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ABSTRACT

Color vision deficiency (CVD) affects approximately 200 million people worldwide,
compromising the ability of these individuals to effectively perform color and visualization-
related tasks. This has a significant impact on their private and professional lives.

This thesis presents a physiologically-based model for simulating color perception.
Besides modeling normal color vision, it also accounts for the hereditary and most preva-
lent cases of color vision deficiency (i.e., protanopia, deuteranopia, protanomaly, and
deuteranomaly), which together account for approximately 99.96% of all CVD cases.
This model is based on the stage theory of human color vision and is derived from data
reported in electrophysiological studies. It is the first model to consistently handle nor-
mal color vision, anomalous trichromacy, and dichromacy in a unified way. The proposed
model was validated through an experimental evaluation involving groups of color vision
deficient individuals and normal color vision ones. This model can provide insights and
feedback on how to improve visualization experiences for individuals with CVD. It also
provides a framework for testing hypotheses about some aspects of the retinal photore-
ceptors in color vision deficient individuals.

This thesis also presents an automatic image-recoloring technique for enhancing color
contrast for dichromats whose computational cost varies linearly with the number of input
pixels. This approach can be efficiently implemented on GPUs, and for typical image
sizes it is up to two orders of magnitude faster than the current state-of-the-art technique.
Unlike previous approaches, the proposed technique preserves temporal coherence and,
therefore, is suitable for video recoloring. This thesis demonstrates the effectiveness of
the proposed technique by integrating it into a visualization system and showing, for the
first time, real-time high-quality recolored visualizations for dichromats.

Keywords: Models of Color Vision, Color Perception, Simulation of Color Vision De-
ficiency, Recoloring Algorithm, Color-Contrast Enhancement, Color Vision Deficiency,
Dichromacy, Anomalous Trichromacy.





RESUMO

Um Modelo para Simulação das Deficiências na Percepção de Cores e Uma Técnica
de Aumento do Contraste de Cores para Dicromátas

As Deficiências na Percepção de Cores (DPC) afetam aproximadamente 200 milhões
de pessoas em todo o mundo, comprometendo suas habilidades para efetivamente realizar
tarefas relacionadas com cores e com visualização. Isto impacta significantemente os
âmbitos pessoais e profissionais de suas vidas.

Este trabalho apresenta um modelo baseado na fisiologia para simulação da percep-
ção de cores. Além de modelar visão de cores normal, ele também compreende os ti-
pos mais predominantes de deficiências na visão de cores (i.e., protanopia, deuteranopia,
protanomalia e deuteranomalia), cujas causas são hereditárias. Juntos estes representam
aproximadamente 99.96% de todos os casos de DPC. Para modelar a percepção de cores
da visão humana, este modelo é baseado na teoria dos estágios e é derivado de dados re-
portados em estudos eletrofisiológicos. Ele é o primeiro modelo a consistentemente tratar
visão de cores normal, tricromacia anômala e dicromacia de modo unificados. Seus re-
sultados foram validados por avaliações experimentais envolvendo grupos de indivíduos
com deficiência na percepção de cores e outros com visão de cores normal. Além disso,
ele pode proporcionar a melhor compreensão e um feedback sobre como aperfeiçoar as
experiências de visualização por indivíduos com DPC. Ele também proporciona um fra-
mework para se testar hipóteses sobre alguns aspectos acerca das células fotoreceptoras
na retina de indivíduos com deficiência na percepção de cores.

Este trabalho também apresenta uma técnica automática de recoloração de imagens
que visa realçar o contraste de cores para indivíduos dicromatas com custo computacio-
nal variando linearmente com o número de pixels. O algoritmo proposto pode ser efici-
entemente implementado em GPUs, e para imagens com tamanhos tipicos ele apresenta
performance de até duas ordens de magnitude mais rápida do que as técnicas estado da
arte atuais. Ao contrário das abordagens anteriores, a técnica proposta preserva coerência
temporal e, portanto, é adequado para recoloração de vídeos. Este trabalho demonstra a
efetividade da técnica proposta ao integrá-la a um sistema de visualização e apresentando,
pela primeira vez, cenas de visualização recoloridas para dicromatas em tempo-real e com
alta qualidade.

Palavras-chave: Modelos da Visão de Cores, Percepção de Cores, Simulação de Defi-
ciências na Percepção de Cores, Algorítimo de Recoloração, Aumento de Contraste de
Cores, Deficiências na Percepção de Cores, Dicromacia, Tricromacia Anômala.
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1 INTRODUCTION

Color Vision Deficiency (CVD) affects one’s ability to distinguish between certain
colors. Such condition is predominantly caused by hereditary reasons, while, in some
rare cases, it is believed to be acquired by neurological injuries. Estimates indicate that
about two hundred million people worldwide have some kind of CVD. Furthermore, there
is no known treatment or cure for these dysfunctions.

Individuals with CVD have difficulties in performing color related tasks, which inter-
feres with their personal and professional lives. For example, the map shown in Figure 1.1
(left) aims to illustrate population growth/decline in Europe’s countries in 2006 using col-
ors, whose contrast allows the correlation between percentage ranges and countries. Such
combination of colors seems to be reasonable to represent the data when the map is read
by individuals with normal color vision. But, for individuals with deuteranopia1, the col-
ors representing population growth of up to 0.5% and population decline of up to 0.5%
are indistinguishable (Figure 1.1 right). This example demonstrates a recurring situation
in information visualization and scientific visualization images.

Figure 1.1: (left) Europe’s map with colors used to encode the percentage of population
growth/decline of different countries in 2006. (right) simulation of deuteranopes’ percep-
tion of left image. Left image is from (WIKIMEDIA COMMONS, 2010).

Red-green color vision deficiency comprises the most common types of CVD (approx-
imately 99.96% of all cases), which are characterized by malfunction of L- or M-cones
opsins. Such opsins are encoded by genes located on the X chromosome. Thus, such types

1Deuteranopia is a CVD type characterized by the absence of M-photopigments in retina.



20

are caused by X-linked inheritance and are more prevailing among the male population.
Table 1.1 shows the incidence of red-green CVD among different ethnic groups.

Ethnic Groups Incidence of red-green CVD (%)
Male Female

Caucasians 7.9 0.42
Asians 4.2 0.58
Africans 2.6 0.54

Table 1.1: Incidence of red-green color blindness among different ethnic groups (RIG-
DEN, 1999; SHARPE et al., 1999).

The most relevant works dealing with CVD can be broadly classified as techniques
for simulation and recoloring. The first group aims to provide tools for demonstrating for
individuals with normal color vision how some color stimuli are perceived by individuals
with CVD. Such tools help to better understand the difficulties faced by these individuals.
Moreover, they can provide insights and feedback, for example, on how to improve visu-
alization experiences for individuals with color vision deficiency. Recoloring algorithms,
on the other hand, aim to change image colors so that individuals with CVD can recover
(as much as possible) the lost color contrast. No previous techniques are capable to pro-
vide real-time recoloring. Besides, an efficient technique could be integrated to portable
devices, which would impact these individuals’ daily lives.

The results of state-of-art techniques for simulation and recoloring are illustrated in
Figure 1.2. It uses as reference (Figure 1.2 left) a scientific visualization image. Fig-
ure 1.2 (center) shows the simulation of deuteranopes’ perception for the reference image
according to Brettel et al. (BRETTEL; VIÉNOT; MOLLON, 1997). For these individu-
als, the ability to distinguish between certain colors vanishes compromising their capacity
to identify the image features. Note, however, how a recoloring technique (Figure 1.2
right) offers a good possibility for these individuals to perceive the contrasts. This image
was recolored according to the exaggerated approach proposed by Kuhn et al. (KUHN;
OLIVEIRA; FERNANDES, 2008a), which preserves image naturalness.

Figure 1.2: (left) the reference scientific visualization image (Brain dataset). (center)
simulation of deuteranopes’ perception of left image. (right) simulation of deuteranopes’
perception of recolored image. Simulation technique used for center and right images
were the proposed by Brettel et al. (BRETTEL; VIÉNOT; MOLLON, 1997) and recol-
oring technique for right image was the proposed by Kuhn et al. (KUHN; OLIVEIRA;
FERNANDES, 2008a). Reference image provided by Francisco Pinto.
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1.1 Thesis Contributions

This thesis presents two novel techniques (i.e., a simulation and a recoloring) to solve
the main limitations of the state-of-art techniques. Both techniques were successfully in-
tegrated into a visualization system, which allowed the practical validation of its results.
Both works were published in visualization journals (MACHADO; OLIVEIRA; FER-
NANDES, 2009; MACHADO; OLIVEIRA, 2010). The simulation technique introduced
in this thesis presents the following contributions:

• First model that consistently simulates normal trichromacy, dichromacy2, and anoma-
lous trichromacy3 while previous model addressed only dichromacy.
• A single model for simulation that comprises about 99.96% of all cases of CVD

while previous approaches addressed only 27.46% of the cases.

And the recoloring technique presented in this thesis has the following contributions:

• High-quality results comparable to results obtained with the state-of-art technique.
• Real-time recoloring. Performance of up to two orders of magnitude faster than the

state-of-art technique.
• Temporal coherence preservation, not requiring prior knowledge of subsequent

frames.

1.2 Structure of the Thesis

This dissertation is organized as follows: Chapter 2 introduces the color vision de-
ficiencies by addressing the concepts and theories of color perception in humans and
provides some useful terminologies. Chapter 3 describes the related works emphasizing
the most relevant ones to this thesis. It introduces the state-of-art techniques among sim-
ulation and recoloring approaches. Besides, it presents some relevant color-to-grayscale
techniques, as they represent algorithms involving dimensionality reduction, a technique
akin to recoloring techniques for dichromats. Chapter 4 presents a physiologically-based
model for simulation of the perception of individuals with CVD. Moreover, it explains
how this model is supported by known theories of color perception and knowledge about
color vision deficiencies. It also compares its results with the state-of-art simulation
techniques and describes an experiment used to validate the proposed model. Chapter 5
presents a recoloring algorithm that can produce high-quality results in real-time, as well
as temporal coherence. It compares its results with the state-of-art recoloring technique
and shows the benchmark results, that validated the techniques performance. Moreover,
it demonstrates the successful integration with a visualization system. Finally, Chapter 6
concludes the thesis and suggests some possibilities of future work.

2Dichromacy is a CVD type characterized by absence of one type of photopigment in the human retina.
3Anomalous trichromacy is a CVD type characterized by an abnormal cone type in the retina.
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2 BACKGROUND ON COLOR VISION DEFICIENCY

This chapter reviews the concepts involving color vision deficiency. It provides some
background for the techniques presented in this thesis and summarizes the theories and
fundamentals of color perception. Finally, it explains details about each type of CVD,
emphasizing the most relevant ones.

2.1 Photoreceptor Cells

Photoreceptor cells are present in the retina and are characterized for being sensitive
to light. Their sensitivities are defined by spectral absorption functions, which depend on
the photopigment type contained. In the human retina, these cells are broadly classified
as cones and rods.

The rods are primarily responsible for night vision, i.e., low light environment sight.
The photopigment type contained in the rods is called rhodopsin1. This name concerns
the red color reflected by the pigment, while the color absorbed by it corresponds mainly
to regions of the spectrum with bluish tones. But the rods do not contribute to color
perception in humans except under special conditions (SHARPE et al., 1999).

Cones are the photoreceptors responsible for color perception in humans. They act pri-
marily in highly-illuminated environments. Cones are classified as L, M, and S, depending
on their sensitivity to the spectrum regions with Long, Medium, and Short wavelengths,
respectively.

The spectral sensitivity functions of the four photoreceptors types (i.e., the three cone
types and the rods) concerning an average normal trichromat individual are illustrated
through the curves in Figure 2.1. These functions are usually graphically represented for
ease of reading while define a relationship between probability of photons capture and the
wavelength (SHARPE et al., 1999).

Spectral sensitivity functions associated to the L, M, and S cones overlap each other
for some wavelength ranges, as can be noticed in Figure 2.1. This is more relevant for
the L- and M-cones. Actually, a photoreceptor is only able to measure the total amount
of incident light, responding according to its sensitivity function. For instance, two hy-
pothetical radiations with 600 nm and 500 nm separately will result in equivalent stimuli
to M cones, since its sensitivities to both wavelengths are approximately equal. Thus,
the human visual system will distinguish between these two radiations by combining the
responses of the three cone types.

1Rhodopsin: from Greek, Rhodo means red and Opsin means sight.
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Figure 2.1: Spectral sensitivity functions of the three cone types and the rods (after Smith
and Pokorny (SMITH; POKORNY, 1975)) concerning an average normal trichromat in-
dividual. These curves represent a ratio of probability of photon capture as a function of
wavelength (SHARPE et al., 1999).

2.2 Stage Theories of Human Color Vision

There are some theories about how cone cells sensitivity are interpreted as colors by
the human visual system. The trichromatic theory of color vision assumes the existence
of three kinds of photoreceptors (cone types) with different spectral sensitivities. The
responses produced by these photoreceptors would then be sent to the central nervous
system and perceived as color sensations (WYSZECKI; STILES, 2000). Also known
as the Young-Helmholtz three-component theory, it is based on the analysis of the stimuli
required to evoke color sensations and provides satisfactory explanation for additive color-
matching experiments.

Unfortunately, the theory cannot explain some perceptual issues, such as the opponent
nature of visual afterimages, as well as why some hues are never perceived together while
others (e.g., green and yellow, green and blue, red and yellow, and red and blue) are easily
found (FAIRCHILD, 1997). All these effects can be satisfactorily explained by Hering’s
opponent-color theory, which assumes the existence of six basic colors (white, black,
red, green, yellow, and blue). According to Hering, light is absorbed by photopigments
but, instead of having six separate channels, the visual system uses only three opposing
channels: white-black (WS), red-green (RG), and yellow-blue (Y B). While equal amounts
of black and white produce a gray sensation, equal amounts of yellow and blue cancel to
zero. Likewise, equal amounts of red and green also cancel out. Zero in this context
means that the spectral response functions for the opponent channels (Figure 2.2) become
zero at the points where opponent colors take equal values.

Considered separately, neither the trichromatic theory nor the opponent-color theory
satisfactorily explains several important color-vision phenomena. When combined, how-
ever, they could explain and predict many color vision phenomena involving color match-
ing, color discrimination, color appearance, and chromatic adaptation, among others, for
both normal color vision and color vision deficient observers (WYSZECKI; STILES,
2000). von Kries suggested that the trichromatic theory should be valid at the photore-
ceptor level, but the resulting signals should be further processed in a later stage according
to the opponent-color theory (JUDD, 1966). This so-called stage theory (also known as
zone theory) provides the best models for human color vision. Besides the two-stage the-
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Figure 2.2: Spectral response functions for the opponent channels concerning an average
normal trichromat.

ory suggested by von Kries, other two- and three-stage theories of color vision have been
proposed, including Müller three-stage theory. A discussion of some of these theories can
be found in (JUDD, 1966).

2.3 Genetic of Human Photopigments

Besides being closely located in the X chromosome, exons2 concerning both L- and
M-cones photopigments are similarly encoded. Actually, anomalous combinations of
these exons are supposed to be responsible for all cases of red-green color vision defi-
ciencies. Explanations for all these similarities can be supported by the evolution of opsin
genes as described in (SHARPE et al., 1999). The L- and M-cones photopigments are
very similar. They were the last to emerge throughout the evolutionary process of human
color vision. About the evolution of genes responsible for production of rhodopsin, con-
tained in the rods, little is known. It is believed that it has evolved from the S-opsin gene,
but it is known that in humans it is located on chromosome 3 (SHARPE et al., 1999).

2.4 Color Vision Deficiency

Color vision deficiencies are broadly classified as anomalous trichromacy, dichro-
macy and monochromacy. Anomalous trichromacy is characterized by the presence in
retina of one anomalous cone type. The anomalous cone contains a different photopig-
ment type which spectrally deviates the cone’s sensitivity. Anomalous trichromacy is
further classified as protanomaly, deuteranomaly and tritanomaly3 depending on whether
the anomalous are the L, M, or S cones, respectively. In these cases, the sensitivities
of the anomalous cones are shifted to different bands of the spectrum. Figure 2.3 illus-
trates these shifts for the three kinds of anomalous trichromacy. In cases of protanomaly
(Figure 2.3 left), the sensitivities of the anomalous L cones are much similar to that of
normal M cones, as it is shifted toward shorter wavelengths spectrum bands. Sensitiv-
ity functions of anomalous M cones in deuteranomalous (Figure 2.3 center) resemble the
sensitivity functions of normal L cones, as they are shifted toward longer wavelengths.

2Exon is an active sequence of genes, i.e., it encodes information for protein synthesis.
3Prot, Deut, and Trit prefixes origins from Greek meaning One, Two and Three, respectively. These

prefixes refers to L, M, and S cones, respectively.
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The cases of tritanomaly are very rare, and the S-cones sensitivities are shifted toward
longer wavelengths (Figure 2.3 right).

Figure 2.3: Spectral sensitivity functions of cones in anomalous trichromats. Figures from
left to right refer to protanomaly, deuteranomaly, and tritanomaly, respectively. They il-
lustrate the spectral shifts of anomalous cones, which occur in the three kinds of anoma-
lous trichromacy.

In dichromatic retina there are only two types of photopigments. Dichromacy is fur-
ther classified as protanopia, deuteranopia, and tritanopia, depending on whether the ab-
sent photopigment concerns the L-, M-, or S-cone type, respectively. The perceived colors
by individuals with both protanopia and deuteranopia are similar. As reported by unilat-
eral dichromats4, protanopes and deuteranopes can only experience yellowish and blueish
hues including gray shades (MEYER; GREENBERG, 1988; BRETTEL; VIÉNOT; MOL-
LON, 1997; VIÉNOT; BRETTEL; MOLLON, 1999). For tritanopia, a much rarer condi-
tion, individuals will always experience colors between a blueish-green and a reddish hue.
Figure 2.4 illustrates the colors experienced by the three types of dichromacy. Figure 2.4
(left) shows a color wheel which is used as reference. The three subsequent images illus-
trate from left to right, the perception of the reference image by protanopes, deuteranopes,
and tritanopes, respectively. Note how their color gamuts are reduced if compared to the
gamut of individuals with normal color vision.

Figure 2.4: Illustration simulating the perception of dichromats. (left) reference im-
age (color wheel). The subsequent wheels refer from left to right to the perception of
protanopes, deuteranopes, and tritanopes, respectively. Wheels were simulated using
Brettel et al.’s approach (BRETTEL; VIÉNOT; MOLLON, 1997).

The cases of monochromacy are classified as rod-monochromacy, when there are no
cones in the retina; and cone-monochromacy, when there is only one cone type in the
retina. Monochromacy cases are very rare and are not treated in this thesis.

4Unilateral dichromats are individuals with dichromacy in only one eye while the other has normal color
vision.
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CVD Type Incidence (%)
Male Female

Anomalous trichromacy 5.71 0.39
Protanomaly 1.08 0.03
Deuteranomaly 4.63 0.36
Tritanomaly 0.0001 0.0001
Dichromacy 2.28 0.03
Protanopia 1.01 0.02
Deuteranopia 1.27 0.01
Tritanopia 0.002 0.001
Monochromacy 0.003 0.00001

Table 2.1: Incidence of CVD types among Caucasian population (RIGDEN, 1999;
SHARPE et al., 1999).

The incidences of the CVD types among the caucasian population, which is the only
ethnic group for which there are some reliable statistics available, are shown in Ta-
ble 2.1. Note that red-green color vision deficiencies (comprising protanopia, deutera-
nopia, and protanomaly deuteranomaly) are more prevailing while tritanopia, tritanomaly,
and monochromacy are very rare.
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3 RELATED WORK

This chapter describes the most relevant works on simulation and recoloring for color
vision deficiency, emphasizing their strenghs and limitations. Some works in color-to-
grayscale conversion are also discussed in this chapter, since they deal with dimensional-
ity reduction, and, as such, are akin to recoloring algorithms for dichromats.

3.1 Simulation Techniques

Despite the relevance of understanding how individuals with CVD perceive colors, lit-
tle work has been done in simulating their perception for normal trichromats. In particular,
none of the previous approaches is capable of handling both dichromacy and anomalous
trichromacy while the simulation technique proposed in this thesis does. One should also
note that the simulation process is not symmetrical: in general, it is not possible to simu-
late a normal trichromatic color experience for individuals with CVD, due to the reduced
color gamuts of deficient color vision systems.

The first techniques that simulates the perception of individuals with CVD were de-
veloped based on the report of unilateral dichromat individuals. According to their re-
port (GRAHAM; HSIA, 1959; JUDD, 1949a; SLOAN; WOLLACH, 1948) achromatic
colors as well as some other hues are perceived similarly by both eyes (approximately
wavelengths of 475 nm and 575 nm by individuals with protanopia and deuteranopia,
and 485 nm and 660 nm by tritanopes). Meyer and Greenberg (MEYER; GREENBERG,
1988) mapped this gamut in the XYZ color space. They also mapped confusion lines in
this color space, which represent directions along which there is no color variation ac-
cording to dichromats perception. By projecting colors through confusion lines into the
reduced gamut, they defined an accurate technique for simulating dichromacy.

Latter, some other similar works have been developed (BRETTEL; VIÉNOT; MOL-
LON, 1997; VIÉNOT; BRETTEL; MOLLON, 1999). The technique proposed by Brettel
et al. (BRETTEL; VIÉNOT; MOLLON, 1997) is the most referenced of all existing sim-
ulation techniques. In this technique, the color gamut of dichromats is mapped to two
semi-planes in the LMS color space, while the authors constrained the direction of con-
fusion lines to be parallel to the direction of the color space axes L, M, or S, depending
on whether the dichromacy type is protanopia, deuteranopia, or tritanopia, respectively.
Figure 3.1 illustrates the process of projecting colors onto the semi-planes. For exam-
ple, when simulating deuteranopia (Figure 3.1 center) the colors are projected onto the
semi-planes through the direction of the M axis. This process is analogous for protanopia
(Figures 3.1 left) and tritanopia (Figures 3.1 right). Figure 3.2 shows examples of some re-
sults of this simulation technique using Figure 3.2 (a) as reference image. Figures 3.2 (b),
(c), and (d) shows the simulation of the perception of protanopes, deuteranopes, and tri-
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tanopes, respectively. Note how the perception of color contrasts vanishes for some hues
in different types of dichromacy.

Figure 3.1: The three graphs illustrate the technique for simulating the perception of in-
dividuals with dichromacy proposed by Brettel et al. (BRETTEL; VIÉNOT; MOLLON,
1997). In the LMS color space, the original colors are orthographically projected to cor-
responding semi-planes, along the direction defined by the axis representing the affected
cone. Illustrations of the technique for simulating protanopia (left), deuteranopia (center),
and tritanopia (right).

These techniques produce very good results for the cases of dichromacy, but it can not
be generalized to the cases of anomalous trichromacy, which comprises about 71% of the
cases of CVD (RIGDEN, 1999; SHARPE et al., 1999). With this, some authors attempted
to simulate perception of anomalous trichromats.

Kondo (KONDO, 1990) proposed a model to simulate the perception of individuals
with anomalous trichromacy based on dichromatic vision, given the similarities between
the perception of both dichromats and individuals with severe anomalous trichromacy.
However, the results of his model do not preserve achromatic colors, which are known to
be perceived similarly by both dichromats and normal trichromats individuals. While the
model proposed in this thesis preserves achromatic colors.

The approach proposed by Yang et al. (YANG et al., 2008) for simulating the per-
ception of individuals with anomalous trichromacy consists of defining a process for con-
verting colors from RGB color space, regarding the spectral emission of a typical CRT
monitor, to a LMS color space, regarding the sensitivity of the L, M, and S cones. With
such conversion, the simulation occurs by the displacement of the spectral sensitivity of
anomalous cones. By applying a conversion of colors from RGB to anomalous LMS and
a subsequent conversion back from normal LMS to RGB, Yang et al. defined their sim-
ulation technique. By limiting the computation to the photoreceptor level, the algorithm
does not agree with the opponent processing in the human visual system. As a result,
the simulated images tend to contain colors that are not the ones perceived by individuals
with CVD (Figure 3.3). The last column of Figure 3.3 shows the perception of individuals
with severe protanomaly and deuteranomaly, which should be similar to the perception of
protanopes and deuteranopes, respectively. The results obtained with Brettel et al.’s sim-
ulation technique for protanopia and deuteranopia (Figure 3.3 last column) differ from the
results obtained with Yang et al.’s approach for severe anomalous trichromacy (Figure 3.3
20 nm).
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(a) (b)

(c) (d)

Figure 3.2: Examples showing the results obtained with Brettel et al.’s simulation tech-
nique (BRETTEL; VIÉNOT; MOLLON, 1997). (a) a reference image showing a set of
color pencils. The subsequent images show the simulation of the perception of protanopes
(b), deuteranopes (c), and tritanopes (d). Reference image is from (WIKIMEDIA COM-
MONS, 2010).

08 nm 12 nm 16 nm 20 nm Brettel

Pr
ot

an
om

al
y

D
eu

te
ra

no
m

al
y

Figure 3.3: Images demonstrating the simulation of the perception of Figure 3.2 (left) by
individuals with anomalous trichromacy according to the approach proposed by Yang et
al. (YANG et al., 2008). First row shows simulations of protanomalous’ perceptions while
the second row shows simulations of deuteranomalous’ perceptions. The four columns,
from left to right, concerns anomalous trichromacy with severities (spectral shift in wave-
length) of 8 nm, 12 nm, 16 nm, and 20 nm, respectively. To compare with the perception
of severe anomalous trichromacy, the last column shows simulations according to Brettel
et al.’s approach for protanopes and deuteranopes in the first and second rows, respec-
tively.
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3.2 Recoloring Techniques

Several researchers have investigated the problem of image-recoloring for individ-
uals with CVD. The existing techniques can be broadly classified as user-assisted and
optimization-based approaches.

3.2.1 User-Assisted Techniques

The techniques in this class require assistance, in the form of user-provided parame-
ters, to guide the recoloring process. Thus, the quality of their results is highly dependent
on the provided parameters, making them unsuitable for real-time systems. Iaccarino et
al. (IACCARINO et al., 2006) employ six parameters to modulate the original colors of
an input image. Daltonize (DOUGHERTY; WADE, 2002) uses three parameters to spec-
ify the recoloring process (for protanopes and deuteranopes). These parameters specify
how the red-green channel should be stretched, projected into the luminance channel,
and projected into the yellow-blue channel. Huang et al. (HUANG; WU; CHEN, 2008)
enhance color contrast by remaping the Hue components in HSV color space aiming to
provide wider dynamic ranges for the most confusing hues. This technique uses a control
parameter to specify the degree of enhancement.

3.2.2 Optimization-based Techniques

These techniques operate without user intervention and consist of optimization pro-
cedures. Ichikawa et al. (ICHIKAWA et al., 2003) used a genetic algorithm to recolor
web pages for anomalous trichromats. Subsequently, the authors extended their work for
image recoloring (ICHIKAWA et al., 2004). Wakita and Shimamura (WAKITA; SHIMA-
MURA, 2005) presented a technique for recoloring documents (e.g., web pages, charts,
maps) for dichromats. Such a technique is based on three objective functions intended for:
(i) color contrast preservation, (ii) maximum color contrast enforcement, and (iii) color
naturalness preservation (for user-specified colors). The three objective functions are
weighted according to user-specified parameters and optimized with simulated anneal-
ing. Wakita and Shimamura report that the optimization for documents with more than 10
colors could take several seconds. Jefferson and Harvey (JEFFERSON; HARVEY, 2006)
use four objective functions to preserve brightness, color contrast, colors in the available
gamut, and color naturalness. Their technique optimizes the combined objective func-
tions using preconditioned conjugate gradients. The authors reported times of the order
of several minutes for a set of 25 key colors (on a P4 2.0 GHz PC using Matlab).

In the perceptually uniform color space (CIE L*a*b*), Euclidean distances represent
perceptual differences. Rasche et al. (RASCHE; GEIST; WESTALL, 2005a) presented a
technique of image-recoloring for dichromats consisting of an optimization that attempts
to preserve the perceptual differences between all pairs of colors in the gamut of dichro-
mats using an affine transformation. However, this transformation does not capture color
variations along several directions and can not guarantee that the colors are kept in avail-
able mapped gamut. In a subsequent work, Rasche et al. (RASCHE; GEIST; WESTALL,
2005b) addressed these limitations applying a constrained multivariate optimization pro-
cedure to a reduced set of quantized colors. The resulting set of optimized quantized
colors is then used to optimize the entire set of colors. Despite the improved results, this
algorithm is prone to local minima, and does not scale well with the number of quantized
colors and the size of the input images.

Kuhn et al. (KUHN; OLIVEIRA; FERNANDES, 2008a) presented a technique for
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enhancing color contrast for dichromats preserving naturalness based on mass-spring op-
timization, which can be efficiently implemented on GPUs. Similar to the technique of
Rasche et al. (RASCHE; GEIST; WESTALL, 2005b), the optimization is first performed
on a set of quantized colors, which are then used to optimize the entire set of colors. Al-
though their technique is about three orders of magnitude faster than previous approaches
and can achieve interactive frame rates, it is still not sufficiently fast to allow real-time
performance. Moreover, since the optimization is based on a set of quantized colors, it is
not clear how one could preserve temporal coherence on the fly (e.g., during an interac-
tive scientific visualization session). The recoloring technique proposed in this thesis does
not preserve image naturalness, but performs real-time recoloring and preserves temporal
coherence.

Huang et al. (HUANG et al., 2009) also present an optimization based approach for
recoloring images. According to this technique, which works in CIE L*a*b* color space,
the colors are first clustered using a Gaussian Mixture Model; then, the mean vector of
each Gaussian component is relocated; and, to compute the final colors, a hue interpola-
tion in CIE LCH color space is performed. But, as the authors reported, this technique
takes about 5 seconds to recolor a 300x300 image on a Pentium 4 3.4 GHz PC, while the
approach proposed in this thesis recolors an 800x800 image in 0.614 second on a Core 2
Extreme 3.0 GHz CPU, and in 0.028 second on a Quadro FX 5800 GPU.

Figure 3.4 compares the results produced using the techniques of Rasche et al and
Kuhn et al when applied to the reference image shown in Figure 3.4 (a). Figure 3.4 (b)
shows the simulation of deuteranopes’ perception according to Brettel et al.’s approach,
and Figures 3.4 (c) and (d) show the simulation of deuteranopes’ perception of two im-
ages recolored according to Rasche et al.’s and Kuhn et al.’s recoloring techniques, re-
spectively. Note how recoloring techniques can recover color contrasts. Note that Kuhn
et al.’s results preserves naturalness by constraining the colors that are more similarly
perceived by dichromats and normal trichromats.

3.2.3 Color-to-Grayscale Mappings

Image recoloring for dichromats is also a dimensionality reduction problem. In this
sense, it is akin to the more constrained problem of color-to-grayscale mapping. Tradi-
tional techniques commonly used in commercial applications (BROWN, 2006; JESCHKE,
2002) perform this mapping by simply taking the color’s luminance value computed on
some color space (e.g., XYZ, YCbCr, L*a*b*, or HSL). An important aspect of all these
techniques is that they preserve achromatic colors, which is a desirable feature for print-
ing. Since no chrominance information is taken into account, these approaches map all
isoluminant colors to the same shade of gray, despite of their perceptual differences.
Recently, several techniques have been proposed to address this limitation (GOOCH
et al., 2005; RASCHE; GEIST; WESTALL, 2005b; GRUNDLAND; DODGSON, 2007;
KUHN; OLIVEIRA; FERNANDES, 2008b).

Gooch et al. (GOOCH et al., 2005) use an optimization procedure whose cost is
quadratic in the number of pixels in the image. Although the technique produces some
good results, its computational cost precludes it from being used for interactive applica-
tions. Moreover, it does not preserve achromatic colors. Gooch et al. report that they have
explored the use of principal component analysis (PCA) to estimate an ellipsoid in color
space that best approximates the set of colors found in the image. The grayscale image
would then be computed by projecting all image colors on the axis of the ellipsoid with
the largest variance. According to the authors (GOOCH et al., 2005) and also pointed
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(a) (b)

(c) (d)

Figure 3.4: Demonstration of the results of two recently developed recoloring techniques.
(a) the reference image showing natural scene with some flowers in foreground. (b) simu-
lation of the perception of individuals with deuteranopia according to Brettel et al. (BRET-
TEL; VIÉNOT; MOLLON, 1997). Subsequently, simulations of deuteranope’s perception
of the recolored images according to the approaches proposed by Rasche et al. (RASCHE;
GEIST; WESTALL, 2005b) in (c) and Kuhn et al. (KUHN; OLIVEIRA; FERNANDES,
2008a) in (d). Images extracted from Kuhn et al.’s paper.

out by Rasche et al. (RASCHE; GEIST; WESTALL, 2005b), PCA fails to convert color
images with variations along many directions, and an optimization step would be required
to somehow combine the principal components.

Grundland and Dogdson (GRUNDLAND; DODGSON, 2007) perform the color-to-
grayscale mapping by adding to the original luminance value Yi of pixel pi, some amount
Ki that tries to compensate for the contrast loss. To compute Ki while avoiding a quadratic
cost (as in previous techniques), the authors introduced a clever local sampling strategy
called Gaussian pairing. It consists in choosing, for each pixel pi, a pixel p j in a circular
neighborhood around pi. The choice of p j is based on a Gaussian probability distribution
function. The size of the neighborhood is computed based on the image dimensions. For
a given pair (pi, p j), the relative contrast loss is computed as:

l(pi,p j) = 1−
Yi−Yj

‖pi− p j‖RGB

, (3.1)

where Yi and Y j are the luminance values of pixels pi and p j, respectively, and ‖pi− p j‖RGB

is the length of the color vector vi j = pi− p j computed in the RGB color space. Note that
the distance computed in the denominator of Equation 3.1 has no perceptual meaning. In
order to estimate the amount Ki, the authors map the original RGB colors to their own
opponent-color space (Y PQ), which, again, is not perceptually uniform. In the YPQ color
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space, they estimate a direction dmcl of maximum contrast loss (according to Equation 3.1)
using a technique of their own, which they called predominant component analysis. The
idea of predominant component analysis is to approximate the direction of maximum
data dispersion using a sum of weighted vectors. Note, however, that its results are not
equivalent to the solution of an eigenvector problem, such as done in PCA. As a result,
for the same set of input vectors, the direction dmcl is not the same as the direction of the
main eigenvector obtained using PCA. For computing Ki, the authors essentially project
the original pixel colors expressed in the YPQ space onto dmcl .

3.3 Summary

This chapter has shown the state-of-art works related to this thesis emphasizing the
most relevant simulation (BRETTEL; VIÉNOT; MOLLON, 1997) and recoloring (KUHN;
OLIVEIRA; FERNANDES, 2008a) techniques. Color-to-grayscale conversion techniques
were also covered as they perform dimensionality reduction and, therefore, are akin to
image recoloring for dichromats. Among those, the technique proposed by Dodgson and
Grundland (GRUNDLAND; DODGSON, 2007) presented significant advances in run-
time performance, which is desirable for recoloring techniques.
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4 A PHYSIOLOGICALLY-BASED MODEL FOR SIMULA-
TION OF COLOR VISION DEFICIENCY

This chapter presents a model for simulating color perception based on the stage the-
ory (JUDD, 1966) of human color vision. This model is the first to consistently handle
normal color vision, anomalous trichromacy, and dichromacy in a unified way. Unlike
previous techniques that are based on the reports of unilateral dichromats (BRETTEL;
VIÉNOT; MOLLON, 1997; MEYER; GREENBERG, 1988) or on the spectral response
of the photoreceptors only (YANG et al., 2008), this approach uses a two-stage model.
It simulates color perception by combining a photoreceptor-spectral-response stage and
an opponent-color stage defined according to data reported in electrophysiological stud-
ies (INGLING JR.; TSOU, 1977). This guarantees the generality of the proposed ap-
proach.

Figure 4.1 illustrates the results produced by the proposed model in the context of
scientific visualization. The image on the left shows a reference image (i.e., the percep-
tion of a normal trichromat). The two images in the middle show simulated views for
two protanomalous individuals with different degrees of severity. The numbers in paren-
thesis indicate the amount of shift, in nanometers, applied to the spectral response of the
L cones. The image on the right is a simulated view of a protanope (a dichromat), which
is approximately equivalent to the perception of protanomalous with a spectral shift of
20 nm. Note the progressive loss of color contrast as the degree of severity increases.

4.1 Quantification of The Stage Theory

A stage theory can qualitatively explain human color vision. However, before one can
use it to define a model for rendering images that simulate color perception, it needs to
describe both stages using equations. While curves describing the spectral sensitivity of
the cones can be measured in vivo and are available for an average individual (SMITH;
POKORNY, 1975), one still needs the coefficients that define how the signals generated
by the cones are combined to form the achromatic (WS) as well as the two chromatic
channels (RG and Y B). Such coefficients cannot be easily obtained, but fortunately In-
gling and Tsou (INGLING JR.; TSOU, 1977) provided transformations for mapping cone
responses (in the LMS color space) to an opponent-color space. The suprathreshold form
of their transformation presents advantages over the threshold one, as it tries to take into
account reports by psychophysical and electrophysiological studies regarding light adap-
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Reference Protanomaly (6 nm) Protanomaly (14 nm) Protanopia

Figure 4.1: Scientific visualization under color vision deficiency. Simulation, for a
normal trichromat, of the color perception of individuals with color vision deficiency
(protanomaly) at different degrees of severity. The image on the left (turbulent flows) il-
lustrates the perception of a normal trichromat and is used for reference. The numbers in
parenthesis indicate the amount of shift, in nanometers, applied to the spectral response
of the L cones. The image on the right shows the simulated perception of a dichromat
(protanope), which is approximately equivalent to the perception of protanomalous with
a spectral shift of 20 nm. Note the progressive loss of color contrast as the degree of
severity increases. Images simulated using the proposed model. Reference image was
provided by CCSE at LBNL.

tation. Equation 4.1 describes Ingling and Tsou’s suprathreshold transformation: Vλ

y−b
r−g

=

 0.600 0.400 0.000
0.240 0.105 −0.700
1.200 −1.600 0.400

 L
M
S

 (4.1)

where Vλ represents the luminance channel WS, and r− g and y− b represent the two
opponent chromatic channels RG and Y B, respectively. Figure 4.2 illustrates how the
cones’ output signals are combined into the spectral response functions of the opponent
channels WS, Y B, and RG. Figure 4.3 (left) shows the spectral sensitivity functions for
the cones of an average normal trichromat according to Smith and Pokorny (SMITH;
POKORNY, 1975). The resulting spectral response functions of the opponent channels
for this average normal trichromat according to Ingling and Tsou’s model are shown on
Figure 4.3 (right).

4.2 Simulating Color Vision Deficiency

Except for the cases resulting from trauma, the causes of color vision deficiency are
genetic and result from alterations in the cones’ photopigment spectral sensitivity (BEREND-
SCHOT; KRAATS; NORREN, 1996; SHARPE et al., 1999). The conditions involving
the L and M cones are hereditary and associated with a gene array in the X chromo-
some (SHARPE et al., 1999). The conditions involving the S cones (tritanomaly and
tritanopia) are considerably less frequent (RIGDEN, 1999; SHARPE et al., 1999) and are
believed to be acquired (SHARPE et al., 1999).

The proposed physiologically-based model treats CVD as changes in the spectral ab-
sorption of the cones’ photopigments. While CVD is essentially modeled at the retinal
photopigment stage, the opponent-color stage is crucial for producing the correct results
and cannot be underestimated. For this, the proposed model uses Ingling and Tsou’s
model (Figure 4.2) that, despite its simplicity, is useful for estimating the results of sev-
eral color vision experiments, even though it is limited by insufficient knowledge (IN-
GLING JR.; TSOU, 1977). One should note, however, that the proposed approach is not
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Figure 4.2: Ingling and Tsou’s (INGLING JR.; TSOU, 1977) two-stage model of hu-
man color vision. The output of the photoreceptor stage (L, M and S cones) is linearly
combined in the opponent stage (Vλ , y−b, and r−g nodes).

tied to any particular stage model. For instance, the proposed model was also used with a
three-stage model based on Müller’s theory using the parameters derived by Judd (JUDD,
1949b). According to visual comparisons with Brettel et al.’s simulations, however,
the parameters provided by Ingling and Tsou’s model produce better results. More-
over, Müller’s theory explanation for the occurrence of deuteranopia (JUDD, 1949b) does
not seem to be in accordance with evidence reported in the literature (BERENDSCHOT;
KRAATS; NORREN, 1996; CICERONE; NERGER, 1989; SHARPE et al., 1999; WES-
NER et al., 1991).

4.2.1 Simulating Anomalous Trichromacy

Anomalous trichromacy is explained by a shift in the spectral sensitivity function of
the anomalous cones (DEMARCO; POKORNY; SMITH, 1992; NEITZ; NEITZ, 2000;
POKORNY; SMITH, 1997; SHARPE et al., 1999; WYSZECKI; STILES, 2000). Ar-
rangements of DNA bases called exons are involved in producing proteins which are re-
sponsible to define specific characteristics. The L and M photopigment characteristics
in humans are defined by sequences of six exons from which the first and the last are
invariant. The four intermediary exons in the sequence are responsible for the variabil-
ity between the spectral responses of normal and anomalous photopigments (SHARPE
et al., 1999). Hybrid genes contain exons from both L and M pigments as illustrated
in Figure 4.4. The squares indicate gene-specific for L and M pigments. All hybrid
genes produce photopigments with peak sensitivity between the peaks of normal L and
M photopigments. Each exon contributes to the spectral shift of the produced hybrid
photopigment, but exon five is determinant of the basic type of photopigment.

The proposed approach models anomalous trichromacy by shifting the spectral sensi-
tivity function of the anomalous cone according to the degree of severity of the anomaly.
A shift of approximately 20 nm represents a severe case of protanomaly or deutera-
nomaly (MCINTYRE, 2002; SHARPE et al., 1999), causing the spectral sensitivity func-
tions of the anomalous L (or M) cones to almost completely overlap with the normal M
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Figure 4.3: (left) Cone spectral sensitivity functions for an average normal trichromat
(after Smith and Pokorny (SMITH; POKORNY, 1975)). (right) Spectral response func-
tions for the opponent channels of the average normal trichromat according to Ingling and
Tsou’s model (INGLING JR.; TSOU, 1977). These functions are obtained by evaluating
Equation 4.1 for the LMS triples resulting from the cone spectral sensitivity functions at
all wavelengths in the visible range.

Figure 4.4: Exon arrangements of the L, M, and hybrid photopigment genes. X-linked
anomalous photopigment spectral sensitivity are interpreted as interpolations of the nor-
mal L and M photopigment spectra. Adapted from Sharpe et al. (SHARPE et al., 1999).

(or L) cones. As a result, the perception of a severe protanomalous (deuteranomalous) is
very similar to the perception of a protanope (deuteranope). The much rarer case of tri-
tanomaly can also be simulated by shifting the spectral sensitivity function of the S cones.
The spectral sensitivity functions of the anomalous cones are represented as

La(λ ) = L(λ +∆λL), (4.2)
Ma(λ ) = M(λ +∆λM), (4.3)
Sa(λ ) = S(λ +∆λS) (4.4)

where L(λ ), M(λ ), and S(λ ) are the cone spectral sensitivity functions for an average
normal trichromat (SMITH; POKORNY, 1975). ∆λL, ∆λM, and ∆λS represent the amount
of shift applied to the L, M, and S anomalous cone, respectively. Since these curves
represent the outcome of the photoreceptor level in the proposed two-stage model, they
still need to be processed by the opponent-color stage. As previously noted, the proposed
model uses the opponent-color space defined by Ingling and Tsou (INGLING JR.; TSOU,
1977), whose transformation from LMS to opponent space is represented by the 3× 3
matrix shown in Equation 4.1, which will be referred to as TLMS2Opp.

As CVD results from changes in the spectral properties of the photopigments, which
happens at the retinal level, the proposed model assumes that the neural connections that
link the photoreceptors themselves to the rest of the visual system are not affected. Thus,
it uses the transformation TLMS2Opp to obtain anomalous spectral response functions for
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the opponent channels, as shown by Equations 4.5 to 4.7. In those equations, pa, da, and
ta stand for protanomalous, deuteranomalous, and tritanomalous, respectively. Figure 4.5
shows examples of the resulting spectral opponent functions for protanomaly and deuter-
anomaly instantiated for ∆λL = 15 nm, and ∆λM =−19 nm. Note that the transformation
for normal trichromats is represented by Equation 4.1.WS(λ )

Y B(λ )
RG(λ )


pa

= TLMS2Opp

La(λ )
M(λ )
S(λ )

 (4.5)

WS(λ )
Y B(λ )
RG(λ )


da

= TLMS2Opp

 L(λ )
Ma(λ )
S(λ )

 (4.6)

WS(λ )
Y B(λ )
RG(λ )


ta

= TLMS2Opp

 L(λ )
M(λ )
Sa(λ )

 (4.7)

Figure 4.5: Spectral opponent functions for anomalous trichromats. (left) Protanomaly
(∆λL = 15 nm). (right) Deuteranomaly (∆λM =−19 nm).

A transformation from an RGB color space to an opponent-color space is obtained
simply by projecting the spectral power distributions ϕR(λ ), ϕG(λ ), and ϕB(λ ) of the
RGB primaries onto the set of basis functions WS(λ ), Y B(λ ), and RG(λ ) that define
the opponent-color space, as shown in Equation 4.8. By using the appropriate set of
basis functions, Equation 4.8 transforms RGB triples to opponent colors for either normal
trichromats, for anomalous trichromats, or for dichromats (discussed in Section 4.2.2).
For instance, using the functions shown on the left-hand side of Equation 4.5 as basis
functions, Equation 4.8 will produce the elements of a matrix that maps RGB to the
opponent-color space of protanomalous with a spectral sensitivity shift of ∆λL.

WSR = ρWS
∫

ϕR(λ )WS(λ )dλ ,
WSG = ρWS

∫
ϕG(λ )WS(λ )dλ ,

WSB = ρWS
∫

ϕB(λ )WS(λ )dλ ,
Y BR = ρY B

∫
ϕR(λ )Y B(λ )dλ ,

Y BG = ρY B
∫

ϕG(λ )Y B(λ )dλ ,
Y BB = ρY B

∫
ϕB(λ )Y B(λ )dλ ,

RGR = ρRG
∫

ϕR(λ )RG(λ )dλ ,
RGG = ρRG

∫
ϕG(λ )RG(λ )dλ ,

RGB = ρRG
∫

ϕB(λ )RG(λ )dλ

(4.8)
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The normalization factors ρWS, ρY B, and ρRG are chosen to satisfy the restrictions in
Equation 4.9. They guarantee that the achromatic colors (gray shades) have the exact
same coordinates ranging from (0,0,0) to (1,1,1) both in RGB as well as in all possible
versions of the opponent-color spaces (normal trichromatic, all anomalous trichromatic,
and all dichromatic). This is key for the simulation algorithm.

WSR +WSG +WSB = 1,
Y BR +Y BG +Y BB = 1,
RGR +RGG +RGB = 1

(4.9)

Thus, the general class of transformation matrices Γ that map the RGB color space to
various instances of the opponent-color space can be expressed as:

Γ =

WSR WSG WSB
Y BR Y BG Y BB
RGR RGG RGB

 (4.10)

Let Γnormal be the matrix that maps RGB to the opponent-color space of a normal trichro-
mat. Γnormal is obtained by using the functions shown on Figure 4.3 (right) as basis func-
tions for the projection operations represented by Equation 4.8. Thus, the simulation for
a normal trichromat of the color perception of an anomalous trichromat is obtained with
Equation 4.11. As will be shown next, the same general solution applies to the simulation
of dichromatic vision. Rs

Gs
Bs

= Γ
−1
normal Γ

R
G
B

 (4.11)

4.2.2 Simulating Dichromacy

Measurements of visual pigment absorption using retinal densitometry showed that
dichromats lack one type of photopigment (ALPERN; WAKE, 1977; RUSHTON, 1963).
Currently, researchers work with three possible alternatives for explaining the lack of one
kind of cone photopigment (BERENDSCHOT; KRAATS; NORREN, 1996): (i) the empty
spaces model, which states that a given class of cones and its corresponding photopigment
are lost, producing empty spaces in the cone mosaic. This hypothesis, however, is not sup-
ported by the findings of Wesner et al. (WESNER et al., 1991) who verified that the foveal
cone photoreceptor mosaics of dichromats are similar in structure to the ones of normal
trichromats. (ii) The replacement model suggests that the cones are still there, but filled
with one of the remaining kinds of photopigments. Finally, (iii) the empty cones model
suggests that a given class of cones contains no photopigment. While the work of Vos and
Walraven (VOS; WALRAVEN, 1971) may support models (i) or (iii), evidence support-
ing the replacement model can be found in the results of several researchers (BEREND-
SCHOT; KRAATS; NORREN, 1996; CICERONE; NERGER, 1989; WESNER et al.,
1991). This makes the photopigment substitution the most accepted model for explaining
dichromacy, with genetic arguments for protanopia and deuteranopia.

The proposed model makes its easy to test these hypotheses. For instance, for simu-
lating color appearance according to the empty space or to the empty cone models, all one
needs to do is to zero the outcome of the corresponding cone type (either L, M, or S) be-
fore transforming these signals into opponent color space functions. Given such curves, a
transformation matrix from RGB to opponent-color space is obtained using Equations 4.8
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and 4.9, and a simulation of color perception is obtained using Equation 4.11. The cases
of deuteranopia and tritanopia are similar. The first column of Figure 4.7 (Empty) shows
the simulated results obtained for the flower image shown in Figure 4.6 (a) using the
empty space and empty cone models, for protanopia (top row), and deuteranopia (bottom
row). These results are incorrect. For reference, we show in the last column of this fig-
ure the results produced by Brettel et al.’s algorithm (BRETTEL; VIÉNOT; MOLLON,
1997).

(a) (b) (c) (d) (e) (f)

Figure 4.6: Reference images. (a) Flower. (b) Brain. (c) Cat’s Eye nebula. (d) Scatter
plot. (e) Slice of the HSV color space (V=1). (f) Tornado. Image (a) extracted from
Rasche et al.’s paper. Image (b) provided by Francisco Pinto. Images (c) and (d) are
from (WIKIMEDIA COMMONS, 2010). Image (f) provided by Martin Falk and Daniel
Weiskopf.

Empty Photop. Subst. Scale Ratio 0.96*Ratio Brettel
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Figure 4.7: Simulation of dichromatic perception for the flower shown in Figure 4.6(a)
according to four different models. From left to right: empty space / empty cones, pho-
topigment substitution (replacement model), photopigment substitution with scaling ac-
cording to Equation 4.15, same as previous but also scaled by 0.96, Brettel et al.’s (for
reference).

4.2.2.1 The Replacement Model

The replacement model seems to be the most plausible hypothesis for explaining
dichromacy (BERENDSCHOT; KRAATS; NORREN, 1996; CICERONE; NERGER, 1989;
WESNER et al., 1991). The occurrence of a given photopigment in a “wrong” type of
cone seems more plausible between the L and M cones, and less plausible when it involves
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the S cones. For instance, L- and M-cone photopigment genes show 96% mutual iden-
tity (SHARPE et al., 1999). Moreover, the genes encoding the L- and M-cone photopig-
ments reside in the X-chromosome (at location Xq28) and have similar exon arrangement
coding. S-cone photopigments, on the other hand, reside in chromosome 7, and its cod-
ing is given by five exons, one less than L- and M-cone photopigment genes (SHARPE
et al., 1999). Thus, there is no genetic basis for a photopigment substitution model of
tritanopia. Tritanopia is generally considered an acquired, as opposed to inherited, condi-
tion (SHARPE et al., 1999). For this reason, the proposed model is not intended to handle
tritanopia (which is expected to affect about 0.003% of the population, according to the
data available for the Caucasian population (RIGDEN, 1999; SHARPE et al., 1999)).

The proposed model uses for dichromacy three cone types, but only two kinds of pho-
topigments. The replacement model could be simulated simply by replacing the spectral
sensitivity function of the L cones with the M cones for the case of protanopia, and the
other way around for the case of deuteranopia. Equation 4.12 illustrates this for the case
of protanopia. The second column of Figure 4.7 (Photop. Subst.) illustrates the results
obtained with this technique, which, again, are clearly incorrect. This resulted from the
fact that, even though the spectral sensitivity functions of all three types of cones had
their peak sensitivity independently normalized to 1.0, the areas under these curves are
sufficiently different (Figure 4.3 left) and need to be taken into account.WS(λ )

Y B(λ )
RG(λ )


protanopia

= TLMS2Opp

M(λ )
M(λ )
S(λ )

 (4.12)

The replacement of the L-cone spectral sensitivity curve by the M-cone spectral sen-
sitivity curve, which has a smaller area than L’s, causes the restrictions defined in Equa-
tion 4.9 to only be satisfied for ρRG < 0. In this case, the resulting coefficients RGR, RGG,
and RGB have their signs reversed (with respect to the corresponding coefficients for a
normal trichromat), making it impossible to preserve the achromatic colors in the range
from (0,0,0) to (1,1,1) in the opponent-color space. A similar phenomenon happens
when the spectral sensitivity curve of the M cone is replaced by the L cone one. The
solution to this problem lies in rescaling the replaced curves.

The rescaling of the curves is performed so that the new curves preserve the areas un-
der the curves of the host cones (Equations 4.15 and 4.16). The third column of Figure 4.7
(Scale Ratio) illustrates the results obtained with this technique. Note that while the col-
ors of the leaves and petals are approximately correct, they still contain some excessive
redness.

AreaL =
∫

L(λ )dλ , (4.13)
AreaM =

∫
M(λ )dλ , (4.14)

Lprotanope(λ ) =
AreaL
AreaM

M(λ ), (4.15)

Mdeuteranope(λ ) =
AreaM
AreaL

L(λ ) (4.16)

A small adjustment in the area ratios in Equations 4.15 and 4.16 produces a significant
improvement in image quality. For instance, the results shown in the fourth column of Fig-
ure 4.7 were obtained after scaling the ratio (AreaL/AreaM) in Equations 4.15 and 4.16
by 0.96. Such a scaling factor was used to improve the matching between the surfaces
obtained when the entire RGB color space is simulated for dichromatic vision using Bret-
tel et al.’s and the proposed model (Figure 4.8d). This seems to support the proposed
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model’s prediction that the correctness of the replacement model requires normalization
by the ratio of the areas under the original spectral sensitivity curves of the L and M cones.
Such a prediction still needs to be verified experimentally. While the prediction is off by a
0.04 factor, one should consider two important points: (i) the coefficients of the TLMS2Opp
matrix (Equation 4.1) used in the current implementation of the proposed model are ex-
pected to contain some inaccuracies; and (ii) Brettel et al.’s model, used for reference,
provides an approximation to the actual dichromat’s perception and cannot be taken as
ground truth. For a qualitative comparison of Brettel et al.’s and the proposed model’s
results, please see the last two columns of Figure 4.7.

Figure 4.8 compares the simulations of the protanopic vision for the entire RBG color
space performed by the several models discussed in this section. A surface obtained using
Brettel et al.’s (BRETTEL; VIÉNOT; MOLLON, 1997) algorithm is shown for reference
(the blue-and-yellow surface). Figure 4.8 (a) shows a simulation of the empty space /
empty cones models. (b) illustrates the result obtained with the use of a replacement
model without normalization (photopigment substitution). The image in (c) shows the
resulting surface after the original ratio (AreaL/AreaM) has been preserved using Equa-
tion 4.15. Figure 4.8 (d) shows the resulting surface obtained after the original ratio
(AreaL/AreaM) has been scaled by 0.96. The two surfaces are now considerably closer,
although not coincident.

(a) (b) (c) (d)

Figure 4.8: Comparison of the plausible dichromacy models considering the entire RGB
space (protanopia case). A surface obtained using Brettel et al.’s (BRETTEL; VIÉNOT;
MOLLON, 1997) algorithm is shown for reference in all images. (a) Empty Space /
Empty Cones model. (b) Replacement model. (c) Replacement model using Equa-
tion 4.15. (d) Same as (c) but also scaled by 0.96.

4.2.3 The Algorithm for Simulating CVD

As discussed in Section 4.2.1, anomalous trichromacy can vary from mild to severe
depending the amount of shift found in the peak sensitivity of the photopigments. Such
shifts are caused by the exon arrangements (Figure 4.4) and the color perception of a
severe anomalous trichromat is similar to the perception of a dichromat of the same class
(i.e., protan or deutan). Thus, it is reasonable to speculate that as the peak sensitivity of the
L (or M) cones gets shifted toward the peak sensitivity of the M (or L) cone, the rescaling
of the associated curve required for the case of protanopia and deuteranopia, also needs to
be performed, in proportion to the amount of shift. This is justified considering that as one
transitions between the spectral sensitivity curves of the L and M cones, there should also
be a corresponding transition in the bandwidths and areas under the intermediate curves.
Such a gradual rescaling guarantees a smooth transition between the various degrees of
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protanomaly (deuteranomaly) and protanopia (deuteranopia). Equations 4.17 and 4.18
model this smooth transition:

La(λ ) = α L(λ )+(1−α) 0.96 AreaL
AreaM

M(λ ) (4.17)

Ma(λ ) = α M(λ )+(1−α) 1
0.96

AreaM
AreaL

L(λ ) (4.18)

Sa(λ ) = S(λ +∆λS) (4.19)

where α = (20−∆λ )/20, for ∆λ ∈ [0,20]. Note that the 0.96 factor has been added to try
to compensate for the inaccuracies of the available data, assuming Brettel et al.’s model
as reference. As more accurate data describing the mapping from cones responses into
opponent channels and/or a more accurate reference model become available, the need
for such a factor might be eliminated.

Since there are no strong biological explanations yet to justify the causes of tritanopia
and tritanomaly, tritanomaly is simulated based on the shift paradigm only (Equation 4.19)
as an approximation to the actual phenomenon and restrain the proposed model from try-
ing to model tritanopia. Likewise, simulation of monochromacy (either rod or cone) is
not supported by this model. One should note, however, that the conditions covered by
the proposed model (i.e., anomalous trichromacy and dichromacy) correspond to approx-
imately 99.96% of all CVD cases (RIGDEN, 1999; SHARPE et al., 1999).

The actual algorithm for simulating anomalous trichromatic vision uses Equations 4.17,
4.18, and 4.19 in conjunction with Equations 4.5 to 4.11. Likewise, the simulation of
protanoptic and deuteranoptic vision is obtained using Equations 4.20 and 4.21, respec-
tively, in conjunction with Equations 4.8 to 4.11.WS(λ )

Y B(λ )
RG(λ )


protanopia

= TLMS2Opp

Lprotanope(λ )
M(λ )
S(λ )

 (4.20)

WS(λ )
Y B(λ )
RG(λ )


deuteranopia

= TLMS2Opp

 L(λ )
Mdeuteranope(λ )

S(λ )

 (4.21)

where

Lprotanope(λ ) = 0.96 AreaL
AreaM

M(λ ), (4.22)

Mdeuteranope(λ ) =
1

0.96
AreaM
AreaL

L(λ ) (4.23)

Thus, the simulation of any protan or deutan anomaly can be obtained using Equation 4.24,
where ΓCV D should be instantiated with the Γ matrix (Equation 4.10) specific for the kind
of target CVD. Rs

Gs
Bs

= Γ
−1
normal ΓCV D

R
G
B

 (4.24)

4.3 Results

The proposed model was incorporated in a visualization system and also implemented
in MATLAB. It has been used to simulate the perception of both dichromats and anoma-
lous trichromats (at different degrees of severity). The simulation operator (Equation 4.24)
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only requires one matrix multiplication per pixel and can be efficiently implemented on
GPUs.

Figure 4.9 compares the results produced by the proposed technique with the ones
obtained with the technique of Yang et al. (YANG et al., 2008) for the image shown
in Figure 4.6 (e). Note that the images simulated using Yang et al.’s technique show
some green, red and purple shades, for both protanomalous and deuteranomalous at all
degrees of severity. This is inconsistent with the perception of these individuals, who
after some degree of severity have trouble distinguishing red from green. The last column
in Figure 4.9 (Brettel) shows the results simulated using Brettel et al.’s algorithm for
comparison with the severe case (20 nm).

Figure 4.1 shows a reference image (left) and the simulated perception obtained with
the proposed model for different degrees of protanomaly (6 nm and 14 nm) and for
protanopia. Note the progressive loss of color contrast as the degree of severity increases.
Figure 4.10 shows examples of simulation of anomalous trichromatic vision in scientific
visualization. For all examples, there are simulations for both protanomalous and deuter-
anomalous vision at severity levels corresponding to 2 nm, 8 nm, 14 nm, and 20 nm.
Note how the ability to perceive red and green vanishes with the increase of the anomaly
severity.

4.3.1 Experimental Validation

To validate the proposed model, some experiments involving both normal trichromats
and color vision deficient individuals were performed. All subjects performed two rounds
of the color discrimination Farnsworth-Munsell 100-Hue (FM100H) test (FARNSWORTH,
1957). The original test consists of 85 movable color caps and four wooden boxes (trays).
One box holds 22 caps, while the other three hold 21 caps each. The tested subject must
take one box at a time and arrange its color caps in a continuous color sequence using two
extra fixed caps at opposite ends of the box as reference. The color sequences range from
red to yellow, yellow to blue-green, blue-green to blue, and blue to purple-red, respec-
tively. The 85 colors are sampled from the Munsell color system (Hue-Value-Chroma
space) with equally spaced hue values (starting at red, 5R in Munsell’s notation), and
equal saturation and brightness control (chroma 6 and value 6 in Munsell’s notation).

Each color cap is identified by an indexing number (ranging from 1 to 85) printed on
its back. After the arrangement of the caps, the color discrimination aptitude of the sub-
ject is verified by computing an error score for each color cap as the sum of the absolute
difference between its index and the index of its two adjacent neighbors. The total error
score is the sum of the individual error scores less the minimum error score of 170. A
plot like the one shown in Figure 4.11 is used to simplify the analysis. In such a plot,
the caps are numbered counterclockwise and the individual error scores are plotted ra-
dially outward from the circle with an error score of two on the inner circle. The color
discrimination aptitude of a subject is analysed over the average scores for all color caps
computed from at least two trials, a test and retest.

A computerized version of the FM100H using C++ and OpenGL was implemented.
This implementation is based on the Meyer and Greenberg’s work (MEYER; GREEN-
BERG, 1988). For the tests, 17-inch CRT flat screen monitors (model LG Flatron E701S,
1024× 768 pixels, 32-bit color, at 85 Hertz) were used. The monitors were calibrated
using a ColorVision Spyder 2 colorimeter (Gamma 2.2 and White Point 6500K). Both
calibration and tests were performed with the room lights off. Unlike Meyer and Green-
berg, one sequence of color caps was presented at a time (like in the original test). The
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Figure 4.9: Simulation of protanomalous and deuteranomalous vision for several degrees
of severity (expressed in nm). Last column: result of Brettel et al.’s algorithm for refer-
ence. P/D (Model): Protanomaly/Deuteranomaly simulated with the proposed technique.
P/D (Yang): Protanomaly/Deuteranomaly simulated with Yang et al.’s technique.

user interface consisted of a black screen having the color caps placed horizontally in the
central row. Each cap was rendered as a circle with 1 cm of diameter and could be moved
using the mouse (except the reference color caps, which are fixed). Both the presenta-
tion order of the trays of caps, and the initial arrangement of the caps in each tray were
random.

The group of normal trichromats (NTg group) consisted of 17 male subjects (ages 19
to 29). The group of the color vision deficient individuals (CV Dg group) consisted of
13 male subjects classified as follows: 4 protanomalous (ages 23 to 53), 4 protanopes
(ages 22 to 59), 3 deuteranomalous (ages 22 to 28), and 2 deuteranopes (ages 18 to 44).
The classification of the subjects in the CV Dg group was done after the application of an
Ishihara test (ISHIHARA, 1979).

Each subject in the CV Dg group performed two trials of the FM100H test using the
original colors. We then averaged the 16 results of the 8 protans (protanomalous and
protanopes) and did the same for the 10 results of the 5 deutans (deuteranomalous and
deuteranopes). The results of these averaged tests are shown in Figure 4.12 (b) and (d),
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Figure 4.10: Simulation of protanomalous and deuteranomalous vision in scientific visu-
alization. From top to bottom: brain dataset, Tornado, Scatter plot, and Cat’s Eye nebula.
The degrees of severity are expressed in nm. Last column: Brettel et al.’s dichromatic
simulation for reference. Pnomaly: Protanomaly. Dnomaly: Deuteranomaly.

for the protans and deutans, respectively.
The subjects in the NTg group were divided into two subgroups: NTgp (8 individuals,

ages 19 to 26) and NTgd (9 individuals, ages 21 to 29). Both subgroups performed two
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trials of the FM100H test using the original colors. These 34 results were averaged,
which are depicted in the plot shown in Figure 4.11. Then, the proposed model was used
to simulate how protanomalous with shifts of 12 nm, 16 nm, and 19 nm, would perceive
the original colors of the FM100H test. These sets simulated colors were called CP12nm,
CP16nm, and CP19nm, respectively. A similar simulation was performed for the case of
deuteranomalous, obtaining sets of simulated colors CD12nm, CD16nm, and CD19nm.

The subgroup NTgp then performed two trials of the FM100H test using the sets
CP12nm, CP16nm, and CP19nm, one at a time, instead of the original colors. This should sim-
ulate for the normal trichromat the perception of the corresponding degrees of protanomaly.
Figure 4.12 (a) shows a plot of averaged 48 results (8×3×2). A similar procedure was ap-
plied to the 9 members of the NTgd subgroup using the sets CD12nm, CD16nm, and CD19nm
of simulated colors. Figure 4.12 (c) shows a plot of averaged 54 results (9×3×2).

A comparison of the plots corresponding to the averaged results of the NTgp subgroup
(Figure 4.12 a) and the averaged results of the protans (Figure 4.12 b) reveals great sim-
ilarity. The small blue segment next to the yellow hue represents the eigenvector with
largest absolute eigenvalue computed for the covariance matrix of the error scores. A
comparison of the averaged results of the NTgp subgroup (Figure 4.12 c) and the averaged
results of the deutans (Figure 4.12 d) reveals an even better agreement of the correspond-
ing eigenvectors. Note how these plots are significantly different from the one shown in
Figure 4.11. These results indicate that the proposed model provides good simulations for
the color perception by individuals with color vision deficiency.

Figure 4.11: Averaged results of the Farnsworth-Munsell 100H test performed by 17
normal trichromats using the test original colors.

4.3.2 Discussion

Once incorporated into visualization systems, the proposed model can provide imme-
diate feedback to visualization designers. As such, it can be a valuable tool for the design
of visualizations that are meaningful both for individuals with normal and deficient visual
color systems. Note that although one could consider the simpler solution of just adopting
color scales that completely fit in the color gamut of dichromats, this might be unnecessar-



51

(a) (b)

(c) (d)

Figure 4.12: Averaged results of the Farnsworth-Munsell 100H test. (a) Normal trichro-
mats simulating protan vision. (b) Protan results for the original colors. (c) Normal
trichromats simulating deutan vision. (d) Deutan results for the original colors.

ily restrictive in many situations. In such cases, a larger color gamut could be exploited
to obtain more effective results, especially when dealing with multidimensional visual-
izations. The top row of Figure 4.13 compares the color gamut of normal trichromats,
protanomalous with a shift of 10 nm, and protanopes, for two slices of the HSV color
space (V=1.0 and V=0.75). Although the 10-nm protanomalous only perceive a fraction
of the HSV disks, they still have a much larger gamut than the protanopes, who only per-
ceive a line across each disk (from blue to yellow). The bottom row of Figure 4.13 shows
visualizations of the Visible Male’s head using the same transfer function defined over
the color gamut of these individuals. Note that the protanomalous’ larger color gamut in
comparison to the protanope’s lends to better color contrast. Such images were captured
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using a software for visualization by slicing of 3D texture that incorporates the proposed
model and allows switching between normal color vision and the simulation of any degree
of anomaly in real-time. The visualization system was provided by Francisco Pinto. The
appendix A show the matrices used to incorporate the proposed model in the system.

V = 1.0 V = 0.75 V = 1.0 V = 0.75 V = 1.0 V = 0.75

Normal Trichromat Protanomalous (10 nm) Protanope

Figure 4.13: Visualization of the Visible Male’s head using the same transfer function
(bottom) defined over the color gamut (top row) of a normal trichromat, a protanomalous
(10 nm), and a protanope.

The choice of an appropriate color scale for a given visualization should take into ac-
count different factors, such as characteristics of the dataset, questions that one would like
to answer about the data, the intended viewers and their cultural backgrounds (RHEIN-
GANS, 2000). Thus, the proposed model is not intended to automatically build or guide
the construction of color maps, even though it can be used to provide information for
approaches that do so (BERGMAN; ROGOWITZ; TREINISH, 1995; HEALEY, 1996;
LEVKOWITZ; HERMAN, 1992; WARE, 1988). Instead, it gives visualization designers
an understanding of the perceptual limitations of each class of CVD. As such, the pro-
posed model can help designers to refine their visualizations, making them more effective
to a wider range of viewers.

More research is needed to develop better color selection methodologies that take
into account the limitations of specific groups of observers. Healey (HEALEY, 1996)
described a technique for choosing multiple colors for use in visualization. He accom-
plished this by measuring and controlling perceptual metrics like color distance, linear
separation and color category during color selection. Healey’s technique could be used
to define sets of colors that provide good differentiation among data elements for both
normal trichromats and any given class of CVD.

4.4 Summary and Conclusions

This chapter presented a physiologically-based model for simulating color percep-
tion, and showed how it can be used to help designers to produce more effective visu-
alizations. The proposed model is the first to consistently handle normal color vision,
anomalous trichromacy, and dichromacy using a unified framework. By means of a con-
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trolled user experiment, it was demonstrated that the results produced by the proposed
model seem to closely match the perception of individuals with color vision deficiency. It
has also compared the proposed model’s results to the ones obtained with existing mod-
els for simulating the perception of anomalous trichromats (YANG et al., 2008) and of
dichromats (BRETTEL; VIÉNOT; MOLLON, 1997). Such comparisons indicate that the
model’s results are superior to the ones of Yang et al. (YANG et al., 2008) for anomalous
trichromacy, and equivalent to the ones of Brettel et al. (BRETTEL; VIÉNOT; MOLLON,
1997) for the case of dichromacy.

The proposed model also provides a flexible framework for allowing scientists to test
different hypotheses about color vision models. This chapter has shown how the plau-
sibility of the three most accepted hypotheses for the causes of dichromatic vision were
tested. While it is difficult to verify such hypotheses in vivo, the proposed model suggests
that pigment substitution is the most plausible one. Moreover, it indicates that pigment
substitution would require a renormalization of the spectral sensitivity curve of the af-
fected cones. Such an observation, not yet reported in the vision literature, if verified,
would provide some strong evidence in favor of the correctness of the proposed model.
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5 A REAL-TIME TEMPORAL-COHERENT COLOR CON-
TRAST ENHANCEMENT FOR DICHROMATS

This chapter presents a real-time technique for enhancing color contrast for dichro-
mats that guarantees temporal coherence and preserves achromatic colors (gray shades).
The cost of this approach is linear on the number of input pixels, and most of the compu-
tation can be performed independently for each pixel, lending to an efficient GPU imple-
mentation. This chapter demonstrates the effectiveness of the proposed approach by using
it to obtain real-time, temporal-coherent, high-quality visualizations for dichromats.

The proposed approach uses the Gaussian pairing technique of Grundland and Dogdson
(GRUNDLAND; DODGSON, 2007) for acceleration. However, it differs from their ap-
proach in many fundamental aspects. First, it is dealing with recoloring for dichromats, as
opposed to color-to-grayscale mappings. Second, it performs all the computation in the
L∗a∗b∗ color space, which is an approximately perceptually uniform color space, where
it makes sense to use distances to represent perceptual differences. Third, it uses PCA,
an established technique for estimating the direction of maximum variance in a given
dataset, to compute the direction vab that maximizes the loss of color contrast (in a least-
squares sense) in the chromaticity plane (i.e., a∗b∗ plane). Fourth, it uses the coordinates
of the projected colors onto the plane defined by vab and the L∗ axis as the transformed
color coordinates, as opposed to using them to complement the original luminance val-
ues. And finally, this approach presents temporal coherence, which is not supported by
the technique described in (GRUNDLAND; DODGSON, 2007).

Figure 5.1 illustrates some results generated by the proposed technique and compares
them with the ones produced by the state-of-the-art technique for image recoloring for
dichromats (KUHN; OLIVEIRA; FERNANDES, 2008a). The reference images repre-
sent the perception of normal trichromats. The column Dichromat shows the simulated
perceptions of dichromats for the corresponding reference images. The next two columns
show the recolored images obtained using the proposed technique and its exaggerated
contrast version, respectively. The two remaining columns show the results produced by
the regular and by the exaggerated-contrast versions of the recoloring technique of Kuhn
et al. (KUHN; OLIVEIRA; FERNANDES, 2008a). Note how the proposed technique can
satisfactorily recover the contrast lost by dichromats.

The main contributions of this chapter include:

• The first contrast-enhancement image-recoloring technique for dichromats that pro-
duces high-quality results in real time (Section 5.1). This solution scales well with
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Figure 5.1: Comparison of the results produced by the proposed recoloring technique
and by Kuhn et al.’s (KUHN; OLIVEIRA; FERNANDES, 2008a) for a set of scientific
visualization images. The "Dichromat" column shows the simulated perception of dichro-
mats for the corresponding "Reference" image obtained using the approach presented in
Chapter 4 The simulation and recolorings of the Flame and Nebula images are for deuter-
anopes, while the Tornado ones are for protanopes.

the number of input pixels, can be efficiently implemented on GPUs, and preserves
achromatic colors;
• A technique that enforces temporal coherence in the recolored image sequences

(Section 5.1.4);
• The first demonstration of a visualization application with support for real-time

high-quality image recoloring for dichromats (Section 5.2);

5.1 The Color-Contrast Enhancing Technique

The proposed approach is based on the key observation that, whenever dichromats
experience some significant loss of color contrast, most of this contrast can be recovered
by working on a perceptually uniform color space, and orthographically projecting the
original colors onto a plane aligned with the direction that maximizes contrast loss (in
a least-squares sense). The coordinates of these projections then become the new color
coordinates on the reduced (2D) color gamut of the dichromat. Figure 5.3 summarizes
this process, which consists of the following steps:

1. Estimation of the vector vab that represents the direction that maximizes contrast
loss in the CIE L∗a∗b∗ chromaticity plane, and

2. Projection of the original colors onto the plane defined by vab and the lightness (L∗)
axis. The projected color coordinates are then rotated around L∗ to align themselves
to the plane of the dichromat, and the resulting colors are used to recolor the image.

In order to guarantee temporal coherence, the algorithm checks and corrects for abrupt
changes in the sense of vab. Sections 5.1.1 to 5.1.4 present the details of these steps.
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(a) (b) (c)

Figure 5.2: Planar approximation for the color gamut of dichromats in the CIE L∗a∗b∗

color space (KUHN; OLIVEIRA; FERNANDES, 2008a). (a) Protanope (θp =−11.48◦).
(b) Deuteranope (θd =−8.11◦). (c) Tritanope (θt = 46.37◦).

5.1.1 Direction that Maximizes Contrast Loss

The color gamut of each class of dichromats can be represented by two half-planes
in the LMS color space (BRETTEL; VIÉNOT; MOLLON, 1997), and can be satisfac-
torily approximated by a single plane (VIÉNOT; BRETTEL; MOLLON, 1999). Fig-
ure 5.2 shows these planes mapped to the CIE L∗a∗b∗ color space. According to Kuhn
et al. (KUHN; OLIVEIRA; FERNANDES, 2008a), the angles between such planes and
the L∗b∗ plane are θp =−11.48◦, θd =−8.11◦, and θt = 46.37◦, for protanopes, deuter-
anopes, and tritanopes, respectively. The colors shown in Figure 5.2 represent the actual
color gamut for each class of dichromacy.

Computing the direction that maximizes the loss of local contrast (in the least-squares
sense) for a dichromat observing an image I would require evaluating, for each pixel
pi ∈ I, the contrast lost between pi and all pixels p j in a neighborhood Ni around pi.
However, due to spatial coherence, neighbor pixels tend to have similar values. Thus,
estimating the loss of local contrast for each pixel pi against all pixels in Ni tends to result
in a significant amount of redundant work. The proposed approach avoids performing this
computation on the entire neighborhood Ni by resorting to the Gaussian pairing sampling
technique of Grundland and Dogdson (GRUNDLAND; DODGSON, 2007). In this case,
for each pixel pi, its contribution to the loss of local contrast is estimated from a single
neighbor p j. The horizontal and vertical distances between pi and p j are randomly de-
fined by univariate Gaussian distributions with zero mean and variance (2/π)σ2, where
σ2 =

√
2min(width,height) (GRUNDLAND; DODGSON, 2007), the function min(a,b)

returns the minimum of a and b, and width and height are the dimensions of the image.
Although the direction of maximum loss of local color contrast obtained using this sam-
pling strategy differs from the one computed using the entire neighborhoods, due to spatial
coherence these directions tend to be sufficiently close to each other. To avoid flickering
during the recoloring of animated or video sequences (Section 5.1.4), it pre-computes the
coordinates of the p js and stores them in a texture. The same pairs (pi, p j) are then used
during the entire sequence.

Figures 5.3 (a) and (b) illustrate the process of computing the direction that max-
imizes the loss of contrast for two pairs of colors, (c1,c2) and (c3,c4), represented as
small spheres in the L∗a∗b∗ color space. c′1 to c′4 are the projections of colors c1 to c4,
respectively, on the dichromat’s plane, and represent his/her perception of colors c1 to c4
(Figure 5.3(a)). Since L*a*b* is approximately perceptually uniform, the relative loss of
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color contrast experienced by a dichromat observing a pair of colors (ci,c j) (with respect
to a normal color vision observer) can be estimated as

l(ci,c j) =
‖ci− c j‖−‖c′i− c′j‖

‖ci− c j‖
, (5.1)

where ‖.‖ is the vector length operator. For this pair of colors, the direction of contrast
loss is given by ϑi j = ci− c j. Since it preserves the lightness coordinate (i.e., L∗) of the

(a) (b) (c) (d)

Figure 5.3: The steps of the proposed recoloring algorithm. (a) Colors c1 to c4 are per-
ceived by a dichromat as c′1 to c′4, respectively (their projections on the dichromat’s gamut
plane). The relative loss of contrast experienced by a dichromat for a pair of colors (ci,c j)
is given by l(ci,c j) = (‖ci−c j‖−‖c′i−c′j‖)/(‖ci−c j‖), which happens along the direction
ϑi j = ci− c j. (b) Direction vab (shown in blue) that maximizes the loss of local contrast
(in a least-square sense) is computed as the main eigenvector of the matrix MT M, where
M is defined in Equation 5.2. (c) Projection of the original colors on the plane defined by
vab and L∗. (d) Final colors obtained after rotating the projected colors c′′k in (c) around
L∗ so that they align with the dichromat’s plane.

original colors to avoid polarity reversal (KUHN; OLIVEIRA; FERNANDES, 2008a), it
suffices to compute the direction that maximizes contrast loss on the chromaticity plane.
Computing it in the entire L∗a∗b∗ space does not improve the results, and would require
finding the eigenvectors of a 3× 3 matrix instead of a 2× 2. Thus, let wi = l(ci,c j)ϑi j be
the vector representing the contrast loss along direction ϑi j associated to pixel pi. Also
let

M =


wa∗

1 wb∗
1

wa∗
2 wb∗

2
. . . . . .

wa∗
n wb∗

n

 (5.2)

be a matrix whose rows contain the coordinates of the chromaticity vectors representing
the loss of color contrast for all pixels in image I. The elements of the i-th row of M are
the projections of wi on the a∗b∗ plane. vab can then be obtained as the eigenvector of
the 2×2 matrix MT M whose corresponding eigenvalue has the largest absolute value. In
order to solve the resulting characteristic equation, it sets the b∗ coordinate of vab to one
and solve for its a∗ coordinate.

5.1.2 Computing the Final Colors

When a dichromat experiences a significant loss of color contrast, the orthographic
projection of the original colors onto the plane defined by the vectors L∗ and vab tends to
spread these colors more than when they are projected onto the dichromat’s plane. This
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situation is illustrated on Figures 5.3 (a) and (c). If the spatial relationship among the
projected colors onto the L∗-vab plane is transfered to the dichromat’s plane, an image with
better color contrast will be produced. This is achieved by rotating the projected colors
around the L∗ axis so that they now align with the plane of the dichromat. Figure 5.3 (d)
illustrates this operation, which preserves the achromatic colors from the original image.

5.1.3 Exaggerated Contrast

As one maps the RGB cube to the L∗a∗b∗ color space, the maximum length of the re-
sulting chromaticity vectors is 148.47. Thus, it obtains images with exaggerated contrast,
similar to the ones produced by Kuhn et al.’s technique, simply by rescaling all chro-
maticity coordinates in the recolored image so that its maximum chroma becomes 148.
However, this is not the preferred use for the proposed technique, as images produced
with exaggerated contrast tend to contain higher perceptual distortions than images ob-
tained using the regular recoloring technique. Recolorings with exaggerated contrast are
shown in Figures 5.1, 5.4 and 5.8 for the sake of comparison.

5.1.4 Enforcing Temporal Coherence

Temporal coherence is an important requirement for image-recoloring techniques, as
subtle changes in the color of an object during an interactive visualization session or
animation can be quite disturbing. This section explains how the proposed technique
enforces temporal coherence.

If the direction of vab is almost parallel to the a∗ axis, a minor change in the input
colors might imply a switch in the sign of vab’s small b∗ component (see Figure 5.3(b)).
However, for the solution of the characteristic equation associated with the computation
of vab, it was arbitrated its b∗ component to 1 (Section 5.1.1), as one possible way to avoid
the trivial solution vab = 0. This constrains vab’s b∗ component to be positive, causing its
a∗ component to change its sign to accommodate the change in vab’s direction. Such
a change would cause recolored pixels to abruptly change colors between consecutive
frames (e.g., blue pixels would turn yellow, and vice versa). To avoid the occurrence
of these artifacts during an interactive visualization session (or animation) it saves the
vector vab of the current frame and using it for comparison in the next frame. As the
angle between the previous and current vectors approaches 180◦, it inverts the sense of
the current vab to enforce color consistency. Although simple, this is an effective solution.

5.2 Results

The described technique was implemented both for CPU and for GPU, using C++
and GLSL, and these implementations were used to recolor a large number of images.
The GPU implementation was integrated with an existing visualization application using
a minimally invasive approach. In this session, the performance and quality of the results
produced by our technique are compared with the ones obtained with the approach of
Kuhn et al. (KUHN; OLIVEIRA; FERNANDES, 2008a), which is currently the state-of-
the-art both in terms of performance and image quality. One should note that all recolored
images shown in the chapter are perceived similarly both by the class of dichromats they
were recolored for and by normal color vision individuals. This comes from the fact
that all colors used for recoloring are on the dichromat’s plane, which is a subset of the
color gamut of a normal trichromat. Also, all images exemplifying results of Kuhn et al.’s
techniques (regular and exaggerated contrast) were generated with a CPU implementation
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Figure 5.4: Comparison of the results produced by the proposed technique and by Kuhn et
al.’s. First row, from left to right: reference image, simulated perception of a deuteranope,
and recolored images using various algorithms. Second row: Perceptual errors according
to the DRIM metric. Third row: Local contrast differences according to the RMS met-
ric of Equation 5.3 (for k = 100). According to both metrics, the proposed recoloring
technique is less prone to noticeable changes in contrast.

based on K-means (with up to 128 clusters) in order to obtain the best possible image
quality. The results reported in this chapter were obtained using a Core 2 Extreme 3.0
GHz PC with 8 GB of memory and a Quadro FX 5800 graphics card.

The quality of the results was assessed using both subjective comparison and a per-
ceptual image quality metric. For this, it was used the dynamic range independent image
quality metric (DRIM) of Aydin et al. (AYDIN et al., 2008). DRIM uses a model of the
human visual system to try to detect visible changes in image structure. Figures 5.1, 5.4,
and 5.8 show results produced by the proposed technique and compare them with the ones
obtained with Kuhn et al.’s approach. In these figures, the reference images illustrate the
perception of normal trichromats. The column Dichromat shows the simulated perception
of dichromats obtained with the algorithm proposed in chapter 4. The remaining columns
present the recolored images obtained using the proposed recoloring technique, an exag-
gerated contrast version of it, Kuhn et al.’s (KUHN; OLIVEIRA; FERNANDES, 2008a)
technique, and its exaggerated contrast version, respectively. The reference images are
from different sources. They illustrate cases of effective visualizations for normal trichro-
mats, but which are challenging for individuals with CVD. As such, they provide good
test cases for the proposed technique. Most of these images (Flame, Brain, Knee, Foot,
Europe and Chart) have also been used by Kuhn et al. (KUHN; OLIVEIRA; FERNAN-
DES, 2008a).

Figure 5.4 shows the results obtained when recoloring the reference Brain image for
deuteranopes. The second row shows their corresponding color-coded perceptual errors
according to DRIM (using its default parameters), computed with respect to the refer-
ence image. Green indicates loss of contrast, blue represents contrast amplification, and
red shows regions with contrast reversal. The more saturated the colors, the higher the
probability of a human observer perceiving these changes in contrast. The DRIM results
suggest that the metric cannot fully capture contrast changes that result purely from image
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Figure 5.5: Recoloring of information visualization images for protanopes. Reference
images are from (WIKIMEDIA COMMONS, 2010).

recoloring.

Figure 5.6: Integration of the proposed technique with an existing visualization appli-
cation. (left) Reference image as perceived by an individual with normal color vision.
(center) Simulation of the perception of a deuteranope for the reference image using the
model explained in chapter 4. (right) Recolored image for a deuteranope using the pro-
posed technique.

In order to complement DRIM’s results, it was defined a simple error metric that tries
to capture local differences in color contrast between pairs of images. Such a metric con-
sists in computing a root-mean-square (RMS) error across corresponding neighborhoods
in the (pair of) images using the L∗a∗b∗ color space. Although it produces plausible
results, this metric has not been formally validated as a perceptual error metric. The pro-
posed RMS metric is defined as follows: let pi ∈ Ire f be a pixel in the reference image
Ire f , and let Spi = {p j, p j+1, ..., p j+k−1} be the set of pixels also in Ire f in a neighborhood
containing k pixels centered at pi. Likewise, let qi ∈ Itest be the pixel corresponding to
pi in the test image Itest , and let Sqi = {q j,q j+1, ...,q j+k−1} be the set of pixels in the
corresponding k-neighborhood around qi. The difference of local color contrast between
Ire f and Itest at pi and qi can be expressed as

RMS(qi) =

√√√√1
k

j+k−1

∑
s= j

(
(pi− ps)− (qi−qs)

160

)2

. (5.3)
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The constant 160 in the denominator keeps the resulting value in the [0,1] range. The
third row of Figure 5.4 shows the resulting error images obtained applying Equation 5.3
to the foreground pixels of the images in the first row (with respect to the reference one).
The value 0 is shown in white, and darker shades of blue indicate bigger errors. Note how
these errors vary more smoothly over the images. According to both metrics, the results
produced by the proposed technique are less prone to noticeable changes in contrast than
the regular and exaggerated versions of Kuhn et al.’s technique.

Figure 5.8 compares results of the proposed technique and Kuhn et al.’s for three
medical visualization images. Again, for these examples, the proposed recoloring tech-
nique introduced less contrast distortions than both the regular and exaggerated versions
of Kuhn et al.’s approach. Kuhn et al.’s technique (KUHN; OLIVEIRA; FERNANDES,
2008a) is based on the more sounding principle of estimating perceptual differences be-
tween pairs of colors in the reference image, and using an optimization procedure to try
to enforce such differences in the recolored image. In practice, however, the optimization
often is not able to recover the optimal contrast due to the occurrence of local minima.
This explains the results shown in Figures 5.1, 5.4, and 5.8. The proposed projection-
based approach, on the other hand, tend to produce good results whenever a dichromat
experiences significant loss of color contrast.

Figures 5.5 shows the proposed technique’s and Kuhn et al.’s results for two infor-
mation visualization examples. In this case, only the results of the regular recoloring
techniques are shown. Table 5.1 summarizes the performance of the proposed approach
in comparison to both the CPU and GPU versions of Kuhn et al.’s approach for seven
images shown in this chapter. The entries in the table are ordered by the number of pixels
in the images. One can observe that both versions of the proposed technique are up to
two orders of magnitude faster than Kuhn et al.’s counterparts on images up to 800×800
pixels. Since the cost of the proposed algorithm is linear on the number of pixels, the
achieved speedup improves as the image size increases. Although Kuhn et al.’s mass-
spring optimization applied to a set of quantized colors is quite efficient, it still requires
a quantization and a reconstruction steps, which dominate the total cost of the algorithm.
Table 5.2 summarizes these costs for some of the images shown in the paper, considering
the two quantization and reconstruction strategies described by the authors.

Image (size)
CPU GPU

This Kuhn This Kuhn
Time Time Time Time

Flame (288x184) 0.055 1.148 0.019 0.121
Chart (500x300) 0.191 2.707 0.020 0.106
Foot (446x446) 0.252 3.743 0.021 0.307
Brain (532x523) 0.292 5.053 0.023 0.577
Knee (528x528) 0.341 5.217 0.022 0.313
Europe (596x486) 0.385 5.361 0.023 0.565
Nebula (800x800) 0.614 11.73 0.028 1.145

Table 5.1: Performance comparison (in sec.) of the proposed technique and Kuhn et
al.’s (KUHN; OLIVEIRA; FERNANDES, 2008a) for both CPU and GPU versions of the
algorithms executed on several images. Due to the linear cost of the proposed approach,
the relative speedup improves as the image size increases.
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Image (size) Clusters Quant. Reconst.
time time

Flame (288x184) 88 0.9363 0.0027

K
-M

ea
nsFoot (446x446) 78 3.5055 0.0082

Europe (596x486) 70 5.1130 0.0115
Nebula (800x800) 98 11.2448 0.0255
Flame (288x184) 77 0.0155 0.0857

U
ni

fo
rmFoot (446x446) 48 0.0670 0.2764

Europe (596x486) 48 0.0978 0.5356
Nebula (800x800) 74 0.2120 1.1130

Table 5.2: Times (in sec.) for the quantization and reconstruction phases of the technique
of Kuhn et al. (KUHN; OLIVEIRA; FERNANDES, 2008a) for several images. K-means
used in the CPU version of the technique, and uniform quantization used in its GPU
version. The column Clusters shows the number of clusters identified in the quantization
phase.

Reference Deuteranope Recolor (Ours) Exag. (Ours) Recolor (Kuhn) Exag. (Kuhn)

Pi
nk

H
ea

d

Figure 5.7: Example of a situation that causes the proposed technique to fail. Note that
deuteranopes (and protanopes) already perceive the reference image as having sufficient
contrast, and no recoloring is necessary.

The proposed technique can be easily integrated with existing applications using a
minimally invasive approach. It can be deployed as a few shader programs, which the
application should call after rasterizing the scene, but before swapping the back and front
buffers. In this case, the shaders simply read the content of the back buffer, recolor it, and
write it back, after which the host application swaps the buffers. This strategy was used
to integrate the proposed technique to an existing visualization application. Figure 5.6
shows some snapshots of the resulting system.

5.2.1 Limitations

Like all previous image-recoloring techniques for dichromats, this one also has some
limitations. For example, let d be the direction of maximum dispersion of the original
colors in image I (in L∗a∗b∗). If vab is approximately perpendicular to d and the color
dispersion along d is larger than along vab, the recolored image should exhibit less contrast
than the original one. In practice, this requires that the loss of contrast be small, meaning
that the dichromat could already perceive the details in the original image. In such a
situation, there would be no need for recoloring in the first place. Figure 5.7 illustrates
this situation with an image whose colors were carefully chosen to achieve this effect.
According to some experiences, such cases should happen only rarely. To handle them,
the user can turn the proposed recoloring technique on and off at any time during an
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interactive session.
Although this technique preserves gray shades, it does not provide a mechanism for

preserving other colors perceived similarly by dichromats and normal color vision indi-
viduals, as does the technique described in (KUHN; OLIVEIRA; FERNANDES, 2008a).
Also, as a fundamental limitation of the reduced color gamut of dichromats, no technique,
including this, can fully recover the lost contrast in all situations.

Reference Dichromat Recolor (This) Exag. (This) Recolor (Kuhn) Exag. (Kuhn)
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d
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E
rr
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R
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Figure 5.8: Comparison of the results produced by the proposed technique and the ones
obtained with Kuhn et al.’s approach for a set of medical visualization images. The even
rows show the estimated changes in contrast perceived by an observer in the recolored
images (with respect to the reference images), according to the DRIM metric. Green
indicates loss of contrast, blue represents contrast amplification, and red shows regions
with contrast reversal. The metric favors the proposed technique’s results in all examples.
Reference images Knee and Foot were provided by Francisco Pinto.
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5.3 Summary and Conclusions

This chapter presented the first technique to provide real-time, temporal-coherent,
high-quality image recoloring for dichromats. Its computational cost varies linearly with
the number of input pixels, and it can be efficiently implemented on GPUs. It has shown
that the results produced by the proposed technique are at least as good as the ones ob-
tained with the current state-of-the-art technique, while being up to two orders of mag-
nitude faster. It has also shown how to integrate the proposed technique with existing
applications using a minimally invasive strategy, and demonstrated its effectiveness pro-
ducing real-time visualizations for dichromats.

The results of the proposed approach should enable the development of more user-
friendly applications for individuals with color vision deficiency. For instance, the low
computational cost of this technique makes it a suitable solution for implementation on
cell phones and other mobile devices equipped with cameras. On such devices, the recol-
oring capabilities of this technique can be a useful tool for assisting color vision deficient
individuals in several daily tasks.
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6 CONCLUSIONS AND FUTURE WORK

Color vision deficiency impacts the professional and personal lives of approximately
two hundred million individuals around the world. Thus, it is essential to deeply un-
derstand this condition and provide solutions that improve the quality of life of these
individuals, as well as their accessibility to technology.

This thesis presented a physiologically-based model of human color vision that allows
the simulation of the perception of individuals with CVD. This approach was the first
to correctly simulate both dichromacy and anomalous trichromacy in a unified model.
Moreover, this simulation technique is capable to simulate the perception of about 99.96%
of all cases of color vision deficiency.

This thesis also presented a recoloring technique for dichromats, which is the first
to perform high-quality recoloring in real-time and also the first to guarantee temporal
coherence. This technique can be integrated in real-time applications and support video
recoloring.

Visualizations (information, scientific, and medical) can contain ambiguous contents.
Thus, this thesis presented the successful integration of both proposed techniques with a
visualization system as a way to demonstrate the practical applications of the models and
algorithms proposed in this thesis.

6.1 Future Work

Image-recoloring techniques for dichromats arose from the feedback obtained with
techniques for simulation of dichromats perception. Even though, recoloring for dichro-
mats was proven to produce effective results also for anomalous trichromats (KUHN;
OLIVEIRA; FERNANDES, 2008a), a recoloring technique specific for anomalous trichro-
mats has never been investigated, and could result in better solutions for these individuals.
Now, with the model proposed in Chapter 4, it is possible to simulate the perception of not
only dichromats but also anomalous trichromats. Thus, a possible future work consists of
image recoloring specifically for anomalous trichromats. The suggestion of recoloring al-
gorithm for anomalous trichromats based on the proposed model consists of the following
steps:

1. Conversion of every color ci ∈ C to a perceptually uniform color space (e.g., CIE
L∗a∗b∗), where C is the set of all input colors;

2. analysis of distances between all pairs of colors (ci,c j) in the perceptually uniform
color space;

3. compute the set of simulated colors si using the proposed model;
4. optimization of all pairs of simulated colors (si,s j) aiming to reproduce the original



68

distances between the pairs (ci,c j) constraining the colors to the ones belonging to
the gamut of the anomalous trichromat;

5. conversion of the optimized colors back to RGB color space;
6. and compute the final recolored colors ri by applying the inverse of the simulation

matrix to each optimized colors.

The step 4 has been described superficially due to some details that are not yet well de-
fined. Essentially, this step consists of an optimization algorithm and a method to con-
straint the colors to the gamut of anomalous trichromats in a perceptually uniform color
space. A possibility for optimization would be the mass-spring system algorithm which
was similarly proposed by Kuhn et al. (KUHN; OLIVEIRA; FERNANDES, 2008a).
Kuhn et al.’s approach is directed for dichromats, therefore they proposed an uni-dimensional
optimization and, based on the report of Viénot et al. (VIÉNOT; BRETTEL; MOLLON,
1999), approximated the gamut of dichromats to a single plane in CIE L∗a∗b∗ color
space. For anomalous trichromats the optimization should be at least bi-dimensional and a
straightforward method of constraining the colors to the gamut of anomalous trichromats
in CIE L∗a∗b∗ was not defined yet.
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APPENDIX A PRE-COMPUTED MATRICES FOR SIMU-
LATION OF CVD

According to the model presented in this thesis the simulation of the perception of
individuals with CVD is given by a single matrix multiplication ΦCV D as in Equation A.1
below. The RGB vector on the right represents the reference RGB color, which is multi-
plied by the matrix ΦCV D to compute the simulated color RsGsBs.Rs

Gs
Bs

= ΦCV D

R
G
B

 (A.1)

This matrix can be computed for all severities of protanomaly, deuteranomaly, and
tritanomaly. Aiming efficiency, one can pre-compute the matrices for many severities
and use them in the application allowing to switching between many severities and types
of CVDs. Table A.1 contains a set of pre-computed matrices for severities in the range
[0.0,1.0] where 1.0 represents the highest severity or a case of dichromacy, and 0.0 repre-
sents absence of CVD (identity matrix).

The matrices in Table A.1 were computed for severities growing with a step of 0.1. If
you want to simulate colors with higher precision severities values, for example, a severity
of 0.873, you can use the model in the article to compute the specified matrix. This is the
most accurate approach, but it is also possible to interpolate between the two matrices
with nearest severities. For example, to compute the matrix for a case of severity 0.873,
the matrices 0.8 and 0.9 can be interpolated with a weight of 0.73. This approach is a fast
approximation and also very accurate for a set of pre-computed matrices with severity
step of 0.1.
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Table A.1: Simulation matrices ΦCV D

Severity Protanomaly Deuteranomaly Tritanomaly

0.0

 1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000

  1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000

  1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000



0.1

 0.856 0.182 −0.038
0.029 0.955 0.016
−0.003 −0.002 1.004

  0.866 0.178 −0.044
0.050 0.939 0.011
−0.003 0.007 0.996

  0.927 0.093 −0.019
0.021 0.965 0.014
0.008 0.055 0.937



0.2

 0.735 0.335 −0.070
0.052 0.919 0.029
−0.005 −0.004 1.009

  0.761 0.319 −0.080
0.091 0.889 0.020
−0.006 0.013 0.993

  0.896 0.133 −0.029
0.030 0.945 0.025
0.013 0.105 0.882



0.3

 0.630 0.466 −0.096
0.069 0.890 0.041
−0.006 −0.008 1.014

  0.675 0.434 −0.109
0.125 0.848 0.027
−0.008 0.019 0.989

  0.906 0.128 −0.034
0.027 0.941 0.032
0.013 0.148 0.838



0.4

 0.539 0.579 −0.118
0.083 0.866 0.051
−0.007 −0.012 1.019

  0.606 0.529 −0.134
0.155 0.812 0.032
−0.009 0.023 0.986

  0.948 0.089 −0.038
0.014 0.947 0.039
0.011 0.194 0.795



0.5

 0.458 0.680 −0.138
0.093 0.846 0.061
−0.007 −0.017 1.024

  0.547 0.608 −0.155
0.182 0.782 0.037
−0.010 0.027 0.983

  1.017 0.027 −0.044
−0.006 0.958 0.048
0.006 0.249 0.745



0.6

 0.385 0.769 −0.154
0.101 0.830 0.070
−0.007 −0.022 1.030

  0.499 0.675 −0.174
0.205 0.755 0.040
−0.011 0.031 0.980

  1.105 −0.047 −0.058
−0.032 0.972 0.061
0.001 0.318 0.681



0.7

 0.320 0.850 −0.169
0.106 0.816 0.078
−0.007 −0.028 1.035

  0.458 0.732 −0.190
0.226 0.731 0.043
−0.012 0.034 0.977

  1.193 −0.110 −0.083
−0.058 0.979 0.079
−0.002 0.403 0.599



0.8

 0.259 0.923 −0.182
0.110 0.804 0.085
−0.006 −0.034 1.041

  0.423 0.781 −0.204
0.246 0.710 0.045
−0.012 0.037 0.974

  1.258 −0.140 −0.118
−0.078 0.975 0.103
−0.003 0.501 0.502



0.9

 0.204 0.990 −0.194
0.113 0.795 0.092
−0.005 −0.041 1.046

  0.393 0.824 −0.217
0.264 0.690 0.046
−0.012 0.040 0.972

  1.279 −0.125 −0.154
−0.085 0.958 0.127
−0.001 0.601 0.400



1.0

 0.152 1.053 −0.205
0.115 0.786 0.099
−0.004 −0.048 1.052

  0.367 0.861 −0.228
0.280 0.673 0.047
−0.012 0.043 0.969

  1.256 −0.077 −0.179
−0.078 0.931 0.148
0.005 0.691 0.304


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APPENDIX B EXPERIMENTAL DATA

The model for simulating the perception of individuals with CVD presented in this
thesis uses as resource data the spectral power distribution (SPD) of an typical CRT
monitor (Table B.1) and the spectral sensitivity functions of cone cells of individuals
with normal color vision (Table B.2). Such data were obtained with the Psychtool-
box (BRAINARD, 1997) which is a set of data and functions for vision research. The
data for cone cells sensitivity functions refers to the data reported after Smith and Poko-
rny (SMITH; POKORNY, 1975) and were used to simulate CVD as explained in Chap-
ter 4.
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Table B.1: SPD of a typical CRT display (BRAINARD, 1997).
Wavelength Red Green Blue Wavelength Red Green Blue

380 0.0025 0.0018 0.0219 585 0.1220 0.1769 0.0051
385 0.0017 0.0016 0.0336 590 0.1861 0.1407 0.0047
390 0.0017 0.0020 0.0524 595 0.2173 0.1155 0.0043
395 0.0011 0.0021 0.0785 600 0.0777 0.0938 0.0029
400 0.0017 0.0025 0.1130 605 0.0531 0.0759 0.0023
405 0.0028 0.0030 0.1624 610 0.2434 0.0614 0.0036
410 0.0037 0.0043 0.2312 615 0.5812 0.0522 0.0061
415 0.0046 0.0059 0.3214 620 0.9354 0.0455 0.0088
420 0.0064 0.0079 0.4263 625 1.6054 0.0437 0.0141
425 0.0079 0.0104 0.5365 630 0.6464 0.0278 0.0060
430 0.0094 0.0126 0.6296 635 0.1100 0.0180 0.0015
435 0.0105 0.0147 0.6994 640 0.0322 0.0136 0.0008
440 0.0113 0.0170 0.7470 645 0.0207 0.0107 0.0006
445 0.0115 0.0191 0.7654 650 0.0194 0.0085 0.0006
450 0.0113 0.0220 0.7519 655 0.0196 0.0067 0.0007
455 0.0113 0.0267 0.7151 660 0.0166 0.0055 0.0006
460 0.0115 0.0340 0.6619 665 0.0173 0.0044 0.0005
465 0.0164 0.0462 0.5955 670 0.0220 0.0039 0.0006
470 0.0162 0.0649 0.5177 675 0.0186 0.0033 0.0005
475 0.0120 0.0936 0.4327 680 0.0377 0.0030 0.0007
480 0.0091 0.1345 0.3507 685 0.0782 0.0028 0.0010
485 0.0119 0.1862 0.2849 690 0.0642 0.0023 0.0010
490 0.0174 0.2485 0.2278 695 0.1214 0.0028 0.0016
495 0.0218 0.3190 0.1809 700 0.7169 0.0078 0.0060
500 0.0130 0.3964 0.1408 705 1.1098 0.0113 0.0094
505 0.0123 0.4691 0.1084 710 0.3106 0.0039 0.0030
510 0.0260 0.5305 0.0855 715 0.0241 0.0011 0.0007
515 0.0242 0.5826 0.0676 720 0.0180 0.0009 0.0009
520 0.0125 0.6195 0.0537 725 0.0149 0.0008 0.0008
525 0.0119 0.6386 0.0422 730 0.0108 0.0009 0.0011
530 0.0201 0.6414 0.0341 735 0.0097 0.0011 0.0010
535 0.0596 0.6348 0.0284 740 0.0091 0.0009 0.0010
540 0.0647 0.6189 0.0238 745 0.0093 0.0010 0.0012
545 0.0251 0.5932 0.0197 750 0.0083 0.0011 0.0013
550 0.0248 0.5562 0.0165 755 0.0073 0.0013 0.0012
555 0.0325 0.5143 0.0143 760 0.0081 0.0015 0.0016
560 0.0199 0.4606 0.0119 765 0.0067 0.0018 0.0015
565 0.0161 0.3993 0.0099 770 0.0070 0.0021 0.0028
570 0.0128 0.3297 0.0079 775 0.0073 0.0015 0.0046
575 0.0217 0.2719 0.0065 780 0.0066 0.0018 0.0058
580 0.0693 0.2214 0.0057
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Table B.2: Spectral sensitivity functions of cone types concerning normal trichromats
(after Smith and Pokorny (SMITH; POKORNY, 1975)).

Wavelength L Cone M Cone S Cone Wavelength L Cone M Cone S Cone
380 0.0000 0.0000 0.0000 585 0.9340 0.5640 0.0010
385 0.0000 0.0000 0.0000 590 0.8940 0.4770 0.0008
390 0.0000 0.0000 0.0000 595 0.8480 0.3930 0.0007
395 0.0000 0.0000 0.0000 600 0.7950 0.3180 0.0006
400 0.0027 0.0028 0.1080 605 0.7350 0.2500 0.0005
405 0.0044 0.0047 0.1790 610 0.6700 0.1930 0.0003
410 0.0069 0.0077 0.2850 615 0.6020 0.1470 0.0002
415 0.0108 0.0124 0.4530 620 0.5300 0.1100 0.0002
420 0.0158 0.0189 0.6590 625 0.4540 0.0808 0.0001
425 0.0200 0.0254 0.8130 630 0.3800 0.0583 0.0001
430 0.0233 0.0317 0.9080 635 0.3150 0.0418 0.0001
435 0.0268 0.0395 0.9770 640 0.2560 0.0296 0.0001
440 0.0301 0.0477 1.0000 645 0.2040 0.0207 0.0000
445 0.0324 0.0555 0.9700 650 0.1590 0.0144 0.0000
450 0.0343 0.0635 0.9100 655 0.1220 0.0101 0.0000
455 0.0368 0.0731 0.8500 660 0.0914 0.0070 0.0000
460 0.0412 0.0860 0.7990 665 0.0670 0.0049 0.0000
465 0.0502 0.1070 0.7750 670 0.0482 0.0033 0.0000
470 0.0627 0.1300 0.6890 675 0.0350 0.0023 0.0000
475 0.0798 0.1570 0.5820 680 0.0257 0.0016 0.0000
480 0.1020 0.1890 0.4680 685 0.0180 0.0011 0.0000
485 0.1280 0.2240 0.3620 690 0.0124 0.0008 0.0000
490 0.1620 0.2670 0.2760 695 0.0087 0.0005 0.0000
495 0.2060 0.3240 0.2120 700 0.0062 0.0004 0.0000
500 0.2630 0.3960 0.1640 705 0.0000 0.0000 0.0000
505 0.3370 0.4910 0.1280 710 0.0000 0.0000 0.0000
510 0.4230 0.5950 0.0956 715 0.0000 0.0000 0.0000
515 0.5200 0.7060 0.0676 720 0.0000 0.0000 0.0000
520 0.6170 0.8080 0.0474 725 0.0000 0.0000 0.0000
525 0.7000 0.8840 0.0347 730 0.0000 0.0000 0.0000
530 0.7730 0.9410 0.0256 735 0.0000 0.0000 0.0000
535 0.8340 0.9780 0.0182 740 0.0000 0.0000 0.0000
540 0.8830 0.9970 0.0124 745 0.0000 0.0000 0.0000
545 0.9230 0.9990 0.0083 750 0.0000 0.0000 0.0000
550 0.9540 0.9870 0.0055 755 0.0000 0.0000 0.0000
555 0.9770 0.9610 0.0037 760 0.0000 0.0000 0.0000
560 0.9930 0.9220 0.0025 765 0.0000 0.0000 0.0000
565 1.0000 0.8700 0.0018 770 0.0000 0.0000 0.0000
570 0.9970 0.8060 0.0014 775 0.0000 0.0000 0.0000
575 0.9860 0.7320 0.0013 780 0.0000 0.0000 0.0000
580 0.9650 0.6510 0.0012
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APPENDIX C SIMULATION OF CVD USING SPD OF AN
LCD

Although spectral power distributions (SPD) of different models and types of displays
vary, RGB colors representations are approximately equivalent between them. But there
are small variations which can interfere in the results of the technique for simulation pre-
sented in this thesis. Figure C.1 (left) illustrates the SPD of an typical CRT monitor. Such
SPD was used as resource for the development of the proposed technique. Figure C.1
(right) illustrates an example of SPD for an LCD (FAIRCHILD; WYBLE, 1998). Note
the differences between both graphics. Resource data regarding the LCD is available in
Table C.1.

Figure C.1: Illustration of monitors’ SPDs. (left) SPD of a typical CRT moni-
tor (BRAINARD, 1997). (right) SPD of an LCD according to Fairchild (FAIRCHILD;
WYBLE, 1998).

The results obtained when using the proposed model (Chapter 4) with the SPD data for
the LCD presents small variations to the ones based on the CRT data. But Equations 4.22
and 4.23 present a scaling factor of 0.96 which consists of an adjustment to the resource
data used. These different SPDs result in approximately the same simulated result, as can
be seen in Figure C.2. A new scaling factor of 0.94 for the LCD replaces the 0.96 factor
used for the CRT (Figure C.2 center column).
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Figure C.2: Illustration comparing the results of the technique’s implementations with
different SPDs. (left column) Simulation for an LCD using the 0.96 scaling factor. (center
column) Simulation for an LCD using the 0.94 scaling factor. (right column) result from
the original implementation based on the CRT’s SPD.
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Table C.1: SPD of a LCD monitor (Fairchild (FAIRCHILD; WYBLE, 1998)).
Wavelength Red Green Blue Wavelength Red Green Blue

380 0.0000 0.0000 0.0000 585 0.0198 0.1468 0.0000
385 0.0000 0.0000 0.0000 590 0.0635 0.0754 0.0000
390 0.0000 0.0000 0.0000 595 0.0873 0.0357 0.0000
395 0.0000 0.0000 0.0000 600 0.0635 0.0159 0.0000
400 0.0000 0.0000 0.0040 605 0.0714 0.0040 0.0000
405 0.0000 0.0000 0.0040 610 0.2619 0.0476 0.0000
410 0.0000 0.0000 0.0079 615 1.0714 0.0159 0.0000
415 0.0000 0.0000 0.0238 620 0.4881 0.0040 0.0000
420 0.0000 0.0000 0.0516 625 0.3532 0.0040 0.0000
425 0.0000 0.0000 0.0992 630 0.2103 0.0000 0.0000
430 0.0000 0.0040 0.1865 635 0.1944 0.0000 0.0000
435 0.0000 0.0119 0.3929 640 0.0556 0.0000 0.0000
440 0.0040 0.0000 0.2540 645 0.0238 0.0000 0.0000
445 0.0040 0.0119 0.2738 650 0.0476 0.0000 0.0000
450 0.0000 0.0119 0.3016 655 0.0675 0.0000 0.0000
455 0.0040 0.0079 0.3016 660 0.0238 0.0000 0.0000
460 0.0000 0.0198 0.2976 665 0.0397 0.0040 0.0000
465 0.0040 0.0238 0.2698 670 0.0397 0.0040 0.0000
470 0.0040 0.0317 0.2460 675 0.0278 0.0000 0.0000
475 0.0040 0.0357 0.2103 680 0.0278 0.0000 0.0000
480 0.0040 0.0516 0.2460 685 0.0317 0.0000 0.0000
485 0.0040 0.0873 0.3929 690 0.0317 0.0000 0.0000
490 0.0040 0.0873 0.3333 695 0.0198 0.0000 0.0000
495 0.0040 0.0675 0.2024 700 0.0159 0.0000 0.0000
500 0.0040 0.0437 0.0913 705 0.0119 0.0000 0.0000
505 0.0000 0.0357 0.0437 710 0.0952 0.0040 0.0000
510 0.0000 0.0317 0.0238 715 0.0952 0.0000 0.0000
515 0.0000 0.0317 0.0119 720 0.0159 0.0000 0.0000
520 0.0000 0.0238 0.0079 725 0.0040 0.0000 0.0000
525 0.0000 0.0238 0.0040 730 0.0000 0.0000 0.0000
530 0.0000 0.0317 0.0040 735 0.0000 0.0000 0.0000
535 0.0000 0.1944 0.0159 740 0.0000 0.0000 0.0000
540 0.0000 1.5794 0.0794 745 0.0000 0.0000 0.0000
545 0.0437 1.4048 0.0754 750 0.0000 0.0000 0.0000
550 0.0317 0.4127 0.0079 755 0.0000 0.0000 0.0000
555 0.0040 0.0952 0.0040 760 0.0000 0.0000 0.0000
560 0.0000 0.0317 0.0000 765 0.0000 0.0000 0.0000
565 0.0000 0.0159 0.0000 770 0.0000 0.0000 0.0000
570 0.0000 0.0079 0.0000 775 0.0000 0.0119 0.0000
575 0.0000 0.0952 0.0000 780 0.0000 0.0000 0.0000
580 0.0040 0.1429 0.0000
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APPENDIX D UM MODELO PARA SIMULAÇÃO DAS DEFI-
CIÊNCIAS NA PERCEPÇÃO DE CORES E UMA TÉCNICA
DE AUMENTO DO CONTRASTE DE CORES PARA DICROMÁ-
TAS

Resumo da Dissertação em Português

As Deficiências na Percepção de Cores (DPC) afetam cerca de 200.000.000 (duzen-
tos milhões) de pessoas em todo o mundo, provocando dificuldade ou incapacidade de
distinção entre determinadas cores, o que impacta suas vidas pessoais e profissionais. A
Figura D.1 ilustra um exemplo de problema enfrentado por estes indivíduos. A imagem
à esquerda consiste de um mapa ilustrando o crescimento populacional da Europa no ano
de 2006, enquanto a imagem à direita mostra a simulação da percepção do mapa da es-
querda por indivíduos com deuteranopia1. Note como a DPC pode afetar a capacidade
destes indivíduos identificarem dados em ilustrações simples. Neste caso, deuteranopos
apresentariam dificuldades para distinguir entre as cores que representam crescimento e
redução populacional de até 0.5%. Este exemplo demonstra uma situação recorrente em
trabalhos de visualização de informação e visualização científica.

Figure D.1: (esquerda) um mapa da Europa em que cores foram usadas para codificar
o percentual de alteração populacional de diferentes países no ano de 2006. (direita)
simulação da percepção da imagem à esquerda por indivíduos com deuteranopia.

1Deuteranopia é um tipo de DPC caracterizado pela ausência de cones do tipo M na retina.
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Os cones são as células fotoreceptoras responsáveis pela percepção de cores. Na
retina humana existem três tipos de cones, que são chamados de L, M e S, devido às
suas sensibilidades às regiões do espectro com comprimentos de onda longos (Long),
médios (Medium) e curtos (Short), respectivamente. Portando, a visão de cores normal
é chamada de tricromática normal. As sensibilidades espectrais dos cones são determi-
nadas pelas propriedades dos fotopigmentos contidos. As deficiências na percepção de
cores são causadas por anomalias nesta configuração e são classificadas em tricroma-
cia anômala, dicromacia e monocromacia. A tricromacia anômala é caracterizada pela
presença de três tipos de fotopigmentos na retina, sendo um desses anômalo, e é ainda
classificada em protanomalia, deuteranomalia e tritanomalia, dependendo se o fotopig-
mento anômalo refere-se ao cone do tipo L, M ou S, respectivamente. Já os casos de
dicromacia se caracterizam pela presença de apenas dois tipos de fotopigmentos na retina
e são classificados em protanopia, deuteranopia e tritanopia, caso o fotopigmento ausente
seja referente aos cones do tipo L, M ou S, respectivamente. A monocromacia consiste de
um caso extremamente raro e se caracteriza pela ausência de qualquer tipo ou a presença
de apenas um tipo de fotopigmento na retina. As DPC red-green (vermelho-verde em
inglês), englobam os seguintes tipos: protanopia, protanomalia, deuteranopia e deutera-
nomalia. Juntos estes tipos representam cerca de 99,96% dos casos de DPC, cujas causas
envolvem fatores hereditários relacionados a genes recessivos localizados no cromossomo
X. Por consistirem de seqüências genéticas neste cromossomo sem alelos no cromossomo
Y, as DPC red-green são mais incidentes entre os homens (ca. 7,9%) do que entre as mul-
heres (ca. 0,42%). A Tabela D.1 demonstra a incidência dos diversos tipos de DPC na
população Caucasiana. Acredita-se que os demais tipos de DPC podem ser adiquiridos
por acidentes neurológicos.

Tipo de DPC Incidência (%)
Homens Mulheres

Tricromacia anômala 5,71 0,39
Protanomalia 1,08 0,03
Deuteranomalia 4,63 0,36
Tritanomalia 0,0001 0,0001
Dicromacia 2,28 0,03
Protanopia 1,01 0,02
Deuteranopia 1,27 0,01
Tritanopia 0,002 0,001
Monocromacia 0,003 0,00001

Table D.1: Incidência dos tipos de DPC na população Caucasiana (RIGDEN, 1999;
SHARPE et al., 1999).

Os trabalhos mais relevantes voltados para indivíduos com DPC se classificam em téc-
nicas de simulação e técnicas de recoloração. As técnicas de simulação visam apresentar
a percepção de indivíduos com DPC para indivíduos tricromatas normais2. Tais técni-
cas fornecem um entendimento sobre como as dificuldades em tarefas relacionadas com
cores são vivenciadas por estes indivíduos. Além disto, permite o estudo de melhorias
em trabalhos (e.g., de designers, de visualização científica ou de visualização de infor-
mação) visando ampliar seus públicos. Já os trabalhos de recoloração têm como objetivo

2Tricromacia normal refere-se a visão de cores normal, ou seja, que não apresenta nenhum tipo de DPC.
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realçar os contrastes em imagens para que as características destas sejam percebidas pelos
indivíduos com DPC. Por exemplo, algumas imagens de visualização podem apresentar
perda de informações dependendo da percepção destes indivíduos. As técnicas de recol-
oração deveriam recuperar estas informações de forma automática, atribuindo autonomia
em situações muitas vezes constrangedoras para estes indivíduos.

Este trabalho apresenta um modelo baseado na fisiologia para simular a percepção de
indivíduos com DPC. As técnincas anteriores só foram capazes de simular efetivamente
a percepção de indivíduos com dicromacia, o que representa cerca de 27,46% dos casos
de DPC. Este modelo, além de simular a percepção de dicromatas, possibilitou também a
simulação da percepção de tricromatas anômalos, que representam cerca de 72,50% dos
casos de DPC. Com isto, tem-se uma técnica que, baseada no mesmo modelo, simula a
percepção de cerca de 99,96% de todos os casos de DPC.

Além disto, este trabalho apresenta uma técnica de recoloração em tempo-real que
também permite coerência temporal. A implementação em GPU do algoritmo proposto
permitiu recoloração de alta qualidade com eficiência de até duas ordens de magnitude
mais rapida do que as técnicas anteriores, que não eram capazes de recolorir em tempo-
real. Com isto, tem-se de forma inédita uma técnica capaz de recolorir vídeos e telas
de aplicações interativas. Além disto, visando evitar flickering, esta técnica fornece uma
abordagem que permite coerência temporal.

D.1 O Modelo para Simulação da Percepção de Cores

A teoria mais aceita para explicar a percepção de cores pelos humanos é chamada de
teoria dos estágios. Esta é capaz de explicar e predizer diversos fenômenos importantes
da visão de cores, como, por exemplo, equiparação de cores, discriminação de cores,
aparência de cores, adaptação cromática, entre outros, referentes tanto a observadores
tricromáticos normais quanto a indivíduos com DPC (WYSZECKI; STILES, 2000). De
acordo com esta teoria, os estímulos visuais, captados pelos cones, resultam em sinais que
são posteriormente processados em estágios subseqüentes. Esta combinação leva à per-
cepção de cores, em determinados estágios, através de canais oponentes, sendo um canal
de luminancia (WS) e dois de crominância (Y B para amarelo-azul e RG para vermelho-
verde). Esta teoria fornece o melhor modelo da visão de cores nos humanos, e uma
discussão acerca de algumas variações desta pode ser encontrada em (JUDD, 1966).

Este trabalho propõe um modelo que se baseia na teoria dos estágio e, portanto, en-
volve uma transformação de sensibilidade espectral das células fotoreceptoras (L, M e S)
para funções referentes aos canais oponentes (WS, Y B e RG). Os coeficientes desta trans-
formação não são facilmente obtidos, mas, felizmente, Ingling e Tsou (INGLING JR.;
TSOU, 1977) forneceram tais dados. A forma suprathreshold da transformação apre-
senta vantagens sobre a threshold, pois tenta considerar resultados de estudos psicofísicos
e eletrofisiológicos considerando a adaptação à luz. A Equação D.1 descreve a transfor-
mação na forma suprathreshold proposta por Ingling e Tsou: Vλ

y−b
r−g

=

 0.600 0.400 0.000
0.240 0.105 −0.700
1.200 −1.600 0.400

 L
M
S

 (D.1)

onde Vλ representa o canal de luminancia WS, enquanto r−g e y−b representam os dois
canais oponentes de crominância RG e Y B, respectivamente. A Figura D.2 ilustra grafi-
camente a transformação apresentada. À esquerda, três curvas ilustrando as funções de
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sensibilidade espectrais dos três tipos de cones relativos à indivíduos tricromatas normais
e, à direita, três curvas resultantes da transformação das curvas à esquerda de acordo com
a Equação D.1 proposta por Ingling e Tsou.

Figure D.2: (esquerda) funções de sensibilidade espectrais dos cones referentes a indiví-
duos tricromatas normais (após Smith e Pokorny (SMITH; POKORNY, 1975)). (direita)
funções de resposta espectrais dos canais oponentes de acordo com modelo suprathresh-
old proposto por Ingling e Tsou (INGLING JR.; TSOU, 1977) assumindo como base os
dados das curvas à esquerda.

O modelo proposto neste trabalho simula as deficiências na percepção de cores como
alterações na absorção espectral dos fotopigmentos dos cones. Embora, para isto, a mod-
elagem se dê essencialmente no estágio retinal dos fotoreceptores, o estágio oponente é
crucial para produzir os resultados corretos e não pode ser subestimado. Portanto, o mod-
elo proposto usa a equação do modelo de Ingling e Tsou, cuja transformação de LMS
para espaço oponente é representada pela matriz 3×3 mostrada na Equação D.1, que será
referenciada como TLMS2Opp. Portanto, assume-se que as conexões neurais que ligam as
próprias células fotoreceptoras ao resto do sistema visual não são afetadas pelas DPC.
Logo, o modelo proposto usa a transformação TLMS2Opp para obter as funções de resposta
espectrais dos canais oponentes, como mostrado nas seguintes equações:WS(λ )

Y B(λ )
RG(λ )


p

= TLMS2Opp

La(λ )
M(λ )
S(λ )

 (D.2)

WS(λ )
Y B(λ )
RG(λ )


d

= TLMS2Opp

 L(λ )
Ma(λ )
S(λ )

 (D.3)

WS(λ )
Y B(λ )
RG(λ )


t

= TLMS2Opp

 L(λ )
M(λ )
Sa(λ )

 (D.4)

Onde L(λ ), M(λ ) e S(λ ) são as funções de sensibilidade espectrais dos cones normais
e La(λ ), Ma(λ ) e Sa(λ ) são as simulações das funções de sensibilidade espectrais dos
cones anômalos. Nestas equações, p se refere a protanopia e protanomalia, d se refere
a deuteranopia e deuteranomalia, e t se refere a tritanopia e tritanomalia. Note que a
transformação referente à tricromacia normal está representada na Equação D.1.
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Uma transformação do espaço de cores RGB para um espaço de cores oponentes é
obtida simplismente ao projetar-se as distribuições de emissões espectrais ϕR(λ ), ϕG(λ )
e ϕB(λ ) das primárias RGB no conjunto de funções base WS(λ ), Y B(λ ) e RG(λ ) que
definem o espaço de cores oponentes, como mostrado na Equação D.5. Ao usar o conjunto
apropriado de funções base, a Equação D.5 transforma triplas RGB em cores oponentes
referentes a tricromacia normal, tricromacia anômala e dicromacia.

WSR = ρWS
∫

ϕR(λ )WS(λ )dλ ,
WSG = ρWS

∫
ϕG(λ )WS(λ )dλ ,

WSB = ρWS
∫

ϕB(λ )WS(λ )dλ ,
Y BR = ρY B

∫
ϕR(λ )Y B(λ )dλ ,

Y BG = ρY B
∫

ϕG(λ )Y B(λ )dλ ,
Y BB = ρY B

∫
ϕB(λ )Y B(λ )dλ ,

RGR = ρRG
∫

ϕR(λ )RG(λ )dλ ,
RGG = ρRG

∫
ϕG(λ )RG(λ )dλ ,

RGB = ρRG
∫

ϕB(λ )RG(λ )dλ

(D.5)

Os fatores de normalização ρWS, ρY B e ρRG são escolhidos para satisfazer as restrições
na Equação D.6. Elas garantem que as cores acromáticas (tons de cinza) tenham exata-
mente as mesmas coordenadas variando de (0,0,0) a (1,1,1) em ambos RGB assim como
em todas as possíveis versões do espaço de cores oponentes (tricromático normal, todos
tricromáticos anômalos e todos dicromáticos). Esta restrição é fundamental para o algo-
ritmo de simulação.

WSR +WSG +WSB = 1,
Y BR +Y BG +Y BB = 1,
RGR +RGG +RGB = 1

(D.6)

Logo, a classe geral de matrizes de transformação Γ que mapeiam o espaço de cores RGB
para as várias instâncias do espaço de cores oponentes podem ser expressas como:

Γ =

WSR WSG WSB
Y BR Y BG Y BB
RGR RGG RGB

 (D.7)

Seja Γnormal a matriz que mapeia RGB para o espaço de cores oponentes de um tricromata
normal a simulação para um tricromata normal da percepção de cores de um indivíduo
com DPC é obtida com a Equação D.8.Rs

Gs
Bs

= Γ
−1
normal Γ

R
G
B

 (D.8)

Os resultados obtidos com o modelo proposto podem ser observados na Figura D.3.
Esta compara o resultado da simulação da percepção de protanômalos e deuteranômalos
referente a diversos graus de severidade (expressos em nm) com o resultado obtido para
protanopos e deuteranopos de acordo com a técnica proposta por Brettel et al. (BRET-
TEL; VIÉNOT; MOLLON, 1997). Os casos severos de tricromacia anômala se equivalem
a dicromacia, o que é reproduzido pelos resultados do modelo proposto. A Figura D.3
também compara esses resultados com os obtidos com a técnica proposta por Yang et
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Figure D.3: Simulação da visão de protanômalos e deuteranômalos para diversos graus
de severidade (expressos em nm). Última coluna: resultado do algoritmo de Brettel et
al. tido como referência de precisão para casos de dicromacia.P/D (Model): simulações
de Protanomalia/Deuteranomalia com a técnica proposta. P/D (Yang): simulações de
Protanomalia/Deuteranomalia com a técnica proposta por Yang et al..

al. (YANG et al., 2008). Note como os resultados do modelo proposto são mais consis-
tentes do que os resultados de Yang et al..

O modelo proposto foi validado através de experimentos envolvendo o teste Farnsworth-
Munsell 100-Hue (FM100H) (FARNSWORTH, 1957). Foi implementada uma versão
computadorizada do teste para aplicação em indivíduos tricromatas normais e indivíduos
com DPC. No caso, também se aplicou em tricromatas normais uma versão do teste que
usava o modelo proposto para simular a percepção de indivíduos com DPC, simulando
a aplicação do teste nestes indivíduos. Os resultados dos testes simulados foram equiva-
lentes aos resultados do teste original aplicado a indivíduos com DPC.

D.2 A Técnica de Realce de Contraste de Cores

A técnica de recoloração proposta se baseia na seguinte observação: sempre que indi-
víduos portadores de dicromacia sofrem alguma perda significativa na percepção de con-
traste de cor, boa parte deste contraste pode ser recuperado se, ao trabalhar num espaço de
cores perceptualmente uniforme, as cores originais forem projetadas num plano alinhado
com a direção que maximiza a perda de contraste (no sentido de mínimos quadrados). As
coordenadas dessas projeções se tornam as coordenadas da nova cor no gamut reduzido
(2D) dos dicromatas. A Figura D.5 resume este processo, que consiste dos seguintes
passos:
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1. o vetor vab que representa a direção que maximiza a perda de contraste no plano de
cromaticidade CIE L∗a∗b∗ é estimado e

2. as cores originais são projetadas no plano definido por vab e o eixo de luminosidade
(L∗). As coordenadas das cores projetadas são então rotacionadas em torno de
L∗ para que se alinhem ao plano aproximado ao gamut dos dicromatas. As cores
resultantes são usadas na imagem recolorida.

Visando garantir coerência temporal, o algoritmo verifica e corrige mudanças abruptas no
sentido de vab.

O gamut de cores referente a cada classe de dicromacia pode ser representada por
dois semi-planos no espaço de cores LMS (BRETTEL; VIÉNOT; MOLLON, 1997) e
pode ser satisfatoriamente aproximada a um plano (VIÉNOT; BRETTEL; MOLLON,
1999). A Figura D.4 mostra esses planos mapeados para o espaço de cores CIE L∗a∗b∗.
De acordo com Kuhn et al. (KUHN; OLIVEIRA; FERNANDES, 2008a) os ângulos entre
tais planos e o plano L∗b∗ são θp =−11.48◦, θd =−8.11◦ e θt = 46.37◦ para protanopia,
deuteranopia e tritanopia, respectivamente. As cores ilustradas na Figura D.4 representam
os gamuts de cores presentes em cada classe de dicromacia.

(a) (b) (c)

Figure D.4: Planos que se aproximam aos gamuts de cores referentes às percepções
dos dicromatas no espaço de cores CIE L∗a∗b∗ (KUHN; OLIVEIRA; FERNANDES,
2008a). (a) Protanopia (θp = −11.48◦). (b) Deuteranopia (θd = −8.11◦). (c) Tritanopia
(θt = 46.37◦).

Calcular a direção que maximiza a perda de contraste local (no sentido de mínimos
quadrados) referente à percepção de uma imagem I por um indivíduo portador de dicro-
macia pode requerer a avaliação, para cada pixel pi ∈ I, da perda de contraste entre pi e
todos os pixels p j numa vizinhança Ni em torno de pi. Entretanto, devido à coerência es-
pacial, os pixels vizinhos tendem a apresentar valores semelhantes. Logo, a estimativa de
perda de contraste local para cada pixel pi contra todos os pixels em Ni tende a resultar em
trabalho reduntante. A técnica proposta evita efetuar este cálculo em toda a vizinhança
Ni ao recorrer à abordagem para amostragem por pareamento Gaussiano proposta por
Grundland e Dogdson (GRUNDLAND; DODGSON, 2007). Neste caso, a contribuição
de cada pixel pi para a perda de contraste local é estimada para apenas um vizinho p j.
As distâncias horizontais e verticais entre pi e p j são definidas aleatoriamente de acordo
com uma distribuição Gaussiana univariada com mediana zero e variância (2/π)σ2, onde
σ2 =

√
2min(width,height) (GRUNDLAND; DODGSON, 2007). A função min(a,b)

retorna o menor valor entre a e b, e width e height referem-se às dimensões da imagem.
Embora a direção que maximiza a perda de contraste local obtida usando esta estratégia
de amostragem difira da calculada quando se usa a vizinhança inteira, devido a coerência
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espacial essas direções tendem a ser suficientemente próximas umas das outras. Visando
evitar flickering durante a recoloração de seqüências de videos ou animadas, o algoritmo
proposto pré-calcula as coordenadas dos p js e as salva numa textura. Durante toda a
seqüência, os mesmos pares (pi, p j) são usados.

As Figuras D.5 (a) e (b) ilustram o processo de cálculo da direção que maximiza a
perda de contraste para dois pares de cores, (c1,c2) e (c3,c4), representados como peque-
nas esferas no espaço de cores L∗a∗b∗. c′1 a c′4 ilustram as projeções das cores c1 a c4,
respectivamente, no plano do dicromata, e representam suas percepções de cores pelos
dicromatas (Figure D.5(a)). Sendo L∗a∗b∗ aproximadamente perceptualmente uniforme,
a relativa perda de contraste de cor vivenciada pelo dicromata ao observar um par de cores
(ci,c j) (referente a um observador com visão de cores normal) pode ser estimado como

l(ci,c j) =
‖ci− c j‖−‖c′i− c′j‖

‖ci− c j‖
, (D.9)

onde ‖.‖ é o operador de comprimento de vetores. Para este par de cores, a direção de
perda de contraste é dada por ϑi j = ci− c j. Para evitar inversão de polaridade (KUHN;
OLIVEIRA; FERNANDES, 2008a), o algoritmo proposto preserva a coordenada de lumi-
nosidade (i.e., L∗) das cores originais. Logo, é suficiente calcular a direção que maximiza
a perda de contraste apenas no plano de cromaticidade. Não há vantagens em efetuar este
cálculo nas três dimensões do espaço L∗a∗b∗, além disso, seria requerido calcular os au-
tovetores numa matrix 3×3 em vez de numa 2×2. Portanto, seja wi = l(ci,c j)ϑi j o vetor
que representa a perda de contraste ao longo da direção ϑi j associada ao pixel pi e seja

M =


wa∗

1 wb∗
1

wa∗
2 wb∗

2
. . . . . .

wa∗
n wb∗

n

 (D.10)

uma matriz cujas linhas contêm as coordenadas dos vetores de cromaticidade referentes
à perda de contraste de todos os pixels na imagem I, os elementos da i-ésima linha de M
representam as projeções de wi no plano a∗b∗, logo, vab pode ser obtido como o autovetor
da matriz 2× 2 MT M cujos autovalores correspondentes têm o maio valor absoluto. A
fim de resolver a equação característica correspondente, o algoritmo atribui o valor um à
coordenada b∗ de vab e soluciona para sua coordenada a∗.

Quando a percepção de um dicromata sofre com uma significativa perda de contraste
de cor, a projeção ortográfica das cores originais no plano definido pelos vetores L∗ e vab
tendem a proporcionar um maior espalhamento das cores se comparado à projeção direta
no plano dicromático. Esta situação é ilustrada na Figura D.5 (a) e (c). Ao transferirmos
a relação espacial entre as cores projetadas no plano L∗-vab para o plano dicromático,
uma imagem com melhor contraste de cores é produzida. Para isto, rotaciona-se as cores
projetadas em torno do eixo L∗ visando o alinhamento destas com o plano dicromático.
A Figura D.5 (d) ilustra esta operação, que preserva as cores acromáticas da imagem
original.

Coerência temporal é um requisito importante para as técnicas de recoloração de im-
agens, já que mudanças sutis na cor de um objeto durante uma sessão interativa de visu-
alização ou animação pode incomodar bastante os observadores. Se a direção de vab é
praticamente paralela ao eixo a∗, uma pequena mudança nas cores de entrada pode im-
plicar na inversão do sinal do componente b∗ de vab (veja Figura D.5(b)). Entretanto, para
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(a) (b) (c) (d)

Figure D.5: Ilustração dos passos do algoritmo de recoloração proposto. (a) As cores c1
a c4 são percebidas por um dicromata como c′1 a c′4, respectivamente (suas projeções no
plano referente ao gamut do dicromata). A relativa perda de contraste, quando um par
de cores (ci,c j) é percebido por um dicromata, é dada por l(ci,c j) = (‖ci− c j‖− ‖c′i−
c′j‖)/(‖ci− c j‖), o que acontece ao longo da direção ϑi j = ci− c j. (b) A direção vab (em
azul) que maximiza a perda de contraste local (no sentido de mínimos quadrados) é calcu-
lada como o principal autovetor da matriz MT M, onde M está definido na Equação D.10.
(c) A projeção das cores originais no plano definido por vab e L∗. (d) As cores finais
obtidas após a rotação das cores projetadas c′′k em (c) em torno de L∗ para que se alinhem
com o plano do dicromata.

a solução da equação característica associada com o cálculo de vab, foi arbitrado o valor
1 ao seu componente b∗, como uma maneira possivel de evitar a solução trivial vab = 0.
Isto restringe o sinal do componente b∗ de vab como positivo, causando a inversão do
sinal do componente a∗ para adaptar a mudança na direção de vab. Esta inversão pode
provocar mudanças abruptas nas cores dos pixels recoloridos entre quadros consecutivos
(e.g., pixels azuis poderiam virar amarelos e vice-versa). Para evitar a ocorrência destes
artefatos durante uma sessão interativa de visualização (ou animação) o algoritmo registra
as coordenadas do vetor vab referentes ao quadro atual para comparação com as coorde-
nadas do vetor obtido no próximo quadro. Caso o ângulo entre ambos os vetores (atual e
anterior) se aproxime de 180◦, o algoritmo inverte o sentido do vab atual, visando forçar
consistência de cor. Apesar de simples, esta é uma solução eficaz.

Os resultados do algoritmo proposto estão apresentados na Figura D.6 que os compara
com os resultados obtidos pela técnica de Kuhn et al.. A Tabela D.2 resume o ganho
de performance alcançado pelo algoritmo proposto ao comparar os tempos de execução
de ambas as versões (CPU e GPU) com a técnica de Kuhn et al. para um conjunto de
sete imagens de diversos tamanhos. Os registros na tabla estão apresentados em ordem
crescente pelo número de pixels das imagens. Como pode-se observar, em ambas as
versões (CPU e GPU), a técninca proposta apresenta ganhos de performance de até duas
ordens de magnitude mais rápidas do que a técnica de Kuhn et al. para imagens de até
800× 800 pixels. Como o custo do algoritmo proposto é linear no número de pixels, a
aceleração alcançada apresentará ganhos em performance ainda mais significativos para
imagens com maiores dimensões.

D.3 Conclusões

Este capítulo apresentou resumidamente as técnicas propostas nesta dissertação de
mestrado que consistem de um modelo para simulação da percepção de cores e uma téc-
nica de realce de contraste de cores.
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Imagem (tamanho)
CPU GPU

Proposta Kuhn Proposta Kuhn
Tempo Tempo Tempo Tempo

Flame (288x184) 0,055 1,148 0,019 0,121
Chart (500x300) 0,191 2,707 0,020 0,106
Foot (446x446) 0,252 3,743 0,021 0,307
Brain (532x523) 0,292 5,053 0,023 0,577
Knee (528x528) 0,341 5,217 0,022 0,313
Europe (596x486) 0,385 5,361 0,023 0,565
Nebula (800x800) 0,614 11,73 0,028 1,145

Table D.2: Comparação entre as performances (em segundos) da técnica proposta e a
técnica apresentada por Kuhn et al. (KUHN; OLIVEIRA; FERNANDES, 2008a) para
suas versões CPU e GPU. Devido ao custo linear da técnica proposta, a aceleração relativa
é ainda melhor para imagens de maiores dimensões.

Referência Protanopo Recolor. (Proposta) Recolor. (Kuhn)
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Figure D.6: Imagens comparando os resultados de recolorações da técnica proposta com
a técnica apresentada por Kuhn et al. (KUHN; OLIVEIRA; FERNANDES, 2008a).
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O modelo proposto é o primeiro a consistentemente tratar visão de cores normal,
tricromacia anômala e dicromacia usando um framework unificado. Por meio de exper-
imentos controlados com usuários, foi demonstrado que os resultados produzidos pelo
modelo proposto se equiparam à percepção de indivíduos com deficiências na percepção
de cores. Os resultados do modelo proposto foram comparados com os obtidos com mod-
elos existentes para simulação da percepção de tricromatas anômalos (YANG et al., 2008)
e dicromatas (BRETTEL; VIÉNOT; MOLLON, 1997). Tais comparações indicaram que
os resultados do modelo são superiores aos de Yang et al. (YANG et al., 2008) para tri-
cromacia anômala e equivalentes aos de Brettel et al. (BRETTEL; VIÉNOT; MOLLON,
1997) para dicromacia.

A técnica de recoloração apresentada é a primeira a oferecer recoloração de imagens
para dicromatas em tempo-real, com coerência temporal e alta qualidade. Seu custo com-
putacional varia linearmente com o número de pixels de entrada e pode ser eficientemente
implementado em GPUs. Foi mostrado que os resultados produzidos com a técnica pro-
posta apresentam resultado pelo menos tão bons quanto os obtidos com as técnicas estado-
da-arte, sendo que com tempos de execução até duas ordens de magnitude mais rápidos.
Além disso, os resultados da técnica proposta permitem o desenvolvimento de aplicações
mais amigáveis para indivíduos com deficiência na percepção de cores, já que o baixo
custo computacional desta técnica faz dela uma solução adequada para implementação
em telefones celulares e outros dispositivos móveis equipados com câmeras. Em tais dis-
positivos, a capacidade de recoloração desta técnica pode ser uma ferramenta útil para
auxiliar indivíduos com deficiência na percepção de cores em diversas tarefas cotidianas.

A integração de ambas as técnicas com um sistema de visualização foi bem suce-
dida, utilizando uma abordagem minimamente invasiva através de suas implementações
voltadas para GPUs. A Figura D.7 exibe algumas telas deste aplicativo com as opções
para simular a percepção de indivíduos com DPC (Figura D.7 centro) e recolorir para
realçar contraste de cores para estes indivíduos (Figura D.7 direita).

Figure D.7: Integração das técnicas propostas com um sistema de visualização existente.
Esquerda: imagem de referência como percebida por um indivíduo com visão de cores
normal. Centro: simulação da percepção de deuteranopos da imagem de referência us-
ando o modelo proposto. Direita: imagem recolorida para deuteranopos usando a técnica
proposta. Implementações minimamente invasivas voltadas para GPUs.



94


	Acknowlegments
	Contents
	List of Figures
	List of Tables
	Abstract
	Resumo
	1 Introduction
	1.1 Thesis Contributions
	1.2 Structure of the Thesis

	2 Background on Color Vision Deficiency
	2.1 Photoreceptor Cells
	2.2 Stage Theories of Human Color Vision
	2.3 Genetic of Human Photopigments
	2.4 Color Vision Deficiency

	3 Related Work
	3.1 Simulation Techniques
	3.2 Recoloring Techniques
	3.2.1 User-Assisted Techniques
	3.2.2 Optimization-based Techniques
	3.2.3 Color-to-Grayscale Mappings

	3.3 Summary

	4 A Physiologically-based Model for Simulation of Color Vision Deficiency
	4.1 Quantification of The Stage Theory
	4.2 Simulating Color Vision Deficiency
	4.2.1 Simulating Anomalous Trichromacy
	4.2.2 Simulating Dichromacy
	4.2.3 The Algorithm for Simulating CVD

	4.3 Results
	4.3.1 Experimental Validation
	4.3.2 Discussion

	4.4 Summary and Conclusions

	5 A Real-Time Temporal-Coherent Color Contrast Enhancement for Dichromats
	5.1 The Color-Contrast Enhancing Technique
	5.1.1 Direction that Maximizes Contrast Loss
	5.1.2 Computing the Final Colors
	5.1.3 Exaggerated Contrast
	5.1.4 Enforcing Temporal Coherence

	5.2 Results
	5.2.1 Limitations

	5.3 Summary and Conclusions

	6 Conclusions and Future Work
	6.1 Future Work

	References
	Appendix A Pre-computed Matrices for Simulation of CVD
	Appendix B Experimental Data
	Appendix C Simulation of CVD using SPD of an LCD
	Appendix D Um Modelo para Simulação das Deficiências na Percepção de Cores e Uma Técnica de Aumento do Contraste de Cores para Dicromátas
	D.1 O Modelo para Simulação da Percepção de Cores
	D.2 A Técnica de Realce de Contraste de Cores
	D.3 Conclusões


