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Figure 1: Relief mapping of non-height-field surface details. Teapot with a weave pattern (left). Close-up views of the teapot’s body (center
and right) reveal the back surface through the holes. Note the self-shadowing, occlusions and silhouettes.

Abstract

The ability to represent non-height-field mesostructure details is of
great importance for rendering complex surface patterns, such as
weave and multilayer structures. Currently, such representations
are based on the use of 3D textures or large datasets of sampled
data. While some of the 3D-texture-based approaches can achieve
interactive performance, all these approaches require large amounts
of memory. We present a technique for mapping non-height-field
structures onto arbitrary polygonal models in real time, which has
low memory requirements. It generalizes the notion of relief map-
ping to support multiple layers. This technique can be used to ren-
der realistic impostors of 3D objects that can be viewed from close
proximity and from a wide angular range. Contrary to traditional
impostors, these new one-polygon representations can be observed
from both sides, producing correct parallax and views that are con-
sistent with the observation of the 3D geometry they represent.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: real-time rendering, non-height-field surface represen-
tation, image-based rendering, relief mapping, impostors.

1 Introduction

Accurate representation of surface geometry is crucial for achiev-
ing the subtle shading effects commonly found in the real world.
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Unfortunately, explicitly representing all these details with poly-
gons is impractical. As such, several techniques have been pro-
posed to enrich the appearance of polygonal models by adding
spatially-varying attributes such as color [Catmull 1974] and sur-
face normals [Blinn 1978]. While powerful and extremely popu-
lar, these techniques cannot handle effects such as self-occlusions,
self-shadowing or changes in the models’ silhouettes, which are
due to the fine-scale details they try to represent. These effects can
be achieved by changing the actual geometry [Cook 1984], but it
comes at the cost of rendering a larger number of extra polygons,
which is undesirable for real-time applications. Moreover, displace-
ment maps [Cook 1984] can only represent height-field structures
and, therefore, is not a general representation for surface details.

This paper presents an image-based technique for mapping both
height-field and non-height-field structures onto arbitrary polygo-
nal models in real time. Compared to other techniques used to
map non-height-field surface details [Meyer and Neyret 1998; Chen
et al. 2004; Peng et al. 2004; Porumbescu et al. 2005; Wang et al.
2004], the proposed approach presents much lower memory re-
quirements, is completely implemented on the GPU, exploiting the
inherent parallelism of its vector units, and is easier to implement.
Figure 1(left) shows a teapot mapped with a weave pattern rendered
with our technique. Close-up views of the teapot’s body revealing
the details of the pattern are shown on the center and on the right.
Note the proper occlusions, self-shadowing and silhouettes.

The main contributions of this paper include:

• A technique for mapping both height-field and non-height-
field structures, represented as sets of 2D texture maps, onto
arbitrary polygonal models in real time (Section 3).

• A new impostor representation for 3D objects (Section 4),
which significantly improves the rendering quality and ex-
tends the lifetime of conventional impostors.

Section 2 discusses some related work. The details of the non-
height-field mapping approach are described in Section 3. Section 4
discusses how to use the multilayer representation to render relief
impostors. We present some of our results in Section 5, and com-
pare the features of our algorithm with previous approaches in Sec-
tion 6. Section 7 summarizes the paper.



2 Related Work

In recent years, we have observed a growing interest for the use
of non-height-field representations to model mesostructure details,
and several techniques have been proposed to render them [Meyer
and Neyret 1998; Chen et al. 2004; Peng et al. 2004; Wang et al.
2004; Porumbescu et al. 2005]. Meyer and Neyret [Meyer and
Neyret 1998] use volumetric textures, which are rendered as a stack
of 2D texture-mapped polygons along one of three possible direc-
tions. A similar approach was used in [Kautz and Seidel 2001].
Chen et al [Chen et al. 2004] treat a polygonal model as a shell
layer around an inner homogeneous core. The shell represents the
mesostructure and is filled using a texture synthesis approach that
takes volumetric samples as input. This technique uses ray tracing
for rendering and can produce high-quality images by simulating
subsurface scattering, which our technique does not handle. How-
ever, the pre-processing time to create such representations is about
10 to 20 hours and the reported frame rates are not interactive.

Peng et al. [Peng et al. 2004] also use surface shells and volumet-
ric textures to render surface details. Like in [Meyer and Neyret
1998], the rendering is performed by resampling the volume with a
set of 2D polygons. The slices are regularly spaced across the vol-
umetric texture and, as the geometric complexity of the represented
mesostructures increases, a larger number of slices are required,
which impacts the rendering performance. The memory require-
ments reported by the authors for storing a compressed version of a
5123 volumetric texture is about 134MB [Peng et al. 2004].

Wang et al. [Wang et al. 2004] store pre-computed distances from
each displaced point along many sampling viewing directions, re-
sulting in a 5-D function that can be queried during rendering time.
Due to their large sizes, these datasets need to be compressed be-
fore they can be stored in the graphics card memory. The approach
is suitable for real-time rendering using a GPU and can produce
nice results. However, in order to keep the size of these representa-
tions from growing too large, a low-resolution volumetric grid and
a small number of viewing directions are used for sampling. Due to
the pre-computed resolution, these representations are not intended
for close-up views.

Porumbescu et al. [Porumbescu et al. 2005] use barycentric coordi-
nates of points inside tetrahedra to define a mapping between points
in a shell volume extruded from a polygonal surface and points in
a volumetric texture. This technique uses ray tracing for rendering
and can produce very impressive results, including refraction and
caustics, which are not supported by our method. The technique,
however, is not suitable for real-time applications.

Shade et al. [Shade et al. 1998] used perspective projection images
with possibly multiple depth and color samples per pixel to mini-
mize disocclusion artifacts in the context of 3D image warping.

2.1 Relief Mapping Review

Relief mapping [Policarpo et al. 2005] exploits the programmabil-
ity of modern GPUs to implement a pixel-driven solution to relief
texture mapping [Oliveira et al. 2000]. All the necessary informa-
tion for adding surface details to polygonal surfaces is stored in
RGBα textures. The RGB channels encode a normal map, while
its alpha channel stores quantized depth information. The resulting
representation can be used with any color texture.

A relief texture is mapped to a polygonal model using texture co-
ordinates in the conventional way. Thus, the same mapping is used
both for the relief and its associated color texture. The depth data
is normalized to the [0,1] range (it can be rescaled for rendering),

and the implied height-field surface can be defined by a function
h : [0,1]x[0,1] → [0,1]. Let f be a fragment with texture coordi-
nates (s,t) corresponding to a point on a polygonal surface. The
rendering of fragment f can be described as follows:

• First, the viewing ray is transformed to f ’s tangent space. The
ray enters the height field’s bounding box BB at f ’s texture
coordinates (s,t) (Figure 2 left).

• Let (u,v) be the texture coordinates of the point where the
ray leaves BB. Such coordinates are obtained from (s,t) and
from the ray direction. The actual search for the intersection
is performed in 2D (Figure 2 right). Starting at coordinates
(s,t), the texture is sampled along the line toward (u,v) until
one finds a depth value smaller than the current depth along
the viewing ray, or we reach (u,v);

• The coordinates of the intersection point are refined using a
binary search, and then used to sample the normal map and
the color texture.

Figure 2: Ray intersection with a height-field surface (left). The
search is performed in 2D, starting at texture coordinates (s,t) and
proceeding until one reaches a depth value smaller than the current
depth along the viewing ray, or until (u,v) is reached (right).

Self-shadowing can be computed in a straightforward way. A light
ray is defined from the light source to the position of the first in-
tersection of the viewing ray with the height-field surface. Thus,
the question of whether a fragment should be lit or in shade is re-
duced to checking whether the light ray intersects any surface be-
fore reaching the point under consideration.

Figure 3: Detail of the teapot silhouette rendered with the technique
described in [Oliveira and Policarpo 2005]. A wireframe represen-
tation of the polygonal model is shown for reference.

Oliveira and Policarpo [Oliveira and Policarpo 2005] extended the
technique to render silhouettes implied by the relief data. For
this, the attributes of each vertex of the polygonal model are en-
hanced with two coefficients, a and b, representing a quadric sur-
face (z = ax2 +by2) that locally approximates the object‘s geometry
at the vertex. Such coefficients are computed off-line using least-
squares fitting and are interpolated during rasterization. Figure 3



illustrates the silhouette rendering produced by this technique, with
a superimposed wireframe representation of the original polygonal
model for reference.

3 Relief Mapping of Non-Height-Field
Structures

The algorithms described in Section 2.1 can be extended to han-
dle non-height-field representations in a rather straightforward way.
Conceptually, this is done by: (i) representing several layers of
depth and normals in the same domain and range (i.e., [0,1]x[0,1]→
[0,1]) used before, and (ii) adapting the ray-surface intersection
procedure to handle an arbitrary number of layers. This situation
is illustrated in Figure 4, where a relief texture element (relief texel)
may contain several pairs of depth and normal values. In the ex-
ample shown in Figure 4, texel (α , β ) stores four depth values,
{di,d j,dk,dn}, and their corresponding normal vectors. Texel (γ ,
δ ), in turn, stores only two such pairs. Next, we describe how these
multilayer representations can be efficiently handled by GPUs.

Figure 4: Ray intersection with a non-height-field closed surface.

The non-height-field surfaces are represented using 2D RGBα tex-
tures. For efficiency reasons, instead of using a separated relief
representation, as defined in Section 2.1, for each layer, we use dif-
ferent textures to store depth and normal data. This way, each texel
of a depth map can store up to four depth values. This is an impor-
tant point because the ray-surface intersection is performed against
the depth map. The normal map is sampled for shading, but only
after an intersection has been found. Thus, one can check for ray-
surface intersections with up to four layers in parallel, exploiting
the vector processing capabilities of modern GPUs.

We will explain the non-height-field rendering process for the case
of four-layer structures. Handling a different number of layers is
similar. If the number of layers is not multiple of four, the extra
channels of the depth texture are set to 1.0. Thus, for example, the
depth values for texel (γ , δ ) in Figure 4 are set to {dp,dq,1.0,1.0}.
Using this convention, a height-field surface can be represented by
setting the last three channels of the depth texture to 1.0, providing
a uniform representation for both height-field and non-height-field
surfaces. Figure 10 illustrates the mapping of a height-field surface
on a polygonal model using this technique. Note, however, that if
all surface details are height fields, one should prefer the single-
layer representation described in [Policarpo et al. 2005], as in this
case it would be more memory and computational efficient.

Figure 5 shows the multilayer representation of the weave pattern
mapped on the teapot shown in Figure 1. The R, G, B and α chan-
nels of the first texture (Figure 5a) store the depth values associated
with the four layers. The four channels of the second texture (Fig-
ure 5b) store the x components of the unit-length normal vectors
for each of the layers, while their corresponding y components are
stored in the third texture (Figure 5c). The z components of the nor-
mals are computed in the pixel shader as z =

√
1− (x2 +y2). Care

should be taken because, due to representation errors, the stored 8-
bit values for the x and y components of a normalized vector may
lead to (x2 +y2) > 1.0. Therefore, in practice z should be computed
as z =

√
max(0,1− (x2 +y2)).

(a) (b) (c)

Figure 5: Representation of a four-layer non-height-field structure.
(a) Depth values for the four layers stored in the RGBα channels
of the texture. (b) x components of the unit normal vectors for the
four layers. (c) y components of the unit normal vectors for the four
layers.

3.1 Computing ray surface intersection

We assume that the non-height-field structures are defined by
opaque closed surfaces, although they can have very complex topol-
ogy and several connected components. This situation is illustrated
in Figure 4, where the viewing ray intersects two disjoint com-
ponents. Although a four-layer non-convex structure may possi-
bly lead to more than four intersections along a given ray, we are
only interested in the closest one. As in the case of the height-
field version of relief mapping [Policarpo et al. 2005], the search
for the closest intersection consists of two phases: a linear search
followed by a binary-search refinement step. In the non-height-
field approach, however, each step of the linear and binary searches
checks for intersections against four layers in parallel. Once such
an intersection is found, only the closest one is kept.

The parallel version of the linear search can be stated as follows:
starting at coordinates (s,t), the depth texture is sampled along the
line toward (u,v), using a step size (δs,δt). At step k, let dk be the
depth value corresponding to the current position along the viewing
ray, and let (s + k ∗δs,t + k ∗δt) be the current texture coordinates.
In parallel, compare the current depth dk with the four depth values
stored at (s+k∗δs,t +k∗δt) (see Figure 4). If dk is bigger than an
odd number of these depths, than the ray is inside a surface and the
actual intersection point should be refined using the binary search;
otherwise, the search proceeds. Algorithm 1 shows a pseudo code
for the parallel version of the linear search.

The binary search starts where the linear search stopped. In case
the viewing ray has pierced a surface, the current ray position is
inside a surface; otherwise, it will already be close to the 1.0 limit
of the normalized depth range (i.e., the ray has moved forward at
all steps of the linear search). Each step of the binary search con-
sists of halving the texture and ray delta increments, sampling the
depth texture and checking whether the current position along the
viewing ray is outside or inside the closed surface. If it is outside,



the current texture and depth value along the viewing ray are incre-
mented by the newly computed delta increments; otherwise, they
are decremented. Algorithm 2 shows a pseudo code for the parallel
version of the binary search.

// (δs,δt) is the linear increment in texture space
(si,vi) = (s,t)+(δs,δt); // initialize texture coords
dk = δdepth; // depth along viewing ray
for (step = 1; step < num linear steps; step++)

float4 quad depth = tex2D(quad depth map, (si,vi));
float4 diff = dk - quad depth;
if ((diff[0]*diff[1]*diff[2]*diff[3]) > 0)

// outside: move forward
(si,vi)+ = (δs,δt); // increment in texture space
dk+ = δdepth; // increment depth along viewing ray

Algorithm 1: Pseudo code for the parallel linear search

// (si,vi) stores the value computed by the linear search
//
for (step = 1; step < num binary steps; step++)

(δs,δt) *= 0.5; // halves the texture space increment
δdepth *= 0.5; // halves increment along the viewing ray
float4 quad depth = tex2D(quad depth map, (si,vi));
float4 diff = dk - quad depth;
if ((diff[0]*diff[1]*diff[2]*diff[3]) > 0)

(si,vi) += (δs,δt); // move forward
dk += δdepth;

else
(si,vi) -= (δs,δt); // move backward
dk -= δdepth;

Algorithm 2: Pseudo code for the parallel binary search

Depending on the viewing configuration and on the sampled ge-
ometry, it is possible that some rays do not intersect any surface.
In this case, a base texture can be used to color the fragment with
a different color, as can be seen in Figures 9(right) and 13(right).
Alternatively, the fragment can be discarded, allowing the viewer
to see through the underlying object, as in the examples shown in
Figures 1 and 9(left).

Self-shadowing is computed in a similar way as described in Sec-
tion 2.1. Once the closest intersection for a given viewing ray has
been found, one computes a light ray and checks if it pierces any
surface before hitting the given visible point (Figure 4).

Like the relief mapping approach described in [Policarpo et al.
2005], the non-height-field version of the technique is also prone
to aliasing artifacts, which happen if the linear search skips some
fine structures.

3.2 Rendering multilayer interfaces

Relief mapping non-height-field details requires that one pays spe-
cial attention to the interfaces between relief texels storing different
numbers of layers. This situation is depicted in Figure 6 where
one sees the cross-section of a non-height-surface sampled by a
set of parallel rays (indicated by the dotted arrows). The shaded
dots indicate the intersections of some of these rays with the sam-
pled surface. The number of intersections may vary from ray to

(a) (b)

Figure 6: Multilayer interfaces. The viewing ray pierces the surface
at a four-layer texel, but the sampling position (white dot) is at two-
layer texel (a). Similar situation involving a two- and a zero-layer
texels.

ray. Without proper care, artifact may happen as we render the in-
terfaces between texels representing different numbers of surface
layers. Next, we discuss the problem and its solution.

Figure 6(a) shows a configuration in which the viewing ray enters
the surface through a four-layer texel sampled by ray S j . Although
the binary search tends to produce a very good approximation for
the ray-surface intersection point, there is some error to this approx-
imation. According to the pseudo code shown in Algorithm 2, such
an error might cause the computed intersection to be either inside
or outside the surface. Figure 6(a) illustrates this situation for the
case the point is inside the surface and represented by a white dot.
Although it is clear from this illustration that the inner-surface of
the U-shape is the visible one, the resulting texture coordinate asso-
ciated with the white dot will cause the normal map to be sampled
at a position corresponding to ray Sk, which only stores normals
for two intersection points. In this case, the shading would be per-
formed using an incorrect normal (in this example, with the second
normal stored at Sk), thus introducing some artifacts.

A similar situation is depicted in Figure 6(b), where the intersection
was computed for a two-layer surface, but the resulting texture co-
ordinates correspond to a texel storing zero layers. A careful exam-
ination of these cases reveals that this kind of problem can happen
every time the viewing ray crosses an interface from a region with
more layers to another region with less layers. In practice, these po-
tential artifacts are avoided by keeping the last pairs of inside and
outside (if any) texture coordinates visited during the binary search,
and returning the one associated with the larger number of layers.

4 Relief-Mapped Impostors

Impostors [Maciel and Shirley 1995] are simplified representations
of complex geometry rendered as billboards. Traditionally, parts of
the scene are rendered into textures, which are then mapped onto
quadrilaterals [Forsyth 2001]. Impostors are often created on the
fly, being correct only from a given viewpoint, but reused as long
as their associated rendering errors are under a given threshold.
Schaufler [Schaufler 1995] proposed a metric for deciding when
impostors need to be regenerated.

In this section, we show that the non-height-field version of relief
maps can be used to produce representations of 3D objects that can



be rendered as single relief-mapped polygons. These representa-
tions can be viewed from very close proximity and from a wide
angular range. A unique feature of this new class of impostors is
that they can be viewed from both sides of the polygon, produc-
ing correct parallax and views that are consistent with the observa-
tion of the 3D geometry they represent. Figure 11 shows several
views of a dog impostor represented by the relief and color maps
shown in Figure 7. Note the parallax effect. Viewing the impostor
from both sides of the polygon can be accomplished by appropri-
ately inverting the search direction (i.e., from depth value 0.0 to
value 1.0) while looking for the first intersection of the viewing
ray with the depth layers. In order to keep a consistent view from
both sides, we shift the depth values by 0.5 so that the plane of
the polygon (originally with depth = 0.0) now passes through the
middle of the object (depth = 0.5). Thus, let (s,t) and (u,v) be
the start and end texture coordinates for performing the search in
texture space (Figure 4). This shifting effect is accomplished by
simply performing the search from (s−0.5(u− s),t −0.5(v− t)) to
(s+0.5(u− s),t +0.5(v− t)).

Figure 7: Representation of the four-layer dog impostor showed in
Figure 11. (a) Depth values. (b) x components of the unit normal
vectors. (c) y components of the unit normal vectors. (d) Color
map.

(a) (b) (c)

Figure 8: Relief map representation of a horse: depth map (a) and
normal maps (b) and (c).

Figure 9: (left) A sphere mapped with the pattern shown in Figure 5.
Note the silhouettes, self-shadowing and self-occlusion. (right) An-
other sphere tiled with the horse represented in Figure 8 without
silhouette rendering. Note the parallax effect visible in the legs of
the horses (right).

5 Results

We have implemented the techniques described in the paper as ver-
tex and fragment programs written in Cg and used them to map both
height-field and non-height-field surface details to several polygo-
nal objects. The same programs can also render relief impostors.
The multilayer relief maps were created using a ray-casting proce-
dure implemented as a 3D Max plugin. The plugin renders parallel
orthographic views of the models and saves depth and normal val-
ues at each ray-surface intersection. This sampling process is illus-
trated in Figure 6 by the set of parallel rays going from bottom to
top. For all examples shown in the paper, the depth and normal tex-
tures were saved as tga RGBα (8 bits per channel) with resolution
of 256×256 texels. Higher resolutions can be used for sampling
finer structures. As before, the mapping process is straightforward,
using the texture coordinates and the tangent, normal and binormal
vectors associated to the vertices of the model. The same texture
coordinates are used to access the depth, the normal, and the color
texture maps.

Figure 9(left) shows a sphere mapped with the pattern shown in
Figure 5. Note the silhouette, self-shadowing and self-occlusions.
The silhouettes were rendered using the piecewise-quadric approx-
imation described in [Oliveira and Policarpo 2005]. Figure 9(right)
shows another sphere with the horse representation shown in Fig-
ure 8 tiled over its surface. For this example, the fragments for
which the viewing rays miss the mesostructure were assigned a
green color and shaded using the normal vector of the underlying
model. At each point on the sphere, the horse model is seen from
a different perspective. One should note the proper occlusions and
the parallax effect (see the legs and heads of the horses).

Figure 10 shows a cube mapped with a height-field surface, and
illustrates the ability of the described technique to handle single-
layer structures as well. In this case, the G, B and α channels of the
depth map are set to 1.0.

Figure 10: Cube with a height-field surface mapped to it.

Figure 11 shows a relief impostor seen from different viewpoints.
All these images were created by rendering the relief impostor
shown in Figure 7 onto a single quadrilateral. Note the wide angu-
lar range supported by this kind of representation. A relief impos-
tor, however, should not be rendered if the normal of its supporting
quadrilateral approaches a direction perpendicular to the viewing
ray. In such a configuration, the quadrilateral would approximately
project onto a line on the screen, and not enough fragments would
be available for the proper rendering of the impostor. A possible so-
lution to this problem is to sample the model from three orthogonal
directions, one of which is selected on-the-fly based on the view-
ing direction [Meyer and Neyret 1998], but this tends to introduce
”popping“ artifacts. Alternatively, the three orthogonal views can
be combined to produce the final image, as done in the representa-
tion of 3D objects described in [Oliveira et al. 2000].



Figure 11: Multiple views of a relief impostor rendered as a single quadrilateral. The corresponding depth, normal and color maps are shown
in Figure 7.

Figure 12 shows a relief map representation of a double-helix struc-
ture used to render the teapot shown in Figure 13(left). The other
two teapots in Figure 13 were rendered using the the pattern shown
in Figure 5. At the center, it exhibits silhouettes, whereas on the
right, a second texture was used for the underlying model.

(a) (b) (c)

Figure 12: Relief map representation of a double helix. (a) Depth
map. (b) x components of the unit normal vectors. (c) y components
of the unit normal vectors.

The accompanying videos and illustrations used in the paper were
rendered in real time using an Athlon64 4000 (2.4 GHz) PC with 2
GB of memory and a PCI express GeForce 7800 GT with 256 MB
of memory. In order to evaluate the performance of our technique,
we made a series of measurements. Each experiment consisted of
mapping the multilayer relief map shown in Figure 5 onto an object
using a 4×4 tiling factor and using a set of rendering options with a
window with 640×480 pixels. Mip mapping was used only for the
color textures. Depth and normal maps were sampled using nearest
neighbors to avoid undesirable interpolation with non-surface tex-
els. In each experiment, the object covered as many pixels of the
window as possible, without having any part culled. Note that the
sphere and the teapot have backfacing polygons visible through the
holes defined by non-height-field pattern (see Figure 1). For those
objects, better performance can be achieved by rendering in two
passes. The first pass with backface culling and the second pass
with frontface culling and taking advantage of early-z culling. For
comparison, we have also measured the frame rates for mapping a
height field (HF) to the same models using the technique described
in [Policarpo et al. 2005]. Table 1 summarizes these results.

6 Discussion

The use of four layers is sufficient to represent a large class of
non-height-field structures of interest. Representing structures with
higher depth complexity can be obtained with the use of extra depth
and normal textures. The intersection with the depth layers can be
performed in parallel for groups of four layers at a time.

Table 1: Performance of the algorithm with different rendering op-
tions (in fps). All cases include per-fragment lighting. ML stands
for multilayer and HF stands for height field.

Plane Sphere Teapot
lighting only

(ML) 1 pass / 2 passes 200 / 200 200 / 265 190 / 212
(HF) 480 530 470

self-shadowing
(ML) 1 pass / 2 passes 127 / 127 136 / 182 120 / 140

(HF) 315 315 285
silhouette

(ML) 1 pass / 2 passes – 166 / 217 150 / 162
(HF) – 440 380

self-shadow & silhouette
(ML) 1 pass / 2 passes – 110 /145 97 / 106

(HF) – 305 240

While mip mapping [Williams 1983] can be directly applied con-
tinuous depth maps, such as the ones used in [Policarpo et al. 2005],
textures used in the representation of non-height-field surfaces may
contain many texels that do not correspond to surface points. Such
texels are shown in white in Figures 5(a), 7(a), 8(a), and 12(a). For
these cases, the use of regular mip map filtering produces incorrect
results by introducing undesirable ”skins“ as it averages surface and
non-surface texels. A simple approach to overcome this problem
is to use a nearest-neighbors strategy to sample both the depth and
normal maps, without using mipmapping. The color textures can be
used with conventional mip-mapping filtering. Proper intersection
with other objects in the scene is obtained by updating the z-buffer
of each fragment with its perceived depth in camera space. A de-
tailed description of this procedure can be found in [Oliveira and
Policarpo 2005].

Table 2 compares some features of several techniques used for ren-
dering non-height-field structures. All previous methods are based
on the use of 3D textures or other volumetric representations. While
these techniques can produce good quality images, they tend to re-
quire larges amounts of memory and most of them cannot achieve
real-time frame rates. Shell Texture Functions [Chen et al. 2004]
and the technique by Peng et al. [Peng et al. 2004] both require over
130MB. No memory requirements have been reported for Shell
Maps [Porumbescu et al. 2005], but since its rendering is based on
ray tracing, the technique is not appropriate for real-time applica-
tions. GDMs [Wang et al. 2004] are based on a 5D representation,
which tend to be very large. By restricting the sampling of the
viewing directions to 16x32 and further compressing these datasets
can considerably reduce their sizes. However, due to the low sam-
pling resolution, these representations should be avoided if close-up



Figure 13: Teapot with different rendering options: (left) with the double-helix mesostructure shown in Figure 12. (center) With the pattern
shown in Figure 5 with silhouettes. (right) With the pattern shown in Figure 5 and a second texture for the underlying model.

Table 2: Comparison of techniques for rendering non-height-field
structures.

Technique Represent. Memory Rendering /
Speed

Relief Maps 2D Textures ∼ 780KB Frag. shader
(uncompr.) Single pass

Real time
Shell Maps 3D Textures Not Ray tracing

or Geometry informed Non-interact.
Peng’s et al. 3D texture ∼ 130MB Textured slices

Interactive
Shell Texture Volume ∼ 150MB Ray tracing

Functions (voxels) Non-interact.
5D function ∼ 4MB Multi-pass

GDMs sampled on (compressed) Real time
a volume 128x128x16

views of the surface details are required.

The proposed technique is based on 2D textures, requires consid-
erably less memory than previous techniques (about 20% of what
is required by a relatively low-resolution GDM - see Table 2), sup-
ports close-up views of the mapped details, and works in real time.

7 Conclusion

The ability to add non-height-field details to polygonal surfaces is
of great importance for rendering object with complex mesostruc-
tures. We have extended the relief mapping technique to render
non-height-field surface details in real time. This new technique
stores multiple depth and normal values per texel and generalizes
the relief mapping algorithm [Policarpo et al. 2005] for rendering
height-field surfaces. Contrary to previous techniques, which are
sensitive to the resolution used to perform a volumetric discretiza-
tion of the space containing the non-height-field structures, the size
of our representation grows with the depth complexity of the sam-
pled structures.

The algorithm takes advantage of the vector processing capabil-
ities of modern GPUs to check for the intersection of the view-
ing ray with up to four surface layers in parallel. Like its height-
field counterpart, the described technique supports the rendering
of self-shadowing, silhouettes, and interpenetrations. The repre-
sented structures can have complex topology with multiple con-
nected components, and can cast and receive shadows into and from
other objects of the scene. We have shown that the described tech-
nique has modest memory requirements when compared to previ-

ous approaches. The multilayer relief representations are easily ac-
quired using ray casting, and the implementation of the technique
is straightforward. The proposed technique seems an attractive al-
ternative for rendering non-height-field structures and impostors in
games. A shader for performing a basic rendering (i.e., without
self-shadowing, silhouettes or interpenetration) of non-height-field
structures and relief impostors is listed in Appendix A.

Given the closed-surface assumption (see Section 3.1), surfaces
with boundaries (i.e., surfaces with holes) cannot be represented
as a single-layer surface. In this case, two coincident layers need
to be represented. This is similar to the common practice in com-
puter graphics of using two polygons to represent a surface whose
interior and exterior have different properties.
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Appendix A: Simple Shader for Relief Mapping of Non-
Height-Field Details

void ray intersect rmqd linear(
in sampler2D quad depth map,
inout float3 s, // texture position
inout float3 ds) { // search vector

const int linear search steps=10;
ds/=linear search steps;
for( int i=0;i<linear search steps-1;i++ ) {

float4 t=tex2D(quad depth map,s.xy);
float4 d=s.z-t; // compute distances to each layer
d.xy*=d.zw; d.x*=d.y; // x=(x*z)*(y*w)
if (d.x>0) s+=ds; // if ouside object move forward

}
}
void ray intersect rmqd binary(

in sampler2D quad depth map,
inout float3 s, // texture position
inout float3 ds) {// search vector

const int binary search steps=5;
float3 ss=sign(ds.z);
for( int i=0;i¡binary search steps;i++ ) {

ds*=0.5; // half size at each step

float4 t=tex2D(quad depth map,s.xy);
float4 d=s.z-t; // compute distances to each layer
d.xy*=d.zw; d.x*=d.y; // x=(x*z)*(y*w)
if (d.x<0) { // if inside

ss=s; // store good return position
s-=2*ds; // move backward

}
s+=ds; // else move forward

}
s=ss;

}
float4 relief map quad depth(

float4 hpos : POSITION,
float3 eye : TEXCOORD0,
float3 light : TEXCOORD1,
float2 texcoord : TEXCOORD2,
uniform sampler2D quad depth map : TEXUNIT0,
uniform sampler2D color map : TEXUNIT1,
uniform sampler2D normal map x : TEXUNIT2,
uniform sampler2D normal map y : TEXUNIT3
uniform float3 ambient,
uniform float3 diffuse,
uniform float4 specular,
uniform float shine) : COLOR {

float3 v=normalize (IN.eye); // view vector in tangent space
float3 s=float3(IN.texcoord,0); // search start position
// separate direction (front or back face)
float dir=v.z; v.z=abs(v.z);
// depth bias (1-(1-d)*(1-d))
float d=depth*(2*v.z-v.z*v.z);
// compute search vector
v/=v.z; v.xy*=d; s.xy-=v.xy*0.5;
// if viewing from backface
if (dir<0) { s.z=0.996; v.z=-v.z; }
// ray intersect quad depth map
ray intersect rmqd linear(quad depth map,s,v);
ray intersect rmqd binary(quad depth map,s,v);
// discard if no intersection is found
if (s.z>0.997) discard; if (s.z<0.003) discard;
// get quad depth and color at intersection
float4 t=tex2D(quad depth map,s.xy);
float4 c=tex2D(color map,s.xy);
// get normal components X and Y
float4 nx=tex2D(normal map x,s.xy);
float4 ny=tex2D(normal map y,s.xy);
// find min component of distances
float4 z=abs(s.z-t);
int m=0; if (z.y<z.x) m=1;

if (z.z<z[m]) m=2; if (z.w< z[m]) m=3;
// get normal at min component layer
float3 n; // normal vector

n.x=nx[m]; n.y=1-ny[m];
n.xy=n.xy*2-1; // expand to [-1,1] range

n.z=sqrt(max(0,1.0-dot(n.xy,n.xy))); // normal z component
if (m==1||m==3) n.z=-n.z; // invert normal Z if in back layer
// compute light vector in view space
float3 l=normalize(IN.light);
// restore view direction z component
v=normalize(IN.eye); v.z=-v.z;
// compute diffuse and specular terms
float ldotn=saturate(dot(l,n));
float ndoth=saturate(dot(n,normalize(l-v)));
// compute final color with lighting
float4 finalcolor;
finalcolor.xyz = c.xyz*ambient + ldotn*(c.xyz*diffuse +

c.w*specular.xyz*pow(ndoth,shine));
finalcolor.w=1;
return finalcolor;

}


