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ABSTRACT

This thesis presents an efficient and automatic image-recoloring technique for dichro-
mats that highlights important visual details that would otherwise be unnoticed by these
individuals. While previous techniques approach this problem by potentially changing
all colors of the original image, causing their results to look unnatural both to dichromats
and to normal-vision observers, the proposed approach preserves, as much as possible, the
naturalness of the original colors. The technique described in this thesis is about three or-
ders of magnitude faster than previous approaches. This work also presents an extension
to our method that exaggerates the color contrast in the recolored images, which might be
useful for scientific visualization and analysis of charts and maps.

Another contribution of this thesis is an efficient contrast-enhancement algorithm for
color-to-grayscale image conversion that uses both luminance and chrominance infor-
mation. This algorithm is also about three orders of magnitude faster than previous
optimization-based methods, while providing some guarantees on important image prop-
erties. More specifically, the proposed approach preservesgray values present in the color
image, ensures global color consistency, and locally enforces luminance consistency. A
third contribution of this thesis is an error metric for evaluating the quality of color-to-
grayscale transformations.

Keywords: Color Reduction, Color-Contrast Enhancement, Color-to-Grayscale Map-
ping, Color Vision Deficiency, Dichromacy, Error Metric, Image Processing, Monochro-
macy, Recoloring Algorithm.





RESUMO

Recoloração de Imagens para Portadores de Deficiência na Percepção de Cores

Esta dissertação apresenta um método eficiente e automáticode recoloração de ima-
gens para dicromatas que destaca detalhes visuais importantes que poderiam passar des-
percebidos por estes indivíduos. Enquanto as técnicas anteriores abordam este problema
com a possibilidade de alterar todas as cores da imagem original, resultando assim em
imagens com aparência não natural tanto para os dicromatas quanto para os indivíduos
com visão normal, a técnica proposta preserva, na medida do possível, a naturalidade das
cores da imagem original. A técnica é aproximadamente três ordens de magnitude mais
rápida que as técnicas anteriores. Este trabalho também apresenta uma extensão para a
técnica de recoloração que exagera o contraste de cores na imagem recolorida, podendo
ser útil em aplicações de visualização científica e análise de gráficos e mapas.

Outra contribuição deste trabalho é um método eficiente pararealce de contrastes du-
rante a conversão de imagens coloridas para tons de cinza queusa tanto as informações de
luminância e crominância durante este processo. A técnica proposta é aproximadamente
três ordens de magnitude mais rápida que as técnicas anteriores baseadas em otimização,
além de garantir algumas propriedades importantes da imagem. Mais especificamente,
a técnica apresentada preserva os tons de cinza presentes naimagem original, assegura a
consistência global de cores e garante consistência local de luminância. Uma terceira con-
tribuição desta dissertação é uma métrica de erro para avaliar a qualidade dos algoritmos
de conversão de imagens coloridas para tons de cinza.

Palavras-chave:Algoritmo de Recoloração, Deficiência Visual de Cores, Dicromatismo,
Mapeamento de Cores para Tons de Cinza, Métrica de Erro, Monocromatismo, Processa-
mento de Imagem, Realce de Contraste, Redução de Cores.
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1 INTRODUCTION

Color vision deficiency (CVD) is a genetic condition found inapproximately4%
to 8% of the male population, and in about0.4% of the female population around the
world (SHARPE et al., 1999), being more prevalent among caucasians. According to the
estimates of the U.S. Census Bereau for the world population, we can predict that approx-
imately 200,000,000 (two hundred million) people suffer from some kind of color vision
deficiency. Human color perception is determined by a set of photoreceptors (cones) in
the retina. Once stimulated, they send some signals to the brain, which are interpreted as
color sensation (WANDELL, 1995). Individuals with normal color vision present three
kinds of cones calledred, green, andblue, which differ from each other by having pho-
topigments that are sensitive to the low, medium, and high frequencies of the visible
electromagnetic spectrum, respectively. Thus, individuals with normal color vision are
calledtrichromats. Except when caused by trauma, anomalies in color vision perception
are caused by some changes in these photoreceptors, or by theabsence of some kind of
cone. Thus, there are no known treatments of surgical procedures capable of reverting
such a condition.

normal color vision

red-cones absent

green-cones absent

blue-cones absent

Figure 1.1: On the left, the visible spectrum as perceived bytrichromats and dichromats.
In the middle, a scene as observed by a subject with normal color vision. On the right,
the same scene as perceived by a subject lacking green-cones(deuteranope). Note how
difficult it is for this subject to distinguish the colors associated to the fruits.

Changes in the cones’ photopigments are caused by natural variations of some pro-
teins, causing them to become more sensitive to a different band of the visible spectrum,
when compared to a normal vision person (SHARPE et al., 1999). Such individuals are
calledanomalous trichromats. In case one kind of cone is missing, the subjects are called
dichromats, and can be further classified asprotanopes, deuteranopes, and tritanopes,
depending whether the missing cones are red, green, or blue,respectively. A much rarer
condition is characterized by individuals having a single or no kind of cones, who are
calledmonochromats. Figure 1.1 shows the visible electromagnetic spectrum as perceived
by tichromats and dichromats, and compares a scene as perceived by an individual with
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normal color vision and a subject lacking green-cones (deuteranope). Although there are
no reliable statistics for the distribution of the various classes of color vision deficiencies
among all ethnic groups, these numbers are available for thecaucasian population and are
shown in Table 1.1 (RIGDEN, 1999).

Classification
Incidence (%)
Men Women

Anomalous trichromacy 5.9 0.37
Protanomaly (red-cones defect) 1.0 0.02
Deuteranomaly (green-cones defect)4.9 0.35
Tritanomaly (blue-cones defect) 0.0001 0.0001

Dichromacy 2.1 0.03
Protanopia (red-cones absent) 1.0 0.02
Deuteranopia (green-cones absent)1.1 0.01
Tritanopia (blue-cones absent) 0.001 0.001

Monochromacy 0.003 0.00001

Table 1.1: Classification of color vision deficiencies and the respective incidence in the
caucasian population (RIGDEN, 1999).

Color vision deficiency tends to impose several limitations, specially for dichromats
and monochromats. Children often feel frustrated by not being able to perform color-
related tasks (HEATH, 1974), and adults tend face difficulties to perform some daily ac-
tivities. Figure 1.2 shows some images of recent works in thescientific visualization field,
and their respective images simulating the dichromat’s perception. Note how difficult it
is for the dichromats to distinguish the colors used to represent the datasets, and to reach
a better understanding of the data meaning.

(a) (b) (c) (d)

Figure 1.2: Scientific visualization examples: (a) Visualization of a flame simulation
and (b) how this image is perceived by a subject lacking green-cones (deuteranope). (c)
Simulation of a fluid dynamic and (d) how this simulation is perceived by a protanope
(i.e., a subject lacking red-cones).

Another important segment that permeates our daily life andalso ignores the limi-
tations of CVDs is the industry of digital entertainment. Despite the respectable 32.6
billion-dollar billing obtained in 2005 by the gaming industry (consoles and computer)
and the expectation of doubling this amount by 2011 (ABI Research, 2006), this segment
leaves out of its potential market a significant part of population consisting of color-vision
deficients. Figure 1.3 illustrates a common situation facedby CVDs dealing video games
and digital media in general. The image on the left presents acomputer game scene show-
ing the colors of opponent soldiers. On the right, one sees the same image as perceived
by deuteranopes. Note that the colors are essentially indistinguishable.
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Figure 1.3: Opponent soldiers identified by the armor color in the Quake 4 (Id Software,
Inc, 2006). On the left, the image as perceived by subjects with normal color vision.
Note how the colors of the soldiers’ armors are almost indistinguishable to these indi-
viduals. The image on the right simulates the perception of subjects lacking green-cones
(deuteranopes).

Recently, several techniques have been proposed to recolorimages highlighting vi-
sual details missed by dichromats (ICHIKAWA et al., 2004; WAKITA; SHIMAMURA,
2005; RASCHE; GEIST; WESTALL, 2005a,b; JEFFERSON; HARVEY,2006). Al-
though these techniques use different strategies, they allapproach the problem by po-
tentially changing all colors of the original image. In consequence, their results tend to
look unnatural both to dichromats and to normal-vision observers. Moreover, they tend to
present high computational costs, not scaling well with thenumber of colors and the size
of the input images. This thesis presents an efficient and automatic image-recoloring tech-
nique for dichromats that preserves, as much as possible, the naturalness of the original
colors.

Despite the very small incidence of monochromats in the world population, color-to-
grayscale is, nevertheless, an important subject. Due to economic reasons, the printing of
documents and books is still primarily done in “black-and-white”, causing the included
photographs and illustrations to be printed using shades ofgray. Since the standard color-
to-grayscale conversion algorithm consists of computing the luminance of the original im-
age, all chrominance information is lost in the process. As aresult, clearly distinguishable
regions containing isoluminant colors will be mapped to a single gray shade (Figure 1.4).
As pointed out by Grundland and Dodgson (GRUNDLAND; DODGSON, 2007), a sim-
ilar situation happens with some legacy pattern recognition algorithms and systems that
have been designed to operate on luminance information only. By completely ignoring
chrominance, such methods cannot take advantage of a rich source of information.

Figure 1.4: Color-to-Grayscale mapping. On the left, isoluminant color image. On the
right, grayscale version of the image on the left obtained using the standard color-to-
grayscale conversion algorithm.
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In order to address these limitations, a few techniques havebeen recently proposed
to convert color images into grayscale ones with enhanced contrast by taking both lu-
minance and chrominance into account (GOOCH et al., 2005a; GRUNDLAND; DODG-
SON, 2007; NEUMANN; CADIK; NEMCSICS, 2007; RASCHE; GEIST; WESTALL,
2005b). The most popular of these techniques (GOOCH et al., 2005a; RASCHE; GEIST;
WESTALL, 2005b) are based on the optimization of objective functions. While these two
methods produce good results in general, they present high computational costs, not scal-
ing well with the number of pixels in the image. Moreover, they do not preserve the gray
values present in the original image. Grayscale preservation is a very desirable feature
and is satisfied by the traditional techniques that perform color-to-grayscale conversion
using luminance only. This thesis presents an efficient approach for contrast enhance-
ment during color-to-grayscale conversion that addressesthese limitations.

1.1 Thesis Contributions

The main contributions of this thesis include:

1. A new efficient and automatic image-recoloring techniquefor dichromats that pre-
serves, as much as possible, the naturalness of the originalcolors (Section 4.1). An
extension of this technique that exaggerates color contrast and might be useful for
visualization of scientific data as well as maps and charts (Section 4.2);

2. A new efficient contrast-enhancement algorithm for color-to-grayscale image con-
version that uses both luminance and chrominance information (Section 5.1);

3. A new contrast error metric for evaluating the quality of color-to-gray transforma-
tions (Section 5.2).

1.2 Structure of the Thesis

Chapter 2 discusses some related work to ours. In particular, it covers the state-of-
the-art techniques in terms of image recoloring for dichromats.It also reviews the current
approaches for color-to-grayscale conversion. Chapter 3 reviews the basic concepts of
mass-spring systems, which provide the background for understanding the techniques
presented in this thesis. Chapter 4 presents the details of the proposed image-recoloring
technique for dichromats, analyzes some of its fundamentalproperties and guarantees,
introduces an extension for exaggerating color contrast, and presents various examples
illustrating the obtained results. Chapter 5 describes thedetails of the proposed color-
to-grayscale technique, introduces a new perceptual errormetric for evaluating the qual-
ity of color-to-grayscale transformations, and discussessome results. Finally, Chapter 6
summarizes the work presented in this thesis and concludes with directions for further
investigation.
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2 RELATED WORK

There is significant amount of work in the literature that attempts to address the prob-
lems of image recoloring for color-vision deficients and color-to-grayscale conversion.
This chapter begins covering some techniques to simulate the perception of dichromats,
then it discusses some recent image-recoloring techniquesfor these subjects. Finally, it
covers several approaches of color-to-grayscale conversion. For both cases (i.e., image
recoloring and color-to-grayscale mapping) the proposed techniques are compared to the
state-of-the-art ones.

2.1 Simulation of Dichromat’s Perception

The simulation of dichromat’s perception allows individuals with normal color vision
to experience how these subjects perceive colors. Such simulations became possible after
some reports in the medical literature (JUDD, 1948; SLOAN; WOLLACH, 1948) about
unilateral dichromats (i.e., individuals with one dichromatic eye, but with normal vision
in the other eye). These reports account for the fact that twospectral colors and neutral
colors are perceived as equals by both eyes. The spectral colors are blue and yellow for
protanopes and deuteranopes, while for tritanopes these colors are cyan and red.

Using this information, some researches have proposed techniques to simulate the
colors appearance for dichromats (MEYER; GREENBERG, 1988;BRETTEL; VIéNOT;
MOLLON, 1997; WALRAVEN; ALFERDINCK, 1997; VIéNOT; BRETTEL, 2000). In
this thesis, all simulations were performed using the algorithm described by Brettel et
al.’s (BRETTEL; VIéNOT; MOLLON, 1997), the most referencedtechnique to simulate
the dichromat’s perceptions.

Brettel et al. use two half-planes in the LMS color space to represent the color gamut
perceived by dichromats. The half-planes were based on the reports of unilateral dichro-
mats in the medical literature. Each class of dichromacy hasone type of missing cone,
and they confuse colors that fall along lines parallel to theaxis that represent the missing
cone. Brettel et al. assumed the intersection between such lines and the half-planes as
the colors perceived by dichromats. Figure 2.1 illustratesa geometric representation of
Brettel et al.’s algorithm to simulate the perception of each class of dichromacy.

Although these simulation techniques allow individuals with normal color vision to
appreciate the perception of dichromats, as we noted in the examples of Figures 1.1 to 1.3,
they do not help to minimize the limitation of these individuals to perceive the contrast
between the colors.
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Figure 2.1: Geometric representation of Brettel et al.’s algorithm to simulate perception of
dichromats. The green represent the reduced color gamut of dichromats. The orthographic
projection of colorQ onto the reduced surface gives the colorQ′ perceived by dichromats.
Figure adapted from (BRETTEL; VIéNOT; MOLLON, 1997).

2.2 Recoloring Techniques for Dichromats

The image-recoloring techniques for dichromats aim at minimizing the constraints
faced by these subjects in the perception of colors. Basically, the colors of the resulting
image are changed to allow dichromats to perceive color contrast in portions of images
where they originally missed it. Recoloring techniques canbe broadly classified asuser-
assisted andautomatic techniques.

2.2.1 User-Assisted Recoloring Techniques

Daltonize (DOUGHERTY; WADE, 2002) is a web application for recoloring images
for protanopes and deuteranopes (i.e., subjects also known as red-green colorblind). The
technique splits the image into luminance, red-green, and blue-yellow channels. It re-
quires three user-provided parameters:red-green stretch factor, used to increase the con-
trast in the red-green channel;luminance projection scale, that tells how much of red-
green channel is projected into luminance channel; andblue-yellow projection scale, that
informs how much of red-green channel is projected into blue-yellow channel.

Fidaner et al. (FIDANER; LIN; OZGUVEN, 2005) also proposed atechnique that
projects information from one channel into other channels,like in the Daltonize approach.
They worked with the differences between the original images and the simulated images
for the respective dichromacy, that corresponds to the information lost by dichromats.
They required a3 × 3 matrix, defined by the user, that specifies how the differences
between the original and the simulated dichromatic images should be accumulated to the
channels of the original image.

Working on the HSL color space, Iaccarino et al. (IACCARINO et al., 2006) modulate
the original image colors using six user-provided parameters. Pixels with hue (H) close
to green color are modulated by the first three parameters, while pixels with hue close to
red are modulated by the other three parameters.

The quality of the results obtained with user-assisted recoloring techniques is highly
dependent on the user-provided parameters. Essentially, atrial-and-error strategy is re-
quired to choose the best set of parameters for each individual image. Another limitation
is that the presented user-assisted techniques are based onpoint operations, hence they
may introduce new color confusions. Figure 2.2 illustratedthis situation. The red and
blue colors in (a) have become indistinguishable by a deuteranope in (c) after (a) has been
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recolored using Fidaner et al.’s technique.

(a) (b) (c)

Figure 2.2: Example showing a limitation of user-assisted techniques based on point op-
erations. (a) Color image as perceived by a subject with normal color vision. (b) Same
image as perceived by a subject lacking green-cones (deuteranope). (c) Simulation of
deuteranope’s perception after recoloring the image (a) using Fidaner et al.’s technique.
Note that red and blue colors in (a) have become indistinguishable in (c).

2.2.2 Automatic Recoloring Techniques

Ichikawa et al. (ICHIKAWA et al., 2003) used an objective function to recolor web
pages for anomalous trichromats. The objective function tries to preserve the color dif-
ferences between all pairs of colors as perceived by trichromats in the reduced anomalous
trichromats’ gamut. A genetic algorithm was used to minimize the objective function.
Note, however, that this problem is relatively simpler, as both groups are trichromats and
no reduction in color space dimension is required. Ichikawaet al. (ICHIKAWA et al.,
2004) extended their previous technique for use on color images, but they did not con-
sider the preservation of color naturalness (i.e., preservation of colors that are perceived
as similar by both trichromats and anomalous trichromats).

Wakita and Shimamura (WAKITA; SHIMAMURA, 2005) proposed a technique to
recolor documents (e.g., web pages, charts, maps) for dichromats using three objective
functions aiming, respectively, at: (i) color contrast preservation, (ii) maximum color
contrast enforcing, and (iii) color naturalness preservation. However, in their technique,
the colors for which naturalness should be preserved must bespecified by the user. The
three objective functions are then combined by weighting user-specified parameters and
optimized using simulated annealing. They report that documents with more than 10
colors could take several seconds to be optimized (no information about the specs of the
hardware used to perform this time estimate were provided).

Jefferson and Harvey (JEFFERSON; HARVEY, 2006) select a setof key colors by
sampling the difference histogram (Figure 2.3 e) between the trichromat’s color histogram
(Figure 2.3 c) and dichromat’s color histogram (Figure 2.3 d). They use four objective
functions to preserve brightness, color contrast, colors in the available gamut, and color
naturalness of the selected key colors. Again, the user mustspecify the set of colors whose
naturalness should be preserved. They optimize the combined objective functions using
a method of preconditioned conjugate gradients. They report times of several minutes to
optimize a set of 25 key colors on a P4 2.0 GHz using a Matlab implementation.

Rasche et al. (RASCHE; GEIST; WESTALL, 2005a) proposed an automatic recol-
oring technique for dichromats as an optimization that tries to preserve the perceptual
color differences between all pairs of colors using an affinetransformation. Such trans-
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(a) (b)

(c) (d) (e)

Figure 2.3: (a) Color image and (b) simulation of protanope’s view for image (a). (c)
and (d) are the 3D color histograms for the images shown in (a)and (b), respectively.
(e) Difference histogram obtained by subtracting (d) from (c). The RGB color space is
discretized into 1,000 equal volume cubes. The gray shade ofa cube is proportional to
the number of pixels in the image with the corresponding RGB values. Figures extracted
from (JEFFERSON; HARVEY, 2006).

formation, however, does not capture color variations along many directions and does not
ensure that the mapped colors are all within the available gamut. Rasche et al. (RASCHE;
GEIST; WESTALL, 2005b) addressed these limitations using aconstrained multivariate
optimization procedure applied to a reduced set of quantized color, which are in turn used
to optimize the entire set of colors. The authors did not consider the problem of natu-
ralness preservation and the technique can arbitrarily change the colors of the original
images (Figure 2.4 c). Moreover, the algorithm does not scale well with the number of
quantized colors and the size of the input images.

The image recoloring technique presented in this thesis canoptimize hundreds of
colors in real time, and can be used to create images that havea much more natural look
(Figure 2.4 d). Contrary to all previous automatic techniques, the proposed approach is
deterministic, always producing the same result for a giveninput image.

2.3 Color-to-Grayscale Techniques

Mapping a color image to grayscale is a dimensionality reduction problem. Tradi-
tional techniques use projections or weighted sums to map a three dimensional color
space to a single dimension (e.g., the luminance value ofXYZ, YCbCr, L*a*b*, or HSL
color spaces). These are the common methods implemented in commercial applications,
such as Photoshop (BROWN, 2006) and Gimp (JESCHKE, 2002). These approaches,
however, do not take into account any chrominance information, mapping isoluminant
pixels to the same gray value, as shown in Figure 1.4 (b).

A popular dimensionality reduction technique is PrincipalComponent Analysis (PCA)
(DUNTEMAN, 1989). However, as pointed out by (GOOCH et al., 2005a; RASCHE;
GEIST; WESTALL, 2005b), since PCA ignores the directions with low variation, small
detail can be missed in favor of larger detail.

Grundland and Dogdson (GRUNDLAND; DODGSON, 2007) approachcolor-to-grayscale
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(a) (b) (c) (d)

Figure 2.4: Blue sky and building: (a) Color image. (b) Simulation of deuteranope’s view
for image (a). (c) and (d) are the results produced by Rasche et al.’s and the proposed
techniques, respectively, as seen by deuteranopes. Note that colors of the sky and yellow
foliages in (a) were unnecessary changed by Rasche et al.’s approach (c), not preserving
the naturalness of such colors. Compare such a result with the one obtained with the
proposed technique (d).

problem by first converting the originalRGB colors to theirY PQ color space, followed
by a dimensionality reduction using a technique they calledpredominant component anal-
ysis, which is similar to PCA. In order to decrease the computational cost of this analy-
sis, they use a local sampling by a Gaussian pairing of pixelsthat limits the amount
of color differences processed and brings the total cost to convert anN × N image to
O(N2 log(N2)). This technique is very fast, but its local analysis may not capture the
differences between spatially distant colors and, as a result, it may map clearly distinct
colors to the same shade of gray. Figure 2.5 (a) illustrates the USA time zones map us-
ing distinct isoluminant colors for each time zone. Note that in the result produced by
Grundland and Dogdson’s approach, shown in (c), the color contrast between some time
zones (e.g., HST and AKST time zones, CST and EST time zones) were not preserved,
illustrating the limitation previously described. The grayscale image (d), obtained using
our color-to-grayscale approach, successfully mapped thevarious time zones to distinct
shades of gray.

Neumann et al. (NEUMANN; CADIK; NEMCSICS, 2007) presented an empirical
color-to-grayscale transformation algorithm based on theColoroid system (NEMCSICS,
1980). Based on an user-study, they sorted the relative luminance differences between
pairs of seven hues, and interpolated between them to obtainthe relative luminance dif-
ferences among all colors. Their algorithm requires the specification of two parameters,
and the reported running times are of the order of five to ten seconds per megapixel (hard-
ware specs not informed).

Gooch et al. (GOOCH et al., 2005a) find gray levels that best represent the color
difference between all pair of colors by optimizing an objective function. The ordering
of the gray levels arising from the original colors with different hues is resolved with a
user-provided parameter. The cost to optimize anN × N image isO(N4), causing the
algorithm to scale poorly with image resolution.

Rasche et al. (RASCHE; GEIST; WESTALL, 2005b) formulated the color-to-grayscale
transformation as an optimization problem in which the perceptual color difference be-
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(a) (b)

(c) (d)

Figure 2.5: USA time zone map: (a) Color image. (b) Luminanceimage. (c) Grayscale
image produced by Grundland and Dogdson’s (GRUNDLAND; DODGSON, 2007)
method. (d) Grayscale image obtained using the color-to-grayscale approach presented in
this thesis. Note in (c) how the color contrast between some spatially distant regions were
not preserved by Grundland and Dogdson’s approach (e.g., HST and AKST time zones,
CST and EST time zones). The grayscale image shown in (d) successfully mapped the
various time zones to different gray values.

tween any pair of colors should be proportional to the perceived difference in their corre-
sponding shades of gray. In order to reduce its computation cost, the authors perform the
optimization on a reduced setQ of quantized colors, and this result is then used to opti-
mize the gray levels of all pixels in the resulting image. Thetotal cost of the algorithm
is O(‖Q‖2 + ‖Q‖N2). A noticeable feature of their algorithm is that in order to try to
help the algorithm to scape local minima, the minimization procedure is initialized using
a vector of random values, which causes the algorithm to produce non-deterministic re-
sults. This is illustrated in Figure 2.6, which shows the grayscale images produced in three
executions of their algorithm. Note that in the result shownin Figure 2.6 (b) the island
is barely visible, illustrating a situation in which the optimization got trapped in a local
minima. Figure 2.6 (e) shows the result produced by the color-to-grayscale algorithm
presented in this thesis.

2.4 Summary

This chapter discussed the most relevant techniques to simulate color perception by
dichromats. Although these techniques do not minimize the limitation of these individ-
uals to perceive color differences, they are important because they eliminate the need
for the presence of dichromats along the development and tests of the image-recoloring
algorithms.

The chapter also presented the state-of-the-art on image-recoloring techniques for



27

(a) (b) (c) (d) (e)

Figure 2.6: Effect of the use of random numbers to initializethe algorithm by Rasche et
al. (RASCHE; GEIST; WESTALL, 2005b) on the generated grayscale images. (a) Image
containing isoluminant colors. (b) to (d) Grayscale imagesgenerated by three executions
of the Rasche et al.’s algorithm. (e) Grayscale image produced by the color-to-grayscale
algorithm presented in this thesis. Note that in (b) the island Isle Royale National Park is
barely visible, while our color-to-grayscale technique preserved the contrast in (e).

dichromats. Basically, these techniques aim to minimize the limitations faced by these
subjects in the perception of color contrasts. It was discussed two kind of approaches for
image recoloring: user-assisted and automatic techniques. The user-assisted recoloring
techniques, despite the low computation cost, do not take into account any analysis on
the image to choose optimal parameter settings, hence they may introduce new color con-
fusions. On the other hand, automatic recoloring techniques use optimization methods
to choose the best set of colors in the dichromatic image, which tends to generate better
results than user-assisted techniques. However, the current automatic methods are com-
putationally expensive and not suitable for real-time applications. Contrary to all current
automatic methods, the proposed image-recoloring algorithm can optimize hundreds of
colors in real time and can produce images with more natural look.

Furthermore, this chapter presented several approaches for color-to-grayscale conver-
sion. These techniques convert color images into grayscaleones with enhanced contrast
by taking both luminance and chrominance into account. Unlike current optimization
methods, the proposed color-to-grayscale technique is deterministic, can optimize hun-
dreds of colors in real time, and scales well with the size of the input image.
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3 MASS-SPRING SYSTEMS

This chapter reviews the basic concepts of mass-spring systems and provides the back-
ground for understanding both the image-recoloring and thecolor-to-grayscale techniques
proposed in this thesis, which are cast as optimization problems.

3.1 Definition of Mass-Spring Systems

A mass-spring system consists of a set of particles (nodes) connected by springs that
deform in the presence of some external forces, as illustrated in Figure 3.1. When com-
pressed or stretched, the springs apply internal reaction forces in order to maintain their
rest length (GEORGII; WESTERMANN, 2005). The system tends to stabilize when
the external forces are compensated by opposing internal forces. These features make a
mass-spring system a flexible optimization technique that optimizes a set of parameters
(e.g., the positions of the particles) that best satisfy some constraints (e.g., the sum of
internal and external forces is zero). Modeling a problem asa mass-spring system ba-
sically consists of mapping some properties of the problem in hand to the variables of
the mass-spring system: (i) particles’ positions, (ii) particles’ masses, (iii) springs’ rest
lengths, and (iv) springs’ current lengths. For example, anapplication could map a given
property of the problem as the mass of particles in the system. In this case, particles with
bigger masses tend to move less. Alternatively (or in addition to this first mapping), the
application could restrict the particles to only move alonga given axis.

Figure 3.1: Simple mass-spring system with three particles(A, B, andC), and two springs
(S1 andS2). Figure extracted from (DIETRICH; COMBA; NEDEL, 2006).

Due to its properties, simplicity and low computational complexity, mass-spring sys-
tems are used as an optimization tool in many areas, including body deformation and
fracture, cloth and hair animation, virtual surgery simulation, interactive entertainment,
and fluid animation.
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3.2 Dynamic of Mass-Spring Systems

Considering a set of particles connected by springs, mass-spring systems are simulated
by assigning some mass to each particle and some rest length to each spring. The entire
system must obey Newton’s second law:

Fi = miai (3.1)

wheremi is the mass of nodePi, ai is the acceleration caused by forceFi, which is the
composition of internal and external forces. Therefore, the force applied to nodePi can
be obtained from Hooke’s law by summing the tensions of all the springs that connectPi

to its neighborsPj:

Fi =
∑

j∈N

kij(1 −
lij
l′ij

)(pj − pi) (3.2)

whereN is the set of neighbors linked toPi, lij andl′ij are, respectively, the rest length
and current length of the spring betweenPi andPj , kij is the stiffness of the spring, and
pi andpj are the current positions ofPi andPj , respectively.

Verlet integration (VERLET, 1967) is often used to express the dynamics of each
node. This type of integration is frequently used in simulations of small unoriented mass-
points, being especially interesting when it is necessary to place constraints on the dis-
tances between the points (VERTH; BISHOP, 2004). With a timestep∆t, the new posi-
tion of a nodePi at timet + ∆t can be computed as:

pi(t + ∆t) =
Fi(t)

mi

+ 2pi(t) − pi(t − ∆t) (3.3)

Recently, some researchers have demonstrated efficient implementations of mass-
spring systems on GPUs (GEORGII; WESTERMANN, 2005; TEJADA;ERTL, 2005;
DIETRICH; COMBA; NEDEL, 2006). In each integration step, the forces acting on each
mass pointPi are accumulated in a fragment shader, requiring information about the par-
ticles’ geometry and the system topology, which are usuallystored in three textures (Fig-
ure 3.2): geometry texture storing the particles’ position,neighbors texture storing the
list of neighbors of all mass-points, andneighborhood texture serving as a neighborhood
header.

Figure 3.2: Texture representation of the mass-spring system shown in Figure 3.1. Each
pixel represents one mass-point, and the pixel shader is able to recover the information
of all linked springs from neighborhood and neighbors texture. Figure extracted from
(DIETRICH; COMBA; NEDEL, 2006).

The resulting algorithms (TEJADA; ERTL, 2005; DIETRICH; COMBA; NEDEL,
2006) perform in real time even for large systems (e.g., 65K mass-points and 275K
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springs). The solutions proposed in this thesis for both image recoloring and color-to-
grayscale transformations are cast as optimization problems and modeled as mass-spring
systems with every mass pointPi connected to every other mass pointPj by a springSij.
This fixed and implicitly defined topology lends itself to an efficient GPU implementation,
since no topology setup is needed.

3.3 Summary

This chapter detailed the key aspects of mass-spring systems, an optimization tool
with low computational cost that can be efficient implemented both on CPU and on GPU.
The understanding of the mass-spring’s dynamic is fundamental to the comprehension of
both the image-recoloring and the color-to-grayscale techniques proposed in this thesis,
as they are approached as optimization problems and modeledas mass-spring systems.
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4 THE RECOLORING ALGORITHM FOR DICHROMATS

This chapter presents our image-recoloring technique for dichromats. It also analyzes
some fundamental properties and guarantees of the algorithm, and introduces an extension
to the proposed method that exaggerates the color contrast in the result image. Along
the chapter, several examples are used to illustrate the results produced by the proposed
technique.

4.1 The Algorithm

Our image-recoloring technique for dichromats was designed to achieve the following
goals:

• Real-time performance;

• Color naturalness preservation - It guarantees that colors of the original images
will be preserved, as much as possible, in the resulting images;

• Global color consistency - It ensures that all pixels with the same color in the orig-
inal image will be mapped to the same color in the recolored image;

• Luminance constancy - It ensures that the original luminance information of each
input pixel will be preserved in the output one;

• Local chrominance consistency - It guarantees that chrominance order of colors
inside the same cluster will have preserved in the recoloredimage;

• Color contrast preservation - It tries to preserve the color difference between pairs
of colors from the original image in the recolored one.

The proposed algorithm uses a mass-spring system to optimize the colors in the input
image to enhance color contrast for dichromats. As presented in Section 2.1, the color
gamut of each class of dichromacy can be represented by two half-planes in the LMS
color space (BRETTEL; VIéNOT; MOLLON, 1997), which can be satisfactorily approx-
imated by a single plane passing through the luminance axis (VIéNOT; BRETTEL; MOL-
LON, 1999). For each class of dichromacy, we map its color gamut to the approximately
perceptually-uniform CIE L*a*b* color space and use least-squares to obtain a plane
that contains the luminance axis (i.e., L*) and best represents the corresponding gamut
(Figure 4.1). This is similar to what has been described by Rasche et al. (RASCHE;
GEIST; WESTALL, 2005b), who suggested the use a single planefor both protanopes
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Figure 4.1: Approximating each dichromatic color gamut by aplane in the CIE L*a*b*
color space.Θp = −11.48◦, Θd = −8.11◦, andΘt = 46.37◦.

and deuteranopes as a further simplification. Based on our least-squares fitting, the an-
gles between the recovered planes and the L*b* plane areΘp = −11.48◦, Θd = −8.11◦,
andΘt = 46.37◦, for protanopes, deuteranopes, and tritanopes, respectively (Figure 4.1).
These angles are used to align their corresponding planes tothe L*b* plane, reducing the
optimization to 1D along the b* axis (the luminance values are kept unchanged). After
the optimization, the new colors are obtained by rotating the plane back.

Our algorithm has three main steps: (i)image quantization, (ii) mass-spring optimiza-
tion of the quantized colors, and (iii)reconstruction of the final colors from the optimized
ones. The first step consists in obtaining a setQ of quantized colors from the set of all
colorsC in the input imageI. This can be performed using any color quantization tech-
nique (GONZALEZ; WOODS, 2007), such as uniform quantization, k-means, minimum
variance, median cut or color palettes.

4.1.1 Modeling the Problem as a Mass-Spring System

Working in the CIE L*a*b* color space, each quantized color~qi ∈ Q is associated
to a particlePi with massmi. The position~pi of the particlePi is initialized with the
coordinates of the perceived color by the dichromat after the gamut plane rotation:

~pi = MΘ D(~qi) (4.1)

whereD is the function that simulates the dichromat view (BRETTEL;VIéNOT; MOL-
LON, 1997), andMΘ is a rotation matrix that aligns the gamut plane of the dichromat
with the L*b* plane. We connect each pair of particlesPi andPj with a springSij with
elasticity coefficientkij = 1 (Equation 3.2), and rest lengthlij = ‖~qi − ~qj‖, the (Eu-
clidean) distance between colors~qi and~qj in the L*a*b* space. Note that~qi and~qj are the
quantized colors as perceived by a trichromat.

At each optimization step, we update the positions~pi and~pj of particlesPi andPj and
computeSij ’s current length asl′ij = ‖~pi − ~pj‖. Given the restoring forces of the springs,
the system will try to converge to a configuration for whichl′ij = lij for all Sij. Thus,
after stabilization or a maximum number of iterations has been reached, the perceptual
distances between all pairs of new colors/positions(~pi, ~pj) will have approximately the
same perceptual distances as their corresponding pairs of quantized colors(~qi, ~qj) from
Q. The final setT of optimized colors~ti is obtained by applying, to each resulting color
~pi, the inverse rotation used in Equation 4.1:

~ti = M−1

Θ
~pi (4.2)
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In order to enforce color naturalness preservation, we define the massmi of each
particlePi as the reciprocal of the perceptual distance (in the L*a*b* space), between~qi

andD(~qi):

mi =
1

‖~qi − D(~qi)‖
(4.3)

Equation 4.3 guarantees thatany color perceived similarly by both trichromats and dichro-
mats will have larges masses, causing their corresponding particles to move less. If
trichromats and dichromats perceive~qi exactly the same way (e.g., achromatic colors),
the particle would have infinite mass. In this case, we simplyset the forces acting on the
particle to zero (i.e., Fi = 0 in Equation 3.1).

4.1.2 Dealing with Local Minima

Like other optimization techniques, mass-spring systems are prone to local minima.
Figure 4.2 (b) depicts the problem with a configuration obtained right after the quantized
colors ~qi have been rotated:~qri = MΘ ~qi. In this example, particlesP1 andP2 have
large masses (m1 is infinite) since they are perceived as having, respectively, the same
and very similar colors by trichromats and dichromats. The springs(S13, S14, S23, S24)
connectingP1 andP2 to P3 andP4 apply forces that constrainP3 andP4 from moving
to the other half of the b* axis (Figure 4.2 b). Figure 4.3 illustrates this situation, where
the resulting optimized image (c) does not represent any significant improvement over the
original image perceived by the dichromat (b).

Once the plane that approximates the dichromat’s gamut has been aligned to the L*b*
plane, pairs of ambiguous colors with considerable changesin chrominance will have their
a* color coordinates with opposite signs (e.g., the red and green colors in Figure 4.2 b).
We use this observation and the topology of our mass spring system to deal with local
minima using the following heuristic:we switch the sign of the b* color coordinate of all
rotated quantized colors whose a* coordinates are positive and whose perceptual distance
between the color itself and how it is perceived by the class of dichromacy is bigger than
some threshold ǫ (Equation 4.4).

Although at first this heuristic might look too naive becauseone would just be replac-
ing some ambiguities with another ones, it actually has somerational: (i) it avoids the
ambiguities among some colors found in the original image and (ii) although there is the
possibility of introducing new ambiguities, as we switch the sign of the b* coordinate for
some colors, we are also compressing and stretching their associated springs, adding to
the system a lot potential energy that will contribute to drive the solution.

Even though such a heuristic cannot guarantee that the system will never run into
a local minima, in practice, after having recolored a huge number of images, we have
not encountered yet an example in which our system was trapped by a local minimum.
Figure 4.2 (c) illustrates the configuration obtained by applying the described heuristic to
the example shown in Figure 4.2 (b). Figure 4.3 (d) shows the corresponding result of
applying this heuristic to the example shown in Figure 4.3 (a).

pb∗

i =

{

−pb∗

i if (qra∗

i > 0) and (‖~qi − D(~qi)‖ > ǫ)

pb∗

i otherwise
(4.4)

In Equation 4.4,pb∗

i is the b* coordinate of color~pi andqra∗

i is the a* coordinate of the
rotated color~qri. The thresholdǫ enforces that colors that are perceptually similar to both
dichromats and trichromats should not have the signs of their b* coordinates switched, in
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order to preserve the naturalness of the image. In the example illustrated by Figures 4.2
and 4.3, the rotated quantized color~qr2 preserved its b* coordinate. According to our
experience,ǫ = 15 tends to produce good results in general and was used for all images
shown in this work.

(a) (b) (c)

Figure 4.2: Dealing with local minima. (a) A set of quantizedcolors. (b) A configuration,
obtained right after plane rotation, that leads to a local minimum: sinceP1 cannot move
at all (it is an achromatic color) andP2 can only move a little bit, they will constrain the
optimization to the yellow portion of b* axis, leading the solution to a local minimum. (c)
By switching the sign of the b* coordinate of~qr4, the system escapes the local minimum.

(a) (b) (c) (d)

Figure 4.3: Example of the use of a heuristic to avoid local minima: (a) Reference im-
age. (b) Simulation of a deuteranope’s view of the image in (a). (c) Simulation of a
deuteranope’s view after recoloring the reference image using the mass-spring optimiza-
tion without the heuristic described by Equation 4.4. (d) Result produced by our technique
with the use of Equation 4.4.

4.1.3 Computing the Final Color Values

The last step of the algorithm consists in obtaining the color values for all pixels of
the resulting image from the set of optimized colors~tk, k ∈ {1, .., ‖T‖}, where‖T‖ is
the cardinality ofT . For this task, we have developed two distinct interpolation solutions:
per-cluster interpolation andper-pixel interpolation.
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4.1.3.1 Per-cluster interpolation

LetCk ⊂ C be a cluster formed by all colors inC that are represented by the optimized
color ~tk. The final value~tkm associated to the m-th color~ck

m ∈ Ck is then obtained as

~tkm = ~tk + (~d.L∗, rk
~d.a∗, rk

~d.b∗) (4.5)

where~d.L∗, ~d.a∗, and~d.b∗ are respectively the L*, a*, and b* coordinates of the difference
vector ~d = ( ~ck

m − ~qk). ~qk ∈ Q is the quantized color associated to the optimized color
~tk. Equation 4.5 guarantees that the final color~tkm has the same luminance as~ck

m. rk is an
interpolation of ratios that indicates how close the transformed value~tk is to the optimal
solution. This interpolation is guided by Shepard’s method(SHEPARD, 1968), a standard
technique for distance-weighted interpolation:

rk =

∑‖T‖
i=1

wki
‖~tk−~ti‖
‖ ~qk−~qi‖

∑‖T‖
i=1

wki

, for i 6= k (4.6)

wherewki = 1/‖~qk − ~qi‖
2 is the distance-weighted term suggested by Shepard (SHEP-

ARD, 1968). This transformation also guarantees local chrominance consistency, as all
chrominance values inside a clusterCk are computed relatively to the optimized color
~tk. Equation 4.5 can be efficiently implemented both on a CPU andon a GPU. On the
CPU the cost to compute all cluster ratios using Equation 4.6is O(‖Q‖2) for a setQ of
quantized colors, and the cost to interpolate each pixel using Equation 4.5 given an image
with N × N pixels isO(N2). Thus, the total cost of computing the final image colors
from the setT of optimized colors isO(‖Q‖2 + N2).

Since the final colors are computed by optimizing the set of quantized colorsQ, the
quality of the results depends directly on the quality of thequantization algorithm used.
According to our experience, the transformation expressedby Equation 4.5 produces ex-
cellent results in combination with k-means. Unfortunately, k-means is not very fast.
Table 4.1 compares the times of uniform quantization and k-means for various image res-
olutions and number of clusters. In the case of uniform quantization, we discretize the
RGB space using a uniform10 × 10 × 10 grid. The quantized color is given by the grid
color closest to the input one. Uniform quantization is fast, but tends to lead to poorer
results when used in combination with the transformation defined by Equation 4.5.

Quantization Image resolution (pixels)
technique 640 x 480 800 x 600 1024 x 768
Uniform 0.055 0.087 0.150
K-means 64 2.082 3.338 5.517
K-means 128 3.932 6.029 10.432
K-means 256 7.545 11.972 20.049

Table 4.1: Time (in seconds) to quantize images with variousresolutions on a 2.2 GHz
PC. For k-means, we used the code available at (ZHANG, 2006).

4.1.3.2 Per-pixel interpolation

One can benefit from the speed of uniform quantization by performing a more expen-
sive reconstruction of the final set of colors, achieving results similar to the ones obtained
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when using k-means. In this case, the final shading of each pixel is obtained by opti-
mizing it against the set of already optimized colorsT . This is modeled by setting up a
mass-spring system, and creating springs between the current pixel (treated as a particle
initialized with Equation 4.4) and all optimized colorstk, k ∈ [1, .., ‖T‖]. For this re-
fining optimization stage, we force the particles associated to the shades inT to remain
stationary by setting the forces acting on them to zero (Fi in Equation 3.1). For each
color ~cm ∈ C, we define its mass asmcm

= 1/‖ ~cm − D( ~cm)‖. This way, we allow a
color to change by an amount directly proportional to the difference of how it is perceived
by trichromats and dichromats.This mechanism guarantees the color naturalness in the
resulting image.

The cost of this optimization procedure isO(‖Q‖2 + ‖Q‖N2) for anN × N image,
which can be significantly higher than the mapping defined by the per-cluster interpolation
technique (O(‖Q‖2 + N2)) for large values of‖Q‖ or N . However, since the color of
each output pixel can be computed independently of each other, the computation can
be efficiently implemented in a fragment program. Table 4.2 compares the times for
recoloring images with various resolutions using different algorithms.MS-PC CPU and
MS-PC GPU are respectively the CPU and GPU versions of our mass-springalgorithm
using per-cluster interpolation to obtain the final colors.MS-PP GPU optimizes the final
colors using our per-pixel interpolation method as described in the previous paragraph.
Table 4.2 shows that in all of its variations, our approach isa few orders of magnitude
faster than Rasche et al.’s approach. All images (and execution times) reported for the
technique of Rasche et al. (RASCHE; GEIST; WESTALL, 2005b) were obtained using
the software available at (RASCHE, 2005).

Recoloring Image resolution (pixels)
technique 640 x 480 800 x 600 1024 x 768
Rasche 225.16 349.31 580.49
MS-PC CPU 0.41 0.46 0.54
MS-PC GPU 0.20 0.22 0.26
MS-PP GPU 0.22 0.23 0.27

Table 4.2: Performance of various algorithms on images of different resolutions. Times
measured in seconds on a 2.2 GHz PC with 2 GB of memory and on a GeForce 8800
GTX GPU. Quantization times not included. All techniques used a set of 128 quantized
color. Mass-spring (MS) optimized the set of quantized colors using 500 iterations. Our
per-pixel interpolation version (MS-PP GPU) obtains the final colors using 100 iterations
for each pixel in the image.

4.2 Exaggerated Color-Contrast

For applications involving non-natural images (e.g., scientific and information visual-
ization) contrast enhancement is probably more important than preserving color natural-
ness. This comes from the fact that colors used in such applications tend to be arbitrary,
usually having little connection to the viewer’s previous experiences in the real world. In
scientific visualization, the details presented by the datasets are interactively explored via
transfer functions (PFISTER et al., 2001). Until now, transfer function design has largely
ignored the limitations of color-vision deficients. Popular color scales usually range from
red to green, colors that are hard to be distinguished by mostdichromats.
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By supporting real-time recoloring of transfer functions for dichromats, our approach
can assist color-vision deficient to exploit the benefits of scientific visualization. This kind
of assistance can be made with the following changes in our image-recoloring algorithm:

1. Modifying the spring’s rest length to exaggerate the contrast between the colors
during the optimization process:lij = x ‖~qi − ~qj‖, wherex is a scalar used to
exaggerate the perceptual difference between any pair of color ~qi and~qj;

2. Defining the mass of particlePi as: mi = 1/‖(a∗
i , b

∗
i )‖, where‖(a∗

i , b
∗
i )‖ is the

distance from color~qi to the luminance axisL∗. Thus, less saturated colors present
bigger masses and tend to move less, as expected, this preserves the achromatic
colors;

3. Initializing the mass-spring system withǫ = 0 (Equation 4.4), since we do not need
to preserve the naturalness of colors.

4.3 Results and Discussion

We have implemented the described algorithms using C++ and GLSL, and used them
to recolor a large number of images. The reported times were measured using a 2.2 GHz PC
with 2 GB of memory and on a GeForce 8800 GTX with 768 MB of memory. Figures 4.4,
4.5, 4.6, 4.7, and 4.8 compare the results of our technique against Rasche et al.’s approach,
and Table 4.3 summarizes the performances of the algorithms. Since Rasche et al.’s tech-
nique is not deterministic, for the sake of image comparison, for each example shown in
this work, we run their software five times and selected the best result. For these exper-
iments, the input images were quantized using the followingalgorithms and number of
colors: Figure 4.4 -Flowers (uniform, 227 colors), Figure 4.5 -Bell Peppers (k-means,
127 colors), Figure 4.6 -Signora in Giardino (k-means, 128 colors), Figure 4.6 -Still Life
(uniform, 46 colors), and Figure 4.8 -Chinese Garden (k-means, 128 colors).

Rasche et al. MS-PC CPU MS-PP GPU
Image (size) Time Time Time
Flowers(839 × 602) 315.84 0.85 0.16
Bell Peppers(321 × 481) 114.63 0.27 0.09
Signora in Giardino(357 × 241) 60.68 0.26 0.08
Still Life (209 × 333) 47.34 0.08 0.06
Chinese Garden(239 × 280) 44.06 0.23 0.08

Table 4.3: Performance comparison between our technique and Rasche et al.’s for images
of various sizes and different quantization strategies. Time measured in seconds shows
that our technique scales well with image size.

Figure 4.4,Flowers, has839× 602 pixels and our GPU implementation performed its
recolorization in 0.158 seconds. This is2, 000× faster than Rasche et al.’s approach. Our
CPU implementation was still372× faster than Rasche et al.’s for this example.

In the example shown in Figure 4.5, while Rasche et al.’s approach (c) enhanced the
contrast among the colors of the peppers, our technique alsopreserved the color natural-
ness of the crates, yellow peppers, and other vegetables in the background (d).

In Figure 4.6, Monet’s paintingSignora in Giardino was recolored to enhance contrast
for protanopes. In this example, note how difficult it is for these individuals to distinguish
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(a) (b)

(c) (d)

Figure 4.4: Images of natural flowers: (a) Photograph. (b) Same image as perceived
by protanopes (i.e., individuals without red cones). (c) Simulated view of a protanope
for a contrast-enhanced version of the photograph recolored by Rasche et al.’s approach.
(d) Simulated view of a protanope for the result produced by our technique. Note how our
approach enhanced the overall image contrast by selectively changing only the colors for
which there is a significant perceptual difference between thrichromats and dichromats.
As a result, it preserved the naturalness of the colors (fromthe perspective of the dichro-
mat) of the flowers’ nuclei and of the background foliage (compare images (b) and (d)).
For this 839×602-pixel image, our approach performs approximately 2,000× faster than
Rasche et al.’s technique.

the red flowers from the green leaves and grass (Figure 4.6 b).Our approach clearly
improved the perception of these flowers, while preserving the naturalness of the sky and
the other elements of the scene, as perceived by the protanope (Figure 4.6 d). Compare
our results with the ones produced by Rasche et al.’s approach (c).

Figure 4.7 shows a Pablo Picasso’s painting recolored for deuteranopes. Both Rasche
et al.’s result (c) and ours (d) enhanced color contrast, butonly ours preserved the natu-
ralness of the yellow shades as seen by the dichromat (b).

Chinese Garden (Figure 4.8) provides an example of image recoloring for tritanopes.
Note how our technique preserved the naturalness of the sky,while enhancing the contrast
for the purple flowers. Rasche et al.’s approach, on the otherhand, recolored the sky as
pink and did not sufficiently enhanced the contrast of the purple flowers.

Figures 4.9 and 4.10 illustrate the use of our exaggerated color-contrast approach.
Figure 4.9 shows the result of a simulated flame. Red and greencolors in (a) mean high
and low temperatures, respectively. Note how difficult it isfor deuteranopes to distin-
guish regions of high from regions of low temperatures in (b). Figures 4.9 (c) and (d)
present the results produced by our image-recoloring and exaggerated color-contrast ap-
proaches, respectively. Figure 4.10 (a) shows the visualization of carp dataset using a
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(a) (b) (c) (d)

Figure 4.5: Color peppers: (a) Original image. (b) Simulation of a deuteranope’s view
for image (a). (c) Simulation of a deuteranope’s view for theresults produced by Rasche
et al.’s technique. (d) Simulation of a deuteranope’s view for the results produced by our
approach, which preserved the color naturalness of the crates, the yellow peppers, and
other vegetables in the background.

(a) (b)

(c) (d)

Figure 4.6: Signora in Giardino by Claude Monet, courtesy ofArtcyclopedia.com: (a)
Color image. Simulated views for a protanope for: (b) the original one, (c) result produced
by Rasche et al.’s approach, and (d) result produced by the proposed technique.

multi-dimensional transfer function and (b) presents thisvisualization as perceived by
deuteranopes. Note how difficult it is for deuteranopes to distinguish the colors asso-
ciated to the dataset. Figures 4.10 (c) and (d) show simulated views of a deuteranope
for the results produced by our image-recoloring techniquefor dichromats and by our
exaggerated color-contrast approach, respectively.
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(a) (b) (c) (d)

Figure 4.7: Still Life by Pablo Picasso, courtesy of Artcyclopedia.com: (a) Color image.
(b) Image in (a) as perceived by subjects lacking green-cones (deuteranopes). (c) and (d)
are the results of Rasche et al.’s and our techniques, respectively, as seen by deuteranopes.

(a) (b) (c) (d)

Figure 4.8: Photograph of a chinese garden: (a) Color image.Simulated views of tri-
tanopes for: (b) the original image, (c) the recolored imageby Rasche et al.’s approach,
and (d) the recolored image using our technique. Note the blue sky and the enhanced
contrast for the purple flowers.
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(a) (b)

(c) (d)

Figure 4.9: Simulation of a flame: (a) Color image. Simulatedviews of deuteranopes for:
(b) original image, (c) result produced by our image-recoloring technique for dichromats,
and (d) result produced by our exaggerated color-contrast approach usingx = 2.

(a) (b)

(c) (d)

Figure 4.10: Visualization of a carp dataset using a multi-dimensional transfer function:
(a) Color image. Simulated view of deuteranopes for: (b) original image, (c) result pro-
duced by our image-recoloring technique for dichromats, and (d) result produced by our
exaggerated color-contrast approach usingx = 2.
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4.4 Summary

This chapter presented an efficient and automatic image-recoloring algorithm for dichro-
mats that, unlike the current image-recoloring methods, allows these subjects to benefit
from contrast enhancement without having to experience toounnatural colors. The pro-
posed method uses a mass-spring system to obtain the set of optimal colors in the resulting
image, and can be efficiently implemented both on CPU and on modern GPUs.

The chapter also introduced an extension to the proposed image-recoloring algorithm
that exaggerates color contrast. This kind of feature mightbe useful for applications
dealing with non-natural images, like scientific and information visualization.
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5 THE COLOR-TO-GRAYSCALE ALGORITHM

This chapter describes our color-to-grayscale technique that uses both luminance and
chrominance information. It also introduces a new error metric for evaluating the quality
of color-to-grayscale transformations and discusses the results obtained with the proposed
technique.

5.1 The Algorithm

Our color-to-grayscale algorithm is a specialization of the recoloring algorithm for
dichromats presented in Chapter 4. In the recoloring algorithm, we searched for an opti-
mal color contrast after projecting samples from a 3D color space into the 2D color gamut
of a dichromat. For the color-to-grayscale problem, we search for the optimal contrast
after projecting samples of a 3D color space now into a 1D color space. For this purpose,
many of the same strategies used in the previous chapter can be reused here. Not surpris-
ingly, both algorithms have many things in common, including the number and order of
the steps, and the use of a mass-spring system as the optimization tool.

Thus, like the previous proposed algorithm, this one also has three main steps. The
first step consists in obtaining a setQ of quantized colors from the set of all colorsC in the
input imageI, and can be performed using any color quantization technique. The second
step performs a constrained optimization on the values of the luminance channel of the
quantized colors using a mass-spring system. At this stage,the chrominance information
is taken into account in the form of constraints that specifies how much each particle can
move (Section 5.1.1). The final gray values are reconstructed from the set of gray shades
produced by the mass-spring optimization (Section 5.1.2).This final step guarantees local
luminance consistency preservation.

5.1.1 Modeling and Optimizing the Mass-Spring System

Similar to the recoloring algorithm for dichromats, the color-to-grayscale mapping is
modeled as a mass-spring system whose topology is a completegraph (i.e., each particle
Pi is connected to each other particlePj by a springSij with fixed stiffnesskij = 1).
Each particlePi is associated to a quantized color~qi ∈ Q (represented in the almost
perceptually uniform CIE L*a*b* color space) containing some massmi. Here, however,
the particles are only allowed to move along the L*-axis of the color space and each
particlePi has its positionpi (in 1D) initialized with the value of the luminance coordinate
of ~qi. Between each pair of particles(Pi, Pj), we create a spring with rest length given by

lij =
Grange

Qrange

‖~qi − ~qj‖ (5.1)
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whereQrange is the maximum difference between any pair of quantized colors in Q,
Grange is the maximum possible difference between any pair of luminance values, and
‖~qi − ~qj‖ approximates the perceptual difference between colors~qi and ~qj . Note that
since the luminance values are constrained to theL∗-axis,Grange = 100.

The instantaneous force applied to a particlePi is obtained by summing the tensions of
all springs connectingPi to its neighborsPj, according to Hooke’s law (Equation 3.2). At
each step of the optimization, we updatel′ij as|L∗

i −L∗
j |, and the new positionpi (actually

the gray levelL∗
i ) according to Verlet’s integration (Equation 3.3). The resulting system

tends to reach an equilibrium when the perceptual differences between the optimized gray
levels are proportional to the perceptual differences among the quantized colors inQ.

In order to enforce grayscale preservation, we set the massmi of particlePi as the
reciprocal of the magnitude of~qi’s chrominance vector (Figure 5.1):

mi =
1

‖(a∗
i , b

∗
i )‖

(5.2)

Note thatd = ‖(a∗
i , b

∗
i )‖ is the distance from color~qi to the luminance axisL∗. Thus,

less saturated colors present bigger masses and tend to moveless. For achromatic colors,
whose mass should be infinity, we avoid the division by zero simply by settingFi = 0
(Equation 3.2). This keeps achromatic colors stationary.

Figure 5.1: The mass of particle associated with a quantizedcolor ~qi is computed as the
reciprocal of its distanced to the luminance axisL∗: mi = 1/(‖(a∗

i , b
∗
i )‖). This enforces

grayscale preservation, as achromatic colors will remain stationary.

5.1.2 Interpolating the Final Gray Image

The last step of the algorithm consists in obtaining the grayvalues for all pixels of
the resulting image. For this task, we have adapted the two approaches described in
Sections 4.1.3.1 and 5.1.2.2:per-cluster interpolation andper-pixel interpolation. The
choice for one interpolation method depends on the application requirements.

5.1.2.1 Per-cluster interpolation

Consider the setqk ∈ Q of quantized colors and the respective associated setgk ∈ G
of optimized gray levels. LetCk ⊂ C be a cluster composed of all colors inC that in the
optimization are represented by the quantized color~qk. The final gray level associated to
them-th color ~ck

m ∈ Ck is then obtained as

gray( ~ck
m) =

{

gk + rk‖~qk − ~ck
m‖ lum( ~ck

m) ≥ lum(~qk)

gk − rk‖~qk − ~ck
m‖ otherwise

(5.3)
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wherelum is the function that returns the coordinate L* of a color in the L*a*b* color
space, andrk is Shepard’s (SHEPARD, 1968) interpolation of ratios, in this case com-
puted as

rk =

∑‖Q‖
i=1

wki
|gk−gi|
‖ ~qk−~qi‖

∑‖Q‖
i=1

wki

, for i 6= k (5.4)

rk indicates how close to the optimal solution is the gray valuegk, andwki = 1/‖~qk−~qi‖
2

is the distance-weighted term. For the quantized color~qk that represents the cluster, all
gray values inside thek-th cluster are computed with respect to the optimized gray level
gk. Therefore, this transformation ensures local luminance consistency.

Again, given the setQ of quantized colors, the cost of computing all cluster ratios
using Equation 5.4 on the CPU isO(‖Q‖2), while the cost of interpolating each pixel of
an image withN × N pixels isO(N2).

5.1.2.2 Per-pixel interpolation

In this approach, each pixel’s final shading is computed by optimizing it against the
setgk ∈ G of previously optimized gray levels. This is achieved by using a mass-spring
system, with springs connecting the current pixel (which istreated as a particle initialized
with the pixel´s luminance value) and all optimized gray levelsgk. In this refined opti-
mization stage, the particles associated to the optimized gray levels are kept stationary
by setting the forces that act on them to zero (Fi in Equation 3.2). Equation 5.2 is then
used to obtain the mass of the pixel being optimized. In this stage, all pixels with achro-
matic colors endup having infinite masses, remaining stationary. This ensures that all gray
shades in the original color image will be preserved in the resulting grayscale image.

5.2 Error Metric for Color-to-Grayscale Mappings

We introduce an error metric to evaluate the quality of color-to-grayscale transforma-
tions. It consists of measuring whether the difference between any pairs of colors(~ci,~cj)
in the original color image have been mapped to the corresponding target difference in
the grayscale image. For this purpose, we defined an error function using root weighted
mean square (RWMS):

rwms(i) =

√

1

‖K‖

∑

j∈K

1

δ2
ij

(δij − |lum(~ci) − lum(~cj)|)
2 (5.5)

where,rwms(i) is the error computed for theith pixel of the input color imageI, K is
the set of all pixels inI, ‖K‖ is the number of pixels inI, δij = (Grange/Crange)‖~ci -
~cj‖ is the target difference in gray levels for a pair of colors~ci and ~cj, and lum is the
function that return the component L* of a color. Since the differences are computed in
the approximate perceptually uniform L*a*b* color space,Grange = 100 andCrange is
the maximum distance between any two colors in the color image I. The weight(1/δ2

ij)
is used to suppress the bias toward large values ofδij .

For anN ×N image, evaluating Equation 5.5 for every pixel ofI would takeO(N4),
which becomes impractical for large values ofN . We can obtain a very good approxima-
tion to this error function by restricting the computation to the setqj ∈ Q of quantized
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colors, given by:

rwmsq(i) =

√

√

√

√

1

‖K‖

∑

j∈Q

‖Kj‖

δq
ij

2

(

δq
ij − |lum(~ci) − lum(~qj)|

)2
(5.6)

In Equation 5.6,Kj ⊂ K is the cluster of pixels represented by the quantized color
~qj, δq

ij = (Grange/Qrange)‖~ci − ~qj‖, ~ci is the color of thei-th pixel, andQrange is
the maximum distance between any two quantized colors inQ. We have compared the
RWMS values produced by Equations 5.5 and 5.6 for a set of 50 images of natural scenes,
paintings, charts, and maps. From this study, we found that the average relative differ-
ence between the two results was only1.47%. Given these relatively small differences
but its significantly smaller costO(‖Q‖N2), all contrast errors shown in this work were
computed using the metric represented by Equation 5.6. Also, in all contrast error images
shown in this thesis, the green shade shown at the bottom of the error color ramp indicates
rwms = 0.0, while the red shade at the top representsrwms = 1.2.

Figure 5.2 illustrates the use of our contrast error metric.Figure 5.2 (c) is the error
image for the pair of color and grayscale images shown on Figures 5.2 (a) and (b), re-
spectively, using a set of 64 quantized colors. The grayscale image was obtained as the
luminance of image (a). As expected, the largest errors concentrate on the berries pixels,
since these present the biggest contrast lost. Smaller errors are spread over the several
green shades of the leaves.

(a) (b) (c) (d)

Figure 5.2: Example of our contrast error metric. (a) Color image. (b) Luminance im-
age of (a). (c) Error image computed using Equation 5.6. The largest contrast errors
concentrate on the berry pixels.

Figure 5.3 illustrates the impact of the weighting term1/δq
ij

2 on the metric. Figure 5.3
(b) shows a luminance image obtained from (a). The contrast error image is shown in
Figure 5.3 (c) and was computed from a set of 128 quantized colors. The error image
shown in (d) was computed using the RMS error (i.e., removing the weighting term from
Equation 5.6). Note that the region around the head of the butterfly has bigger contrast
error, which has been captured by the error image in (c), while it was missed by the RMS
error image shown in (d).

5.3 Results and Discussion

The described algorithms have been implemented in C++ and GLSL, and used them
decolorize a very large number of images. The reported timeswere measured using a 2.2
GHz PC with 2 GB of memory and on a GeForce 8800 GTX with 768 MB ofmemory.
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(a) (b) (c) (d) (e)

Figure 5.3: (a) Color image, (b) the luminance version of image (a), (c) RWMS error
image. Note the perceptual error around the head of the butterfly, and (d) RMS error
image.

Figure 5.4 compares the times for quantization and decolorizing images with various
resolutions using different algorithms. Using the same notation introduced in the pre-
vious chapter,MS-PC CPU is our mass-spring algorithm using per-cluster interpolation
in combination with k-means, andMS-PP GPU is our mass-spring algorithm using per-
pixel interpolation with uniform quantization. In the caseof k-means, we used a set of
128 colors and the code available at (ZHANG, 2006). In the case of uniform quantiza-
tion, we discretized theRGB space using an uniform10×10×10 grid. Figure 5.4 shows
that in all of its variations, our approach is a few orders of magnitude faster than both
Gooch et al.’s and Rasche et al.’s approaches. All images andexecution times shown in
this work regarding the techniques of Gooch et al. (GOOCH et al., 2005a) and Rasche
et al. (RASCHE; GEIST; WESTALL, 2005b) were obtained using software provided by
these authors at (GOOCH et al., 2005b) and (RASCHE, 2005), respectively.

Figure 5.5 compares the results produced by various techniques with respect to grayscale
preservation. One should note that only the luminance image(b) and the result produced
by our method (f) are capable of preserving the original shades of gray. The luminance
image, however, failed to distinguish the shades of the various isoluminant circles. Gooch
et al.’s (Figure 5.5 c) and Rasche et al.’s (Figures 5.5 d and e) techniques changed the
original gray shades in the resulting images.

Figures 5.6, 5.8, 5.9, and 5.10 compare the results, performance, and the overall con-
trast errors produced by the various algorithms. Table 5.1 summarizes these data. Follow-
ing the authors comments on image quality, we did not use any quantization with Gooch
et al.’s algorithm. For Rasche et al.’s and ours, the input images were quantized as shown
on the second column of Table 5.1.

Table 5.1 also shows that our approach simultaneously presents the smallest RWMS
error and is by far faster than Gooch et al.’s and Rasche et al.’s techniques. The luminance
image, on the other hand, presents the biggest overall contrast errors, which is something
that was already expected, since the color-to-luminance mapping completely ignores the
chrominance information of the original image.

Figure 5.6 shows four grayscale renditions of Claude Monet’s Impressionist Sunrise
(Figure 5.7), with their respective contrast error images obtained using our metric. This
example illustrates the robustness of our technique to handle large images. TheSunrise
has(839× 602) pixel and our GPU implementation performs the decolorization in 0.435
seconds. This is751× faster than Rasche et al.’s approach and77, 910× faster than Gooch
et al.’s. Our CPU implementation is still247× faster than Rasche et al.’s and25, 379×
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Figure 5.4: Performance comparison of various algorithms on a 2.2 GHz PC with 2 GB
of memory and on a GeForce 8800 GTX GPU using images of different resolutions.
Gooch et al. performed in 12,276 and 30,372 seconds for(640 × 480) and(800 × 600)-
pixel images, respectively. Except for Gooch et al., all other techniques used a set of 128
quantized colors. Our mass-spring (MS) approaches optimized the set of quantized colors
using 1,000 iterations. TheGPU version obtained the final gray levels by optimizing each
pixel with 100 iterations. Its results are detailed for better visualization. Note how the
proposed approach scales well with the size of the input images.

faster than Gooch et al.’s.
Picasso Lovers (Figure 5.8) provides an example for which the result produced by

Gooch et al.’s technique presents a large contrast error (Figure 5.8 h). For this same image,
Rasche et al.’s approach produced a relatively small contrast error, but in the resulting
grayscale image it is hard to distinguish between the lady’syellow skirt and the man’s red
clothes. For the photograph shown in Figure 5.9, the overallcontrast error produced by
Gooch et al.’s technique (Figure 5.9 h) is about the same as the one found in the luminance
image (Figure 5.9 g).

Figure 5.10 illustrates the difficulty of Rasche et al.’s approach to capture some subtle
shading variations among isoluminant colors. In this example, the smooth yellow hallo
around the butterfly’s head has been missed, while it was captured by Gooch et al.’s and
our techniques.
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(a) (b) (c) (d) (e) (f)

Figure 5.5: Example of grayscale preservation. (a) Original color image with isoluminant
circles; (b) Luminance image obtained from (a). Note it mapsall isoluminant circle to the
same shade of gray; (c) Result produced by Gooch et al.’s technique. Note that the two
shades of green and the shade of orange turned into white in the resulting image; (d) and
(e) are two results produced by Rasche et al.’s approach. (f)Grayscale image produced
by our approach; Note that only the luminance image (b) and the result produced by our
approach (f) preserved the original gray shades. The results shown in (d), (e) and (f) took
a set of seven uniformly quantized colors as input.

Label Image (size) Quant. (#colors)
#1 Sunrise(839 × 602) uniform (264)
#2 Lovers(301 × 407) k-means (255)
#3 Boats(193 × 282) uniform (141)
#4 Butterfly (128 × 164) k-means (120)

Image Lum. Gooch et al. Rasche et al. MS-PC CPU MS-PP GPU
Label RWMS Time RWMS Time RWMS Time RWMS Time RWMS

#1 0.707 33,501.4 0.557 326.78 0.564 1.32 0.429 0.43 0.425
#2 0.690 1,882.5 0.699 87.36 0.498 0.96 0.486 0.36 0.477
#3 0.634 328.3 0.624 20.10 0.513 0.35 0.432 0.17 0.428
#4 0.582 57.3 0.535 5.54 0.443 0.21 0.365 0.15 0.362

Table 5.1: Summary of the performance and overall contrast error produced by the various
techniques when applied to the test images. Time measured inseconds. Our approach
presents the smallest RWMS error for all examples and is significantly faster than the
other techniques. The speedups increase with the image sizes. For theSunrise image,
with (839 × 602) pixel, our GPU implementation is751× faster than Rasche et al.’s
(CPU) approach and77, 910× faster than Gooch et al.’s (CPU).
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 5.6: Four grayscale renditions of Claude Monet’s Impressionist Sunrise (Fig-
ure 5.7), with their respective contrast error images obtained using our metric. (a) to
(d) are grayscale images with their corresponding per-pixel contrast error images (e) to
(h), respectively. (a) Luminance image. (b) Grayscale image produced by Gooch et al.’s
method using its default parameters. (c) A grayscale image produced by Rasche et al.’s
approach. (d) Grayscale image produced by our approach. RWMS error images: (e)
rwms = 0.582, (f) rwms = 0.535, (g) rwms = 0.443, (h) rwms = 0.365. (i) Error
scale: red means bigger error.

Figure 5.7: Color image (Impressionist Sunrise by Claude Monet, courtesy of Artcyclo-
pedia.com).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.8: Pablo Picasso’s Lovers: (a) Color image (courtesy of Artcyclopedia.com). (b)
to (e) are grayscale images with their per-pixel contrast error images (g) to (j), respec-
tively. (b) Luminance image. (c) Grayscale image produced by Gooch et al.’s method us-
ing its default parameters. (d) A grayscale image produced Rasche et al.’s approach. Note
that it is hard to distinguish between the lady’s yellow skirt and the man’s red clothes.
(e) Grayscale image produced by our approach. (f) Error scale: red means bigger error.
RWMS error images: (g) to (j).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.9: Photograph of a natural scene: (a) Color image. (b) to (e) are grayscale images
with their per-pixel contrast error images (g) to (j), respectively. (b) Luminance image.
(c) Grayscale image produced by Gooch et al.’s method using its default parameters. (d)
A grayscale image produced Rasche et al.’s approach. (e) Grayscale image produced by
our approach. (f) Error scale: red means bigger error.(g) to(j).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.10: Butterfly: (a) Color image. (b) to (e) are grayscale images with their per-
pixel contrast error images (g) to (j), respectively. (b) Luminance image. (c) Grayscale
image produced by Gooch et al.’s method using its default parameters. (d) A grayscale
image produced Rasche et al.’s approach. (e) Grayscale image produced by our approach.
(f) Error scale: red means bigger error. RWMS error images: (g) to (j).
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5.4 Summary

This chapter described a new color-to-grayscale techniquethat uses both luminance
and chrominance information to preserve the contrast, found in the input color image, in
the resulting grayscale one. The proposed method is based ona mass-spring optimization
and is almost three orders of magnitude faster than current optimization-based techniques.

This chapter also presented an error metric for evaluating the quality of color-to-
grayscale transformations. It measures the error between the differences of any pairs
of colors in the original image and the corresponding differences in the grayscale image.
The proposed metric is based on a RWMS error.
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6 CONCLUSIONS

This thesis presented an efficient naturalness-preservingimage-recoloring algorithm
for dichromats based on mass-spring optimization. Contrary to previous automatic tech-
niques, the proposed method allows dichromats to benefit from contrast enhancement
without having to experience unnatural colors. Besides being deterministic, our technique
has many attractive properties: (i) it satisfies global color consistency; (ii) ensures lumi-
nance constancy; (iii) maintains local chrominance consistency; and (iv) can be efficiently
implemented on modern GPUs. Both CPU and GPU versions of the proposed algorithm
are significantly faster than previous approaches (ICHIKAWA et al., 2004; WAKITA;
SHIMAMURA, 2005; RASCHE; GEIST; WESTALL, 2005b; JEFFERSON; HARVEY,
2006). It has also presented an extension to our image-recoloring method that exagger-
ates the color contrast for dichromats in the result image. Such a feature is useful for
applications involving non-natural images (e.g., scientific and information visualization).

A second contribution of this thesis is an efficient mass-spring-based approach for
contrast enhancement during color-to-grayscale image conversion. The proposed method
is more than three orders of magnitude faster than previous optimization-based tech-
niques (GOOCH et al., 2005a; RASCHE; GEIST; WESTALL, 2005b), while producing
superior results both in terms of contrast preservation andimage guarantees. Our algo-
rithm satisfies a global consistency property, preserves grayscale values present in the
color image, maintains local luminance consistency, is completely automatic, and can be
efficiently implemented on modern GPUs.

Another contribution of this thesis is an error metric for evaluating the quality of
color-to-grayscale transformations. The proposed metricis based on a RWMS error that
measures whether the difference between any pairs of colorsin the original image have
been mapped to the corresponding target difference in the grayscale image.

The quality of the results produced by our image-recoloringand color-to-grayscale
techniques depend on the quality of quantization performedin their first stage. For low-
quality images, the quantization algorithm may fail to generate a good set of quantized
colors, causing the result images to exhibit artifacts. Although we ensure a continuous
mapping among the colors/gray-shades in any given cluster,currently the algorithms do
not ensure a continuous mapping among different clusters. In practice, however, after ex-
tensive tests on a large number of images, we have not noticedany objectionable artifacts
due to these limitations.

This work opens up several avenues for future exploration. As the proposed ap-
proaches were designed to deal with static images, we plan toexplore ways to extend
our techniques to perform video sequences recolorization/decolorization. Preliminary
results show that we can enforce temporal coherence by initializing the mass-spring
optimization with particles computed for previous frames,and by keeping those parti-
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cles stationary. Temporal coherence is not preserved by related techniques (GOOCH
et al., 2005a; GRUNDLAND; DODGSON, 2007; JEFFERSON; HARVEY, 2006; NEU-
MANN; CADIK; NEMCSICS, 2007; RASCHE; GEIST; WESTALL, 2005b; WAKITA;
SHIMAMURA, 2005).

We believe that our image-recoloring technique can have a positive impact on the way
dichromats interact with digital media, as it finally provides a practical way of disam-
biguating colors without contradicting, as much as possible, their memories about how
the world looks like. We hope these results will inspire the design of new applications
and interfaces for dichromats.

With regarding to our color-to-grayscale technique, the unique combination of high-
fidelity capture of color differences, grayscale preservation, global consistency, local lu-
minance consistency, and speed makes our technique a good candidate for replacing stan-
dard luminance-based color-to-grayscale algorithms in printing and pattern recognition
applications.
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