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Fig. 1: Comparison between conventional and meta-relief mapping renderings. (a) Relief rendering with ambient occlusion.
(b) Meta-relief rendering of a fabric texture on top of the relief shown in (a). Note the finer details introduced by the fabric
(middle row). (c) Meta-relief rendering of a metal texture on top of the relief shown in (a). The details of the metal texture
follow the base shape (middle row). The last row shows, respectively, the normal, depth, and color maps used for rendering.

Abstract—We present an efficient technique for modeling and
rendering complex surface details defined at multiple scales.
Conceptually, meta-relief texture mapping can be described as
recursively mapping finer relief-texture layers on top of coarser
ones. Such a factorization has several desirable properties. For
instance, it provides a way of simulating highly-complex surface
details as a combination of simpler and inexpensive image-based
representations. This greatly simplifies the modeling of surface
details, enhancing the artists’ expressive power. We also introduce
a dynamic texture-space ambient-occlusion technique for relief
mapping, which greatly improves the quality of relief renderings.

We demonstrate the effectiveness of these techniques by creating
and rendering a number of meta-relief textures with complex
surface details which would have been hard to model directly.

Keywords- Meta-relief mapping; Multiscale surface details;
Real-time rendering; Texture-space ambient occlusion;

I. INTRODUCTION

Light interaction with fine surface details produce subtle
shading effects, playing an important role in our perception
of realism. However, modeling such details using polygonal



representations tend to be cumbersome and often impractical.
For this reason, several texture-mapping techniques have been
proposed to simulate the existence of fine surface details.
This has been achieved, for instance, by changing surface
normals [1], modifying the actual geometry [2], performing
texture warping prior to mapping [3], or by ray casting in
2-D texture space [4], [5]. While very popular and effective
in many practical scenarios, these techniques have their own
limitations. For instance, normal mapping [1] cannot handle
self-occlusions, self-shadowing, or render object silhouettes.
These restrictions can be eliminated with the use of displace-
ment mapping [2], but the technique requires rendering a
large number of micropolygons, precluding its use in real-
time applications. Current relief-mapping techniques [4], [5],
[6], [7] can represent both fine and coarse surface details, but
combining both often requires considerable modeling effort.

We introduce efficient extensions to relief texture mapping
that greatly simplify the modeling of complex surface de-
tails and improve their rendering quality. Conceptually, our
technique can be described as recursively mapping finer relief
texture layers on top of coarser ones. We call our approach
meta-relief texture mapping. It provides great flexibility, al-
lowing the combination of details at an arbitrary number of
scales, and treating each relief-texture scale independent of
each other. This allows for their reuse and recombination,
lending to diverse and rich texture effects. We also introduce a
texture-space ambient-occlusion technique for relief mapping,
which dynamically adjusts itself to relief-depth rescaling. By
generating soft shadows, it significantly improves the quality
of relief-mapping renderings.

Figure 1 illustrates some results obtained with our approach.
Figure 1 (a) shows a teapot rendered using conventional relief
texture mapping with ambient occlusion. Figure 1 (b) shows
the result of applying a fabric relief texture on top of the
rendered teapot shown in (a). Note the finer scale details of
the fabric. Figure 1 (c) shows another example mapping fine
metallic details to the teapot shown in Figure 1 (a).

The contributions of our work include:
• An efficient texture-mapping technique for rendering

complex surface details defined at multiple scales (Sec-
tion III). Our approach provides great flexibility and
simplifies the modeling task;

• A texture-space ambient-occlusion technique that signifi-
cantly improves the realism of relief-mapping renderings
(Section IV).

II. RELATED WORK

The idea of using textures to render approximate repre-
sentations of surface details has a long history in computer
graphics. Normal mapping [1] simulates the appearance of
surface details by changing the surface’s normal field, while
displacement mapping [2] uses a large number of micro-
polygons to modify the object’s actual geometry. Several
techniques have been proposed to accelerate displacement
mapping. They are based on variety of strategies, including
ray tracing [8], [9], [10], [11], 3-D texture mapping [12],

[13], and 3-D inverse image warping [14]. Other techniques
use a surface shell layer and volumetric textures to render
non-height-field details [15], [16], [17]. Wang et al. [18], [19]
use 5-D data structures to store view-dependent samples of
a displacement map. In contrast to these techniques, ours is
based on relief mapping [4] and can render complex surface
details in real time, while having very small memory footprint
and supporting close-up views.

BTFs: Bidirectional Texture Functions [20] are 6-dimensional
texture representations that account for illumination and
viewing-dependent effects. They can be used to realistically
render small mesostructure details, but each BTF requires a
large number (of the order of thousands) of aligned pho-
tographs. The acquisition process often takes several hours,
and the resulting dataset can reach over a hundred megabytes,
requiring efficient compression schemes. Unlike our technique,
BTFs cannot be combined to produce new surface details,
or affect the object’s silhouette. Müller et al. [21] provides
an in-depth discussion of the acquisition, compression, and
rendering of BTFs.

Relief Mapping: Relief-mapping techniques [4], [5], [6], [7]
implement fragment-driven solutions to relief texture map-
ping [3]. The information required for rendering surface details
on arbitrary polygonal models is stored in RGBα textures
containing a normal map (RGB channels) and a depth map
(α channel). Such data can be used with any color texture.
For the rendering of each fragment, a ray-height-field inter-
section is performed in texture space. A local illumination
model can be applied and self-shadowing can be computed
in a straightforward way. Building upon relief mapping, our
approach simplifies the modeling and rendering of complex
surface details by combining information from multiple scales.

Ambient Occlusion: Ambient Occlusion (AO) approximates
global-illumination effects by estimating, at any surface point,
the amount of incoming light from all directions [22], [23].
Screen-Space Ambient Occlusion (SSAO) computes an ap-
proximation to AO directly in screen space, on a per-frame
basis [24], [25]. For this, it uses the depth buffer to evaluate
the occlusion of each sample according to its neighboring pix-
els. Since our ambient-occlusion technique for relief textures
performs AO computation based on a depth map, it is similar
in spirit to screen-space ambient occlusion. Unlike SSAO,
however, our occlusion maps are pre-computed. Nevertheless,
our technique supports dynamic changes in visibility resulting
from rescaling the relief depth, and handles tileable textures.

Frequency Decomposition: A class of techniques decompose
a surface or image into low- and high-frequency components.
Such decompositions have been used, for instance, to produce
exaggerated shading [26], image-detail enhancement [27], and
to extract approximate depth from single images [28]. Contrary
to these techniques, ours simplifies the task of modeling
and rendering complex surface details, creating photorealistic
depictions of 3-D objects in real time.



III. META-RELIEF TEXTURE MAPPING

Meta-relief texture mapping (MRTM) simplifies the process
of modeling complex surface details using a combination
of simpler and inexpensive image-based representations at
multiple scales. It supports a number of independent layers
(scales) and provides interactive control over the contributions
(weights) of the different layers. The independence among
layers allows for their reuse and recombination, leading to
the creation of diverse and rich texture effects.

MRTM is fully compatible with existing relief mapping
techniques [4], [5], [6], [7], which can be instantly modified
to support meta-relief texture mapping. As such, MRTM can
by applied to arbitrary polygonal models in real time, has
low-memory requirements, handles self-occlusions and self-
shadowing, and can be completely implemented on GPUs.

A. Meta-Relief Textures (MRTs)

Having finer relief details recursively mapped on top of
coarser ones is equivalent to adding the contributions of the
individual relief textures at different scales. This surprisingly
simple operation can be used to model highly-complex struc-
tures. For simplicity, we illustrate the process of combining
detail information at two scales, and using the same resolution
and tiling factor for both. The generalization for an arbitrary
number of scales, possibly using different resolutions and
tiling factors, is immediate and given by

MRTnormal =

∑s
i=1 wni × normali∑s

i=1 wni
(1)

and
MRTdepth =

∑s
i=1 wdi × depthi∑s

i=1 wdi
, (2)

where MRTnormal and MRTdepth are the resulting meta-
relief texture normal and depth maps, s is the number of scales,
wni and wdi are the non-negative weights associated to the i-th
normal and depth layers, respectively. Section V shows images
rendered using details at more than two scales.

Figures 2 and 3 illustrate the normal and depth maps, as
well as the process, used to create the meta-relief textures
mapped to the teapots shown in Figures 1 (b) and (c). Figures 2
(left) and 3 (left) are, respectively, the normal and depth maps
associated to the regular (single scale) relief texture shown in
Figure 1 (a). We will refer to it as the Base relief texture, as
it represents coarser surface details.

The Shaped Fabric meta-relief texture used to render Fig-
ure 1 (b) was obtained combining the Base + Fabric normal
and depth maps shown in Figures 2 and 3, respectively. In
this case, the numerators of Eqs. 1 and 2 were, respectively,
Shaped Fabric Normals = wn1×Base Normals +wn2× Fab-
ric Normals, and Shaped Fabric Depth = wd1×Base Depth
+wd2× Fabric Depth (Figures 2 and 3). To enforce that the
original fabric relief only contributes fine scale details, we used
wn1 = wd1 = 1.0 and wn2 = wd2 = 0.3. By (interactively
and independently) changing these weights, one can achieve
a variety of texture effects. The fabric color texture (Figure 1
(b), bottom row) was used for coloring the obtained meta-relief

texture. A similar procedure was used to create the Shaped
Metal meta-relief texture used for rendering Figure 1 (c). Its
color texture is shown in the bottom row of Figure 1 (c).
Given a meta-relief texture, it can be rendered using any of
the algorithms described in [4], [6], [7].
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Fig. 2: Examples of normal maps of the two meta-relief
textures (Shaped Fabric and Shaped Metal) used to render the
teapots shown in Figures 1 (b) and (c). Their corresponding
depth maps are shown in Figure 3.
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Fig. 3: Examples of depth maps of the two meta-relief textures
(Shaped Fabric and Shaped Metal) used to render the teapots
shown in Figures 1 (b) and (c), and whose normal maps are
shown in Figure 2.

IV. AMBIENT OCCLUSION FOR RELIEF TEXTURES

Ambient occlusion (AO) can significantly improve the
realism of a scene by emphasizing small-scale details and
introducing soft shadows [29]. To improve the visual quality
of meta-relief renderings and highlight its benefits, we have
developed a texture-space ambient-occlusion (TSAO) tech-
nique for relief textures. The resulting AO map can be saved
as a separate texture, or stored in the blue channel of the
(meta-)relief texture. In this case, the R, G, B, and α channels
store the X and Y components of the normal, the AO map,
and the depth map, respectively. The normal’s Z component
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Fig. 4: Computing a discrete version of the projected solid an-
gle corresponding to the visible portion of the unit hemisphere
above ti. (left) A cross-section of the solid angle with vertex at
ti. The solid gray line corresponds to the geometry represented
in the depth map. (right) Top view of the discrete projected
solid angle on a unit hemisphere. pij is the intersection of the
j-th edge of the generalized cone with the unit hemisphere.

is recovered as Z =
√

1− (X2 + Y 2). Figure 5 shows an AO
map computed for relief textures.

Meta-relief texture mapping naturally enables the use of
textures with different resolutions and tiling factors. All tex-
tures are loaded on the GPU and sampled according to their
resolutions. Baking the textures as a preprocessing would
make it more difficult to combine multiple layers with different
resolutions and tiling factors. Figure 8 shows examples of
meta-relief mapping using textures with different resolutions
and tiling factors.

A. Occlusion Map Generation

We obtain AO maps by computing, for each texel ti in
the depth map, the ratio psai/π: a discrete version of the
projected solid angle corresponding to the visible portion of
the hemisphere above ti. To obtain psai, we first compute a
discrete version of the generalized cone corresponding to this
solid angle and intersect it with a unit hemisphere centered
at ti (Figure 4, left). For creating the discrete version of
the generalized cone, we use 50 directions (taken at regular
intervals of 7.2 degrees). Along each direction, visibility is
computed in a way similar to horizon mapping [30], but using
a toroidal topology, since we use tileable textures. Let pij be
the intersection of the j-th generalized cone edge with the
unit hemisphere centered at ti. Such intersection points are
orthographically projected onto the (s, t) texture plane defining
a closed polygon. The corresponding AO value at ti is then

Fig. 5: Ambient-occlusion map for relief textures. (left) Nor-
mal map. (center) Depth map. (right) AO map.
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Fig. 6: Updating ambient-occlusion values after depth rescal-
ing. Geometry refers to the 3-D model geometry onto which
the relief texture (Relief ) has been mapped. (a) A cross-
section of solid angle for a texel ti, represented using a unit
hemisphere. (b) The cross-section of the solid angle at ti after
rescaling the relief depth by a factor s, shown on a hemisphere
with radius R′i.

computed dividing psai (the area of the resulting polygon,
shown in Figure 4, right) by π (the area of the circle at the
base of the unit hemisphere).

The computation of AO maps is performed off-line using a
GLSL shader, which produces a discrete map. Like in other
ambient-occlusion techniques [31], [32], we apply a low-pass
filter at the end of the estimation process to smooth the
resulting map. The low-pass filter is only applied at texels
with some degree of occlusion, to avoid introducing occlusions
where they do not exist. Figure 5 shows an AO map computed
for a relief texture using this technique. As expected, AO
values are lower at more occluded regions.

AO maps for meta-relief textures are created by combining
the AO maps of the individual relief textures. This can be
performed in two ways, providing slightly different results.
One alternative is to multiply the AO values (visibility) of cor-
responding texels. The other consists in selecting the smallest
value between corresponding texels. The images shown in the
paper were rendered using the first alternative.

Since relief textures support dynamic depth scaling [4], the
pre-computed AO maps should support it as well. Recall that
considering a unit hemisphere (Figure 6(a)), the AO value for
a texel ti is computed as

AO(ti) =
psai
π

. (3)

One can approximate psai by the area of the circle with radius
ri: psai ≈ πr2i (Figure 6(a)). Substituting this in Equation 3:

ri =
√
AO(ti). (4)

Depth scaling does not affect the size of the texture nor ri,
but only depth values (Figure 6(b)). Thus, after depth scaling,
Hi becomes sHi, and the new hemisphere radius R′i is given
by

(R′i)
2 = (sHi)

2 + r2i , (5)



where Hi =
√

12 − r2i , and s is the depth scaling factor. Since
the new AO value at ti is computed dividing psai by the area
of the circle with radius R′i, it can be expressed in terms of
its original AO value as:

AOnew(ti) =
psai
π(R′i)

2
=
AO(ti)

(R′i)
2
. (6)

Figure 7 compares relief renderings produced without (left)
and with TSAO (right). Note the soft shadows obtained with
our ambient-occlusion technique.

Fig. 7: Texture AO rendering. (left) Teapot rendered using
a regular relief texture with shadows. (right) Same teapot
rendered using our texture-based ambient occlusion.

V. RESULTS

We have implemented the techniques described in the previ-
ous sections on Nvidia’s FX Composer, and using Unity [33].
We used them to create a large number of meta-relief ren-
derings with ambient occlusion. For this, we combined many
regular relief textures, some of which are shown in Figure 10.
Regular relief textures can be conveniently created directly
from color maps. For this, one can use any of the available
tools for generating normal and depth maps from images. The

Fig. 8: Example of Meta-relief mapping rendering using
different resolutions (Base (1024 × 1024) and Metal (512 ×
512) and fractional tile factors (Metal tile factor 5.5 (left) and
14.5 (right)).

normal and depth maps for textures Cushion, Mini Bricks,
Metal, Fabric, and Stone Bricks (Figure 10) were obtained
directly from their corresponding color textures using the
software CrazyBump [34]. The color map for the Jeans texture
was created using the technique described in [35], and its
associated normal and depth maps were created with our own
MATLAB script.

Figure 1 compares meta-relief renderings against regular
relief renderings (with our texture-based ambient-occlusion
technique). Figure 8 illustrates meta-relief renderings contain-
ing layers with different resolutions and tilling factors. Both
images combine a 1024×1024 Base texture with a 512×512
Metal detail texture. The tiling factors applied to Metal on the
left and on the right images are 5.5 and 14.5, respectively.

Figure 9 shows a teapot rendered with a meta-relief texture
that combines the Priests and Mini Bricks relief textures from
Figure 10. On the right, we show a close-up view of a portion
of the teapot on the left. Note the mini bricks shaped according
to the geometry of one priest, as well as the soft shadows due
to ambient occlusion.

Figure 11 shows meta-relief renderings of a cube created
combining the Base relief texture with five others shown in
Figure 10: Mini Bricks, Metal, Jeans, Fabric, and Stone Bricks.
Note the rich diversity of effects, ranging from cloth, to metal,
to stones, where the overall shape of the Base texture has
been preserved. Again, the soft shadows are due to ambient
occlusion. The second and third rows show close-up views of
the simulated geometry, and reveal the surface details obtained
from the combined textures.

Figure 12 shows another set of meta-relief renderings for
a teapot. In these examples, the meta-relief textures were
obtained combining the Cushion relief texture with the same
group of five textures used to provide the finer details in
Figure 11. Note the importance of the soft shadows created by
ambient occlusion for the quality of the final renderings. The
close-up views in the third row clearly show the contributions
of both textures for the resulting surface details.

Figure 13 shows examples of meta-relief textures combining
details at three different scales. The image on the left combines
the following relief textures shown in Figure 10 (from coarse
to fine scales): Base, Cushion, and Jeans. The result shown

Fig. 9: Meta-relief rendering of a teapot with ambient occlu-
sion. The meta-relief combines the Priests and Mini Bricks tex-
tures from Figure 10. (left) Teapot. (right) Close-up showing a
combination of meta-relief rendering and ambient occlusion.
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Fig. 10: Various relief textures with corresponding AO maps used to create the meta-relief textures shown in the paper.

in the center combines Base, Mini Bricks, and Jeans, while
the image on the right was obtained combining Base, Stone
Bricks, and Metal. Note the details at all scales.

A. Discussion

High-quality renderings can be obtained even with very
small meta-relief textures, as illustrated in Figure 14. The
teapots shown in (a) were rendered using full 256 × 256
meta-relief textures (MRTs), i.e., color, normal, depth, and
ambient-occlusion maps all have only 256 × 256 texels. The
images shown in (b) were rendered using considerably higher-
resolution: full 1024× 1024 MRTs (top), and full 600× 600
MRTs (bottom). These images are visually indistinguishable
from their corresponding ones in (a). Column (c) shows close-
up views of the two teapots rendered with full 256 × 256
MRTs. Column (d) shows close-ups of the same objects using
MRTs with 256×256 normal, depth, and AO maps, but using
higher resolution color maps (1024×1024 for the top row, and
600×600 for the bottom row). Column (e) presents close-ups
of these objects using full 1024× 1024 MRTs (top), and full
600× 600 MRTs (bottom).

At the extreme zoom levels used in Figures 14 (c)-(e), a
direct comparison of images in columns (c) and (e) reveals that
highlights are properly positioned in (c). Such a comparison
also reveals that the images in (c) are slightly blurrier than the
ones in (e), while the fabric image in (c) looks slightly brighter.
The blurring and extra brightness result from the use of lower-
resolution color and ambient-occlusion maps, respectively. A
good compromise to handle extreme close-up views is to use
low-resolution normal, depth, and ambient-occlusion maps,
while using high-resolution color maps. This situation, which
eliminates the blurriness although does not fix the additional
brightness, is illustrated in column (d). It can be improved
further using a higher-resolution ambient-occlusion map.

For the combinations of scale sizes and tilling factors that

allow for the meta-relief texture to be baked into a single
texture, the rendering space and time complexity become
exactly the same as for the rendering of regular relief textures.

VI. CONCLUSION

We have introduced extensions to relief texture mapping that
greatly simplify the modeling of complex surface details and
improve their rendering quality. Meta-relief texture mapping
has several desirable properties. It provides a way of simulat-
ing highly-complex surface details by combining simpler and
inexpensive image-based representations. By treating layers
independently, it allows for their reuse and recombination.
This gives artists significant expressive power and is fully
compatible with previous relief-mapping techniques. We have
also presented a dynamic texture-space ambient-occlusion
technique that significantly improves the quality of relief-
mapping renderings.

We have demonstrated the effectiveness of these techniques
by modeling and rendering a variety of complex surface
details, which would have been hard to model otherwise.
We have shown that meta-relief renderings properly combine
details at various scales, while the use of ambient occlusion
greatly improves the realism of 3-D scenes.
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