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ABSTRACT

This thesis presents an efficient and automatic image-@gaogltechnique for dichro-
mats that highlights important visual details that wouldestvise be unnoticed by these
individuals. While previous techniques approach this abby potentially changing
all colors of the original image, causing their results tokannatural both to dichromats
and to normal-vision observers, the proposed approackmwes as much as possible, the
naturalness of the original colors. The technique desdribbé¢his thesis is about three or-
ders of magnitude faster than previous approaches. This also presents an extension
to our method that exaggerates the color contrast in théamezbimages, which might be
useful for scientific visualization and analysis of chard aaps.

Another contribution of this thesis is an efficient contrashancement algorithm for
color-to-grayscale image conversion that uses both lunt@and chrominance infor-
mation. This algorithm is also about three orders of magieittaster than previous
optimization-based methods, while providing some guaesbn important image prop-
erties. More specifically, the proposed approach pres@nagsvalues present in the color
image, ensures global color consistency, and locally eefoluminance consistency. A
third contribution of this thesis is an error metric for avating the quality of color-to-
grayscale transformations.

Keywords: Color Reduction, Color-Contrast Enhancement, Color-tayScale Map-
ping, Color Vision Deficiency, Dichromacy, Error Metric, &aige Processing, Monochro-
macy, Recoloring Algorithm.






Recoloracdo de Imagens para Portadores de Deficiéncia na Repcao de Cores

RESUMO

Esta dissertacao apresenta um método eficiente e autordatiecoloracdo de ima-
gens para dicromatas que destaca detalhes visuais imigsrtare poderiam passar des-
percebidos por estes individuos. Enquanto as técnicasarteabordam este problema
com a possibilidade de alterar todas as cores da imagenmaligesultando assim em
imagens com aparéncia nao natural tanto para os dicromaaasogpara os individuos
com visdo normal, a técnica proposta preserva, ha medidaskivel, a naturalidade das
cores da imagem original. A técnica € aproximadamente tiens de magnitude mais
rapida que as técnicas anteriores. Este trabalho tambérsesppa uma extenséo para a
técnica de recoloracao que exagera o contraste de coresagarmrecolorida, podendo
ser util em aplica¢gBes de visualizagdo cientifica e anatiggéficos e mapas.

Outra contribuicdo deste trabalho € um método eficienterpatee de contrastes du-
rante a conversao de imagens coloridas para tons de cinzesgut&nto as informacdes de
luminancia e crominancia durante este processo. A técnageopta € aproximadamente
trés ordens de magnitude mais rapida que as técnicas aesdn@seadas em otimizacao,
além de garantir algumas propriedades importantes da imadéais especificamente,
a técnica apresentada preserva 0s tons de cinza preseinesgyean original, assegura a
consisténcia global de cores e garante consisténcia ledahdnancia. Uma terceira con-
tribuicdo desta dissertacdo € uma métrica de erro paraasaijualidade dos algoritmos
de converséao de imagens coloridas para tons de cinza.

Palavras-chave:Algoritmo de Recoloracéo, Deficiéncia Visual de Cores, @ntatismo,
Mapeamento de Cores para Tons de Cinza, Métrica de Erro, ddamatismo, Processa-
mento de Imagem, Realce de Contraste, Reducéo de Cores.






1 INTRODUCTION

Color vision deficiency (CVD) is a genetic condition found approximately4%
to 8% of the male population, and in abott% of the female population around the
world (SHARPE et al., 1999), being more prevalent amongasiaos. According to the
estimates of the U.S. Census Bereau for the world populatiertan predict that approx-
imately 200,000,000 (two hundred million) people suffemfrsome kind of color vision
deficiency. Human color perception is determined by a setotgreceptors (cones) in
the retina. Once stimulated, they send some signals to #ie, bvhich are interpreted as
color sensation (WANDELL, 1995). Individuals with normailor vision present three
kinds of cones calleded, green, andblue, which differ from each other by having pho-
topigments that are sensitive to the low, medium, and highuencies of the visible
electromagnetic spectrum, respectively. Thus, indiMglwath normal color vision are
calledtrichromats. Except when caused by trauma, anomalies in color visioogpgion
are caused by some changes in these photoreceptors, or agsbece of some kind of
cone. Thus, there are no known treatments of surgical puwesccapable of reverting
such a condition.

I S ool color vision
B W coocones absent BB i
. - green-cones absent g '

. - blue-cones absent

Figure 1.1: On the left, the visible spectrum as perceivettibliromats and dichromats.
In the middle, a scene as observed by a subject with normai gadion. On the right,
the same scene as perceived by a subject lacking green-@mesranope). Note how
difficult it is for this subject to distinguish the colors asgated to the fruits.

Changes in the cones’ photopigments are caused by naturalieas of some pro-
teins, causing them to become more sensitive to a differ@md of the visible spectrum,
when compared to a normal vision person (SHARPE et al., 1986¢h individuals are
calledanomaloustrichromats. In case one kind of cone is missing, the subjects are called
dichromats, and can be further classified psotanopes, deuteranopes, andtritanopes,
depending whether the missing cones are red, green, orrelsgectively. A much rarer
condition is characterized by individuals having a singleno kind of cones, who are
calledmonochromats. Figure 1.1 shows the visible electromagnetic spectruneesepved
by tichromats and dichromats, and compares a scene asvyeertsi an individual with



normal color vision and a subject lacking green-cones @tanbpe). Although there are
no reliable statistics for the distribution of the variol&sses of color vision deficiencies
among all ethnic groups, these numbers are available faraheasian population and are
shown in Table 1.1 (RIGDEN, 1999).

I Incidence (%)
Classification Nen ‘ Women
Anomalous trichromacy 59 0.37
Protanomaly (red-cones defect) | 1.0 0.02
Deuteranomaly (green-cones defect.9 0.35
Tritanomaly (blue-cones defect) | 0.0001| 0.0001
Dichromacy 21 0.03
Protanopia (red-cones absent) 1.0 0.02
Deuteranopia (green-cones absent)1.1 0.01
Tritanopia (blue-cones absent) 0.001 | 0.001

| Monochromacy | 0.003 | 0.00001|

Table 1.1: Classification of color vision deficiencies ane tbspective incidence in the
caucasian population (RIGDEN, 1999).

Color vision deficiency tends to impose several limitatiapsecially for dichromats
and monochromats. Children often feel frustrated by nondpaible to perform color-
related tasks (HEATH, 1974), and adults tend face diffieglto perform some daily ac-
tivities. Figure 1.2 shows some images of recent works isthentific visualization field,
and their respective images simulating the dichromat'squion. Note how difficult it
is for the dichromats to distinguish the colors used to regmethe datasets, and to reach
a better understanding of the data meaning.

(b) (© (d)

Figure 1.2: Scientific visualization examples: (a) Vismalion of a flame simulation
and (b) how this image is perceived by a subject lacking goegres (deuteranope). (c)
Simulation of a fluid dynamic and (d) how this simulation igqaved by a protanope
(i.e., a subject lacking red-cones).

Another important segment that permeates our daily life @sd ignores the limi-
tations of CVDs is the industry of digital entertainment. spite the respectable 32.6
billion-dollar billing obtained in 2005 by the gaming indos (consoles and computer)
and the expectation of doubling this amount by 2011 (ABI Res® 2006), this segment
leaves out of its potential market a significant part of pagiah consisting of color-vision
deficients. Figure 1.3 illustrates a common situation fane@VDs dealing video games
and digital media in general. The image on the left preseotsrguter game scene show-
ing the colors of opponent soldiers. On the right, one seesdéme image as perceived
by deuteranopes. Note that the colors are essentiallytingisshable.



Figure 1.3: Opponent soldiers identified by the armor caidhe Quake 4 (ld Software,
Inc, 2006). On the left, the image as perceived by subjectis marmal color vision.
Note how the colors of the soldiers’ armors are almost ingystishable to these indi-
viduals. The image on the right simulates the perceptiombjexts lacking green-cones
(deuteranopes).

Recently, several techniques have been proposed to raotdges highlighting vi-
sual details missed by dichromats (ICHIKAWA et al., 2004; KAA; SHIMAMURA,
2005; RASCHE; GEIST; WESTALL, 2005a,b; JEFFERSON; HARVEXQ06). Al-
though these techniques use different strategies, thegpalioach the problem by po-
tentially changing all colors of the original image. In cegsence, their results tend to
look unnatural both to dichromats and to normal-vision obeses. Moreover, they tend to
present high computational costs, not scaling well withrteber of colors and the size
of the inputimages. This thesis presents an efficient arahaatic image-recoloring tech-
nique for dichromats that preserves, as much as possileleaturalness of the original
colors.

Despite the very small incidence of monochromats in the dvpdpulation, color-to-
grayscale is, nevertheless, an important subject. Duedioaggic reasons, the printing of
documents and books is still primarily done in “black-andie”, causing the included
photographs and illustrations to be printed using shadgsayf Since the standard color-
to-grayscale conversion algorithm consists of computieduminance of the original im-
age, all chrominance information is lost in the process. Aesalt, clearly distinguishable
regions containing isoluminant colors will be mapped togka gray shade (Figure 1.4).
As pointed out by Grundland and Dodgson (GRUNDLAND; DODGSQ@NO07), a sim-
ilar situation happens with some legacy pattern recogniigorithms and systems that
have been designed to operate on luminance information @&@yycompletely ignoring
chrominance, such methods cannot take advantage of a ticbesof information.

Figure 1.4: Color-to-Grayscale mapping. On the left, isahant color image. On the
right, grayscale version of the image on the left obtainedguthe standard color-to-
grayscale conversion algorithm.



In order to address these limitations, a few techniques baea recently proposed
to convert color images into grayscale ones with enhancettast by taking both Iu-
minance and chrominance into account (GOOCH et al., 200B&}N®ODLAND; DODG-
SON, 2007; NEUMANN; CADIK; NEMCSICS, 2007; RASCHE; GEIST; W8TALL,
2005b). The most popular of these techniqgues (GOOCH et)5& RASCHE; GEIST,;
WESTALL, 2005b) are based on the optimization of objectiuactions. While these two
methods produce good results in general, they present bigpuatational costs, not scal-
ing well with the number of pixels in the image. Moreover tli® not preserve the gray
values present in the original image. Grayscale preservadi a very desirable feature
and is satisfied by the traditional techniques that perfooforeto-grayscale conversion
using luminance only. This thesis presents an efficient@ggr for contrast enhance-
ment during color-to-grayscale conversion that addretbese limitations.

1.1 Thesis Contributions
The main contributions of this thesis include:

1. A new efficient and automatic image-recoloring technitpuelichromats that pre-
serves, as much as possible, the naturalness of the oragiloas (Section 4.1). An
extension of this technique that exaggerates color cardrasmight be useful for
visualization of scientific data as well as maps and chasest{@n 4.2);

2. A new efficient contrast-enhancement algorithm for ctdegrayscale image con-
version that uses both luminance and chrominance infoom#&8ection 5.1);

3. A new contrast error metric for evaluating the quality ofoe-to-gray transforma-
tions (Section 5.2).

1.2 Structure of the Thesis

Chapter 2 discusses some related work to ours. In partjaulkemvers the state-of-
the-art techniques in terms of image recoloring for dichaitsrit also reviews the current
approaches for color-to-grayscale conversion. Chaptevigws the basic concepts of
mass-spring systems, which provide the background for nstetteding the techniques
presented in this thesis. Chapter 4 presents the detaiegirbposed image-recoloring
technigue for dichromats, analyzes some of its fundamgmtglerties and guarantees,
introduces an extension for exaggerating color contramst, @esents various examples
illustrating the obtained results. Chapter 5 describesd#tails of the proposed color-
to-grayscale technique, introduces a new perceptual eredric for evaluating the qual-
ity of color-to-grayscale transformations, and discussere results. Finally, Chapter 6
summarizes the work presented in this thesis and concludbsdections for further
investigation.



2 RELATED WORK

There is significant amount of work in the literature thagatpts to address the prob-
lems of image recoloring for color-vision deficients andotdb-grayscale conversion.
This chapter begins covering some techniques to simulatpehception of dichromats,
then it discusses some recent image-recoloring technigueékese subjects. Finally, it
covers several approaches of color-to-grayscale comverstor both cases.€., image
recoloring and color-to-grayscale mapping) the proposelrtiques are compared to the
state-of-the-art ones.

2.1 Simulation of Dichromat’s Perception

The simulation of dichromat’s perception allows indivitkiith normal color vision
to experience how these subjects perceive colors. SucHations became possible after
some reports in the medical literature (JUDD, 1948; SLOANDMLACH, 1948) about
unilateral dichromats ., individuals with one dichromatic eye, but with normal wisi
in the other eye). These reports account for the fact thatsprextral colors and neutral
colors are perceived as equals by both eyes. The spectoaib@ke blue and yellow for
protanopes and deuteranopes, while for tritanopes théses@re cyan and red.

Using this information, some researches have proposeaitpats to simulate the
colors appearance for dichromats (MEYER; GREENBERG, 188&TTEL; VIENOT;
MOLLON, 1997; WALRAVEN; ALFERDINCK, 1997; VIENOT; BRETTEL.2000). In
this thesis, all simulations were performed using the dtigor described by Brettel et
al’s (BRETTEL,; VIENOT; MOLLON, 1997), the most referencegthnique to simulate
the dichromat’s perceptions.

Brettel et al. use two half-planes in the LMS color space poesent the color gamut
perceived by dichromats. The half-planes were based oregiwts of unilateral dichro-
mats in the medical literature. Each class of dichromacydmastype of missing cone,
and they confuse colors that fall along lines parallel toakis that represent the missing
cone. Brettel et al. assumed the intersection between sueh and the half-planes as
the colors perceived by dichromats. Figure 2.1 illustrateggometric representation of
Brettel et al.’s algorithm to simulate the perception oftealass of dichromacy.

Although these simulation techniques allow individualshwaormal color vision to
appreciate the perception of dichromats, as we noted inkdnagles of Figures 1.1t0 1.3,
they do not help to minimize the limitation of these indivadisito perceive the contrast
between the colors.
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protanope deuteranope £ tritanope

Figure 2.1: Geometric representation of Brettel et alg@athm to simulate perception of
dichromats. The green represent the reduced color gamigiobanats. The orthographic
projection of color) onto the reduced surface gives the capdperceived by dichromats.
Figure adapted from (BRETTEL; VIENOT; MOLLON, 1997).

2.2 Recoloring Techniques for Dichromats

The image-recoloring techniques for dichromats aim at mizing the constraints
faced by these subjects in the perception of colors. Bdgi¢he colors of the resulting
image are changed to allow dichromats to perceive colorashin portions of images
where they originally missed it. Recoloring techniques loarbroadly classified asser-
assisted andautomatic techniques.

2.2.1 User-Assisted Recoloring Techniques

Daltonize (DOUGHERTY; WADE, 2002) is a web application fecoloring images
for protanopes and deuteranopes.(subjects also known as red-green colorblind). The
technique splits the image into luminance, red-green, dne-yellow channels. It re-
quires three user-provided parameteest-green stretch factor, used to increase the con-
trast in the red-green channéliminance projection scale, that tells how much of red-
green channel is projected into luminance channel;chaelyellow projection scale, that
informs how much of red-green channel is projected intoyleiéow channel.

Fidaner et al. (FIDANER; LIN; OZGUVEN, 2005) also proposedeahnique that
projects information from one channel into other chanriis,in the Daltonize approach.
They worked with the differences between the original insagged the simulated images
for the respective dichromacy, that corresponds to thermmftion lost by dichromats.
They required &8 x 3 matrix, defined by the user, that specifies how the difference
between the original and the simulated dichromatic imabeslsl be accumulated to the
channels of the original image.

Working on the HSL color space, laccarino et al. IACCARINle, 2006) modulate
the original image colors using six user-provided paransetBixels with hue (H) close
to green color are modulated by the first three parameterie pixels with hue close to
red are modulated by the other three parameters.

The quality of the results obtained with user-assistedloeitm techniques is highly
dependent on the user-provided parameters. Essentiatigl-@and-error strategy is re-
quired to choose the best set of parameters for each in@diMichage. Another limitation
is that the presented user-assisted techniques are bagednbroperations, hence they
may introduce new color confusions. Figure 2.2 illustrated situation. The red and
blue colors in (a) have become indistinguishable by a dantgye in (c) after (a) has been



recolored using Fidaner et al.’'s technique.

(@) (b)

Figure 2.2: Example showing a limitation of user-assisesthhiques based on point op-
erations. (a) Color image as perceived by a subject with abawlor vision. (b) Same
image as perceived by a subject lacking green-cones (deaee). (c) Simulation of
deuteranope’s perception after recoloring the image (agusidaner et al.’s technique.
Note that red and blue colors in (a) have become indistimgiik in (c).

2.2.2 Automatic Recoloring Techniques

Ichikawa et al. (ICHIKAWA et al., 2003) used an objective tion to recolor web
pages for anomalous trichromats. The objective functi@s tio preserve the color dif-
ferences between all pairs of colors as perceived by triohts in the reduced anomalous
trichromats’ gamut. A genetic algorithm was used to minenilze objective function.
Note, however, that this problem is relatively simpler, athtgroups are trichromats and
no reduction in color space dimension is required. Ichikatval. (ICHIKAWA et al.,
2004) extended their previous technique for use on cologésabut they did not con-
sider the preservation of color naturalneiss. (preservation of colors that are perceived
as similar by both trichromats and anomalous trichromats).

Wakita and Shimamura (WAKITA; SHIMAMURA, 2005) proposed echnique to
recolor documentse(g., web pages, charts, maps) for dichromats using three olgect
functions aiming, respectively, at: (i) color contrast ggevation, (i) maximum color
contrast enforcing, and (iii) color naturalness pres@éomatHowever, in their technique,
the colors for which naturalness should be preserved muspéefied by the user. The
three objective functions are then combined by weightirgr-specified parameters and
optimized using simulated annealing. They report that dumnts with more than 10
colors could take several seconds to be optimized (no irdtomn about the specs of the
hardware used to perform this time estimate were provided).

Jefferson and Harvey (JEFFERSON; HARVEY, 2006) select askey colors by
sampling the difference histogram (Figure 2.3 e) betweeirtbhromat’s color histogram
(Figure 2.3 c¢) and dichromat’s color histogram (Figure 2.3 They use four objective
functions to preserve brightness, color contrast, coloté available gamut, and color
naturalness of the selected key colors. Again, the userspesify the set of colors whose
naturalness should be preserved. They optimize the comhloibjective functions using
a method of preconditioned conjugate gradients. They tepoes of several minutes to
optimize a set of 25 key colors on a P4 2.0 GHz using a Matlablamentation.

Rasche et al. (RASCHE; GEIST; WESTALL, 2005a) proposed doraatic recol-
oring technique for dichromats as an optimization thaistt® preserve the perceptual
color differences between all pairs of colors using an affiaasformation. Such trans-



Figure 2.3: (a) Color image and (b) simulation of protanepeéw for image (a). (c)

and (d) are the 3D color histograms for the images shown iaud) (b), respectively.

(e) Difference histogram obtained by subtracting (d) frarn (The RGB color space is
discretized into 1,000 equal volume cubes. The gray shadecabe is proportional to
the number of pixels in the image with the corresponding R@RBes. Figures extracted
from (JEFFERSON; HARVEY, 2006).

formation, however, does not capture color variations@loany directions and does not
ensure that the mapped colors are all within the availableugaRasche et al. (RASCHE;
GEIST; WESTALL, 2005b) addressed these limitations usicgrstrained multivariate
optimization procedure applied to a reduced set of quashtiméor, which are in turn used
to optimize the entire set of colors. The authors did not icrsthe problem of natu-
ralness preservation and the technique can arbitrariipgdnahe colors of the original
images (Figure 2.4 c). Moreover, the algorithm does notesaall with the number of
quantized colors and the size of the input images.

The image recoloring technique presented in this thesisopgimize hundreds of
colors in real time, and can be used to create images thatshaaech more natural look
(Figure 2.4 d). Contrary to all previous automatic techegjuhe proposed approach is
deterministic, always producing the same result for a gimpat image.

2.3 Color-to-Grayscale Techniques

Mapping a color image to grayscale is a dimensionality redogroblem. Tradi-
tional techniques use projections or weighted sums to mdpee tdimensional color
space to a single dimensioad., the luminance value okYZ, YCbCr, L*a*b*, or HSL
color spaces). These are the common methods implementedimercial applications,
such as Photoshop (BROWN, 2006) and Gimp (JESCHKE, 2002g¢sd lapproaches,
however, do not take into account any chrominance infoilmnatmapping isoluminant
pixels to the same gray value, as shown in Figure 1.4 (b).

A popular dimensionality reduction technique is Principamponent Analysis (PCA)
(DUNTEMAN, 1989). However, as pointed out by (GOOCH et abp3a; RASCHE;
GEIST; WESTALL, 2005b), since PCA ignores the directionhvow variation, small
detail can be missed in favor of larger detail.

Grundland and Dogdson (GRUNDLAND; DODGSON, 2007) apprazaatbr-to-grayscale



Figure 2.4: Blue sky and building: (a) Color image. (b) Siatidn of deuteranope’s view
for image (a). (c) and (d) are the results produced by RaschE'sand the proposed
techniques, respectively, as seen by deuteranopes. Natedllors of the sky and yellow
foliages in (a) were unnecessary changed by Rasche etmireach (c), not preserving
the naturalness of such colors. Compare such a result watlorle obtained with the
proposed technique (d).

problem by first converting the origin&lGG B colors to theiry” PQ) color space, followed
by a dimensionality reduction using a technique they caitedominant component anal-
ysis, which is similar to PCA. In order to decrease the computaticost of this analy-
sis, they use a local sampling by a Gaussian pairing of pitkels limits the amount
of color differences processed and brings the total cosbiwert anN x N image to
O(N?log(N?)). This technique is very fast, but its local analysis may rayitare the
differences between spatially distant colors and, as dtresmay map clearly distinct
colors to the same shade of gray. Figure 2.5 (a) illustrétedsSA time zones map us-
ing distinct isoluminant colors for each time zone. Notet ihahe result produced by
Grundland and Dogdson’s approach, shown in (c), the colotrast between some time
zones €.9., HST and AKST time zones, CST and EST time zones) were noepred,
illustrating the limitation previously described. The gsaale image (d), obtained using
our color-to-grayscale approach, successfully mappedadheus time zones to distinct
shades of gray.

Neumann et al. (NEUMANN; CADIK; NEMCSICS, 2007) presentadempirical
color-to-grayscale transformation algorithm based orGbkroid system (NEMCSICS,
1980). Based on an user-study, they sorted the relativenlumsee differences between
pairs of seven hues, and interpolated between them to diiairelative luminance dif-
ferences among all colors. Their algorithm requires theifipation of two parameters,
and the reported running times are of the order of five to tears#s per megapixel (hard-
ware specs not informed).

Gooch et al. (GOOCH et al., 2005a) find gray levels that bgstesent the color
difference between all pair of colors by optimizing an olijexfunction. The ordering
of the gray levels arising from the original colors with @ifént hues is resolved with a
user-provided parameter. The cost to optimizeNarx N image isO(N?), causing the
algorithm to scale poorly with image resolution.

Rasche etal. (RASCHE; GEIST; WESTALL, 2005b) formulatesi¢blor-to-grayscale
transformation as an optimization problem in which the pptaal color difference be-
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Figure 2.5: USA time zone map: (a) Color image. (b) Luminaincage. (c) Grayscale
image produced by Grundland and Dogdson’s (GRUNDLAND; DCGE®®BI, 2007)
method. (d) Grayscale image obtained using the color-&ysgrale approach presented in
this thesis. Note in (c) how the color contrast between sqragally distant regions were
not preserved by Grundland and Dogdson’s approagh HST and AKST time zones,
CST and EST time zones). The grayscale image shown in (dessitdly mapped the
various time zones to different gray values.

tween any pair of colors should be proportional to the pgezkdifference in their corre-
sponding shades of gray. In order to reduce its computatiet) the authors perform the
optimization on a reduced sét of quantized colors, and this result is then used to opti-
mize the gray levels of all pixels in the resulting image. Tol cost of the algorithm
is O(|@Q|* + ||Q|IN?). A noticeable feature of their algorithm is that in order ttyp to
help the algorithm to scape local minima, the minimizatiomgedure is initialized using
a vector of random values, which causes the algorithm toym®eon-deterministic re-
sults. Thisisillustrated in Figure 2.6, which shows theygcale images produced in three
executions of their algorithm. Note that in the result showkigure 2.6 (b) the island
is barely visible, illustrating a situation in which the opization got trapped in a local
minima. Figure 2.6 (e) shows the result produced by the dolgrayscale algorithm
presented in this thesis.

2.4 Summary

This chapter discussed the most relevant techniques tdateneolor perception by
dichromats. Although these techniques do not minimize ithédtion of these individ-
uals to perceive color differences, they are important beeahey eliminate the need
for the presence of dichromats along the development ansl déshe image-recoloring
algorithms.

The chapter also presented the state-of-the-art on imegeering techniques for
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Figure 2.6: Effect of the use of random numbers to initiattze algorithm by Rasche et
al. (RASCHE; GEIST; WESTALL, 2005b) on the generated gralesanages. (a) Image
containing isoluminant colors. (b) to (d) Grayscale imageserated by three executions
of the Rasche et al.'s algorithm. (e) Grayscale image predily the color-to-grayscale
algorithm presented in this thesis. Note that in (b) thendlisle Royale National Park is
barely visible, while our color-to-grayscale techniquegarved the contrast in (e).

dichromats. Basically, these techniques aim to minimizelithitations faced by these
subjects in the perception of color contrasts. It was dsediswo kind of approaches for
image recoloring: user-assisted and automatic techniqglies user-assisted recoloring
techniques, despite the low computation cost, do not talkeaocount any analysis on
the image to choose optimal parameter settings, hence thgyntnoduce new color con-
fusions. On the other hand, automatic recoloring techrsiqiee optimization methods
to choose the best set of colors in the dichromatic imageghwvgnds to generate better
results than user-assisted techniques. However, thentiaueomatic methods are com-
putationally expensive and not suitable for real-time mapions. Contrary to all current
automatic methods, the proposed image-recoloring algaritan optimize hundreds of
colors in real time and can produce images with more natac. |

Furthermore, this chapter presented several approacheslfo-to-grayscale conver-
sion. These techniques convert color images into grayseade with enhanced contrast
by taking both luminance and chrominance into account. Kéntiurrent optimization
methods, the proposed color-to-grayscale technique ermetistic, can optimize hun-
dreds of colors in real time, and scales well with the sizénefihput image.






3 MASS-SPRING SYSTEMS

This chapter reviews the basic concepts of mass-springregsind provides the back-
ground for understanding both the image-recoloring andtohar-to-grayscale techniques
proposed in this thesis, which are cast as optimizationlpros.

3.1 Definition of Mass-Spring Systems

A mass-spring system consists of a set of particles (noaes)ected by springs that
deform in the presence of some external forces, as illestrat Figure 3.1. When com-
pressed or stretched, the springs apply internal reactiae$ in order to maintain their
rest length (GEORGII; WESTERMANN, 2005). The system termstabilize when
the external forces are compensated by opposing interraddo These features make a
mass-spring system a flexible optimization technique tpathozes a set of parameters
(e.g., the positions of the particles) that best satisfy some tcaimsés €.g., the sum of
internal and external forces is zero). Modeling a problena asass-spring system ba-
sically consists of mapping some properties of the problernand to the variables of
the mass-spring system: (i) particles’ positions, (ii)tjgées’ masses, (iii) springs’ rest
lengths, and (iv) springs’ current lengths. For exampleg@gplication could map a given
property of the problem as the mass of particles in the sydiethis case, particles with
bigger masses tend to move less. Alternatively (or in aoldito this first mapping), the
application could restrict the particles to only move alangjven axis.

Figure 3.1: Simple mass-spring system with three part{cle#s, andC'), and two springs
(S1 ands,). Figure extracted from (DIETRICH; COMBA; NEDEL, 2006).

Due to its properties, simplicity and low computational gexity, mass-spring sys-
tems are used as an optimization tool in many areas, inguddady deformation and
fracture, cloth and hair animation, virtual surgery sintiola, interactive entertainment,
and fluid animation.



3.2 Dynamic of Mass-Spring Systems

Considering a set of particles connected by springs, maasgssystems are simulated
by assigning some mass to each particle and some rest leng#th spring. The entire
system must obey Newton’s second law:

Fy = m;a; (3-1)

wherem; is the mass of nodé;, a; is the acceleration caused by forEg which is the
composition of internal and external forces. Therefore,ftirce applied to nod&, can
be obtained from Hooke’s law by summing the tensions of &lgprings that connegt,

to its neighborsP;:

Fo= Y ksl ), ) (3.2)
JEN v

where N is the set of neighbors linked 8, [;; andl;; are, respectively, the rest length

and current length of the spring betweBnand P;, k;; is the stiffness of the spring, and

p; andp; are the current positions @, and F;, respectively.

Verlet integration (VERLET, 1967) is often used to express tlynamics of each
node. This type of integration is frequently used in sinmola of small unoriented mass-
points, being especially interesting when it is necessaldace constraints on the dis-
tances between the points (VERTH; BISHOP, 2004). With a stepAt, the new posi-
tion of a nodeP,; at timet + At can be computed as:

Fi(t)

7

pi(t +At) =

+2pi(t) — pi(t — At) (3.3)

Recently, some researchers have demonstrated efficiemermeptations of mass-
spring systems on GPUs (GEORGII; WESTERMANN, 2005; TEJAEBRTL, 2005;
DIETRICH; COMBA; NEDEL, 2006). In each integration stepettorces acting on each
mass point?; are accumulated in a fragment shader, requiring informattmut the par-
ticles’ geometry and the system topology, which are usistiyed in three textures (Fig-
ure 3.2): geometry texture storing the particles’ positiomeighbors texture storing the
list of neighbors of all mass-points, andighborhood texture serving as a neighborhood
header.

geometry neighbors neighborhood

vertices fragments texture texture texture

1.2

3‘1‘

Figure 3.2: Texture representation of the mass-springgsyshown in Figure 3.1. Each
pixel represents one mass-point, and the pixel shader éstablecover the information
of all linked springs from neighborhood and neighbors textuFigure extracted from
(DIETRICH; COMBA; NEDEL, 2006).

The resulting algorithms (TEJADA; ERTL, 2005; DIETRICH; GABA; NEDEL,
2006) perform in real time even for large systereg).( 65K mass-points and 275K



springs). The solutions proposed in this thesis for bothgenaecoloring and color-to-
grayscale transformations are cast as optimization pnobbknd modeled as mass-spring
systems with every mass poifit connected to every other mass paiitby a springs;;.
This fixed and implicitly defined topology lends itself to dfi@ent GPU implementation,
since no topology setup is needed.

3.3 Summary

This chapter detailed the key aspects of mass-spring sgst@moptimization tool
with low computational cost that can be efficient implemedriieth on CPU and on GPU.
The understanding of the mass-spring’s dynamic is fundéahemthe comprehension of
both the image-recoloring and the color-to-grayscalerteghes proposed in this thesis,
as they are approached as optimization problems and moagl®edss-spring systems.






4 THE RECOLORING ALGORITHM FOR DICHROMATS

This chapter presents our image-recoloring techniqueitbrdmats. It also analyzes
some fundamental properties and guarantees of the algniid introduces an extension
to the proposed method that exaggerates the color contralseiresult image. Along
the chapter, several examples are used to illustrate théggsoduced by the proposed
technique.

4.1 The Algorithm

Our image-recoloring technique for dichromats was desigo@chieve the following
goals:

e Real-time performance;

e Color naturalness preservation - It guarantees that colors of the original images
will be preserved, as much as possible, in the resulting @sag

e Global color consistency - It ensures that all pixels with the same color in the orig-
inal image will be mapped to the same color in the recoloreatjen

e Luminance constancy - It ensures that the original luminance information of each
input pixel will be preserved in the output one;

e Local chrominance consistency - It guarantees that chrominance order of colors
inside the same cluster will have preserved in the recolonege;

e Color contrast preservation - It tries to preserve the color difference between pairs
of colors from the original image in the recolored one.

The proposed algorithm uses a mass-spring system to optthmzcolors in the input
image to enhance color contrast for dichromats. As predant&ection 2.1, the color
gamut of each class of dichromacy can be represented by tli#plaaes in the LMS
color space (BRETTEL; VIENOT; MOLLON, 1997), which can beisictorily approx-
imated by a single plane passing through the luminance ¥i@éNOT; BRETTEL; MOL-
LON, 1999). For each class of dichromacy, we map its colorigamthe approximately
perceptually-uniform CIE L*a*b* color space and use lesgtrares to obtain a plane
that contains the luminance axise(, L*) and best represents the corresponding gamut
(Figure 4.1). This is similar to what has been described bgcRa et al. (RASCHE;
GEIST; WESTALL, 2005b), who suggested the use a single planboth protanopes



b b
protanope deuteranope tritanope

Figure 4.1: Approximating each dichromatic color gamut lylane in the CIE L*a*b*
color space©, = —11.48°, 0, = —8.11°, and©, = 46.37°.

and deuteranopes as a further simplification. Based on ast-&guares fitting, the an-
gles between the recovered planes and the L*b* plan®gre —11.48°, 0, = —8.11°,
and©; = 46.37°, for protanopes, deuteranopes, and tritanopes, resplctivigure 4.1).
These angles are used to align their corresponding plaries tdb* plane, reducing the
optimization to 1D along the b* axis (the luminance values lkegpt unchanged). After
the optimization, the new colors are obtained by rotatirglane back.

Our algorithm has three main steps:i(jage quantization, (ii) mass-spring optimiza-
tion of the quantized colors, and (itigconstruction of the final colors from the optimized
ones. The first step consists in obtaining a@eif quantized colors from the set of all
colorsC' in the input image. This can be performed using any color quantization tech-
nique (GONZALEZ; WOODS, 2007), such as uniform quantizatiomeans, minimum
variance, median cut or color palettes.

4.1.1 Modeling the Problem as a Mass-Spring System

Working in the CIE L*a*b* color space, each quantized cajbre () is associated
to a particleP; with massm,. The positionp; of the particleP; is initialized with the
coordinates of the perceived color by the dichromat afteigduimut plane rotation:

pi = Mo D(q;) (4.1)

whereD is the function that simulates the dichromat view (BRETTEIENOT; MOL-
LON, 1997), andMg is a rotation matrix that aligns the gamut plane of the diotab
with the L*b* plane. We connect each pair of particlesand P; with a springs;; with
elasticity coefficient:;; = 1 (Equation 3.2), and rest length = ||¢i — ¢;||, the (Eu-
clidean) distance between colaisandg; in the L*a*b* space. Note thaf; andg; are the
guantized colors as perceived by a trichromat.

At each optimization step, we update the positignsndp; of particlesP; andP; and
computeS;;’s current length ag; = ||p; — pj||. Given the restoring forces of the springs,
the system will try to converge to a configuration for which= 1I;; for all S;;. Thus,
after stabilization or a maximum number of iterations hasrbeeached, the perceptual
distances between all pairs of new colors/positigiisp;) will have approximately the
same perceptual distances as their corresponding painsasitiged colorgg;, ¢;) from
Q). The final sefl” of optimized colorg; is obtained by applying, to each resulting color
p;, the inverse rotation used in Equation 4.1:

—

i = Mg p; (4.2)
C)



In order to enforce color naturalness preservation, we edfie massn; of each
particle P; as the reciprocal of the perceptual distance (in the L*a*eice), between;
andD(q;):

1

G — D(a)|
Equation 4.3 guarantees tlagy color perceived similarly by both trichromatsand dichro-
mats will have larges masses, causing their corresponding particles to move less. |If
trichromats and dichromats perceiyeexactly the same waye@., achromatic colors),
the particle would have infinite mass. In this case, we sinsphthe forces acting on the
particle to zeroi(e., F; = 0 in Equation 3.1).

(4.3)

my

4.1.2 Dealing with Local Minima

Like other optimization techniques, mass-spring systemgeone to local minima.
Figure 4.2 (b) depicts the problem with a configuration atediright after the quantized
colors¢; have been rotated;”; = Mg ¢. In this example, particle®, and P, have
large massesn{; is infinite) since they are perceived as having, respegtithe same
and very similar colors by trichromats and dichromats. T@ngs (513, S14, S23, S24)
connectingP; and P, to P; and P, apply forces that constraifi; and P, from moving
to the other half of the b* axis (Figure 4.2 b). Figure 4.3states this situation, where
the resulting optimized image (c) does not represent amyfignt improvement over the
original image perceived by the dichromat (b).

Once the plane that approximates the dichromat’s gamutdes ddigned to the L*b*
plane, pairs of ambiguous colors with considerable chaimgggominance will have their
a* color coordinates with opposite sigresd;, the red and green colors in Figure 4.2 b).
We use this observation and the topology of our mass spristgsyto deal with local
minima using the following heuristiave switch the sign of the b* color coordinate of all
rotated quantized colorswhose a* coordinates are positive and whose perceptual distance
between the color itself and how it is perceived by the class of dichromacy is bigger than
some threshold e (Equation 4.4).

Although at first this heuristic might look too naive becaase would just be replac-
ing some ambiguities with another ones, it actually has smtienal: (i) it avoids the
ambiguities among some colors found in the original image(@halthough there is the
possibility of introducing new ambiguities, as we switck gign of the b* coordinate for
some colors, we are also compressing and stretching tresciased springs, adding to
the system a lot potential energy that will contribute taweithe solution.

Even though such a heuristic cannot guarantee that thensysiié never run into
a local minima, in practice, after having recolored a hugmiper of images, we have
not encountered yet an example in which our system was tdappe local minimum.
Figure 4.2 (c) illustrates the configuration obtained bylgipg the described heuristic to
the example shown in Figure 4.2 (b). Figure 4.3 (d) shows treesponding result of
applying this heuristic to the example shown in Figure 4)3 (a

o o . .
. { 5} if (qre .> 0) and (|¢;i — D(qi)|| > €) (4.4)
P; otherwise

In Equation 4.4p!" is the b* coordinate of colop; andqré” is the a* coordinate of the
rotated colog7;. The threshold enforces that colors that are perceptually similar to both
dichromats and trichromats should not have the signs af tfieioordinates switched, in



order to preserve the naturalness of the image. In the exaithydtrated by Figures 4.2
and 4.3, the rotated quantized colpt, preserved its b* coordinate. According to our
experience¢ = 15 tends to produce good results in general and was used fonadjas
shown in this work.

I L I P
a* a* qi P a* qi: P1
qr T ai
t ary P2 = Atz P2
q:’i P30 .qril P3Q - .m
ITI‘? ........ b :
b* b*

(b) (c)

Figure 4.2: Dealing with local minima. (a) A set of quantizeydiors. (b) A configuration,
obtained right after plane rotation, that leads to a localimum: sinceP; cannot move
at all (it is an achromatic color) anBl, can only move a little bit, they will constrain the
optimization to the yellow portion of b* axis, leading thdion to a local minimum. (c)
By switching the sign of the b* coordinate ¢f,, the system escapes the local minimum.

Figure 4.3: Example of the use of a heuristic to avoid localima: (a) Reference im-
age. (b) Simulation of a deuteranope’s view of the image )n (a) Simulation of a
deuteranope’s view after recoloring the reference imageube mass-spring optimiza-
tion without the heuristic described by Equation 4.4. (d3@&eproduced by our technique
with the use of Equation 4.4.

4.1.3 Computing the Final Color Values

The last step of the algorithm consists in obtaining the rcaédues for all pixels of
the resulting image from the set of optimized colersk € {1, .., ||T||}, where||T| is
the cardinality ofl". For this task, we have developed two distinct interpotasiolutions:
per-cluster interpolation andper-pixel interpolation.



4.1.3.1 Per-cluster interpolation

LetC), C C be acluster formed by all colors (rithat are represented by the optimized
colort;. The final valuek associated to the m-th colef, € C is then obtained as

tEL =1 + (CZL*, e doa*, czb*) (4.5)

whered.L*, d.a*, andd.b* are respectively the L*, a*, and b* coordinates of the ddfere
vectord = (ck — qGr). qr € @ is the quantized color associated to the optimized color
t». Equation 4.5 guarantees that the final c@?ﬁphas the same luminance &5 7, IS an
interpolation of ratios that indicates how close the tranmsied value;, is to the optimal
solution. This interpolation is guided by Shepard’s met(®IdEPARD, 1968), a standard
technique for distance-weighted interpolation:

Z”TH Z||||tk tllll
rL = T BT fori#k (4.6)
Z =1 Wki

wherewy; = 1/|/gx — ¢l? is the distance-weighted term suggested by Shepard (SHEP-
ARD, 1968). This transformation also guarantees local timance consistency, as all
chrominance values inside a clustéy are computed relatively to the optimized color
tx. Equation 4.5 can be efficiently implemented both on a CPUamnd GPU. On the
CPU the cost to compute all cluster ratios using Equationsd@(||Q||?) for a setQ of
quantized colors, and the cost to interpolate each pixabusquation 4.5 given an image
with N x N pixels isO(N?). Thus, the total cost of computing the final image colors
from the sefl” of optimized colors i€ (||Q||? + N?).

Since the final colors are computed by optimizing the set aintjmed colors), the
quality of the results depends directly on the quality of gi@ntization algorithm used.
According to our experience, the transformation expresyedquation 4.5 produces ex-
cellent results in combination with k-means. Unfortungté&means is not very fast.
Table 4.1 compares the times of uniform quantization ancekims for various image res-
olutions and number of clusters. In the case of uniform gmation, we discretize the
RG B space using a uniforrtd x 10 x 10 grid. The quantized color is given by the grid
color closest to the input one. Uniform quantization is fésit tends to lead to poorer
results when used in combination with the transformatidindd by Equation 4.5.

Quantization Image resolution (pixels)

technique 640 x 480| 800 x 600| 1024 x 768
Uniform 0.055 0.087 0.150
K-means 64 2.082 3.338 5.517

K-means 128 3.932 6.029 10.432
K-means 256 7.545 11.972 20.049

Table 4.1: Time (in seconds) to quantize images with varregslutions on a 2.2 GHz
PC. For k-means, we used the code available at (ZHANG, 2006).

4.1.3.2 Per-pixel interpolation

One can benefit from the speed of uniform quantization byoperihg a more expen-
sive reconstruction of the final set of colors, achievingiitsssimilar to the ones obtained



when using k-means. In this case, the final shading of ead [@»obtained by opti-
mizing it against the set of already optimized col@rsThis is modeled by setting up a
mass-spring system, and creating springs between thentyise! (treated as a particle
initialized with Equation 4.4) and all optimized colass & € [1,..,||T||]. For this re-
fining optimization stage, we force the particles assodiabethe shades i’ to remain
stationary by setting the forces acting on them to zéfoirf Equation 3.1). For each
color ¢;, € C, we define its mass as.,, = 1/||¢, — D(cy)||. This way, we allow a
color to change by an amount directly proportional to théed#nce of how it is perceived
by trichromats and dichromat$his mechanism guarantees the color naturalnessin the
resulting image.

The cost of this optimization procedureG¥||Q||* + ||Q||N?) foran N x N image,
which can be significantly higher than the mapping definedhbyer-cluster interpolation
technique Q(||Q||* + N?)) for large values of|Q|| or N. However, since the color of
each output pixel can be computed independently of eactr,atiee computation can
be efficiently implemented in a fragment program. Table dhfhgares the times for
recoloring images with various resolutions using differ@igorithms.MS-PC CPU and
MS-PC GPU are respectively the CPU and GPU versions of our mass-splgayithm
using per-cluster interpolation to obtain the final coldvks-PP GPU optimizes the final
colors using our per-pixel interpolation method as desctilm the previous paragraph.
Table 4.2 shows that in all of its variations, our approach few orders of magnitude
faster than Rasche et al.’s approach. All images (and exectimes) reported for the
technique of Rasche et al. (RASCHE; GEIST, WESTALL, 2005B)yevobtained using
the software available at (RASCHE, 2005).

Recoloring Image resolution (pixels)

technique 640 x 480| 800 x 600| 1024 x 768
Rasche 225.16 349.31 580.49
MS-PC CPU 0.41 0.46 0.54
MS-PC GPU 0.20 0.22 0.26
MS-PP GPU 0.22 0.23 0.27

Table 4.2: Performance of various algorithms on images fééreint resolutions. Times
measured in seconds on a 2.2 GHz PC with 2 GB of memory and orFarGe 8800
GTX GPU. Quantization times not included. All techniquesdia set of 128 quantized
color. Mass-spring (MS) optimized the set of quantized lsing 500 iterations. Our
per-pixel interpolation version (MS-PP GPU) obtains thalfecolors using 100 iterations
for each pixel in the image.

4.2 Exaggerated Color-Contrast

For applications involving non-natural imagesy(, scientific and information visual-
ization) contrast enhancement is probably more importeart preserving color natural-
ness. This comes from the fact that colors used in such apiolics tend to be arbitrary,
usually having little connection to the viewer’s previouperiences in the real world. In
scientific visualization, the details presented by thesktaare interactively explored via
transfer functions (PFISTER et al., 2001). Until now, tf@n$unction design has largely
ignored the limitations of color-vision deficients. Popudalor scales usually range from
red to green, colors that are hard to be distinguished by didstomats.



By supporting real-time recoloring of transfer functions dlichromats, our approach
can assist color-vision deficient to exploit the benefitcastific visualization. This kind
of assistance can be made with the following changes in cagé@wecoloring algorithm:

1. Modifying the spring’s rest length to exaggerate the @sttbetween the colors
during the optimization process;; = = ||¢; — ¢;||, wherez is a scalar used to
exaggerate the perceptual difference between any pail@f goandg;;

2. Defining the mass of particl®; as: m; = 1/||(a},b})||, where||(a},b})]| is the
distance from colog; to the luminance axi€*. Thus, less saturated colors present
bigger masses and tend to move less, as expected, thisyaes$ke achromatic

colors;

3. Initializing the mass-spring system witk= 0 (Equation 4.4), since we do not need
to preserve the naturalness of colors.

4.3 Results and Discussion

We have implemented the described algorithms using C++ &®l Gand used them
to recolor alarge number of images. The reported times weesared usinga 2.2 GHz PC
with 2 GB of memory and on a GeForce 8800 GTX with 768 MB of mgmbigures 4.4,
4.5,4.6,4.7, and 4.8 compare the results of our techniqai@sifRasche et al.'s approach,
and Table 4.3 summarizes the performances of the algoritSmese Rasche et al.'s tech-
nique is not deterministic, for the sake of image comparismneach example shown in
this work, we run their software five times and selected thst fesult. For these exper-
iments, the input images were quantized using the follovailggrithms and number of
colors: Figure 4.4 Flowers (uniform, 227 colors), Figure 4.5Bell Peppers (k-means,
127 colors), Figure 4.6Sgnorain Giardino (k-means, 128 colors), Figure 4.&tll Life
(uniform, 46 colors), and Figure 4.8hinese Garden (k-means, 128 colors).

Rasche et al.| MS-PC CPU | MS-PP GPU
Image (size) Time Time Time
Flowers(839 x 602) 315.84 0.85 0.16
Bell Pepperg321 x 481) 114.63 0.27 0.09
Signora in Giarding357 x 241) 60.68 0.26 0.08
Still Life (209 x 333) 47.34 0.08 0.06
Chinese Garde(239 x 280) 44.06 0.23 0.08

Table 4.3: Performance comparison between our technigi®asche et al.’s for images
of various sizes and different quantization strategiesnelmeasured in seconds shows
that our technique scales well with image size.

Figure 4.4 Flowers, has839 x 602 pixels and our GPU implementation performed its
recolorization in 0.158 seconds. Thiig)00 x faster than Rasche et al.'s approach. Our
CPU implementation was stibl72 x faster than Rasche et al.’s for this example.

In the example shown in Figure 4.5, while Rasche et al.'s@ggr (c) enhanced the
contrast among the colors of the peppers, our techniqueadserved the color natural-
ness of the crates, yellow peppers, and other vegetablbe tveickground (d).

In Figure 4.6, Monet's paintin§ignorain Giardino was recolored to enhance contrast
for protanopes. In this example, note how difficult it is foese individuals to distinguish



(c) (d)

Figure 4.4: Images of natural flowers: (a) Photograph. (bh&amage as perceived
by protanopesi(e., individuals without red cones). (c) Simulated view of atprmope
for a contrast-enhanced version of the photograph reabloyeRasche et al.’s approach.
(d) Simulated view of a protanope for the result producedumtechnique. Note how our
approach enhanced the overall image contrast by selgctliahging only the colors for
which there is a significant perceptual difference betwéeichromats and dichromats.
As a result, it preserved the naturalness of the colors (fteperspective of the dichro-
mat) of the flowers’ nuclei and of the background foliage (pane images (b) and (d)).
For this 83% 602-pixel image, our approach performs approximately @0faster than
Rasche et al.’s technique.

the red flowers from the green leaves and grass (Figure 4.60hy). approach clearly

improved the perception of these flowers, while preserviregiaturalness of the sky and
the other elements of the scene, as perceived by the pra&gfapure 4.6 d). Compare
our results with the ones produced by Rasche et al.’s apipi@ac

Figure 4.7 shows a Pablo Picasso’s painting recolored fatedanopes. Both Rasche
et al.’s result (c) and ours (d) enhanced color contrastphlyt ours preserved the natu-
ralness of the yellow shades as seen by the dichromat (b).

Chinese Garden (Figure 4.8) provides an example of imagaameg for tritanopes.
Note how our technique preserved the naturalness of thevlilg enhancing the contrast
for the purple flowers. Rasche et al.'s approach, on the dthed, recolored the sky as
pink and did not sufficiently enhanced the contrast of th@leuitowers.

Figures 4.9 and 4.10 illustrate the use of our exaggeratia-contrast approach.
Figure 4.9 shows the result of a simulated flame. Red and g@ers in (a) mean high
and low temperatures, respectively. Note how difficult ifas deuteranopes to distin-
guish regions of high from regions of low temperatures in (Bigures 4.9 (c) and (d)
present the results produced by our image-recoloring aaggetated color-contrast ap-
proaches, respectively. Figure 4.10 (a) shows the visatédiz of carp dataset using a
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Figure 4.5: Color peppers: (a) Original image. (b) Simuolatof a deuteranope’s view
for image (a). (c) Simulation of a deuteranope’s view for iiegults produced by Rasche
et al.’'s technique. (d) Simulation of a deuteranope’s viextlie results produced by our
approach, which preserved the color naturalness of thegréte yellow peppers, and
other vegetables in the background.

(@) (b)

() (d)

Figure 4.6: Signora in Giardino by Claude Monet, courtesyardtyclopedia.com: (a)
Colorimage. Simulated views for a protanope for: (b) thgioal one, (c) result produced
by Rasche et al.'s approach, and (d) result produced by tigoped technique.

multi-dimensional transfer function and (b) presents th&alization as perceived by
deuteranopes. Note how difficult it is for deuteranopes stimfjuish the colors asso-
ciated to the dataset. Figures 4.10 (c) and (d) show sintuldtsvs of a deuteranope
for the results produced by our image-recoloring technifguedichromats and by our
exaggerated color-contrast approach, respectively.



Figure 4.7: Still Life by Pablo Picasso, courtesy of Artoymedia.com: (a) Color image.
(b) Image in (a) as perceived by subjects lacking greens@heuteranopes). (c) and (d)
are the results of Rasche et al.'s and our techniques, nasglgcas seen by deuteranopes.

@) (b) (© (d)

Figure 4.8: Photograph of a chinese garden: (a) Color im&jeulated views of tri-
tanopes for: (b) the original image, (c) the recolored imag&asche et al.'s approach,
and (d) the recolored image using our technique. Note the sy and the enhanced
contrast for the purple flowers.



(b)

(d)

Figure 4.9: Simulation of a flame: (a) Color image. Simulatedvs of deuteranopes for:
(b) original image, (c) result produced by our image-redgalptechnique for dichromats,
and (d) result produced by our exaggerated color-contmsbach using: = 2.

() (d)

Figure 4.10: Visualization of a carp dataset using a muitiethsional transfer function:
(a) Color image. Simulated view of deuteranopes for: (byiodl image, (c) result pro-
duced by our image-recoloring technique for dichromatd, (@) result produced by our
exaggerated color-contrast approach usirg 2.



4.4 Summary

This chapter presented an efficient and automatic imagsengéieg algorithm for dichro-
mats that, unlike the current image-recoloring methodewal these subjects to benefit
from contrast enhancement without having to experienceuto@tural colors. The pro-
posed method uses a mass-spring system to obtain the seineébgolors in the resulting
image, and can be efficiently implemented both on CPU and arenmaGPUSs.

The chapter also introduced an extension to the proposeagkhrecoloring algorithm
that exaggerates color contrast. This kind of feature migghtuseful for applications
dealing with non-natural images, like scientific and infatian visualization.



5 THE COLOR-TO-GRAYSCALE ALGORITHM

This chapter describes our color-to-grayscale technigateuses both luminance and
chrominance information. It also introduces a new errorrimédr evaluating the quality
of color-to-grayscale transformations and discussesihdts obtained with the proposed
technique.

5.1 The Algorithm

Our color-to-grayscale algorithm is a specialization o tkecoloring algorithm for
dichromats presented in Chapter 4. In the recoloring algoriwe searched for an opti-
mal color contrast after projecting samples from a 3D cqgbaice into the 2D color gamut
of a dichromat. For the color-to-grayscale problem, we &deé&or the optimal contrast
after projecting samples of a 3D color space now into a 1Drcspace. For this purpose,
many of the same strategies used in the previous chapterecaubed here. Not surpris-
ingly, both algorithms have many things in common, inclgdine number and order of
the steps, and the use of a mass-spring system as the opittmitzzol.

Thus, like the previous proposed algorithm, this one alsotheee main steps. The
first step consists in obtaining a $g¢bf quantized colors from the set of all col@ran the
input imagel, and can be performed using any color quantization teclenifjne second
step performs a constrained optimization on the valuesefuminance channel of the
quantized colors using a mass-spring system. At this stagehrominance information
is taken into account in the form of constraints that spechi®ev much each particle can
move (Section 5.1.1). The final gray values are reconsuifoten the set of gray shades
produced by the mass-spring optimization (Section 5.I.Ris final step guarantees local
luminance consistency preservation.

5.1.1 Modeling and Optimizing the Mass-Spring System

Similar to the recoloring algorithm for dichromats, thearsto-grayscale mapping is
modeled as a mass-spring system whose topology is a congpégib (.e., each particle
P; is connected to each other partidie by a springS;; with fixed stiffnessk;; = 1).
Each particleP,; is associated to a quantized colgrc @ (represented in the almost
perceptually uniform CIE L*a*b* color space) containingse massn,. Here, however,
the particles are only allowed to move along the L*-axis of ttolor space and each
particle P, has its positiom; (in 1D) initialized with the value of the luminance coordiea
of ¢;. Between each pair of particlés;, P;), we create a spring with rest length given by

Gran e — —
lLij = g — gl (5.1)

v Qrange



where Q,.n4. IS the maximum difference between any pair of quantizedrsoio (),
G'range 1S the maximum possible difference between any pair of lamoe values, and
|\ — ¢;|| approximates the perceptual difference between cafoasid ;. Note that
since the luminance values are constrained tdthaxis, G, ;4. = 100.

The instantaneous force applied to a partiéles obtained by summing the tensions of
all springs connecting’ to its neighbors’;, according to Hooke’s law (Equation 3.2). At
each step of the optimization, we updgteas|L; — L}|, and the new positiop; (actually
the gray levelL}) according to Verlet's integration (Equation 3.3). Theuléag system
tends to reach an equilibrium when the perceptual diffeeshetween the optimized gray
levels are proportional to the perceptual differences anptba quantized colors if).

In order to enforce grayscale preservation, we set the mas¥ particle P, as the
reciprocal of the magnitude @f's chrominance vector (Figure 5.1):

o
(a7, b7)

177

m; =

(5.2)

Note thatd = ||(a}, b})]| is the distance from colaf; to the luminance axid.*. Thus,
less saturated colors present bigger masses and tend tdeseyv&or achromatic colors,
whose mass should be infinity, we avoid the division by zemap$y by settingF; = 0

(Equation 3.2). This keeps achromatic colors stationary.

Figure 5.1: The mass of particle associated with a quantinéat ¢; is computed as the
reciprocal of its distancé to the luminance axi&*: m; = 1/(||(af, b})||). This enforces
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grayscale preservation, as achromatic colors will remtaiticmary.

5.1.2 Interpolating the Final Gray Image

The last step of the algorithm consists in obtaining the gi@yes for all pixels of
the resulting image. For this task, we have adapted the tyooaphes described in
Sections 4.1.3.1 and 5.1.2.Rer-cluster interpolation and per-pixel interpolation. The
choice for one interpolation method depends on the ap@icaeéquirements.

5.1.2.1 Per-cluster interpolation

Consider the sef, € Q of quantized colors and the respective associateg,set
of optimized gray levels. Let, C C be a cluster composed of all colorsGhthat in the
optimization are represented by the quantized cgloiT he final gray level associated to
them-th colocm{L € (' is then obtained as

gray(dl) — {gk relldi = el tum(cl,) > lum(gi) 5:3)

gk — Tl Gk — CZ?;LH otherwise



wherelum is the function that returns the coordinate L* of a color ie ttfa*b* color
space, and, is Shepard's (SHEPARD, 1968) interpolation of ratios, iis ttase com-
puted as

ZHQH Wy A9E=9:L lgx—gil
rE = T li=dil for i £ k (5.4)
dic] Wi

i, indicates how close to the optimal solution is the gray valu@ndwy; = 1/|¢. — ¢ ||?
is the distance-weighted term. For the quantized cgldhat represents the cluster, all
gray values inside the-th cluster are computed with respect to the optimized geagll
gx- Therefore, this transformation ensures local luminameesistency.

Again, given the sef) of quantized colors, the cost of computing all cluster matio
using Equation 5.4 on the CPU@¥(||Q||?), while the cost of interpolating each pixel of
an image withV x N pixels isO(N?).

5.1.2.2 Per-pixd interpolation

In this approach, each pixel’s final shading is computed kymoping it against the
setg, € G of previously optimized gray levels. This is achieved byngsh mass-spring
system, with springs connecting the current pixel (whidngated as a particle initialized
with the pixel’s luminance value) and all optimized grayelesy,. In this refined opti-
mization stage, the particles associated to the optimizay lgvels are kept stationary
by setting the forces that act on them to zeFp i Equation 3.2). Equation 5.2 is then
used to obtain the mass of the pixel being optimized. In tages all pixels with achro-
matic colors endup having infinite masses, remaining statio This ensures that all gray
shades in the original color image will be preserved in tisalterg grayscale image.

5.2 Error Metric for Color-to-Grayscale Mappings

We introduce an error metric to evaluate the quality of cedegrayscale transforma-
tions. It consists of measuring whether the difference betwany pairs of colorg;, ¢;)
in the original color image have been mapped to the correfipgriarget difference in
the grayscale image. For this purpose, we defined an errotifumnusing root weighted
mean square (RWMS):

: 1 1 - -
rwms(i) = \/mg;{ 5—% (655 — |lum(&;) — lum(c;)|) (5.5)

where,rwms(i) is the error computed for thé" pixel of the input color imagé, K is
the set of all pixels in/, || K| is the number of pixels i, 6;; = (Grange/Crange)l|Ci -
¢;|| is the target difference in gray levels for a pair of colgrsindc¢;, andium is the
function that return the component L* of a color. Since thigedénces are computed in
the approximate perceptually uniform L*a*b* color spacg,,,,c = 100 and C, 44 iS
the maximum distance between any two colors in the color édagd he weight(1/47,)
is used to suppress the bias toward large valuég of

ForanN x N image, evaluating Equation 5.5 for every pixellofould takeO(N*?),
which becomes impractical for large valuesdf We can obtain a very good approxima-
tion to this error function by restricting the computatianthe sety; € ¢ of quantized



colors, given by:

rwmsg(i) = & Z H{;H of — Jlum(é;) — lum(q})|)2 (5.6)
JjEQ 6”
In Equation 5.6,K; C K is the cluster of pixels represented by the quantized color
a5 5;1]. = (Grange/Qrange) |G — q;ll, ¢ is the color of thei-th pixel, and@, 44 IS
the maximum distance between any two quantized colofg.itWe have compared the
RWMS values produced by Equations 5.5 and 5.6 for a set of 8gé@sof natural scenes,
paintings, charts, and maps. From this study, we found Heataverage relative differ-
ence between the two results was ohly7%. Given these relatively small differences
but its significantly smaller cos?(||Q||N?), all contrast errors shown in this work were
computed using the metric represented by Equation 5.6., Alsl contrast error images
shown in this thesis, the green shade shown at the bottone eftbr color ramp indicates
rwms = 0.0, while the red shade at the top representss = 1.2.

Figure 5.2 illustrates the use of our contrast error meffigure 5.2 (c) is the error
image for the pair of color and grayscale images shown onrégyh.2 (a) and (b), re-
spectively, using a set of 64 quantized colors. The gragsoahge was obtained as the
luminance of image (a). As expected, the largest errorsertrate on the berries pixels,
since these present the biggest contrast lost. Smallerseare spread over the several
green shades of the leaves.

(© (d)

Figure 5.2: Example of our contrast error metric. (a) Colnage. (b) Luminance im-
age of (a). (c) Error image computed using Equation 5.6. &ngekt contrast errors
concentrate on the berry pixels.

Figure 5.3 illustrates the impact of the weighting te]r;‘x%)‘iqj2 on the metric. Figure 5.3
(b) shows a luminance image obtained from (a). The contrast anage is shown in
Figure 5.3 (c) and was computed from a set of 128 quantizentolThe error image
shown in (d) was computed using the RMS eriice (removing the weighting term from
Equation 5.6). Note that the region around the head of theeifiyt has bigger contrast
error, which has been captured by the error image in (c),entwas missed by the RMS
error image shown in (d).

5.3 Results and Discussion

The described algorithms have been implemented in C++ arSLGand used them
decolorize a very large number of images. The reported timege measured using a 2.2
GHz PC with 2 GB of memory and on a GeForce 8800 GTX with 768 MBiefnory.
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Figure 5.3: (a) Color image, (b) the luminance version ofgméa), (c) RWMS error
image. Note the perceptual error around the head of therfiyttand (d) RMS error
image.

Figure 5.4 compares the times for quantization and deahgrimages with various
resolutions using different algorithms. Using the sameatan introduced in the pre-
vious chapterMS-PC CPU is our mass-spring algorithm using per-cluster interpofat
in combination with k-means, andS-PP GPU is our mass-spring algorithm using per-
pixel interpolation with uniform quantization. In the caskk-means, we used a set of
128 colors and the code available at (ZHANG, 2006). In the aduniform quantiza-
tion, we discretized th&G B space using an unifori® x 10 x 10 grid. Figure 5.4 shows
that in all of its variations, our approach is a few orders @gmtude faster than both
Gooch et al’s and Rasche et al.’s approaches. All imagesxecution times shown in
this work regarding the techniques of Gooch et al. (GOOCH.ek@05a) and Rasche
et al. (RASCHE; GEIST; WESTALL, 2005b) were obtained usinfware provided by
these authors at (GOOCH et al., 2005b) and (RASCHE, 200&)ertively.

Figure 5.5 compares the results produced by various tegbsigith respect to grayscale
preservation. One should note that only the luminance inflagand the result produced
by our method (f) are capable of preserving the original ekaaf gray. The luminance
image, however, failed to distinguish the shades of theuarsoluminant circles. Gooch
et al’s (Figure 5.5 ¢) and Rasche et al.’s (Figures 5.5 d artdahniques changed the
original gray shades in the resulting images.

Figures 5.6, 5.8, 5.9, and 5.10 compare the results, peafuca) and the overall con-
trast errors produced by the various algorithms. Tabledninsarizes these data. Follow-
ing the authors comments on image quality, we did not use aagtigation with Gooch
et al.’s algorithm. For Rasche et al.'s and ours, the inpaiges were quantized as shown
on the second column of Table 5.1.

Table 5.1 also shows that our approach simultaneously piefige smallest RWMS
error and is by far faster than Gooch et al.'s and Rascheéstadhniques. The luminance
image, on the other hand, presents the biggest overallagirgrrors, which is something
that was already expected, since the color-to-luminanggpimg completely ignores the
chrominance information of the original image.

Figure 5.6 shows four grayscale renditions of Claude Maratpressionist Sunrise
(Figure 5.7), with their respective contrast error imagesimed using our metric. This
example illustrates the robustness of our technique tolbdaye images. Th&unrise
has(839 x 602) pixel and our GPU implementation performs the decolorarain 0.435
seconds. Thisis51 x faster than Rasche et al.’s approach and10x faster than Gooch
et al's. Our CPU implementation is stilli7x faster than Rasche et al.’s apdl, 379 x
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Figure 5.4: Performance comparison of various algorithma @.2 GHz PC with 2 GB
of memory and on a GeForce 8800 GTX GPU using images of diftenesolutions.
Gooch et al. performed in 12,276 and 30,372 second&ftir x 480) and (800 x 600)-
pixel images, respectively. Except for Gooch et al., aleotiechniques used a set of 128
guantized colors. Our mass-spring (MS) approaches opuhitze set of quantized colors
using 1,000 iterations. TH8PU version obtained the final gray levels by optimizing each
pixel with 100 iterations. Its results are detailed for bettisualization. Note how the
proposed approach scales well with the size of the input@mag

faster than Gooch et al.’s.

Picasso Lovers (Figure 5.8) provides an example for whiehrésult produced by
Gooch et al’s technique presents a large contrast errgu(&b.8 h). For this same image,
Rasche et al.'s approach produced a relatively small cetinénaor, but in the resulting
grayscale image it is hard to distinguish between the lagbli®w skirt and the man’s red
clothes. For the photograph shown in Figure 5.9, the oveaaitrast error produced by
Gooch et al.’s technique (Figure 5.9 h) is about the samesastd found in the luminance
image (Figure 5.9 g).

Figure 5.10 illustrates the difficulty of Rasche et al.'s eg@Th to capture some subtle
shading variations among isoluminant colors. In this examine smooth yellow hallo

around the butterfly’s head has been missed, while it wasigaghby Gooch et al.’s and
our techniques.
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Figure 5.5: Example of grayscale preservation. (a) Originbr image with isoluminant
circles; (b) Luminance image obtained from (a). Note it mapsoluminant circle to the
same shade of gray; (c) Result produced by Gooch et al.'siigad. Note that the two
shades of green and the shade of orange turned into white mresllting image; (d) and
(e) are two results produced by Rasche et al.'s approaclGréyscale image produced
by our approach; Note that only the luminance image (b) aaddbult produced by our
approach (f) preserved the original gray shades. The sesiutiwn in (d), (e) and (f) took
a set of seven uniformly quantized colors as input.

(e)

Label | Image (size) Quant. (#colors)

#1 | Sunrise(839 x 602) uniform (264)

#2 | Lovers(301 x 407) k-means (255)

#3 | Boats(193 x 282) uniform (141)

#4 | Butterfly (128 x 164) k-means (120)
Image | Lum. Gooch et al. Rasche etal. | MS-PC CPU | MS-PP GPU
Label | rwms Time | rwvs | Time rRwms | Time | rwms | Time | rRwMs

#1 | 0.707| 33,501.4| 0.557| 326.78| 0.564| 1.32| 0.429| 0.43| 0.425
#2 | 0.690| 1,882.5/0.699| 87.36| 0.498| 0.96| 0.486| 0.36| 0.477
#3 | 0.634 328.3| 0.624| 20.10f 0.513]| 0.35]0.432| 0.17| 0.428
#4 | 0.582 57.3| 0.535| 5.54| 0.443| 0.21| 0.365| 0.15| 0.362

Table 5.1: Summary of the performance and overall contrest produced by the various
techniques when applied to the test images. Time measurseconds. Our approach
presents the smallest RWMS error for all examples and igfgigntly faster than the
other techniques. The speedups increase with the image dtoe theSunrise image,
with (839 x 602) pixel, our GPU implementation i851 x faster than Rasche et al.'s
(CPU) approach andr, 910 x faster than Gooch et al.'s (CPU).
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Figure 5.6: Four grayscale renditions of Claude Monet's riggpionist Sunrise (Fig-
ure 5.7), with their respective contrast error images oletiusing our metric. (a) to
(d) are grayscale images with their corresponding pertgigptrast error images (e) to
(h), respectively. (a) Luminance image. (b) Grayscale ina@duced by Gooch et al.’s
method using its default parameters. (c) A grayscale imagéyzced by Rasche et al.’s
approach. (d) Grayscale image produced by our approach. BWivbr images: (e)

rwms = 0.582, (f) rwms = 0.535, () rwms = 0.443, (h) rwms = 0.365. (i) Error
scale: red means bigger error.

Figure 5.7: Color image (Impressionist Sunrise by Claude®ipcourtesy of Artcyclo-
pedia.com).
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Figure 5.8: Pablo Picasso’s Lovers: (a) Color image (ceyrtd Artcyclopedia.com). (b)
to (e) are grayscale images with their per-pixel contragiramages (g) to (j), respec-
tively. (b) Luminance image. (c) Grayscale image produce@boch et al.'s method us-
ing its default parameters. (d) A grayscale image produ@stRe et al.'s approach. Note
that it is hard to distinguish between the lady’s yellow skind the man’s red clothes.
(e) Grayscale image produced by our approach. (f) Erroescall means bigger error.
RWMS error images: (g) to (j).
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Figure 5.9: Photograph of a natural scene: (a) Color imdpeo((e) are grayscale images
with their per-pixel contrast error images (g) to (j), resjpeely. (b) Luminance image.
(c) Grayscale image produced by Gooch et al.'s method utsrdefault parameters. (d)
A grayscale image produced Rasche et al.’s approach. (gsGae image produced by
our approach. (f) Error scale: red means bigger error.(¢).to
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Figure 5.10: Butterfly: (a) Color image. (b) to (e) are grafsdmages with their per-
pixel contrast error images (g) to (j), respectively. (bniioance image. (c) Grayscale
image produced by Gooch et al.'s method using its defaulirpaters. (d) A grayscale
image produced Rasche et al.’s approach. (e) Grayscaleipraguced by our approach.
(f) Error scale: red means bigger error. RWMS error imaggstd (j).



5.4 Summary

This chapter described a new color-to-grayscale techrtigteuses both luminance
and chrominance information to preserve the contrast,donithe input color image, in
the resulting grayscale one. The proposed method is basgthass-spring optimization
and is almost three orders of magnitude faster than curpgimization-based techniques.

This chapter also presented an error metric for evaluatiegquality of color-to-
grayscale transformations. It measures the error betweemifferences of any pairs
of colors in the original image and the corresponding défexes in the grayscale image.
The proposed metric is based on a RWMS error.



6 CONCLUSIONS

This thesis presented an efficient naturalness-preseiwviage-recoloring algorithm
for dichromats based on mass-spring optimization. Cont@previous automatic tech-
niques, the proposed method allows dichromats to benefit frontrast enhancement
without having to experience unnatural colors. Besidesdédeterministic, our technique
has many attractive properties: (i) it satisfies global colsistency; (ii) ensures lumi-
nance constancy; (iii) maintains local chrominance caestsy/; and (iv) can be efficiently
implemented on modern GPUs. Both CPU and GPU versions ofrtipoped algorithm
are significantly faster than previous approaches (ICHIKA® al., 2004; WAKITA,
SHIMAMURA, 2005; RASCHE; GEIST; WESTALL, 2005b; JEFFERSQONARVEY,
2006). It has also presented an extension to our imageem@eglmethod that exagger-
ates the color contrast for dichromats in the result imagechS feature is useful for
applications involving non-natural imagesd;, scientific and information visualization).

A second contribution of this thesis is an efficient massagpbased approach for
contrast enhancement during color-to-grayscale imageersion. The proposed method
is more than three orders of magnitude faster than previptimmzation-based tech-
niques (GOOCH et al., 2005a; RASCHE; GEIST; WESTALL, 2003%)ile producing
superior results both in terms of contrast preservationiaradje guarantees. Our algo-
rithm satisfies a global consistency property, preservagsgale values present in the
color image, maintains local luminance consistency, isgletely automatic, and can be
efficiently implemented on modern GPUs.

Another contribution of this thesis is an error metric forksating the quality of
color-to-grayscale transformations. The proposed m&iti@sed on a RWMS error that
measures whether the difference between any pairs of coldhe original image have
been mapped to the corresponding target difference in tyesgale image.

The quality of the results produced by our image-recoloangd color-to-grayscale
technigues depend on the quality of quantization performeideir first stage. For low-
quality images, the quantization algorithm may fail to gate a good set of quantized
colors, causing the result images to exhibit artifacts.héligh we ensure a continuous
mapping among the colors/gray-shades in any given clusienently the algorithms do
not ensure a continuous mapping among different clustenstdctice, however, after ex-
tensive tests on a large number of images, we have not n@ioedbjectionable artifacts
due to these limitations.

This work opens up several avenues for future exploratiors. the proposed ap-
proaches were designed to deal with static images, we plaxgimre ways to extend
our techniques to perform video sequences recolorizatemalorization. Preliminary
results show that we can enforce temporal coherence bwlinitig the mass-spring
optimization with particles computed for previous framasd by keeping those parti-



cles stationary. Temporal coherence is not preserved layeceltechniques (GOOCH
et al., 2005a; GRUNDLAND; DODGSON, 2007; JEFFERSON; HARV,E2006; NEU-
MANN; CADIK; NEMCSICS, 2007; RASCHE; GEIST; WESTALL, 20050AKITA;
SHIMAMURA, 2005).

We believe that our image-recoloring technique can havesaip®impact on the way
dichromats interact with digital media, as it finally proggla practical way of disam-
biguating colors without contradicting, as much as possitilieir memories about how
the world looks like. We hope these results will inspire tesign of new applications
and interfaces for dichromats.

With regarding to our color-to-grayscale technique, thejua combination of high-
fidelity capture of color differences, grayscale preseovatglobal consistency, local lu-
minance consistency, and speed makes our technique a godidate for replacing stan-
dard luminance-based color-to-grayscale algorithms iimtipg and pattern recognition
applications.
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