ∧ eeep, and not to an arbitrary
blade CCC〈p〉. Thus, a mapping from CCC〈p〉 to AAA〈p〉 must be defined. The rotor

WWW = TTTA K̃KK
(0) =

2n∑
i,j,k=1

(
ζj κk0 Υk,k Γi,j,kEEEi

)
(31)

performs a change of basis, mapping CCC〈p〉 to AAA〈p〉 (i.e., WWW CCC〈p〉 W̃WW = AAA〈p〉).
In (31), TTTA is the rotor that transforms EEE〈p〉 into AAA〈p〉. Its coefficients are
denoted as {ζj}2n

j=1. Notice that TTTA may be precomputed from the parameter
vector returned by the procedure in Fig. 2 when AAA〈p〉 is given as input.

The Jacobian matrix of WWW in (31) is computed as (JKKK (0) is given by (30)):

Ji,zWWW =
∂ωi

∂χz
=

2n∑
j,k=1

(
ζj Jk,z

KKK (0) Γi,j,k
)

. (32)

Finally, the coordinates αt of a (denoted by αi,j in (21)) are computed as

αt =
(
WWW ccci W̃WW

)
∗ eeep+j = 0, (33)

where t = (i− 1) (n− p) + j, for i ∈ {1, 2, · · · , p} and j ∈ {1, 2, · · · , n− p}.
In (33), the vector WWW ccci W̃WW = eeei +

∑n−p
j=1 (αi,j eeep+j) = eeei is at the i-th row

of the matrix representation of AAA〈p〉 in row reduced echelon form (21), and

ccci = W̃WW eeeiWWW is the i-th vector spanning CCC〈p〉 = ccc1 ∧ · · · ∧ ccci ∧ · · · ∧ cccp.

From (33), the coordinates {αt}mt=1 of a can be rewritten in tensor form as

αt =
2n∑

h,i=1

εh`2 Λ1,i,h
2n∑

j,k,l=1

(
ωj γk`1 ω

l Ξi,j,k,l
) ,

where Λ is a 3rd-rank tensor encoding the left contraction (5), leading to the
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Jacobian matrix

Jt,za =
∂αt

∂χz
=

2n∑
h,i=1

εh`2 Λ1,i,h
2n∑

j,k,l=1

(
γk`1

(
Jj,zWWW ωl + ωj Jl,zWWW

)
Ξi,j,k,l

) , (34)

where `1 = d t
n−pe, `2 = t+ n− d t

n−pe (n− p), and d�e is the ceiling function.

JWWW is defined in (32). Constants {γk`1}
2n

k=1 and {εh`2}
2n

h=1 are the coefficients of

ccc`1 and eee`2 , respectively. Ξi,j,k,l = Υl,l ∑2n

h=1

(
Γh,j,k Γi,h,l

)
is also a constant.

5.2.1 Function Calculate Parameters

Fig. 3 complements the procedure in Fig. 2, taking as input blade XXX
(t)
〈r〉 (YYY(t))

and the Jacobian matrix J
XXX

(t)

〈r〉
(JYYY(t)), computed in Fig. 2 (see Fig. 2, line 6).

The meet operation ∩ in Fig. 3 (line 5) is analogous to intersection in set
theory. It returns the subspace shared by YYY(t) and the space of possibilities
FFF

(t)
l (37). In the new algorithm, meet is evaluated in terms of the pseudoscalar

III
(t)
l (i.e., III

(t)
l = YYY(t) ∪FFF

(t)
l , where ∪ denotes the join operation in GA, analogous

to union). Thus, meet reduces to the application of two left contractions

MMM
(t)
l = YYY(t) ∩FFF

(t)
l =

(
FFF

(t)
l c (III

(t)
l )−1

)
cYYY(t) =

2n∑
i,j,k=1

(
δjt,l η

k
t Λi,j,kEEEi

)
. (35)

In our implementation, we compute III
(t)
l using the join algorithm described in [36].

The spaces of possibilities are the regions of Rn that can be reached by
vectors vvvl ∈ E as the rotation operations are applied to them, for 1 ≤ l ≤ |E|,
where |E| = p denotes the cardinality of the set E (see [5] for details):

E =

{eeev}v∈V for p 6= q

{eeev}v∈V\{eeei}ni=1 for p = q
, (36)

where A\B denotes the relative complement of A in B. Once E is defined, the
spaces of possibilities can be computed as

FFF
(t)
l =

FFF
(t−1)
l ∪PPP

(t)
〈2〉 for grade (FFF

(t−1)
l ∩PPP

(t)
〈2〉) = 1

FFF
(t−1)
l otherwise

, (37)

where FFF
(t)
l is the space reachable by vector vvvl ∈ E after the application of the

first t rotations. Therefore, FFF
(0)
l = vvvl. PPP

(t)
〈2〉 is the plane where the t-th rotation

happens, ∪ and ∩ denote, respectively, the join and the meet operations, and
the grade function retrieves the dimensionality of a subspace.
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In (35),
(
FFF

(t)
l c (III

(t)
l )−1

)
results a constant blade. The derivatives in the Jaco-

bian of MMM
(t)
l are given by

Ji,z
MMM

(t)
l

=
∂µit,l
∂χz

=
2n∑

j,k=1

(
δjt,l J

k,z

YYY(t) Λi,j,k
)

. (38)

In (35) and (38), the coefficients of MMM
(t)
l ,

(
FFF

(t)
l c (III

(t)
l )−1

)
and YYY(t) are denoted

by {µit,l}2n

i=1, {δjt,l}2n

j=1 and {ηkt }2n

k=1, respectively.

N is a subset ofM (Fig. 3, line 6). When N is empty (line 7), θt can assume
any value in the [−π/2,π/2) range. Hence, in Fig. 3 line 8, the Jacobian matrix
of θt (i.e., the second element in resulting tuples) is a zero row vector because
the θt values do not depend on the input blade. When N is not empty, O is
computed as a subset of N (line 10). In turn, Q (line 11) is defined as the

set of 2-tuples (qqq
(t)
l , Jqqq

(t)
l

), where qqq
(t)
l is a nonzero vector resulting from the

contraction of vectors mmm
(t)
l ∈ O onto the rotation plane PPP

(t)
〈2〉

qqq
(t)
l = mmm

(t)
l cPPP

(t)
〈2〉 =

2n∑
i,j,k=1

(
µjt,l φ

k
t Λi,j,kEEEi

)
. (39)

The Jacobian matrix J
qqq
(t)
l

of qqq
(t)
l is computed from J

mmm
(t)
l

(38), and from the

coefficients of PPP
(t)
〈2〉 (denoted by {φkt }2n

k=1), and the tensor Λ

Ji,z
qqq
(t)
l

=
∂βit,l
∂χz

=
2n∑

j,k=1

(
Jj,z

mmm
(t)
l

φkt Λi,j,k
)

. (40)

When Q is not empty, one of the tuples in Q is used to compute the parameter
θt (Fig. 13 line 13). However, in order to simplify the definition of the Jacobian
of θt, the parameter is computed from τt,l and νt,l

θt = tan−1


(
qqq

(t)
l ∧ rrr

(t)
l

)
∗PPP

(t)
〈2〉

qqq
(t)
l ∗ rrr

(t)
l

 = tan−1

(
τt,l
νt,l

)
, (41)

τt,l =
(
qqq

(t)
l ∧ rrr

(t)
l

)
∗PPP

(t)
〈2〉 = qqq

(t)
l ∗

(
rrr

(t)
l cPPP

(t)
〈2〉

)
=

2n∑
j,k=1

(
βjt,l Ω

j,k
)

, and (42)

νt,l = qqq
(t)
l ∗ rrr

(t)
l =

2n∑
j,k=1

(
βjt,l ψ

k
t,l Λ

1,j,k
)

, (43)

with Ω in (42) being a constant defined as

Ωj,k = Λ1,j,k
2n∑

h,l=1

(
ψht,l φ

l
t Λk,h,l

)
. (44)
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Algorithm: Calculate Parameters

Require: YYY(t), the current input blade
Require: JYYY(t) , the Jacobian matrix of YYY(t) with respect to XXX〈r〉

1: Let PPP
(t)
〈2〉 be the rotation plane of the t-th rotation applied to EEE〈p〉 in (16)

2: Let FFF
(t)
l be a space of possibilities as defined in (37)

3: Let rrr
(t)
l ← FFF

(t−1)
l cFFF

(t)
l , i.e., the vector factor in FFF

(t)
l that is not in FFF

(t−1)
l

4: loop

5: M←
{

(MMM
(t)
l , JMMM

(t)
l

) |MMM(t)
l = YYY(t) ∩FFF

(t)
l , l ∈ Z, and 1 ≤ l ≤ |E|

}
6: N ←

{
(MMM

(t)
l , JMMM

(t)
l

) | (MMM(t)
l , JMMM

(t)
l

) ∈M, and grade (MMM
(t)
l ) = |S| ,

where S ←
{
MMM

(t)
h | (MMM

(t)
h , JMMM

(t)
h

) ∈M, and MMM
(t)
l ∗MMM

(t)
h 6= 0

}}
7: if N = ∅ then
8: return

{
(θt, 0) | θt ∈ [−π/2,π/2)

}
9: end if

10: O ←
{

(MMM
(t)
l , JMMM

(t)
l

) | (MMM(t)
l , JMMM

(t)
l

) ∈ N , and grade (MMM
(t)
l ) = grade (rrr

(t)
l ) = 1

}
11: Q ←

{
(qqq

(t)
l , Jqqq

(t)
l

) | qqq(t)
l = (mmm

(t)
l cPPP

(t)
〈2〉), and (mmm

(t)
l , Jmmm

(t)
l

) ∈ O, and qqq
(t)
l 6= 0

}
12: if Q 6= ∅ then

13: return
{

(θt, Jθt) | θt = tan−1
(

((qqq
(t)
l ∧ rrr

(t)
l ) ∗PPP

(t)
〈2〉) / (qqq

(t)
l ∗ rrr

(t)
l )
)

,

where (qqq
(t)
l , Jqqq

(t)
l

) is one tuple in Q
}

14: end if
15: YYY(t) ← (MMM

(t)
l )−1 cYYY(t), where (MMM

(t)
l , JMMM

(t)
l

) ∈ N and MMM
(t)
l has the highest

dimensionality in the set N
16: JYYY(t) ← the Jacobian matrix of YYY(t) (line 15) with respect of XXX〈r〉
17: end loop

Fig. 3. Function used in line 6 of the Mapping Procedure in Fig. 2. It extends the
procedure presented in [5] by computing the Jacobian matrix of the intermediate
variables with respect to the coefficients of the input variable XXX〈r〉 in Fig. 2.

In (42), (43) and (44), {βjt,l}2n

j=1, {ψkt,l}2n

k=1 and {φlt}2n

l=1 denote the coefficients

of qqq
(t)
l (39), rrr

(t)
l = FFF

(t−1)
l cFFF

(t)
l and PPP

(t)
〈2〉, respectively. The derivatives of τt,l (42)

and νt,l (43) are, respectively

J1,z
τt,l

=
∂τt,l
∂χz

=
2n∑

j,k=1

(
Jj,z

qqq
(t)
l

Ωj,k
)

, and (45)

J1,z
νt,l

=
∂νt,l
∂χz

=
2n∑

j,k=1

(
Jj,z

qqq
(t)
l

ψkt,l Λ
1,j,k

)
. (46)
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Given τt,l (42), νt,l (43), Jτt,l (45), and Jνt,l (46), the Jacobian of θt (41) is

J1,z
θt =

∂θt

∂χz
=

1

(τt,l)2 + (νt,l)2

(
J1,z
τt,l
νt,l − τt,l J1,z

νt,l

)
. (47)

At each iteration of the loop in Fig. 3, blade YYY(t) is updated (line 15) removing

from it the blade MMM
(t)
l ∈ N with highest dimensionality. The new YYY(t) becomes

YYY(t) = (MMM
(t)
l )−1 cYYY

(t)
old = NNN

(t)
l cYYY

(t)
old =

2n∑
i,j,k=1

(
ξjt,l η

k
t,old Λi,j,kEEEi

)
, and (48)

NNN
(t)
l = (MMM

(t)
l )−1 =

M̃MM
(t)
l

MMM
(t)
l ∗ M̃MM

(t)
l

=
1∑2n

h,k=1

(
µht,l µ

k
t,l Υ

k,k Λ1,h,k
) 2n∑

j=1

(
µjt,l Υ

j,j EEEj

)
(49)

is an intermediate multivector with coefficients {ξjt,l}2n

j=1, whose derivatives are

Jj,z
NNN

(t)
l

=
∂ξjt,l
∂χz

=
2n∑

h,k=1

((
Jj,z

MMM
(t)
l

µht,l µ
k
t,l − µ

j
t,l J

h,z

MMM
(t)
l

µkt,l

−µjt,l µht,l J
k,z

MMM
(t)
l

)
Υj,j Υk,k Λ1,h,k

)
. (50)

The Jacobian of the new YYY(t) (48) is

Ji,z
YYY(t) =

∂ηit
∂χz

=
2n∑

j,k=1

((
Jj,z

NNN
(t)
l

ηkt,old + ξjt,l J
k,z

YYY
(t)
old

)
Λi,j,k

)
. (51)

The coefficients of YYY
(t)
old and MMM

(t)
l are denoted in (48), (49), (50) and (51) by

{ηkt,old}2n

k=1 and {µit,l}2n

i=1, respectively. The reverse operation is encoded by Υ,
and the left contraction and the scalar product are encoded by Λ.

Tensors encoding GA operations are sparse structures. Also, multivectors en-
coding k-blades have at most

(
n
k

)
nonzero coefficients (i.e., the ones related

to basis blades having dimensionality k), and rotors use only the coefficients
related to even-dimensional basis blades of

∧Rn. It follows that the summa-
tions in all preceding derivations only need to be evaluated for possible nonzero
multivector’s coefficients and tensor’s entries. Such a feature is used to reduce
the computational load of obtaining the Jacobian matrices.

5.3 Mapping Procedure for r ≤ p

When the dimensionality of an input blade is less or equal than the dimen-
sionality of the intended type of subspace, one can take the dual (9) of the
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input (XXX∗〈r〉) and reference (EEE∗〈p〉) blades in order to reduce the mapping pro-
cedure to the case where r ≥ p (Section 5.2). Thus, the dual of a random
multivector variable XXX〈r〉 must be considered. In this case, the set P(m) in

Fig. 2 (line 1) is initialized (see (23)) with a 5-tuple having

(
XXX〈r〉

)∗
= XXX〈r〉 c III−1

〈n〉 = XXX〈r〉 c ĨII〈n〉 =
2n∑

i,j,k=1

(
χj ιk Υk,k Λi,j,kEEEi

)
(52)

as its first entry. The second entry of the 5-tuple is the Jacobian matrix of(
XXX〈r〉

)∗
, whose derivatives are computed as

∂λim
∂χz

=
2n∑
k=1

(
ιk Υk,k Λi,i,k

)
. (53)

The other three entries of the 5-tuple are, respectively, KKK (m) = 1, JKKK (m) = 0

and ∅. In (52) and (53), {λi}2n

i=1 denotes the coefficients of
(
XXX〈r〉

)∗
, and {ιk}2n

k=1

are the coefficients for the (constant) pseudoscalar III〈n〉. It is important to
notice that, when r ≤ p, the derivatives in the Jacobian matrices computed
by the mapping procedure are related to the coefficients {χz}2n

z=1 of the direct
representation of the mean input blade XXX〈r〉.

5.4 The Voting Procedure

The subspace detection framework presented in this paper identifies the most
likely p-blades in a given dataset by performing a voting procedure using an
accumulator array as the discrete representation of Pm (20). The mapping pro-
cedure described in Sections 5.2 and 5.3 is key for such a voting. It takes an
uncertain r-blade (XXX〈r〉) and decomposes it as parameter vectors Θ(0) ∈ Pm and
vector-valued random variables a. The resulting parameter vectors are com-
puted from the expectation of XXX〈r〉. Thus, they characterize the most probable
p-blades related to the input entry. The p-blades related to the uncertainty
around the expectation of XXX〈r〉 are represented in an auxiliary space Am by a.

For a given pair (Θ(0), a) (Fig. 2, line 10), the number of votes to be incre-
mented to each accumulator’s bin can be computed by: (i) mapping the bin’s
region from Pm to Am; and, in turn, (ii) weighting the importance value ω
of the input XXX〈r〉 by the probability of a related p-blade be in the mapped
region. Ideally, such a probability should be computed in Am as the hyper-
volume under the portion of the multivariate “bell” curve contained by the
mapped region. However, rectangular regions in the actual parameter space
(Fig. 1a) map to warped regions in the auxiliary parameter space (Fig. 1b). It
is a challenging and computationally intensive task to evaluate the probabil-
ity in such warped regions [8]. Our solution to this problem involves defining,
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for each bin in Am, a representative box aligned to the eigenvectors of the
covariance matrix Σa of a. As depicted in Fig. 1c, in the space defined by the
orthogonal eigenvectors of Σa, the eigenvalues represent the variances of an
axis-aligned Gaussian distribution (in Fig. 1c, the unit eigenvectors are scaled
by the eigenvalues), and the covariances are equal to zero. Hence, the resulting
probability can be efficiently computed as the product of the probabilities of
the intervals defined by the representative box.

The representative box of a bin having coordinates Θbin is built from points
{Θi

face}2m
i=1 placed at the center of bin’s faces in the parameter space (Fig. 1a).

By using ∆θt radians as step in the linear discretization of the t-th dimension
of the parameter space, the center of the faces are computed as

Θi
face = Θbin + Θoffseti ∀ i ∈ {1, 2, · · · , 2m},

where

∆offseti =

(0, · · · ,−∆
θb

i+1
2 c
, · · · , 0) for odd i

(0, · · · ,+∆
θb

i+1
2 c
, · · · , 0) for even i

is the translation vector from the center of a bin to the center of a bin’s face.
b�c denotes the floor function. Each point Θi

face is mapped from Pm to Am

(Fig. 1b) using the following procedure:

(1) The vectors spanning the reference blade EEE〈p〉 (36) are transformed by
the rotor WWW TTT i

face, where TTT i
face is computed according to (17) using the

coordinates (rotation angles) of Θi
face. The rotor WWW is given by (31) for

current pair (Θ(0), a);
(2) The vectors resulting from step 1 are used to define a p× n matrix rep-

resentation the subspace related to Θi
face;

(3) The location of Θi
face in Am (denoted by points aiface in Fig. 1b) is retrieved

from the row reduced echelon form of the matrix build in step 2.

Once the points {aiface}2m
i=1 are known, each aiface is transformed to the basis

defined by the (orthonormal) eigenvectors of Σa (Fig. 1c). The transformation
is achieved by premultiplying aiface by the transpose of a matrix having such
eigenvectors as its columns. The eigenvectors-aligned bounding box including
{aiface}2m

i=1 is the representative box of the bin’s region in Am. Each dimension
of such a box defines an interval [mint,maxt] in one of the axis related to an
eigenvector (see Fig. 1c). The number of votes to be incremented in the bin is

votes = ω
m∏
t=1

(
Φ
(

maxt
σt

)
− Φ

(
mint
σt

))
, (54)

where σt is the square root of the eigenvalue related to the t-th eigenvector
of Σa, ω is the importance of the input entry XXX〈r〉, and Φ is the cumulative

distribution function of the standard normal distribution [8].
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As depicted in Fig. 1, one needs to compute votes only for the bins intersecting
the footprint of the Gaussian distribution in Am. It is because the number of
votes for the bins beyond three standard deviations (the ellipses in Figs. 1b
and 1c) are negligible. Intuitively, (54) can be evaluated starting at the bin
containing Θ(0) (i.e., the parameter vector related to the expectation a) and
moving outwards (in parameter space, Fig. 1a) in a flood fill fashion, until the
returned values are lower than a threshold εvotes. For the examples presented
in this paper, εvotes was set to 10−6 (a value defined empirically).

It is important to notice that the vector-valued random variable a defines a
k-dimensional multivariate Gaussian distribution in Am, for 0 ≤ k ≤ m. This
means that its distribution of uncertainty may have arbitrary dimensionality in
Am, and hence also in Pm. The dimensionality of the Gaussian distribution (k)
will be equal to m if and only if two conditions are satisfied:

(1) A given input entry XXX〈r〉 maps to only one pair (Θ(0), a) (i.e., all parameter

values were computed and returned by Fig. 3, line 13); and
(2) The uncertainty in XXX〈r〉 does not restrict the distribution of a to a linear

subspace in Am having a dimensionality smaller than m.

When condition (1) fails then the distribution of a will have at most k = (m− s)
dimensions, where s is the number of arbitrated parameters (Fig. 3, line 8).
In such a case, the distributions of votes centered at the coordinates of each
parameter vector Θ(0) ∈ Pm define (warped) parallel profiles in Pm.

The distribution of a also loses dimensions when condition (2) fails. It happens
when there is no uncertainty in some of the degrees of freedom of the input
entry XXX〈r〉. In an extreme case, the input blade does not have uncertainty
at all. In this situation, the extended voting scheme presented in this paper
reduces to the approach presented in [5].

6 Validation and Discussion

The prerequisites for using first-order error propagation is to have Gaussian
distributed uncertainty in the input data entries and also in the resulting
mappings [8,10]. The first condition is intrinsic to the input data. We evaluate
our approach by carrying three sets of experiments in order to assert the
second condition for the proposed mapping procedure.

The first two sets of experiments (Section 6.1 and 6.2) aim to verify whether
the skewness and kurtosis of the resulting vote distributions in the the aux-
iliary parameter space characterize Gaussian distributions. Such experiments
are based on sampling-based procedures. The third set of experiments (Sec-
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tion 6.3) verifies the equivalence between the sampling-based distributions
computed in Section 6.2 and the distributions computed using our procedure.
Sections 6.4 and 6.5 provide results on real datasets.

6.1 Verifying Gaussian Distributions by Checking Skewness and Kurtosis

Each experiment of the set assumes a detection case (i.e., r-dimensional sub-
spaces in a n-dimensional space), and one input uncertain r-blade having a
given covariance matrix. The covariance matrices were defined by rotating the
principal axes of a reference axis-aligned Gaussian distribution according to its
degrees of freedom (i.e., the k (k − 1)/2 generalized Euler angles [37] charac-
terizing the orientation of a k-dimensional Gaussian distribution). In this way,
the experiments cover a wide range of settings for Gaussian distributions. For
each experiment, a set of 1,000 random samples of the input uncertain blade
was generated according to the assumed Gaussian distribution. The uncertain
blade was then mapped to Am with the procedure presented in Sections 5.2
and 5.3. In turn, the samples related to the uncertain blade where mapped to
the same auxiliary space Am. Recall from Section 5.2 that Am is defined in
such a way that the expectation of the uncertain blade is at its origin. Thus,
the samples are mapped to points around the origin of Am. This distribution
of points must be Gaussian in order to validate the assumption that first-order
error propagation can be used to predict a distribution of uncertainty in Am.
The distribution of points was verified with the statistical hypothesis test pro-
posed by Mardia [38], which computes a P -value for the skewness, and another
one for the kurtosis of a given set of points. If these P -values are greater than
or equal to the significance level α = 0.05, then the results are statistically
not-significant (i.e., the distribution of points is probably Gaussian because
there is only a 5% chance that the expected measures of skewness and kurtosis
have happened by coincidence). Otherwise, for P -values lower that α, there is
a reasonable chance of the distribution being non-Gaussian.

Tables 1 and 2 summarize the P -values computed, respectively, for skewness
and kurtosis in the first and second sets of experiments. These experiments
(1,530 altogether) are grouped by table entries according to a detection case
(see the n and p values on the column headers), and a dimensionality of input
uncertain blades (see the r value for each row). Each table entry shows a rela-
tive frequency histogram of P -values (the abscissa, in logarithmic scale) for the
respective detection/input case. Notice that almost all computed P -values had
fallen in the bins to the right of (and including) the significance level α = 0.05
(denoted by the dashed lines). These results suggest that samples mapped to
Am define Gaussian distributions for different values of variance and covari-
ance in the input uncertain blades. However, some of the P -values presented
in Tables 1 and 2 are smaller than α. Thus, it is necessary to verify whether
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Table 1
Relative frequency histograms of P -values computed for the skewness of distribu-
tions of points in the auxiliary space Am. The most frequent P -values are greater
than or equal to the significance level α = 0.05 (the dashed lines), indicating that
the distributions of points have the skewness of a Gaussian distribution.
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Table 2
Relative frequency histograms of P -values computed for the kurtosis of distributions
of points in the auxiliary space Am. It shows that distributions of points related to
almost all the experiments have the kurtosis of a Gaussian distribution.
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these P -values are related to some sensitivity of Mardia’s procedure, or to
some bounding limit for input uncertainty. To verify these conditions another
set of statistical experiments was carried out to observe how the “quality” of
skewness and kurtosis change as the uncertainty of input blades changes.
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6.2 Checking the Quality of the Approximation

In the second set of experiments it was assumed the detection of straight lines
in the 2-dimensional homogeneous MOG (refer to [9] for details about the
MOG). Thus, p = 2 and n = 2 + 1, leading to m = 2 (3− 2) = 2. Initially, a
set of 1,225 blades was created by choosing 35× 35 parameter vectors linearly
distributed over the parameter space P2 for 2-blades in

∧R2+1. Through (16),
each one of the parameter vectors is related to a blade, which is regarded here
as the expectation (XXX〈2〉) of a random multivector variable XXX〈2〉. By converting

XXX〈2〉 to the parameterization defined by the normal equation of the line

x cosφ+ y sinφ− ρ = 0, (55)

and by assigning standard deviations σρ and σφ to ρ and φ, respectively, one
can define the covariance matrix of XXX〈2〉 from σρ and σφ. This way, it is possible
to verify changes on the skewness and kurtosis of distributions of samples
mapped to A2 as an effect of changing the uncertainty in parameters having a
clear geometrical interpretation: ρ defines the distance from the origin point
to the line, and φ is the angle between the x-axis and the normal to the line.
The mean normal parameters of the line are computed from XXX〈2〉 as

ρ = ‖sss‖ and φ = tan−1
(

nnn ∗ eee2

nnn ∗ eee1

)
, (56)

where sss =
(
eee−1

0 c
(
eee0 ∧XXX〈2〉

))
/ddd is the support vector of the line, ddd = eee−1

0 cXXX〈2〉

is its direction, nnn = eee−1
0 c

(
eee0 ∧

(
XXX〈2〉

)∗)
is the normal to the line, with the con-

dition that sss ∗ nnn ≥ 0, and ∗ denotes de scalar product (4). In the homogeneous
MOG, the basis vector eee0 is interpreted as the point at the origin. Vectors eee1

and eee2 are related to x and y in (55), respectively. In the homogenous MOG, we
assume Euclidean metric for the basis vectors, i.e., eeei · eeej is one for i = j and
zero otherwise, where · denotes the inner product of vectors. It is important
to comment that, in an implementation, one should evaluate the arctangent
in (56) with the function atan2 in order to make φ ∈ [−π, π). In such a case,
one should assume ρ ∈ [0,∞). atan2 is available in many programming lan-
guages. The expectation of XXX〈2〉 can be computed from ρ and φ (56) as

XXX〈2〉 =
(
ρ
(
eee−1

0

)
− cos

(
φ
)

eee1 − sin
(
φ
)

eee2

)−∗
. (57)

It follows that the covariance matrix of XXX〈2〉 is defined as

ΣXXX〈r〉 = JXXX〈r〉

σ2
ρ 0

0 σ2
φ

 JT
XXX〈r〉

, (58)
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Table 3
P -values computed for the skewness of distributions of points in the auxiliary spaces
A2 related to uncertain 2-blades. The heights of the surfaces represent the P -values,
while the dark spots on the plane at the bottom of the charts denote those P -values
which are lower than the significance level α = 0.05.
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where the derivatives in the Jacobian matrix JXXX〈r〉 are computed as

Ji,1XXX〈r〉
=
∂χi

∂ρ
=

2n∑
k=1

−
(
δk0 Λi,1,k

)
, and (59a)

Ji,2XXX〈r〉
=
∂χi

∂φ
= sin

(
φ
) 2n∑
k=1

(
δk1 Λi,1,k

)
− cos

(
φ
) 2n∑
k=1

(
δk2 Λi,1,k

)
. (59b)

In (59), the coefficients of the constant subspaces
(
eee−1

0

)−∗
, eee−∗1 , and eee−∗2 are

denoted by {δk0}2n

k=1, {δk1}2n

k=1, and {δk2}2n

k=1, respectively. Recall form Section 3.1
that �−∗ denotes the undual operation (10).

After the 1,225 mean blades XXX〈2〉 had been written as a function of their mean
normal parameters ρ and φ (57), a value for σρ and another one for σφ was
chosen, and the covariance matrices ΣXXX〈2〉 were computed using (58). Then,
two canonical sets with 500 random real values each were generated follow-
ing a standard Normal distribution. A copy of these canonical samples was
assigned to each input uncertain blade XXX〈2〉, and converted to the Gaussian
distribution of its respective ρ and φ variables. The use of canonical samples is
important because they make possible the comparison of skewness and kurto-
sis of distributions related to different input uncertain subspaces XXX〈2〉. Finally,
as well as in the first set of experiments presented in Section 6.1, each uncer-
tain blade was mapped to A2. In turn, its respective samples where mapped
to the same auxiliary space, and the normality of the distribution of points
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Table 4
P -values computed for the kurtosis of distributions of points in the auxiliary spaces
A2 related to uncertain 2-blades. Kurtosis is less sensitive to variations in the input
uncertain than skewness. The first distributions having kurtosis different from the
one expected for a Gaussian distribution appears at σρ = 0.08 and σφ = 0.17.
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in A2 was verified with Mardia’s procedure [38]. Tables 3 and 4 present the
P -values produced for, respectively, the skewness and kurtosis of the distri-
butions of points in An. The table entries group the experiments according to
the values assumed for σρ (rows) and σφ (columns). The P -values are shown
as heights of a surface on a 3-dimensional visualization of the parameter space
P2 (i.e., the height at the parameter vector related to a XXX〈2〉 is the P -value
estimated from the samples of the respective ρ and φ variables). The P -values
lower than α = 0.05 are distinguished as darker colors on the plane at the
bottom of the charts. Notice that the samples mapped to A2 define Gaussian
distributions even for larger values of σρ and σφ (i.e., there are a few small dark
spots in Tables 3 and 4). The first asymmetric distributions only appeared for
σρ = 0.08 (see the dark spots in the third row of Table 3), while the tails of
a few distributions differ from a Gaussian distribution only for σρ = 0.08 and
σφ = 0.17 (see the two dark spots in the last entry of Table 4). By assuming
an image with coordinates in the [−1,+1]× [−1,+1] range and the homo-
geneous MOG, it follows that the higher uncertainty values (σρ = 0.08 and
σφ = 0.17) define a confidence interval of ±0.24 units for the distance from
the center of the image to a given line (i.e., almost 1/4 of image’s size), and a
confidence interval of ±0.51 radians for the direction of the line (i.e., almost
π/3 radians). These results show that, as far the uncertainty are kept bellow
these limits, input random multivector variables define Gaussian distributions
in A2. Therefore, P -values smaller than α = 0.05 observed in Tables 1 and 2
can be related to very high uncertainty in the input blades.

29



Table 5
Measure of the similarity between the covariance matrices of Gaussian distributions
approximated with first-order error propagation analysis and from points obtained
through a sampling-based approach while mapping uncertain blades XXX〈2〉 to A2. The

heights of the surfaces represent the distance between the two sets of convariances.
Notice that the computed distances are lower than 1.5σD. These results show that
first-order analysis provides a good approximation for the distribution of samples.
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6.3 Validating the Propagated Uncertainties

From Tables 1 to 4 it is possible to conclude that error propagation can be used
to predict the uncertainty of blades mapped to Am. But it is also important to
verify if first-order analysis is sufficient to approximate the expected Gaussian
distributions. Such an analysis was performed by comparing the covariance
matrix computed for random samples mapped to Am with the covariance
matrix estimated by processing the respective uncertain blade XXX〈r〉 with the

proposed mapping procedure (Sections 5.2 and 5.3). These two covariance
matrices were compared with the distance function described by Bogner [39].
Such a function receives as input a true (or estimated) distribution (i.e., in this
case, the covariance matrix computed with first-order error propagation) and
a set of observations (i.e, the points resulting from mapping random samples
to Am). Bogner’s function [39] returns a real value D as a measure of the
distance between the two distributions and the expected theoretical variance
for the distance, computed from the size of the matrix. This variance can be
used to interpret the resulting values as a similarity measurement.

Table 5 shows the distances computed for the examples depicted in Tables 3
and 4. Here, the heights of the surfaces represent the distance D computed
by Bogner’s procedure [39]. For these examples, the theoretical variance is

30



σ2
D = m (m+ 1) = 2 (2 + 1) = 6, where m is the dimensionality of the distri-

bution (in this case, the same as the dimensionality of A2). The charts in
Table 5 denote one and two standard deviations of D by dashed red lines.
Notice that all the distances are below 1.5σD. These results show that the
Gaussian distribution estimated with first-order error propagation is consis-
tent with the Gaussian distribution of samples in A2. Further investigation of
why the propagated distribution fits better the samples for larger values of σρ
and σφ is an interesting direction for future work. We conjecture that differ-
ences between the expected and the estimated distributions are relative to the
rate between the small amount of inaccuracy introduced by the propagation
process and the area occupied by the mapped samples. Since the inaccuracy
is small, lack of fit is observed only in narrow uncertainty.

6.4 Detection Results on Real Datasets

This section illustrates the use of our technique for feature detection on real
datasets. These examples include the detection of lines in an image obtained
from electron backscatter diffraction, line detection in a photograph, and
the detection of circles in a clonogenic assay image. Fig. 4a shows an elec-
tron backscatter diffraction image (445× 445 pixels) taken from a particle
of wulfenite (PbMoO4). The straight line detection (Fig. 4b) was performed
using the 2-dimensional homogeneous MOG. Thus, p = 2 and n = 2 + 1 = 3,
leading to a parameter space with m = 2 (3− 2) = 2 dimensions. The 395,248
edge pixels on Fig. 4b where computed using Canny edge detector. The edge
pixels were used as input uncertain blades characterized as uncertain vectors
(r = 1). In this example, the standard deviation for coordinates of a given edge
pixel is 2/(445

√
12), where 2 is the size of the image after normalizing its co-

ordinates to the [−1,+1] range, 445 is the number of pixels in each dimension
of the image, and 12 come from the second central moment of a pixel with
unit side length. The discretization step for defining the accumulator array
was set to π/900, and the importance value of each input is the magnitude of
the gradient computed by the edge detector.

Fig. 4d shows the straight line detection in a given chess board image with
512× 512 pixels of resolution. As in Fig. 4b, the procedure was performed
using the 2-dimensional homogeneous MOG, leading to m = 2. However, in
this example, the input entries were the uncertain 2-blades encoding uncertain
straight lines computed from the edge pixels of the image and their gradient
vector directions. The standard deviation for coordinates of a given edge pixel
is 2/(512

√
12). The standard deviation assumed for gradient directions was

0.13, leading to ±0.39 radians of uncertainty on the direction normal to a
given input line. The discretization step for defining the accumulator array
was set to π/1800, and the importance value of each input is ω = 1.
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Fig. 4. Detection results (right) on real images (left): (a-b) Detection of the straight
lines that best fit the edge pixels of a given electron backscatter diffraction im-
age (left); (c-d) the most relevant detected lines in a given chess board image; and
(e-f) detection of circles that best fit a given clonogenic assay image.

Fig. 4e shows the gray image (529× 529 pixels) of MDCK-SIAT1 cells in-
fected with A/Memphis/14/96-M (H1N1). The circle detection (Fig. 4f) was
performed using the 2-dimensional conformal MOG. In such a case, p = 3 and
n = 2 + 2 = 4, leading to m = 3 (4− 3) = 3 parameters. The blades used as
input encode uncertain tangent directions. A tangent direction is a geometric
primitive encoding the subspace tangent to rounds at a given location. There-
fore, tangent directions have a point-like interpretation, and also direction
information assigned to them. The input tangent directions (2-blades, lead-
ing to r = 2) were computed from 8,461 edge pixels and their gradient vector
directions. As in Fig. 4b, ω is the magnitude of gradient directions. In order
to make the irregular imaged structures become more circular, the image in
Fig. 4f was convolved with a pillbox filter of radius 5 pixels before Canny edge
detection. Retrieved circles having radius larger than 50% the image width
were discarded to avoid detecting the plate. In this example, the accumulator
array was defined as the linear discretization of the parameter space, using
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π/900 as discretization step.

For the example depicted in Fig. 4f, the standard deviation for coordinates of a
given edge pixel is 2/(529

√
12). The standard deviation assumed for gradient

directions was 0.13, leading to ±0.39 radians of uncertainty on the direction
normal to a given input line.

6.5 Discussion and Limitations

A clear advantage of the voting procedure based on first-order error propa-
gation over a sampling-based approach is the reduced computational load of
the former. This is because, with first-order analysis, only one uncertain blade
needs to be processed per entry of the input dataset. With a sampling-based
voting procedure, on the other hand, hundreds of samples must be generated
and processed in order to properly represent the uncertainty on a given input
entry. Another advantage is the possibility of spreading smoother distributions
of values over the bins of the accumulator array. Such a feature improves the
identification of local maxima in the resulting map of votes by reducing the
occurrence of spurious peaks of votes. Fig. 5 presents a comparison between
the accumulator array produced for detecting straight lines with the technique
described in this paper (Fig. 5b) and the sampling-based voting using repeated
invocations of the technique described in [5] (Fig. 5e). These results are con-
sistent with the observations made by van Veen and Groem in [6] for detecting
straight lines in images using a weighted HT. Our approach, however, can be
used in the detection of arbitrary analytical uncertain shapes.

Figs. 5c and 5f show a detailed view of the highlighted portions in Figs. 5b
and 5e, respectively. Notice the smoother transitions of votes produced by the
error-propagation-based technique. In this example, the input dataset is com-
prised by 15,605 uncertain blades encoding straight lines in the 2-dimensional
homogeneous MOG. The input 2-blades were computed from the edge pixels
of the image (Figs. 5a and 5d) and their gradient vector directions. The stan-
dard deviation for coordinates of a given pixel is 2/(512

√
12), where 2 is the

size of the image after normalizing its coordinates to the [−1,+1] range, 512 is
the number of pixels in each dimension of the image, and 12 comes from the
second central moment of a pixel with unit side length. The standard deviation
assumed for gradient directions was 0.13, leading to ±0.39 radians of uncer-
tainty on the direction normal to a given input line. The accumulator arrays
where obtained as the linear discretization of P2, using π/360 as discretization
step. The importance value ω of each input is the magnitude of the gradient
computed by the edge detector. For the sampling-based voting procedure, each
one of the 15,605 uncertain 2-blades was represented by 160 random samples.
Each such sample was computed from a pixel location and a gradient vector
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Fig. 5. The 22 most-relevant detected lines obtained using: (a) our first-order er-
ror-propagation-based voting scheme, and (d) a sampling-based approach. The ac-
cumulator arrays produced for (a) and (d) are shown in (b) and (e), respectively. The
highlighted portions are presented in detail by (c) and (f). Notice that (c) presents
smoother distributions of votes than (f). As a result, first-order error propagation
is less prone to the detection of spurious subspaces.

taken from the distributions described above.

In our experiments it was observed that the approximation assumed for com-
puting the number of votes to be incremented to a given bin of the accumulator
array (Fig. 1c) affects the resulting distributions of votes by a scaling factor
slightly bigger than one. Also, it was observed a small shift (up to one bin) in
the location of some peaks. Such a displacement is not uniform in the whole
parameter space. It is important to note that such a scaling and displacement
do not affect the quality of detections.

The approach proposed in this paper is limited to blades with Gaussian-
distributed uncertainty. This is because first-order error analysis is used to
propagate the uncertainty of each input element throughout the computations.
The treatment of non-Gaussian distribution would require a more cumbersome
error-propagation scheme. For instance, some approach based on Monte Carlo.

The construction of the accumulator array requires some discretization crite-
rion. It has been shown by van Veen and Groen [6], and by Lam et al. [7], that
the linear discretization of the parameter space in conventional HTs (and hence
in the generalization describe in [5]), with improper choice of discretization
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values, may lead to unsharp or multiple peaks of votes when the discretiza-
tion step is, respectively, too big or too small. In our experiments, the linear
discretization step was chosen considering the amount of memory available
in the computational system (see [5] for a discussion). However, by properly
weighting the votes, our uncertain-based voting scheme helps to reduce the
side effects of using small discretization values (Fig. 5c). Some authors suggest
the use of non-linear discretization of the parameters for solving the tradeoff
between accuracy and memory usage in specific detection cases [1]. The defini-
tion of general non-linear discretization criteria for detecting subspaces having
arbitrary practical interpretations is an open problem.

7 Summary and Future Work

This paper presented a mapping and a voting procedure for subspace detection
in the presence of input with Gaussian-distributed uncertainty. The mapping
scheme uses first-order error propagation to transfer the uncertainty from in-
put data to an auxiliary space defined as the open affine covering Am for the
Grassmannian G(p,n). The propagated uncertainty defines a Gaussian profile
in Am, which is mapped by the voting procedure to the actual parameter space
Pm as a non-Gaussian distribution of votes.

The scope of application of our solution is guaranteed by the generality of the
framework it builds upon [5]. Thus, it can be applied, without any changes, to
the detection of all kinds of data alignments that can be represented as linear
subspaces in datasets comprised by exact or uncertain data. In the case of
uncertain data, our approach eliminates the computationally-expensive task of
sampling the distribution of uncertainty of each input entry and mapping the
samples to the parameter space. It is a general and valuable tool for detecting
alignments in real datasets, since uncertainty is something intrinsic to data
collected by all measurement devices. The generalization and integration of the
clustering and culling procedures of the KHT [30] to the proposed framework
is a promising direction for future exploration. We are also investigating ways
to store the voting map of uncertain data by using data structures that are less
memory consuming than the array of accumulators. With these improvements
we hope to make the proposed framework suitable for real time applications.
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