
Surface Reconstruction from Imperfect Point Models

A DISSERTATION PRESENTED

BY

JIANNING WANG

TO

THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

STONY BROOK UNIVERSITY

May 2007

Copyright c© 2007 by

JIANNING WANG

Stony Brook University

The Graduate School

JIANNING WANG

We, the dissertation committee for the above candidate for

the Doctor of Philosophy degree,

hereby recommend acceptance of this dissertation.

Professor Arie E. Kaufman, Dissertation Advisor
Computer Science Department

Professor Hong Qin, Chairman of Defense
Computer Science Department

Professor Dimitris Samaras, Committee Member
Computer Science Department

Professor George Wolberg, External Committee Member
Computer Science Department

City College of New York (CUNY)

This dissertation is accepted by the Graduate School.

Dean of the Graduate School

ii

Abstract of the Dissertation

Surface Reconstruction from Imperfect Point Models

by

JIANNING WANG

Doctor of Philosophy
in

Computer Science

Stony Brook University

2007

This thesis presents work on surface reconstruction from imperfect point models. Here

“imperfections” refer to the cases such as missing information about point normals, un-

known level of noise, irregular sampling, and/or non-manifold surfaces, resulting in incor-

rect reconstruction results using existing approaches. Due to the diversity of point acqui-

sition approaches (laser range finders, computer vision methods, etc), imperfections occur

often in practice and pose a great challenge to surface reconstruction algorithms. In this

thesis, several novel algorithms, targeted towards different imperfections, are proposed.

To recover the geometry and the texture of insufficiently sampled regions, we exploit user

knowledge about the planarity and the symmetry of man-made objects in indoor scenes and

fill the holes in a natural way. After that, there might still be some remaining holes. We

then develop a hole filling algorithm as a post processing module to complete the resulting

mesh. This algorithm interpolates the interior of a hole based on its vicinity. It can also be

used as an independent module for mesh repairing. In addition, we propose a distance-field

based algorithm to handle very noisy points without point normals. A global distance field

iii

is constructed by propagating the information from interior/exterior regions in a hierarchi-

cal and adaptive way. A mesh is extracted later as the zero-set surface of the distance field.

Furthermore, a generalized approach is introduced to naturally handle both manifold and

non-manifold surfaces, including both non-orientable surfaces and surfaces with bound-

aries. The input points are first voxelized, enabling easy classification of the local shape

for each point. We then locate non-manifold regions (junctions and boundaries) and take

special care to mesh them. We also propose to enforce the regularity of the resulting mesh

reconstructed from point models. Using a nearly isometric point parameterization, we are

capable of controlling the shape of output triangles. The aforementioned algorithms cover a

wide range of imperfections and we believe they could handle many problems encountered

in practice.

iv

To My Wife, Huan Ni

And To My Parents

With Love!

Contents

List of Tables x

List of Figures xi

Acknowledgments xv

Publications xvii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions . 4

1.3 Thesis Organization . 7

2 Background 8

2.1 Point Model Acquisition . 9

2.2 Surface Reconstruction . 10

2.2.1 Region Growing Methods . 10

2.2.2 Computational Geometry Methods 12

2.2.3 Algebraic Methods . 13

2.3 Hole Filling . 18

vi

3 Reconstructing Missing Regions of Indoor Scenes 20

3.1 Related Work . 23

3.2 The Reconstruction Pipeline . 26

3.2.1 Segmentation and Reconstruction of Planar Surfaces 26

3.2.2 Texture Reconstruction for Planar Areas 26

3.2.3 Clustering . 27

3.2.4 Symmetry Check and Reconstruction 28

3.3 Results . 31

3.3.1 Reconstruction of a Real Scene 31

3.3.2 Reconstruction of a Synthetic Scene 34

3.3.3 Discussion . 38

4 Hole Filling as a Post-process 42

4.1 Moving Least Squares . 45

4.2 The Hole Filling Algorithm . 47

4.2.1 Finding Holes . 48

4.2.2 Computing the Reference Plane 49

4.2.3 Determining the Resampling Positions 50

4.2.4 Fitting the Surface . 51

4.3 Results . 53

4.4 Discussion and Comparisons . 58

5 Noise Tolerant Surface Reconstruction 62

5.1 Oriented Charges . 64

5.2 Surface Representation with Oriented Charges 66

vii

5.2.1 Finding and Propagating Frontiers 67

5.2.2 The Crusts . 68

5.2.3 Instantiating Oriented Charges . 69

5.3 OC Properties . 70

5.4 Iso-Surface Extraction and Cost Analysis 72

5.4.1 Mesh Refinement . 72

5.4.2 Cost Analysis . 74

5.5 Results . 74

5.6 Discussion . 80

6 Non-Manifold Surface Reconstruction 82

6.1 Related Work . 84

6.2 The Surface Reconstruction Algorithm . 85

6.2.1 Voxelization and Gap Filling . 85

6.2.2 Topological Thinning . 91

6.2.3 Meshing . 92

6.2.4 Cost of the Algorithm . 96

6.3 Results . 98

7 Reconstructing Regular Meshes from Points 106

7.1 Related Work . 109

7.2 Algorithm Overview . 110

7.3 Point Parameterization . 111

7.3.1 Parameter Propagation . 113

7.3.2 Boundary Identification . 115

viii

7.3.3 Cut Handling . 117

7.4 Meshing from Parameterization . 118

7.4.1 Vertices Along Cuts . 119

7.4.2 Triangle Placement . 119

7.5 Results and Discussion . 123

8 Conclusions and Future Work 130

8.1 Conclusions . 130

8.2 Future Work . 133

8.2.1 Short-term Future Work . 133

8.2.2 Long-term Future Work . 134

Bibliography 136

ix

List of Tables

3.1 Number of points/triangles for various models before and after reconstruction 36

4.1 Statistics and running time for different datasets 52

4.2 Comparison between different hole-filling algorithms 53

4.3 Parameters used for reconstruction . 55

4.4 Comparison between the results produced by Davis et al, Ju and us 59

5.1 Running times and error bounds for various models 80

6.1 Voxel topological types . 87

6.2 Statistics of some reconstruction results (time in seconds) 105

8.1 How to select the appropriate algorithm 133

x

List of Figures

1.1 Sampling and reconstruction . 2

1.2 The imperfections handled by different algorithms. 6

2.1 Pipeline of making digital replicas . 8

3.1 View of the reading room . 20

3.2 Segmentation and reconstruction pipeline 25

3.3 Texture repairing using the oriental rug model 28

3.4 Reconstruction based on symmetry . 30

3.5 Panorama of the reading room model . 32

3.6 Views of the armchair model before and after reconstruction 33

3.7 Reconstruction of texture . 33

3.8 Top view of the synthetic office before and after reconstruction 34

3.9 Office chair before and after reconstruction 35

3.10 Monitor before and after reconstruction 36

3.11 Floor lamp before and after reconstruction 37

3.12 Synthetic office under another view . 37

3.13 Recovering missing regions of an indoor scene 39

4.1 Reconstruction before and after applying the proposed hole filling algorithm 42

xi

4.2 A hole on the Cylinder model filled using our algorithm 49

4.3 The UV projection plane . 51

4.4 The vicinity points and the mask images 52

4.5 Comparison between different hole-filling algorithms 54

4.6 Reconstruction of the armchair model . 55

4.7 Reconstruction of the Bunny model . 56

4.8 Reconstruction of the Satyr model . 56

4.9 Reconstruction of the Angel model . 57

4.10 Reconstruction of the Buddha model . 58

5.1 Reconstruction of David’s head . 62

5.2 Propagation of frontiers . 67

5.3 Computing oriented charges . 69

5.4 Error analysis . 71

5.5 Mesh refinement . 73

5.6 Reconstruction results of various models 73

5.7 Reconstruction of the noisy bunny model 75

5.8 Reconstruction of the noisy buddha model 77

5.9 Reconstruction of the Dragon model . 78

5.10 Models obtained from real range data . 78

5.11 Point normal computed using clean and noisy models 79

5.12 Bunny models reconstructed using the ball-pivoting algorithm 79

5.13 Hole filling result for the Bunny model . 80

6.1 Flexibility of the proposed algorithm . 82

6.2 Topological classification . 86

xii

6.3 Possible situations in gap filling . 89

6.4 Gap filling and topological thinning . 91

6.5 Creating non-manifold surfaces . 94

6.6 Border curves in surface intersections . 95

6.7 Smoothing the jagged boundary . 96

6.8 Reconstruction of the Bunny model . 97

6.9 Reconstruction of the Dragon model . 97

6.10 Reconstruction of the Möbius model . 99

6.11 Reconstruction of a non-manifold model 100

6.12 Reconstruction of the Vase model . 101

6.13 Reconstruction of the Indoor scene 1 . 102

6.14 Problem with the sharp features . 103

7.1 Pipeline for creating regular meshes from point clouds 108

7.2 Parameter propagation from a patch point pi. 113

7.3 Cut curves and 2D parameter patch . 115

7.4 Identified boundary points of the mug model 116

7.5 Patch boundary curves, used to order and parameterize points along the cut 118

7.6 Vertex pattern and the resulting mesh . 120

7.7 Triangle propagation inside the parameter patch 121

7.8 How to find the NPP for an interior vertex 121

7.9 Reconstruction result of the sphere model 124

7.10 Reconstruction result of the mug model 124

7.11 Reconstruction of a human colon model 125

7.12 An inside view of the reconstructed colon model 125

xiii

7.13 Texture mapping and bump mapping . 126

7.14 Problems of parameterization with respect to abrupt change of sampling rates128

7.15 Problems of parameterization with varying sample rates 128

xiv

Acknowledgments

First and foremost, I am deeply grateful to my advisors, Professor Arie E. Kaufman

and Professor Manuel M. Oliveira, for their inspiration for the research directions, and for

their invaluable advices and countless efforts guiding me during my research. In addition,

I want to express my sincere gratitude to Professor Hong Qin, Professor Dimitris Samaras,

and Professor Klaus Mueller, who have provided insightful suggestions to my research and

served on various committees associated with my graduate studies. I also thank Professor

George Wolberg for taking the time to serve as the external member of my dissertation

committee.

The members of Center for Visual Computing offer me tremendous help during my

study and research. I would like to thank everyone for their inspiring ideas and selfless

contribution. I want to thank Huamin Qu, Xiaoming Wei, Wei Li, Nan Zhang, Susan

Frank, Kevin McDonnell, Ye Duan, Jing Hua, Hui Xie, and Wei Hong for their helpful

suggestions. And many thanks to many of other members of the lab, especially Yang Wang,

Haitao Zhang, Ye Zhao, Feng Qiu, and Zhe Fan. The members of the excellent support staff

in the Computer Science Department were also of great assistance, especially Bin Zhang,

Brian Tria, Stella Mannino, Betty Knittweis, Kathy Germana and Edwina Osmanski. I

extend my gratitude to the faculty and students of the Computer Science department, who

xv

over the years have helped me in many ways.

I also thank my parents for their understanding and constant support. I would not be

here without them. Finally, and most importantly, I want to thank my girl friend, Huan

Ni, for her endless love, cheerful encouragement, and perpetual support. She stands by

me and supports me all the time. I would not be finishing my Ph.D study without her

encouragement and inspiration. This dissertation is dedicated to my parents and Huan Ni.

Publications

1. J. Wang, and A. Kaufman. 3D Reconstruction from Endoscopic Videos. submitted.

2. J. Wang, H. Zhang, M. Oliveira, and A. Kaufman. Reconstructing Regular Meshes

from Points. submitted to the Visual Computer.

3. J. Wang, and M. Oliveira. Filling Holes on Locally Smooth Surfaces Reconstructed

from Point Clouds. Image and Vision Computing, Elsevier. 25, pp. 103-113, 2007.

4. J. Wang, M. Oliveira, and A. Kaufman. Reconstructing Manifold and Non-Manifold

Surfaces from Point Clouds. IEEE Visualization. pp. 415-422, 2005.

5. J. Wang, M. Oliveira, H. Xie and A. Kaufman. Surface Reconstruction Using Ori-

ented Charges. Computer Graphics International. pp. 122-128, 2005.

6. J. Wang, O. Hall-Holt, P. Konecny and A. Kaufman. Per-Pixel Camera Calibration

for 3D Range Scanning. SPIE Electronic Imaging. 5665, pp. 342-352, 2005.

7. F. Qiu, Y. Zhao, Z. Fan, X. Wei, H. Lorenz, J. Wang, S. Yoakum-Stover, A. Kaufman

and K. Mueller. Dispersion Simulation and Visualization For Urban Security. IEEE

Visualization. pp. 553-560, 2004.

xvii

8. H. Xie, J. Wang, J. Hua, H. Qin and A. Kaufman. Piecewise C1 Continuous Surface

Reconstruction of Noisy Point Clouds via Local Implicit Quadric Regression. IEEE

Visualization. pp. 91-98, 2003.

9. J. Wang and M. Oliveira. A Hole Filling Strategy for Reconstruction of Smooth

Surfaces in Range Images. XVI Brazilian Symposium on Computer Graphics and

Image Processing. pp. 11-18, 2003.

10. J. Wang and M. Oliveira. Improved Scene Reconstruction from Range Images. Com-

puter Graphics Forum (Eurographics), 21(3), pp. 521-530, 2002.

11. W. Corrêa, M. Oliveira, C. Silva and J. Wang. Modeling and Rendering of Real

Environments. RITA - Revista de Informtica Teórica e Aplicada, 9(2), pp. 127-156,

2002.

xviii

1

Chapter 1

Introduction

There has been a considerable amount of research in the past decade on the development

of techniques for surface reconstruction from points. However, only few attempts have been

made to handle the encountered imperfections, which occur often in practice and pose a

great challenge to surface reconstruction algorithms. Despite the recent development of

scanning devices, these problems still remain. In this thesis, we present a set of novel

surface reconstruction algorithms to handle them.

1.1 Problem Statement

Recently, point models have received a growing amount of attention in computer graph-

ics. However, the polygonal mesh remains the most popular graphics primitive, with the

widest support from existing hardware and software. Therefore, we need surface recon-

struction algorithms to convert points to surface meshes.

The problem of surface reconstruction could be formalized as follows: given a point

1. INTRODUCTION 2

sampling

reconstruction

Figure 1.1: Sampling and reconstruction

set P sampled from a surface S, compute a mesh M that approximates S. Reconstruc-

tion is the reverse process of sampling (Figure 1.1). The sampling process (from S to P)

entails information loss if the sampling rate is below the Nyquist frequency [95]. In prac-

tice, the samples might also contain noise and outliers. At the same time, a sample point

could be equipped with very limited information (e.g., only its location). Therefore, sur-

face reconstruction is an ill-posed problem and several assumptions are usually required

to enforce proper reconstruction. Common assumptions include: (1) dense sampling; (2)

surface regularity (smoothness); and (3) no non-manifold regions.

Each reconstruction algorithm has its limitations. These reconstruction algorithms of-

ten make assumptions on the input points and the surface to be reconstructed. With less

information stored in the input points and/or more requirements about the resulting mesh, it

becomes more difficult to design a reconstruction algorithm. These difficulties are termed

imperfections and pose a great challenge to surface reconstruction algorithms. These imper-

fections are often encountered in practice and should be tackled with a specific emphasis.

Although a number of efforts have been taken to handle the problems, we could not find a

systematic one to push reconstruction algorithms to their limits.

1. INTRODUCTION 3

Our research is targeted towards designing novel reconstruction algorithms suitable for

weaker assumptions (more defect tolerant) about input points and stronger requirements

for the resulting mesh. In this thesis, we consider the following defects of the input point

clouds:

1. Noisy points: The location of points may be perturbed by unknown levels of noise.

2. Missing point normals: The points may not be equipped with point normals, which

indicate the orientation of the local shape.

3. Irregular, incomplete sampling: The surface may not be well-sampled. This often

leads to holes, which are to be filled additional efforts.

Additional difficulties for surface reconstruction algorithms follow from the further re-

quirements for the resulting mesh:

1. Holes: Holes, resulting from the insufficiently sampled regions, might need to be

filled.

2. Boundaries: The boundary of the surface might need to be preserved.

3. Non-manifold surface: A non-manifold surface includes surface junctions or sur-

face boundaries, which can not be reconstructed correctly by traditional surface re-

construction algorithms.

4. Fair mesh: The triangles in the resulting mesh should be well-shaped. It is required

by some follow-up operations on the mesh, such as Finite Element Analysis.

5. Sharp features: Sharp edges (creases) and corners should be preserved, even though

they break the assumption of smoothness.

1. INTRODUCTION 4

1.2 Contributions

In this thesis, we present a number of techniques and algorithms in an attempt to par-

tially solve the aforementioned problems in surface reconstruction. Specifically, our con-

tributions can be summarized as follows:

1. A novel algorithm to recover missing regions in indoor scenes. User knowledge such

as the planarity and the symmetry of man-made objects are exploited to fill holes.

Textures are repaired using a similar technique [134].

2. A post processing technique to fill holes in the reconstructed mesh. By interpolat-

ing/approximating the vicinity of holes using moving least squares, we are able to

recover the geometry and texture of the holes [132].

3. A new framework to compute the global distance field from points without point

normals and reconstruct the surface. After propagating the information about the

interior and exterior in an octree, a hierarchical and adaptive distance field is created.

The mesh is later extracted from the distance field. This approach works for very

noisy points [137].

4. A generalized framework to reconstruct manifold and non-manifold surfaces. In ad-

dition, we are able to reconstruct both closed surfaces and surfaces with boundaries.

By transforming the input points to voxels, local shape is determined more easily than

in the continuous space. Then, surface junctions and boundaries could be identified

and reconstructed [136].

5. A novel algorithm to reconstruct regular meshes from point models. It is important

for some applications, such as Finite Element Analysis, to have an input mesh with

well-shaped triangles. We first obtain a natural parameter map for the input points.

1. INTRODUCTION 5

With special handling along the cuts between parameter patches, we create a mesh

of triangles with nearly the same shape and size.

THE ABOVE CONTRIBUTIONS ARE ALSO SUMMARIZED IN FIGURE 1.2, WHERE THE

DIFFERENT KINDS OF IMPERFECTIONS ARE HANDLE BY THE PROPOSED ALGORITHMS.

FOR GENERAL PURPOSE USE, THE FOLLOWING TWO ALGORITHMS MIGHT BE SUFFI-

CIENT FOR SURFACE RECONSTRUCTION IN MOST CASES. IF THE INPUT DATA SET IS

WELL SAMPLED AND HAS WITH LITTLE NOISE, WE RECOMMEND THE USER TO USE

THE BALL-PIVOTING ALGORITHM [13] FOR FAST AND ROBUST RECONSTRUCTION. IF

THE POINT DATASET IS EQUIPPED WITH POINT NORMALS AND REPRESENTS A CLOSED

SURFACE, USER MIGHT USE THE MULTI-LEVEL PARTITION OF UNITY APPROACH [91].

FOR IMPERFECT POINT MODELS, WE HAVE PROPOSED A NUMBER OF ALGORITHMS,

AS AN INTEGRATED ATTEMPT TO AT LEAST PARTIALLY SOLVE THE PROBLEMS. THEY

SHARE THE CAPABILITY TO HANDLE THE SAME SET OF IMPERFECTIONS AND THEY

ALL REQUIRE NO INFORMATION ABOUT POINT NORMALS. HOWEVER, THE PURPOSE

AND THE FACED CHALLENGES OF THESE ALGORITHM ARE DIFFERENT.

THE ALGORITHM FOR RECOVERING MISSING REGIONS ONLY WORKS FOR INDOOR

SCENES. IT REQUIRES THE SCENE TO INCLUDE SEVERAL LARGE PLANAR REGIONS

AND/OR OBJECTS WITH BILATERAL SYMMETRY TO RECOVER THE MISSING INFORMA-

TION. AND THE USER NEEDS TO HAVE THESE KNOWLEDGE ABOUT THE SCENE. IN

ADDITION, THE SAMPLED SURFACE COULD BE NON-CLOSED ONE. THE HOLE-FILL

ALGORITHM WORKS NOT ON POINT CLOUDS, BUT RECONSTRUCTED MESHES. THIS IS

INDEED AN POST-PROCESSING MODULE TO FILL THE HOLE REGIONS WITH A SMOOTH

SURFACE. THE NEW FRAMEWORK OF COMPUTING GLOBAL DISTANCE FIELDS WORKS

ONLY ON POINT CLOUDS REPRESENTING CLOSED-SURFACES. HOWEVER, IT HAS THE

1. INTRODUCTION 6

Chapter 4Chapter 4

Chapter 3Chapter 3

Chapter 5Chapter 5

Chapter 6Chapter 6

Chapter 7Chapter 7

Point Model Mesh

Noisy points

No normals

Irregular
sampling

Missing
regions

Boundaries

Non-manifold
surfaces

Fair Mesh

Reconstruction
Algorithms

Figure 1.2: The imperfections handled by different algorithms.

ABILITY TO HANDLE VERY NOISY DATASET AND FILL SMALL HOLES. THE FRAME-

WORK TO RECONSTRUCT MANIFOLD AND NON-MANIFOLD SURFACES IS ALSO A GEN-

ERAL FRAMEWORK FOR NON-CLOSED SURFACES AND CLOSED SURFACES. IT CAN

PRESERVE THE BOUNDARY OF NON-CLOSED SURFACES AS WELL. THE ALGORITHM

GENERATING REGULAR MESHES COULD ALSO WORK ON THE NON-CLOSED SURFACES.

HOWEVER, THE POINT PARAMETERIZATION EMBEDDED IN THE ALGORITHM IS A LIT-

TLE SENSITIVE TO NOISE AND VARYING SAMPLING RATES.

USER SHOULD SELECT THE MOST APPROPRIATE ALGORITHM FOR HIS RECON-

STRUCTION BASED ON HOW MUCH INFORMATION IS ASSOCIATED WITH THE INPUT

DATA, WHAT ASSUMPTION HE COULD MAKE ABOUT THE MISSING REGION, AND WHAT

IS REQUIRED FOR THE RESULTING MESH.

1. INTRODUCTION 7

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 gives an overview of the

previous work related to point acquisition and surface reconstruction. Chapter 3 details the

reconstruction algorithm to recover missing regions in indoor scenes that takes advantage

of user knowledge. Chapter 4 describes the hole filling algorithm as a post-processing.

In Chapter 5, we discuss the hierarchical and adaptive framework to compute the global

distance field and reconstruct the surface. Chapter 6 describes the generalized framework

for surface reconstruction of both manifold and non-manifold surfaces. Reconstructing

regular mesh is discussed in Chapter 7. We conclude and propose the plan for the future

work in Chapter 8.

8

Chapter 2

Background

In recent years, there has been a growing interest in digitizing the shape of real 3D

objects [66, 70]. The popular pipeline from the real object to its digital replica is shown in

Figure 2.1. There exist a number of methods to capture samples of objects [60, 77, 96, 105].

The problem of reconstructing a continuous function from a point dataset in Rn has been

extensively studied over the past decades [41, 42, 52]. In recent years, the problem of

surface reconstruction in 3D has attracted the attention of several researchers [7, 26, 85, 91,

129, 151]. After reconstruction, the resulting mesh may have several holes and there are

several algorithms to fill these holes [30, 31].

object

Range scanners

Vision algorithms

......

point

Region growing methods

Computational geometry methods

Algebraic methods

surface

Figure 2.1: The common pipeline for making digital replicas of objects

2. BACKGROUND 9

2.1 Point Model Acquisition

The interest in making replicas of real objects has stimulated the development of differ-

ent range scanning techniques. Kanade et al. develop a stereo machine [60] to reconstruct

the depth value for each pixel. Matusik et al. [77] use object silhouettes on the image to

carve 3D space. With different views, they obtain in the end the 3D shape of the object.

Proesmans and Cool [105] use a structured light system to extract shape and texture of an

object from a single image. We [133] propose an algorithm to calibrate a structured light

scanning system, namely, to calibrate the camera and the projector of the system. This

approach handles all types of distortions and produces results in high accuracy using a

non-parametric model. Palojärvi et al. [96] devise a laser radar and use the time of flight

for the depth.

IN THE COMPUTER GRAPHICS COMMUNITY, A NUMBER OF APPROACHES ARE PRO-

POSED TO OBTAIN THE POINT SAMPLES OF AN OBJECT IN AN ACCURATE AND COM-

PLETE MANNER. THE DIGITAL MICHELANGELO PROJECT [70] COMBINES THE USE

OF LASER TRIANGULATION RANGEFINDERS, LASER TIME-OF-FLIGHT RANGEFINDERS,

AND DIGITAL CAMERAS TO ACQUIRE THE POINT SAMPLES. THE 3D MODEL ACQUI-

SITION PIPELINE PROPOSED BY BERNADINI ET AL. [14] STUDIES HOW TO INTE-

GRATE TEXTURE AND NORMAL MAPS WITH THE GEOMETRIC DATA. RECENTLY, NE-

HAB ET AL. [86] ENHANCE THE ESTIMATION OF THE UNDERLYING 3D SURFACE BY

COMBINING POINT POSITIONS AND NORMALS FROM DIFFERENT SOURCES. THE PRO-

POSED LINEAR ALGORITHM TREATS HIGH- AND LOW-FREQUENCY COMPONENTS SEP-

ARATELY TO RECOVER DETAILS AND TO REMOVE BIAS. THE COMMON CHALLENGE OF

ABOVE ALGORITHMS IS THAT AN INDIVIDUAL RANGE SCAN ONLY COVERS A SMALL

REGION. AS A CONSEQUENCE, MULTIPLE RANGE SCANS NEED TO BE REGISTERED

IN A COMMON FRAMEWORK. THIS IS OFTEN DONE USING THE ITERATIVE CLOSEST

2. BACKGROUND 10

POINTS ALGORITHMS. ONE EXAMPLE IS THE REAL-TIME MODEL ACQUISITION AP-

PROACH, PROPOSED BY RUSINKIEWICZ ET AL. [107]. AFTER REGISTRATION, THE

INCONSISTENCE BROUGHT ABOUT DIFFERENT RANGE SCANS WILL BE REMOVED IN

AN INTEGRATION STAGE. FOR THIS PURPOSE, TURK AND LEVOY [128] PROPOSE A

ZIPPER ALGORITHM TO MERGE RANGE IMAGES AND CURLESS ET AL. [30] ADOPT A

VOLUMETRIC APPROACH.

In computer vision, shape from X techniques could be used to reconstruct 3D shapes as

well. Shape from motion algorithms [126] are used to compute the motion of the camera

and recover the shape of the object from a video sequence. Shape from shading algorithms

[150] take a single image as input. They use the variation of color/intensity to induce the

shape of the underlying surface. However, shape from shading algorithms have an inherent

ambiguity for concavity and convexity. To resolve that, Prados [102] assumes that the light

source is at the optical center.

2.2 Surface Reconstruction

In general, current surface reconstruction methods can be grouped into three different

categories: (1) region growing methods, (2) computational geometry methods, and (3)

algebraic methods. Here, we only present some of the most popular approaches. Note

some of these methods fail in the presence of noisy data or incomplete information, while

others are only computationally suitable for simple models.

2.2.1 Region Growing Methods

Region growing methods propagate information and thus reconstruct surfaces in a pro-

gressive style. Hoppe [52] fits a plane to a neighborhood around each data point, thus

providing an estimate of the surface normal for the point. He then constructs a graph that

2. BACKGROUND 11

connects neighboring points using arcs weighted by the similarity between the surface nor-

mals. The surface normals are propagated by traversing the graph as a minimal spanning

tree. Lee and Medioni’s tensor voting method [65] is similar in that neighboring points are

used to estimate the orientations of data points. The tensor is the covariance matrix of the

normal vectors of a neighborhood of points. Each data point votes for the orientation of

other points in its neighborhood using its tensor field. Tang and Medioni [120] reconstruct

the surface by growing planar, edge, and point features until they encounter neighboring

features. Both methods described above are sensitive to noise because they rely on good es-

timates for the normal vector at each data point. Bernardini’s Ball-Pivoting algorithm [13]

grows a mesh from an initial seed triangle that is correctly oriented. A ball of specified

radius is pivoted across edges of each triangle bounding the growing mesh. If the pivoted

ball hits vertices that are not yet part of the mesh, a new triangle is instantiated and added

to the growing mesh. Non-manifold constructions are avoided in the above process.

SHARF ET AL. [115] DEPLOY AN EXPLICIT DEFORMABLE MESH REPRESENTATION

COMPOSED OF MULTIPLE COMPETING EVOLVING FRONTS. THESE FRONTS CONFORM

TO THE FEATURES IN A COARSE-TO-FINE MANNER. WITH TOPOLOGICAL CHANGES

MONITORED, THIS APPROACH COULD RESULT IN A WATER-TIGHT RECONSTRUCTION

FOR VARYING SAMPLING AND AND MISSING DATA.

RECENTLY, LEVEL SET IS ALSO ADOPTED FOR SURFACE RECONSTRUCTION. NILS-

SON ET AL. [88] USE THE EULERIAN FORMULATION AUGMENTED WITH LAGRANGIAN

PARTICLES TO PROPAGATING THE CONTOURS AS 2D LEVEL SETS. ZHAO ET AL. [151]

PROPOSE FORMULATIONS FOR A WEIGHTED MINIMAL SURFACE MODEL. THIS LEVEL

SET APPROACH HANDLES COMPLICATED TOPOLOGY AND NOISY DATA.

2. BACKGROUND 12

2.2.2 Computational Geometry Methods

Computational geometry methods depend on mechanisms, such as Delaunay triangu-

lation and Voronoi diagram [7, 35]. Such methods interpolate the original points and basi-

cally they are sensitive to the presence of noise.

Several algorithms based on computational geometry construct a collection of sim-

plexes that form the shape or surface from a set of unorganized points. These methods ex-

actly interpolate the data and the vertices of the simplexes consist of the given data points.

A consequence is that noise and aliasing in the data become embedded in the reconstructed

surface. Of such methods, two most successful are Alpha Shapes [35] and the Crust algo-

rithm [7]. In Alpha shapes, the shape is carved out by removing simplexes of the Delaunay

triangulation of the point set. A simplex is removed if its circumscribing sphere is larger

than the alpha ball. In the Crust algorithm, Delaunay triangulation is performed on the

original set of points along with Voronoi vertices that approximate the medial axis of the

shape. The resulting triangulation distinguishes triangles that are part of the object surface

from those that are on the interior because interior triangles have a Voronoi vertex as one

of their vertices. Both the Alpha Shapes and Crust algorithms need no other information

than the locations of the data points and perform well on dense and precise data sets. The

object model that these approaches generate, however, consists of simplexes which occur

close to the surface. The collection of simplexes is not a manifold surface, and extraction

of such a surface is a non-trivial post-processing task.

AMENTA ET AL. [8] SELECT CANDIDATE TRIANGLES FOR THE RECONSTRUCTED

SURFACE USING co-cones. A MANIFOLD SURFACE IS EXTRACTED LATER BY A “PROV-

ABLY CORRECT” COMBINATIONAL ALGORITHM. THE POWER CRUST ALGORITHM [9]

FIRST EXTRACT THE MEDIAL AXIS FROM THE POINT CLOUDS AND THEN USE AN IN-

VERSE MEDIAL AXIS TRANSFORM TO PRODUCE THE RECONSTRUCTED SURFACE. DEY

2. BACKGROUND 13

ET AL. [33] ADOPT A DIVIDE-AND-CONQUER IDEA TO MAKE THE DELAUNAY TRIAN-

GULATION APPROACH SUITABLE FOR RECONSTRUCTING MODELS WITH MILLIONS OF

POINTS.

2.2.3 Algebraic Methods

Algebraic methods try to fit a function to the data points. They avoid creating noisy

surfaces by fitting a smooth function, and by not requiring that the function pass through

all data points. The reconstructed surface may consist of a single global function or many

local functions, which are pieced together. Two examples of reconstruction by global alge-

braic fitting are the works of Taubin [121, 122], and Gotsman and Keren [63]. Taubin fits

a polynomial implicit function to a point set by minimizing the distance between the point

set and the implicit surface. He points out that calculating Euclidean distances for implicit

functions requires an iterative process because implicit functions are not often Euclidean

distance functions. Taubin develops a first order approximation of the Euclidean distance

[121] and improves the approximation [122]. Gotsman and Keren create parameterized

families of polynomials that satisfy desirable properties, such as fitness to the data or conti-

nuity preservation. Such a family must be large so that it can include as many functions as

possible. This technique leads to an over-representation of the subset, in that the resulting

polynomial will often have more coefficients for which to solve than the simpler polynomi-

als included in the subset, thus requiring additional computation. The primary limitation of

global algebraic methods is their inability to reconstruct complex models. These methods

become too computationally expensive for the high degree polynomials that are necessary

to represent complex objects.

Bajaj [12] overcomes the complexity limitation by constructing piecewise polynomial

2. BACKGROUND 14

patches (called A-patches) that combine to form one surface. Bajaj uses Delaunay triangu-

lation to divide the point set into groups delineated by tetrahedrons. An A-patch is formed

by fitting a Bernstein polynomial to the data points within each tetrahedron. By construct-

ing a piecewise surface, Bajaj’s approach loses the compact characteristic of a global rep-

resentation, and operations such as collision detection, morphing, blending, and modeling

with constructive solid geometry become more difficult to perform since the representation

is no longer a single analytical function. Examples of algebraic methods developed earlier

in the vision community that provide both smooth global fitting and accurate local refine-

ment include the works of Terzopoulos and Metaxas on deformable superquadrics [124]

and Pentland and Sclaroff on generalized implicit functions [100, 113]. Both methods use

superquadric ellipsoids as the global shape and add local deformations to fit the data points.

Terzopoulos and Metaxas separate the reconstructed model into global parameters defined

by the superquadric coefficients, and local displacements defined as a linear combination of

basis functions. The global and local deformation parameters are solved using dynamics.

Pentland and Sclaroff define a generalized implicit model that consists of a superquadric

ellipsoid, a modal deformation matrix that acts on the ellipsoid, and a displacement map

that pushes the implicit surface along the surface normal towards data points. The modal

deformation parameters are found by iteratively finding the minimum RMS error to the

data points. The residual error after the deformation parameters have been found are incor-

porated into a displacement map that may exactly interpolate or just approximate the data.

As with most of the algebraic methods, the primary drawback of these techniques is their

inability to handle arbitrary topologies. Complex models are constructed by combining

multiple superquadrics. Terzopoulos and Metaxas’ example of reconstructing a humanoid

doll consists of separate deformable superquadrics for the torso, head, arms, and legs.

Dinh [34] proposes a reconstruction approach based on a summation of non-polynomial

2. BACKGROUND 15

basis functions whose domain is a scalar value obtained from the distance between sam-

ple points. Surface regularization restricts the class of permissible surfaces to those which

minimize a selected energy functional. The work of Boult and Kender [24] and the work of

Terzopoulos [123] are examples of regularization applied to height-field surfaces, and [37]

is an example of regularization applied to parametric curves. Terzopoulos [123] pioneers

finite-differencing techniques to compute approximate derivatives used in minimizing the

thin-plate energy functional of a height-field. He develops computational molecules from

the discrete formulations of the partial derivatives. Regularization is performed by iterating

between coarse and fine levels in a multi-resolution hierarchy. Boult and Kender [24] com-

pare classes of permissible functions and discuss the use of basis functions to minimize the

energy functional associated with each class. Using synthetic data, they show examples

of overshooting surfaces that are often encountered in surface regularization. As exempli-

fied by these two methods, many approaches based on surface regularization are restricted

to height fields because surface derivatives are required in the process of regularization.

Derivatives with respect to the major axis are naturally defined for height fields.

Fang and Gossard [37] reconstruct piecewise continuous parametric curves. The advan-

tage of parametric curves and surfaces over height fields is the ability to represent closed

curves and surfaces. Each curve in their piecewise reconstruction minimizes a combination

of first, second, and third order energies. Unlike the examples above, the derivative of the

curve in this method is evaluated with respect to the parametric variable. Each curve is

formulated as a summation of weighted basis functions. Fang and Gossard show examples

using Hermite basis. Dinh [34] uses basis functions to reconstruct a closed surface which

minimizes a combination of first, second, and third order energies. She reconstructs com-

plex 3D objects using a single implicit function based on volumetric regularization. By

fitting smooth functions to the input points, algebraic methods [124] handle noisy datasets,

but cannot deal with arbitrary topologies.

2. BACKGROUND 16

It is worthy pointing out that most popular implicit function based methods [26, 85, 91,

129] belong to this category as well. Essentially, these methods are based on the use of a

signed distance function and can naturally handle different topologies. They lift the recon-

struction problem to a higher dimension and then the resulting surface becomes the zero-set

surface of the distance field. These methods require a way to distinguish between the inside

and outside of (closed) surfaces, which is usually achieved by using information of surface

normals at the samples. Turk and O’Brien [129] build signed distance functions using non-

compact radial basis functions (RBF). Carr [26] accelerates the computation of the global

distance field using Fast Multipole Methods. Morse [85] use compactly-supported RBFs

based on the work by Wendland [140] to achieve local control and improved memory and

computational time requirements. Ohtake et al. [91] uses a method based on the partition

of unity to achieve similar results. They adaptively fit piecewise quadrics to the local shape

and piece them together to form a global distance field. Carr et al. [27] handle surface

reconstruction from noisy datasets by fitting an RBF and then changing the basis function

during the evaluation. As described by Carr et al. [26], the method requires normals for

defining the interior and exterior of the surfaces.

KANZHDAN [61] ADOPTS STOKES’ THEOREM TO COMPUTE THE CHARACTERISTIC

FUNCTION OF THE SOLID MODEL. FIRST THE FOURIER COEFFICIENTS OF THE CHAR-

ACTERISTIC FUNCTION ARE COMPUTED. THEN THE INVERSE FOURIER TRANSFORM

ARE COMPUTED AND THE SURFACE IS EXTRACTED AS THE ISO-SURFACE. SIMILAR TO

THE RADIAL BASIS FUNCTION APPROACH [26], KAZHDAN ET AL. [62] FIT THE ORI-

ENTED POINTS USING A POISSON SYSTEM, WHICH ALLOWS FOR LOCALLY SUPPORTED

BASIS FUNCTIONS. IN CONSEQUENCE, THE RECONSTRUCTION RESULT TURNS OUT TO

THE SOLUTION OF A LINEAR SYSTEM.

ALEXA ET AL. [3] PROJECT THE POINTS ONTO A SURFACE DEFINED BY A MOVING

LEAST SQUARES SCHEME. THIS APPROACH PROVIDES A MESHLESS APPROXIMATION

2. BACKGROUND 17

OF THE UNDERLYING SURFACE AND ALLOWS FOR UNSAMPLING AND DOWNSAMPLING

WITH EASE. FLEISHMAN ET AL. [38] EXTEND THIS APPROACH BY CONSTRUCTING A

HIERARCHY OF POINTS WHICH COULD EFFICIENTLY REPRESENT THE SHAPE IN DIF-

FERENT VIEWING CONDITIONS. AMENTA ET AL. [10] GIVE OUT A NEW EXPLICIT DEF-

INITION IN TERMS OF THE CRITICAL POINTS OF AN ENERGY FIELD. CONSEQUENTLY,

A MAXIMAL SURFACE WILL BE EXTRACTED.

AN IMPORTANT PROBLEM OF ALGEBRAIC METHODS IS HOW TO PRESERVE SHARP

FEATURES DUE TO THE FACT THAT THE FITTED FUNCTION IS SMOOTH IN MOST CASES.

OHTAKE ET AL. [91] FIND OUT THE SHARP FEATURES AS REGIONS CONTRADICTING

NORMALS. THEY FIT THESE REGIONS WITH TWO OR MORE QUADRICS TO REPRESENT

THE ABRUPT TRANSITION OF THE DISTANCE FIELD. FLEISHMAN ET AL. [39] USE A

FORWARD-SEARCH APPROACH TO FIND THE SMOOTH NEIGHBORHOOD FOR MOVING

LEAST SQUARES COMPUTATION. THE SHARP FEATURES THEN BECOMES THE OUT-

LIERS IDENTIFIED BY THE FORWARD SEARCH APPROACH.

JENKE ET AL. [54] SEARCH FOR A LOCAL MAXIMUM OF POSTERIOR PROBABIL-

ITY IN THE RECONSTRUCTION SPACE, PARAMETERIZED AS POINT CLOUDS. THIS

APPROACH IS ROBUST TO THE PRESENCE OF NOISE AND IS CAPABLE OF HANDLING

SHARP FEATURES.

FOR DISTANCE FIELD BASED METHODS, IT IS OFTEN IMPORTANT TO DISTINGUISH

THE INSIDE/OUTSIDE OF THE OBJECT. MELLO ET AL. [80] PROPOSE AN APPROACH

TO ESTIMATE THE IN/OUT FUNCTION OF THE SURFACE REPRESENTED BY A POINT

MODEL. XIE ET AL. [143] FIND THE IN/OUT INFORMATION FOR PIECEWISE SURFACE

PATCHES, AND REGISTER THESE INFORMATION VIA A VOTING PROCESS.

2. BACKGROUND 18

2.3 Hole Filling

The most popular approach for hole filling is also based on the use of implicit functions

[26, 30, 31, 34, 85, 91, 110, 129, 144]. Curless’s and Levoy’s VRIP algorithm [30] is a

good example. It uses an implicit method for surface reconstruction and hole filling. The

approach consists of computing signed distance functions from a set of aligned meshes ob-

tained from range scans. These functions are then blended and the final surface is extracted

using the marching cubes algorithm [73]. In order to perform hole filling, the algorithm

requires information about the line of sight of the scanner, and tends to perform poorly

if the available information does not appropriately cover the entire volume enclosing the

object. According to Davis et al. [31], this method may reconstruct surfaces that look less

plausible than a smooth interpolation of the observed surfaces.

Davis et al. [31] use a volumetric diffusion approach, analogous to inpainting tech-

niques [15, 93], to fill holes in range scans. This technique is targeted toward the recon-

struction of densely sampled closed surfaces. The process consists of converting a surface

into a voxel-based representation with a clamped signed distance function. The diffusion

algorithm consists of alternating steps of blurring and compositing, after which the final

surface is extracted using marching cubes [73]. This technique performs hole filling after

surface reconstruction and the processing is constrained to the neighborhood of the holes.

This algorithm is based on the use of an implicit function and can handle holes with more

complex topology and twisted geometry. Moreover, the reconstructed patch is not guaran-

teed to smoothly blend with the rest of the surface, and, like in the algorithm of Curless et

al. [30], may look little plausible.

Verdera et al. [131] use an approach similar to the one described by Davis et al. [31].

They turn a mesh into an implicit representation, then use a PDE system to inpaint the

2. BACKGROUND 19

missing regions. Savchenko and Kojekine [109] deploy a space mapping approach to ex-

tend existing surface boundaries and fill the gaps using RBFs. Clarenz et al. [29] minimize

the Willmore energy to ensure continuity of the normal field using PDEs.

Liepa [71] presents an algorithm targeted toward filling holes in oriented connected

manifold meshes. It fills holes by first identifying hole boundaries, triangulating the holes,

and finally smoothing the resulting patches. The triangulation is based on an O(n3) algo-

rithm that produces a minimum area triangulation, thus requiring the resulting patches to

be smoothed during the last stage of the algorithm.

More recently, Ju [57] introduces a volumetric algorithm that takes a polygonal mesh

and creates a closed surface. It starts by scan converting the mesh into voxels, where

holes are filled by patching boundary cycles using minimal surfaces. This technique is

appropriate for filling very small holes or larger holes in locally flat surfaces.

HOLES COULD ALSO BE FILLED DIRECTLY ON THE POINT MODELS BEFORE SUR-

FACE SURFACE. Sharf et al. [114] reconstruct fine details in missing regions on geometric

complex surfaces represented by point clouds. It uses a coarse to fine approach based on

an octree to copy and paste samples from a set of example regions (at the same level of

detail) to the missing ones. The technique can produce some impressive results, but in the

absence of appropriate examples, or for noisy or poorly sampled surfaces, the algorithm

tends to produce poor results. PARK ET AL. [97] DIRECTLY FIND THE HOLES FROM THE

POINT CLOUDS. THEN THE SIMILARITY BETWEEN THE LOCAL SURFACE PATCHES IS

COMPUTED USING THEIR LOCAL PARAMETERIZATION AND THE CURVATURE. WHEN A

CANDIDATE PATCH IS SELECTED FOR A HOLE REGION, IT IS WARPED AND GLUED TO

THE HOLE BY SOLVING A POISSON EQUATION IN 2D.

20

Chapter 3

Reconstructing Missing Regions of

Indoor Scenes

(a) (b)

Figure 3.1: View of the reading room: (a) before reconstruction; and (b) after reconstruc-
tion by our system.

The availability of detailed geometric models is a critical factor for achieving realism

in most computer graphics applications. Despite the great progress observed in rendering

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 21

techniques during last two decades, the process of modeling 3D objects and scenes has

experienced significant fewer advances in the same period. In the past few years, we have

observed an increasing demand for faithful representations of real scenes, primarily driven

by applications whose goal is to create extremely realistic experiences by building virtual

replicas of real environments. Potential uses of this technology include telepresence, enter-

tainment, training and simulation, analysis of forensic records, remote walkthroughs and

3D TV, and have attracted the attention of several researchers [4, 59, 90, 106].

Creating models of real scenes is, however, a complex task for which the use of

traditional modeling techniques is inappropriate. Aiming to simplify the modeling and

rendering tasks, several image-based techniques have been proposed in recent years

[28, 78, 79, 117]. Among these, the combined use of laser range finders [16] and color

images appears as one the most promising approaches due to its relative independence of

the sampled geometry and short acquisition time [78, 90]. Renderings of scenes modeled

with such a technique can potentially exhibit an unprecedented degree of photorealism.

Unfortunately, in many situations, it is not possible or practical to guarantee appropriate

sampling of all surfaces in the scene. For example, occlusions and accessibility limita-

tions to certain regions of the scene may cause some areas not to be sampled, resulting in

incomplete or incorrectly reconstructed models. The occurrence of such areas is a major

source of artifacts, usually appearing as “holes” in the rendered images. Figure 3.1 illus-

trates this situation for a partial model of the UNC Reading Room acquired from a single

laser scan. Note the “holes”are exphasized by the blue regions in the figure. Creating high-

quality mesh representations for each object in the scene from incomplete data remains a

challenging task [148].

This chapter describes a pipeline for improving the reconstruction of scenes represented

as sets of range images and introduces new algorithms for exploiting the use of symmetry

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 22

for reconstruction. The pipeline consists of a segmentation step followed by the recon-

struction of missing geometric and textural information for individual objects (Figure 3.2).

To achieve our goal, we take advantage of two simple but powerful observations: (1) real

indoor scenes usually contain a number of large planar surfaces; (2) symmetry pervades

both human-created and natural environments [48, 72, 138, 141]. We use these obser-

vations to design new algorithms and tools that greatly simplify the reconstruction task.

Texture reconstruction from samples of the original texture is performed using a synthesis

algorithm [36] and by exploring symmetry in periodic patterns.

Due to the segmentation of individual objects, our system also allows the user to edit

the scene. We illustrate its use for reconstruction of both synthetic and real scenes. The

resulting models are shown to be significantly better than the ones obtained by simply

meshing the original range data.

The main contributions of this chapter include:

• A pipeline for scene reconstruction from range images;

• New algorithms for identifying approximate bilateral and rotational symmetric pat-

terns in point clouds. These algorithms are relatively robust to noise and incomplete

data;

• New algorithms for automatic identification of regions whose sampling

rate/reconstruction can be improved by exploiting redundancies present in incom-

plete symmetric objects;

• New algorithms for performing/improving reconstruction of the areas identified

above;

• A new algorithm for reconstruction of incomplete textures presenting complex sym-

metric patterns.

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 23

3.1 Related Work

Our effort to improve reconstruction of scene models from range images benefits from

previous work in several related areas, including registration and segmentation of range

images [18, 89], surface reconstruction from point clouds [7, 12, 35, 43, 52] and texture

synthesis [36, 139].

Several algorithms for range image registration and for registration of range and color

images [76, 87, 148] have been published in recent years. We rely on these results and

assume that the input to our pipeline consists of a registered set of range and color images.

Nyland’s registration algorithm [89] uses a 3D Hough transform to identify large planar

areas in different datasets, which are then used to constrain the registration process. In our

pipeline, a 3D Hough transform is also used to identify large planar areas, but the goal here

is to replace them with texture-mapped polygons. This has three important benefits: (1)

it can significantly reduce the number of points in the later stages of the pipeline; (2) re-

construction of planar areas is straightforward; (3) it facilitates de identification of clusters

among the remaining points.

Curless [30] uses a hole filling technique to interpolate non-sampled surfaces in con-

cave regions of objects. In this case, however, the added surfaces have little or no impact on

the appearance of the objects and were intended to produce “watertight” models for repro-

duction using rapid prototyping techniques [30]. In our work, we try to derive information

to fill in missing geometry and texture that would, otherwise, result in major artifacts.

A lot of work has been done in segmentation of range images [17, 49, 51, 67], but even

in the simplest case of planar range image segmentation, current automatic procedures

often fail to produce the desired results [51]. Due to ambiguities, segmentation usually

requires some knowledge about the scene, and achieving good results often requires user

intervention[148]. Our system uses preprocessing and interactive tools to assist users to

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 24

perform segmentation and reconstruction.

Yu et al. [148] use range images and photographs to segment, reconstruct and simplify

objects from real scenes. Their goal is to edit the scene (e.g., move objects around) and

no attempt to reconstruct missing areas was made. Since our pipeline uses a segmentation

step, our scenes can also be edited.

Mark [75] discusses the issue of removing disocclusion artifacts in the context of post-

rendering 3D warps. In this case, the hole-filling step is performed in image space.

One of the novel aspects of our work is the identification and use of approximate sym-

metry in point clouds and its use for reconstruction. Identification of symmetry is an im-

portant issue in pattern recognition and several algorithms have been proposed for finding

symmetry in 2D images [68, 98, 145, 146]. Yip [145] used a Hough transform to identify

approximate rotational symmetry in 2D binary images. The 2D Hough transform is used

to identify the center of a set of concentric circles. The resulting algorithm has cost O(n3)

on the number of pixels of the image. More recently, Yip exploited the use of 2D Hough

transform to identify approximate bilateral and skew symmetry [146]. In this case, a three-

step Hough transform is used to find the common bisector of a group of trapezoids. In our

approach, a 3D Hough transform is used to identify both bilateral and rotational symmetry

in unorganized point clouds. Our algorithm is conceptually much simpler and has a cost

O(n2) on the number of points.

O’Mara and Owens [94] find the dominant plane of bilateral symmetry for 3D mag-

netic resonance images (MRI). The 3D MRI dataset is treated as a binary object for which

a centroid and a covariant matrix are computed. The eigenvectors of the covariant matrix

are computed and used as normals for three candidate planes. For each such plane, a mea-

sure of symmetry is computed by checking differences between intensity values in opposite

sides of the plane. The one with highest symmetry measure is selected. PODOLAK ET AL.

[101] PROVIDE AN EFFICIENT MONTE CARLO ALGORITHM FOR FINDING THE PLANAR

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 25

Segmentation &
Reconstructing
planar surfaces

Texture
reconstruction

3D Hough
Transform

Clustering
Symmetry
check &

reconstruction

Surface
fitting

Meshing,
texturing &

simplification

Editing &
merge

Large Planar Regions

Registered
range

images (I) Cluster of
points

Symmetry &
reconstructed

surfaces
(IV)

Other surfaces
(III) = (I) - (II)

Non-symmetric surfaces: (III) - (IV)

Texture
samples

Textures

Polygons

Large planar
surfaces (II)

Reconstructed
scene

Figure 3.2: Segmentation and reconstruction pipeline.

REFLECTIVE SYMMETRY TRANSFORM FOR SURFACES AND ALSO PROPOSE AN ITERA-

TIVE REFINEMENT ALGORITHM TO FIND THE LOCAL MAXIMA PRECISELY. THEY ALSO

DEMONSTRATE VARIOUS APPLICATIONS OF THE SYMMETRY INFORMATION IN COM-

PUTER GRAPHICS, INCLUDING SHAPE MATCHING, SEGMENTATION, AND AUTOMATIC

VIEWPOINT SELECTION. MITRA ET AL.[84] ACCUMULATE THE EVIDENCE FOR POS-

SIBLE SYMMETRIES IN THE TRANSFORMATIONAL SPACE. THE SIGNIFICANT PARTIAL

AND APPROXIMATE SYMMETRY IS EXTRACTED VIA A CLUSTERING STAGE FOLLOWING

BY A VERIFICATION STEP. THE PROPOSED ALGORITHM IS THEORETICALLY GUARAN-

TEED TO HAVE A CERTAIN SUCCESS RATE.

Mills et al. [83] present an algorithm for finding global approximate symmetry for

boundary representation (B-rep) models built from planes, spheres, cylinders, cones and

tori. The symmetry check consists of trying a certain number of rigid motions (up to 120

permutations) and verifying whether each point lies within a certain tolerance from the

original position of another point in the set. This algorithm works for relatively simple

models with small number of vertices, such as simple polyhedra.

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 26

3.2 The Reconstruction Pipeline

The segmentation and reconstruction pipeline is shown in Figure 3.2. It exploits the

observations that real scenes usually contain a significant number of planar and symmetric

surfaces. The following subsections describe the steps of the pipeline.

3.2.1 Segmentation and Reconstruction of Planar Surfaces

The 3D Hough transform is a standard technique for identifying planar regions repre-

sented by sets of points in 3D. For each input point, a vote is cast to all cells of the Hough

space representing planes passing through that point. To avoid finding spurious planes, the

normal of every point is computed before vote accumulation and each point only votes for

a few Hough cells. This decision is based on the normal at the point, which is computed

based on its local neighborhood. The parameters of the final extracted planes are further

refined fitting a plane through their selected points using singular value decomposition

(SVD).

All salient planes can be identified using the technique described, but extracting poly-

gons from the scene requires user assistance to specify the appropriate boundaries. In

our system, this is done interactively, allowing for the creation of polygons with arbitrary

shapes and sizes. This is particularly useful for reconstruction of occluded planar surfaces

whose shapes are known a priori.

3.2.2 Texture Reconstruction for Planar Areas

Texture reconstruction for planar surfaces is based on isotropic and stochastic assump-

tions. For each texture, the synthesis procedure consists of:

• Orthographically project all texture samples onto the underlying plane and splat the

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 27

color information onto a texture buffer;

• Find the biggest square in the texture buffer whose interior is completely filled with

the splats;

• Use this square texture as input for an Image Quilting procedure[36] and discard the

original texture.

For the reconstruction of symmetric texture patterns, such as the one shown in the

Oriental rug (Figure 3.3), a 2D Hough transform is used. In this case, the extracted texture

is scanned and, for each texel t, all other texels with similar colors (based on an L2 norm

in RGB space) are identified. A vote is then cast to each of the bisectors between t and all

its similar texels. After the scanning of all input samples is completed, the bisectors with

most votes are selected as the symmetry axes for the texture and used to mirror filled texels

to unfilled ones. Since the accuracy of this procedure depends on the quality of the input

data, user assistance is usually required. After copying texels according to the symmetry

axis, some texels may still be empty. These texels are filled using a pull-push strategy [44]

based on a texture pyramid. Figure 3.3 illustrates the intermediate steps produced by this

technique for the reconstruction of an oriental rug. Figure 3.3(a) shows the extracted texture

and one of its symmetry axes. The image in the center shows the reconstruction obtained by

mirroring, while on the right one sees the final result produced by the pull-push algorithm.

3.2.3 Clustering

After eliminating all points belonging to large planar surfaces, the pipeline proceeds by

segmenting clusters of points spatially close to each other, which are treated as individual

objects. Clusters are identified using an incremental surface construction algorithm [43]

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 28

Figure 3.3: Reconstruction of an oriental rug: (a) extracted texture; (b) reconstruction by
mirroring; and (c) final result produced by the pull-push algorithm.

based on the projected distance, onto local tangent planes, of adjacent points in 3D.

For each pair of points in the point cloud do

Compute the bisector plane for the two points

Cast a vote for the computed plane

If plane Πi alone received most votes then

Πi is a symmetry plane //bilateral symmetry

elseif Πi , Πj . . . Πn all received many votes then

a = intersection(Πi , Πj . . . Πn) is a symmetry axis

else

no symmetric pattern found.
Algorithm 3.1: Identifying approximate symmetry in point clouds.

3.2.4 Symmetry Check and Reconstruction

Symmetric features are pervasive in both natural and man-made environments [48, 72,

138, 141]. The redundancy embodied in symmetric shapes is exploited to allow reconstruc-

tion to proceed from incomplete data.

Due to its relative insensitivity to noise and missing data, the Hough transform is a

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 29

natural tool for identifying approximate symmetries in unorganized point clouds. Algo-

rithm 3.1 describes a procedure for identifying such patterns. In the case multiple planes

presenting approximately the same number of votes (this indicates the presence of rota-

tional symmetry), the symmetry axis is computed as the intersection of all identified planes

using SVD.

Put all points in a queue
While the queue is not empty do

Get one point p from the queue
Find the samples in the local neighborhood of p and the

samples in its mirrored neighborhood
Project both neighborhoods onto the tangent plane of p and

sort them by angle around p
If the angle between two projected adjacent points ai and aj

from the local neighborhood of p is bigger than 120 degrees,
find a point q from the mirrored neighborhood, whose
projection falls in between (angular wise) ai and aj and
whose distance to p is between µ*local min dist(p) and
local min dist(p) is the minimum distance between p and
any point in its local neighborhood. µ is a user specified
parameter for the entirereconstruction process

Add q to the queue.
Algorithm 3.2: Symmetry reconstruction.

Once a symmetry plane is has been identified, points can be mirrored to the other side of

the plane to fill holes or simply to improve the sampling rates locally. The identification of

regions that can potentially benefit from mirroring is performed in the following way: for

each point p in the point cloud, we project its local (3D) neighborhood onto its tangent plane

and sort the projections by angle around p. If the angle between two projected adjacent

points ai and aj from the local neighborhood of p is bigger than 120 degrees, a possible

hole (or boundary) may exist. Only in this case, reconstruction by mirroring is applied. The

reconstruction process is described in Algorithm 3.2 and was inspired by the algorithm used

for surface reconstruction [43]. Figure 3.4 illustrates this situation.

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 30

Because the computed position for the symmetry plane is usually only approximate,

the distances between each point in the mirrored neighborhood and the tangent plane of

the current point (p, in Algorithm 3.2) are computed as well. If a distance is bigger than a

certain threshold, the corresponding point is discarded. A dexel data structure [50] is used

to accelerate the search of neighborhoods.

Depending on the input data, there may still be some non-sampled regions even after

symmetry reconstruction. We currently perform surface reconstruction using Gopi’s algo-

rithm [43]. Like other surface reconstruction strategies from point clouds [7, 12, 35, 52], it

cannot guarantee filling in holes in areas with local variations of sampling density. Our sys-

tem currently does not handle these cases and we intend to implement an interactive tool

for reconstructing these regions by locally fitting surfaces using a moving least squares

approach [64].

Symmetry Plane

Local
neighborhood

of p

p
q

Mirrored
neighborhood

of p

ai

aj

Figure 3.4: Illustration of the symmetry reconstruction in the neighborhood of point /tex-
titp.

After incorporating new samples by exploiting symmetry and surface fitting, each clus-

ter is then meshed and possibly textured and simplified. Meshing is currently performed

using the same algorithm used for cluster segmentation [43].

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 31

If a planar region does not have enough samples, the corresponding plane may not

be correctly extracted. For these cases, we have implemented a tool for cloning already

reconstructed polygons, which can then be repositioned and resized to make up for large

missing areas. This technique was used to create the top of the furniture next to the window,

a wall and the back of the shelves not visible in the original dataset. The approach is also

illustrated in one of the accompanying animations.

Textures can also be reconstructed by cloning. We use a cloning brush tool similar to

the one available in Photoshop to reconstruct some kinds of textures. This tool was used to

help reconstruct the window texture occluded by the small plant (Figure 3.7) and textures

for the lower portion of the bookshelves occluded by the chairs.

3.3 Results

We have implemented the pipeline described in Section 3.2, with the exception of the

surface fitting step. The code was written in C++ and times were measured using a debug

version of the code on a 2.0 GHz Pentium 4 PC with 512 MB of memory. Our prototype

was used for reconstructions of a real and a synthetic environment. Hough tables with sizes

60x60x160 were used in both cases for the detection of large planar areas. In Hough space,

this corresponds to angular increments of 3 degrees. The size of the increment in ρ varied

with the length of the scene’s bounding box’s diagonal (which was divided by 160). For

the case of the real scene, ∆ρ = 0.51 units, and for the synthetic scene ∆ρ = 1.93 units.

3.3.1 Reconstruction of a Real Scene

The real dataset used is a partial model of the Sitterson Hall (UNC) reading room,

consisting of ten 864x240 range images containing a total of 1,805,139 valid samples.

These are shown as a panorama in Figure 3.5. For this scene, the computation of the Hough

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 32

transform for identifying planar regions took approximately 17 minutes and its results were

saved for later use during an interactive session.

Although the Hough transform identified all major planar areas, we decided to replace

only five of them with texture-mapped polygons: the wall containing the window, the wall

next and parallel to it, the front of furniture also next to the window, the floor and the bottom

part of the bookshelf. After this step, the scene was left with 1,351,235 points. Replacing

other planar regions of walls would have brought this number down to 863,391 points. We

decided not to do so and allow a larger number of points to proceed to the clustering step

of the pipeline. The clustering step isolated the three chairs and the remaining walls as four

 Figure 3.5: Sitterson Hall reading room. Panorama obtained by concatenating ten 864x240
range images.

different clusters. Reconstruction then proceeds with the middle chair in Figure 3.5. The

symmetry plane computed by the Hough transform (using a table of size 70x70x70) was

slightly off the center, requiring minor user intervention. This is due to the fact that only

one external side of the chair is visible (Figure 3.5). Figure 3.6 shows two views of the arm-

chair before and after the reconstruction. The resulting model contains 64,290 points and

127,525 triangles. Despite the existence of small holes (in areas where no data was avail-

able in either side of plane), the reconstructed model (Figure 3.6(b)) shows a significant

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 33

improvement when compared to the original chair (Figure 3.6(a)). The resulting polyg-

onal model was instantiated three times, replacing the original chairs in Figure 3.1. The

(a) (b)

Figure 3.6: Views of the armchair: (a) before reconstruction; and (b) after reconstruction.

texture for the wall containing the window was extracted from the original dataset by or-

thographically projecting all samples within a certain tolerance to the plane (Figure 3.7(a)).

Notice the existence of holes, mostly due to occlusions, shown in black. The final texture

(Figure 3.7(b)) was obtained with the use of the clone-brush tool to reconstruct the area

corresponding to the shadow of the plant on the shades. The remaining holes were filled

with the use of the push-pull algorithm.

(a) (b)

Figure 3.7: Reconstruction of texture: (a) texture extracted from the original point clouds;
(b) reconstructed texture using a clone-brush tool and pull-push.

The carpet texture was synthesized from a small sample seen in Figure 3.8 using the

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 34

method described by Efros et al. [36]. The top of the furniture next to window and a wall

not visible in Figure 6 were created using the polygon cloning technique. The textures for

bottom of the three bookshelves were created with the clone-brush tool. The final edited

scene is shown in Figure 3.1(b). Essentially, all disocclusion artifacts have been removed.

3.3.2 Reconstruction of a Synthetic Scene

We also tested our system on a larger and more complex synthetic dataset of an office

environment. It consists of nineteen 640x480 range images, containing a total of 4,397,683.

Top views of the scene before reconstruction are shown in Figure 3.8.

The office scene contains a chair, a desk, a floor lamp, a vase, a bookshelf, an oriental

rug, computer monitor, keyboard and a phone. The floor lamp and the vase are used to illus-

trate the reconstruction of rotationally symmetric objects. The reconstruction of the chair,

monitor and bookshelf are based on bilateral symmetry. The rug illustrates our attempt to

reconstruct complex texture patterns, which is shown in Figure 3.3.

(a) (b)

Figure 3.8: Top view of a synthetic office: (a) before reconstruction; and (b) after recon-
struction.

First, the major planes of the scene (walls, floor, the top and some faces of the desk)

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 35

were identified using the Hough transform. Textures for the carpet and desk were syn-

thesized from the original samples using the procedure described in Section 3.2.2. After

the major planar surfaces have been removed, all the remaining objects were segmented

automatically and submitted to a symmetry check. Figure 3.9 shows three views of the

chair. The image on the left shows the chair before reconstruction. The image on the center

shows the symmetry plane, and to its right, the resulting model computed automatically.

Figure 3.10 shows renderings of the monitor before and after its automatic reconstruction.

Little holes in the final model, not present in the original incomplete model, are caused

by the distance criterion used by the surface reconstruction algorithm used [43]. All the

original points are preserved. Figure 3.11 illustrates the reconstruction of a rotationally

(a) (b) (c)

Figure 3.9: Office chair: (a) before reconstruction; (b) with the symmetry plane computed;
and (c) after reconstruction.

symmetric object. The model is shown before reconstruction, with a symmetry plane and

after reconstruction. Notice that although there is a symmetry axis, reconstruction becomes

much simpler when performed as a series of reflections with respect to planes. The number

of points per object before and after reconstruction is shown in Table 3.1.

The algorithm looks for symmetric regions containing unbalanced number of samples

and tries to balance them, it is possible that areas whose surfaces were already filled in

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 36

the incomplete model receive new samples. Since at this point, our system copies samples

to the new location, it may introduce texture artifacts due to differences in shading. This

situation is illustrated in the case of the floor lamp (Figure 3.11), for which samples with

darker shade samples were copied onto brighter regions.

(a) (b)

Figure 3.10: Monitor: (a) before reconstruction, but with the symmetry plane computed;
and (c) after reconstruction.

The oriental rug was reconstructed using the algorithm described in Section 3.2.2, and

its results are illustrated in Figure 3.3. Figure 3.12 shows views of the office before and

after reconstruction.

Table 3.1: Number of points per object before and after reconstruction

Object # original points # points after # triangles after
Chair 41,511 64,290 127,525

Office chair 51,237 70,595 136,464
Monitor 81,329 103,243 206,982
Lamp 47,968 64,722 129,771
Vase 187,031 268,061 555,228

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 37

(a) (b) (c)

Figure 3.11: Floor lamp: (a) before reconstruction; (b) with the symmetry plane computed;
and (c) after reconstruction.

(a) (b)

Figure 3.12: View of the office: (a) before reconstruction; and (b) after reconstruction.

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 38

3.3.3 Discussion

OCCLUSIONS AND SCANNER ACCESSIBILITY LIMITATIONS TO CERTAIN REGIONS

CAUSE SOME SURFACES NOT TO BE SAMPLED, RESULTING IN INCOMPLETE OR IN-

CORRECTLY RECONSTRUCTED MODELS. THIS CHAPTER PRESENTS A PIPELINE FOR

RECONSTRUCTING MISSING GEOMETRY AND TEXTURE DATA, THUS IMPROVING THE

QUALITY OF THE RESULTING MODELS. THE CENTRAL IDEA OF THE PIPELINE IS BASED

ON THE OBSERVATIONS THAT REAL SCENES USUALLY CONTAIN A NUMBER OF LARGE

PLANAR SURFACES AND SYMMETRIC SURFACES. WE FIRST IDENTIFY LARGE PLANAR

AREAS, REPLACING THEM WITH TEXTURED POLYGONS. IF THE COLOR INFORMATION

IS NOT AVAILABLE WITH THE POINT DATASET, THE GENERATED POLYGON WILL NOT

BE ASSOCIATED WITH A TEXTURE. THE REMAINING SAMPLES ARE SEGMENTED INTO

SPATIALLY COHERENT CLUSTERS, WHICH ARE THEN ANALYZED FOR THE EXISTENCE

OF SYMMETRY.

TO FIND LARGE PLANAR SURFACES, WE DISCRETIZE THE SYMMETRY PLANE

SPACE WITH ITS ORIGIN DELIBERATELY SET AS THE CENTER OF THE BOUNDING BOX.

THE SIZE OF CELLS OF THE SPACE IS SELECTED EMPIRICALLY IN THE EXPERIMENTS.

WITH A SMALLER CELL, WE MAY OBTAIN A MORE ACCURATE SYMMETRY PLANE.

HOWEVER, SINCE THE COMPLEXITY OF THE HOUGH TRANSFORM IS O(ns), WHERE

n IS THE NUMBER OF INPUT POINTS AND s IS THE SIZE OF THE HOUGH TABLE, THE

RUNNING TIME WILL ALSO INCREASE DRAMATICALLY.

ONE PROBLEM OF FINDING LARGE PLANAR SURFACES USING HOUGH TRANSFORM

IS THAT A NEARLY PLANAR SURFACE WITH DETAILS MAY BE REPLACED AS A SIMPLE

POLYGON. TO PRESERVE THE DETAILS, USER MAY MARK THIS REGION AS INAPPRO-

PRIATE FOR REPLACING. IN FIGURE 3.13, AN INDOOR POINT MODEL HAS SOME MISS-

ING REGIONS IN THE CEILING. THE CEILING IS REPLACED BY TWO POLYGONS. SINCE

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 39

THE DISTANCE OF SOME POINTS REPRESENTING THE DETAILS ON THE CEILING FALLS

WITHIN THE THRESHOLD, THESE POINTS ARE CONSIDERED TO BE PART OF THE PLANE

AND ARE REMOVED. IN THIS EXAMPLE, THIS REMOVAL IMPLY THE LOSS OF DETAILS.

(a) (b) (c)

Figure 3.13: Recovery of some missing regions of a indoor model using the planarity
information: (a) the original model has some missing regions; (b) points belonging to the
ceiling are replaced by two planar shapes; and (c) the recovered missing regions.

SYMMETRY IMPLIES REDUNDANCY AND CAN BE EXPLOITED FOR MODEL RE-

CONSTRUCTION FROM INCOMPLETE DATA. WE USED THIS OBSERVATION TO DE-

SIGN A FAMILY OF NEW ALGORITHMS BASED ON 3D AND 2D HOUGH TRANSFORMS

FOR IDENTIFYING APPROXIMATE SYMMETRIC PATTERNS IN POINT CLOUDS AND TEX-

TURES, AND USING SUCH PATTERN TO PERFORM RECONSTRUCTION. THE HOUGH

TRANSFORM IS AN APPROPRIATE TOOL FOR THIS TASK DUE TO ITS RELATIVE IN-

SENSITIVITY TO NOISE AND MISSING DATA. SYMMETRY-BASED RECONSTRUCTION

DEPENDS ON THE QUALITY OF THE INPUT DATA AND USER ASSISTANCE MAY BE RE-

QUIRED. NEVERTHELESS, IT IS A POWERFUL CONCEPT FOR RELAXING THE REQUIRE-

MENTS OF FULL DIGITIZATION OF ALL SURFACES IN THE SCENE, AS CURRENTLY RE-

QUIRED FOR THE CONSTRUCTION OF COMPLETE MODELS. IN ESSENCE, PODOLAK’S

SYMMETRY CHECKING ALGORITHM [101] EMPLOYS THE SIMILAR IDEA AS OURS.

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 40

THE PROPOSED planar reflective symmetry transform (PRST) PROVIDES A CONTINUOUS

MEASURE OF THE REFLECTIVE SYMMETRY. PODOLAK ET AL. USE A MONTE CARLO

INTEGRATION FOR COMPUTING A DISCREET VERSION OF THE PRST, WHICH IS ALSO

SIMILAR TO THE HOUGH TRANSFORM USED IN OUR ALGORITHM. THE DIFFERENCE

IS THAT PODOLAK’S APPROACH COMPUTES THE PRST FOR VOLUMETRIC FUNCTIONS

AND SURFACE MESHES WHILE OURS WORKS ON POINT CLOUDS. WHEN THE INPUT BE-

COMES PURE POINTS, IT IS NECESSARY TO FIRST COMPUTE A DISTANCE FIELD FROM

THESE POINTS FOR PODOLAK’S ALGORITHM, WHICH IS STILL A CHALLENGING PROB-

LEM THOUGH. PODOLAK’S APPROACH ALSO INCLUDES AN ITERATIVE REFINEMENT

ALGORITHM FOR FINDING LOCAL MAXIMA WITH ARBITRARY PRECISION. IN CON-

TRAST, MITRA ET AL. ADOPT THE SIMILAR CONCEPT TO COMPUTE SYMMETRIES AS

WELL. HOWEVER, THE PRIMITIVES BECOME LOCAL SHAPE DESCRIPTORS INSTEAD

OF POINTS. THIS IDEA SIGNIFICANTLY REDUCES THE NUMBER OF POSSIBLE REFLEC-

TIVE PLANES. HOWEVER, THIS WILL NEED THE NORMAL AND CURVATURE FOR THE

POINTS, WHICH MAY NOT BE EQUIPPED WITH GENERAL POINT MODELS. AND THE

COMPLEXITY OF THE CURRENT ALGORITHM IS O(n2), WHERE n IS THE NUMBER OF

POINTS.

WE CURRENTLY COPY COLOR AND TEXTURE INFORMATION REGARDLESS OF

SHADING DIFFERENCES BETWEEN THE SOURCE AND DESTINATION REGIONS. RE-

FLECTANCE PROPERTIES EXTRACTED DIRECTLY FROM SURFACES [147] COMBINED

WITH LIGHTING INFORMATION CAN BE USED TO IMPROVE THESE RESULTS.

IN PRACTICE, IT OFTEN TURNS OUT THAT THE PROPOSED PIPELINE COULD ONLY

RECOVER A LIMITED PORTION OF THE MISSING REGIONS. WE SUGGEST USERS USE

THIS PIPELINE THE FIRST STEP FOR A MORE COMPLETE RECONSTRUCTED SURFACE.

WITH MANY MISSING REGIONS RECOVERED USING USER KNOWLEDGE ABOUT THE

PLANARITY AND SYMMETRY, WE HAVE MOVED ONE STEP FURTHER TOWARDS A MORE

3. RECONSTRUCTING MISSING REGIONS OF INDOOR SCENES 41

REASONABLE RECONSTRUCTION. AND THE REMAINING MISSING REGIONS MAY BE

RECOVERED USING OTHER KINDS OF INFORMATION AND ASSUMPTIONS. ONE EXAM-

PLE OF THE ASSUMPTION IS DEMONSTRATED IN THE NEXT CHAPTER.

42

Chapter 4

Hole Filling as a Post-process

Creating accurate models of real objects and environments is a non-trivial task for

which the use of traditional modeling techniques is inappropriate. In these situations, the

use of laser rangefinders [16] seems attractive due to its relative independence of the sam-

pled geometry and short acquisition time. The combined use of range and color images

(a) (b) (c)

Figure 4.1: Partial model of the UNC reading room, a real environment digitized with a
3D laser scanner. The floor texture has been replaced to emphasize the holes in the chair
model: (a) chair model reconstructed from the original samples only. Notice the big holes
and missing outer surface on its left; (b) model obtained from (a) using our symmetry-based
techniques [134]. Despite the clear improvement, many small holes are still visible; and
(c) complete model obtained by applying our hole-filling algorithm to the model shown in
(b).

4. HOLE FILLING AS A POST-PROCESS 43

is very promising and has been demonstrated to produce an unprecedented degree of pho-

torealism [78, 90]. Unfortunately, surface properties (e.g., low or specular reflectance),

occlusions and accessibility limitations cause scanners to miss some surface areas, leading

to incomplete reconstruction and introducing holes in the resulting models. This makes

hole filling an important component of object and scene reconstruction. Its importance can

be better appreciated when considering that, often times, it will not be possible to re-scan

the original scene for acquiring extra samples. This may happen because the scene might

have changed or due to cost limitations. In these situations, one should try to obtain the

best possible reconstruction using only the available samples. Creating high quality mesh

representations for objects in the scene based on such incomplete information remains a

challenge [148].

The problem of filling holes in range data can be divided into two sub-problems: (i)

identifying the holes, and (ii) finding appropriate parameterizations that allow the recon-

struction of the missing parts using the available data. Unfortunately, none of these prob-

lems are trivial because holes arising from the scanning of geometrically complex surfaces

(e.g., twisted, self-occluding surfaces) can be quite intricate [31]. However, in many situa-

tions of practical interest, holes occurring in range images present simple topologies. This

is the case, for example, of many holes found when scanning interior environments and

most objects. For these cases, the quality of the reconstructed 3D meshes can be signifi-

cantly improved with the use of relatively simple algorithms.

The proposed algorithm can be applied to manifolds and surfaces with boundaries. In

the later case, user assistance is required to avoid the inherent ambiguity of deciding which

holes are artifacts of undersampled regions and which ones may define true surface bound-

aries. The technique does not provide a general solution to the hole-filling problem. In

particular, it does not handle holes with arbitrary topologies or on highly twisted geometry.

Nevertheless, it can be applied to a large range of practical situations, is conceptually very

4. HOLE FILLING AS A POST-PROCESS 44

simple and its implementation is straightforward. Essentially, the algorithm takes a point

cloud as input and produces an intermediate representation consisting of a triangle mesh,

which is then analyzed for the existence of boundary edges (edges belonging to a single

triangle). The occurrence of a hole implies the existence of a cycle defined by boundary

edges. Once a boundary edge is found, the algorithm traces the entire boundary. A ring

of points around the boundary, called the boundary vicinity, is then used to interpolate the

hole using a moving least squares (MLS) procedure.

Our algorithm presents several desirable features:

• Hole filling is performed after meshing and, therefore, the algorithm can use any

surface reconstruction technique that produces a triangle mesh;

• Since MLS interpolates the original samples, the algorithm guarantees that the re-

constructed patches smoothly blend into the original mesh;

• It can be used to fill holes on both closed surfaces as well as on surfaces with bound-

aries;

• The reconstructed patches preserve the original sampling rate of their vicinities;

• As the new primitives are distinguished from the original points, they can be pro-

cessed further;

• The processing is limited to the vicinities of holes.

We demonstrate the effectiveness of our approach on both real and synthetic datasets and

show that it can significantly improve the overall quality of the models. We also show that

for locally smooth surfaces, the described technique produces better results than the state-

of-the-art hole-filling techniques [31, 57]. In particular: (i) the reconstructed patches blend

with the original model in a smoother way, (ii) it preserves the original mesh, and (iii) the

4. HOLE FILLING AS A POST-PROCESS 45

resulting models contain a smaller number of vertices and triangles than the ones produced

by other techniques [31, 57] (see Section 4.4).

Figure 4.1(a) shows a partial model of the UNC reading room, an interior environment

scanned with a laser rangefinder. Color, except for the floor texture, was obtained from

photographs taken with a digital camera [78]. The clear floor texture was chosen in order

to highlight the existence of holes in the chair model. Figure 4.1(b) shows the chair model

after it has been processed using the techniques described by Want et al. [134]. Despite

the considerable improvement, many small holes are still visible in the chair. Figure 4.1(c)

shows the same scene after our hole-filling algorithm has been applied to the chair model

of Figure 4.1(b). Notice that the holes have been removed.

4.1 Moving Least Squares

Moving least squares (MLS) provides a class of complete solutions to the problem of

fitting smooth functions to scattered data [64]. This is performed by interpolating the orig-

inal data points, which may not be desirable in case the dataset is noisy. Our algorithm,

however, uses MLS only to fill holes. Therefore, surface reconstruction can be performed

with any reconstruction technique and may even include a low-pass filtering step to min-

imize the effects of noise. By using MLS to guide the hole filling process, our algorithm

guarantees that the reconstructed patches smoothly blend into the reconstructed mesh. This

is accomplished with the use of a relatively small number of samples in the vicinity of the

hole boundaries. The entire algorithm is described in Section 4.2. The remaining of this

section provides a quick review of MLS interpolation. For a more in-depth discussion of

the subject, we refer the reader to [64].

Let s be a height function defined over a two-dimensional subspace (s |= U ⊂ <2 → <)

and let pi ∈ U be a point in the domain of s. fi is a height measurement associated with pi.

4. HOLE FILLING AS A POST-PROCESS 46

The fitness of s to a set of values f1 to fN can be measured by the error

E(s) =
N∑

i=1

wi(s(pi)− fi)
2 (4.1)

where N is the total number of points and wi is the weight associated with point pi. The

best fit to the given set of values is obtained by minimizing the error E(s). In practice, s

is usually approximated by simple polynomial functions, such as the one shown in Equa-

tion 4.2 [64].

s(u, v) = a0 + a1u + a2v + a3u
2 + a4v

2 + a5uv (4.2)

In this case, the ai coefficients that minimize the error are obtained by solving

a = (BWBT)
−1

BWf (4.3)

where B is the matrix shown in Equation 4.4 and W is an n by n diagonal matrix with

diagonal elements equal to wi.

B =

1 · · · 1

u1 · · · un

v1 · · · vn

u2
1 · · · u2

n

v2
1 · · · v2

n

u1v1 · · · unvn

(4.4)

Such a weighted least squares solution can only represent low order surfaces, often resulting

in poor approximations. To reflect the fact that samples near the resampling positions

should have more influence than far away samples, the error function should take into

4. HOLE FILLING AS A POST-PROCESS 47

account weight factors wi, which vary with the evaluation point:

Ep(s) =
N∑

i=1

wi(p)(s(pi)− fi)
2 (4.5)

For this case, a good choice of weight function is given by[64]:

wi(p) =
e−αd2

i (p)

d2
i (p)

(4.6)

Here, di(p) is the distance from the new sampling position p to the ith original sample pi (in

the vicinity). When evaluated right at an input point, this weight function becomes infinity,

thus interpolating the point. To avoid numerical problems, evaluation right at input points

are handled individually. The parameter α controls the influence of vicinity features on the

region to be resampled. As the weight functions depend on the resampling positions, new

coefficients a0 to a5 for Equation 4.2 need to be computed for every resampled point as:

a(p) = (BW (p)BT)
−1

BW (p)f (4.7)

where the elements of the diagonal matrix W (p) are computed using Equation 4.6. Com-

pared to the weighted least squares method, which creates a quadric surface for the en-

tire hole, moving least squares compute one quadric surface for each evaluation point and

blends them all. Therefore it can fit higher order surfaces.

4.2 The Hole Filling Algorithm

In order to fill holes, new points need to be added to the unsampled regions. To ac-

complish this, the algorithm first identifies hole boundaries and their vicinities. For each

hole, it fits a plane through the vicinity points and, for each such a point, computes its

4. HOLE FILLING AS A POST-PROCESS 48

distance to this plane as well as its projection onto the plane. The set of distances define

a height field around the hole which is then used for surface fitting. This way, the prob-

lem of reconstructing holes in 3D is reduced to a simpler interpolation problem. Once a

surface has been fitted to the height field using MLS, new points for filling the hole can be

obtained by resampling the fitted surface. The basic version of the algorithm is presented

in Algorithm 4.1, and its details are explained next.

4.2.1 Finding Holes

In order to identify holes, we start by creating a triangle mesh from the input point

cloud. A number of algorithms exist for this purpose [7, 12, 13, 35, 43, 52]. For the results

shown in this chapter, we have used an incremental surface reconstruction algorithm [43],

which was chosen due to its simple implementation.

A hole consists of a loop of boundary edges. A boundary edge is defined as an edge be-

longing to a single triangle, as opposed to shared edges, which are shared by two triangles.

By tracking boundary edges, holes can be identified automatically. Note, however, that

there are two kinds of distinct boundaries: internal and external ones. An internal bound-

ary delimits a hole on a surface. An external boundary, in turn, delimits either a patch

(“island”) inside a hole, or the limits of a surface, such as in the case of the end portions of

the cylindrical surface shown in Figure 4.2. From the example of the cylinder, it becomes

Create a triangle mesh from the input point cloud
Repeat

Automatically find a hole boundary and its vicinity
Compute a reference plane for the hole vicinity
Compute the distances of the vicinity points to the plane
Fit a surface through this height field using MLS
Fill the hole by resampling the fitted surface

Until no holes exist
Algorithm 4.1: The hole-filling algorithm

4. HOLE FILLING AS A POST-PROCESS 49

(a) (b) (c)

Figure 4.2: Cylinder: (a) triangle mesh with the hole and its boundary vicinity identified;
(b) new points added; and (c) reconstructed mesh.

clear that not all holes should be necessarily filled and that user assistance is required in

order to guarantee proper reconstruction.

4.2.2 Computing the Reference Plane

Once a hole has been identified, the next step is to use a ring of points around the

boundary of the hole to provide a context for its interpolation. A height field is obtained

by computing the distances from these points to a reference plane, which is the best fit

plane to the set of points in the vicinity of the hole. The plane’s position and orientation are

computed as follows: first, the average O = (x̄, ȳ, z̄) of all vicinity points is computed as

the origin of a new coordinate system associated to the plane. A matrix M is obtained by

subtracting O from all points in the vicinity (Equation 4.8). Then, Singular Value Decom-

position (SVD) [104] is used to compute the eigenvectors and eigenvalues of MT M . The

two eigenvectors with the largest absolute values span the reference plane and correspond

to the U and V axes shown in Figure 4.3. The third eigenvector represents the plane normal

(S axis).

4. HOLE FILLING AS A POST-PROCESS 50

M =

x1 − x̄ y1 − ȳ z1 − z̄

x2 − x̄ y2 − ȳ z2 − z̄

· · ·

xN−1 − x̄ yN−1 − ȳ zN−1 − z̄

xN − x̄ yN − ȳ zN − z̄

(4.8)

4.2.3 Determining the Resampling Positions

Each vicinity point is orthographically projected into the reference plane (UV plane),

producing a pair of coordinates (u, v) and a height s computed as its distance to the refer-

ence plane. These values are used to fit the surface using MLS.

It is important that the set of points used to resample the hole have the same sampling

density as the vicinity points. Two criteria are used for determining the resampling posi-

tions:

• The projections of new points should fall on the projection of the hole on the refer-

ence plane;

• The minimum distance from any new point to any other one (either new or vicinity

point) should be bigger than a threshold.

While the first criterion seems self-evident, the second one is used to guarantee good

remeshing results, since some reconstruction techniques require the input points to be

spaced as evenly as possible [43, 52]. The vicinity mesh is orthographically projected

onto the UV plane, defining a mask. This situation is illustrated in Figure 4.4 for the case

of a hole topologically equivalent to a disk. In case the hole contains “islands”, they should

also be projected and will be part of a disconnected mask. The mask image is traversed in

scan line order using the step size compute using Equation 4.9. New sampling positions are

4. HOLE FILLING AS A POST-PROCESS 51

Z

X

Y

U
V

S

O

Figure 4.3: The UV projection plane

then set over a regular grid inside the hole in the UV plane. If the distance between a point

and the vicinity mask is less than 0.5 × stepsize, such a point is not used as a resampling

point.

stepsize =

√
area

3n
(4.9)

Equation 4.9 provides a heuristic for spacing the resample positions inside a hole. n is

the number of points on the boundary of the hole and area is the sum of the areas of all

triangles connected with these points. The vicinity of the hole is then defined as the set

of points whose distances from the boundary of the hole is less than β × stepsize. The

“thickness” of the vicinity ring is controlled by the parameter β.

4.2.4 Fitting the Surface

For each new point created to fill holes, a solution of Equation 4.7 provides the coef-

ficients of Equation 4.2 necessary for determining s(u, v). After that, the transformation

from the UV S coordinate system to the XY Z coordinate system is straightforward. Sim-

ilarly, the colors (R,G,B channels) associated to the points in the vicinity of a hole are

4. HOLE FILLING AS A POST-PROCESS 52

Table 4.1: Statistics and running time for different datasets

Data Set # Origingal # Vicinity # Final # Origingal # Final MLS time
Points Points Points Triangles Triangles (seconds)

Armchair 64,159 1,873 65,114 126,588 136,002 10.93
Bunny 35,947 1,246 36,478 69,451 70,733 6.43
Bust 12,853 1,506 16,162 21,757 29,357 72.85

Angel 10,189 347 11,264 18,737 20,921 4.16
Buddha 143,298 1,154 144,701 290,936 293,707 10.32

treated as three separate height functions, from which the colors of the new points are re-

sampled. This is achieved by replacing the height value of each vicinity point with the

value of one of its associated color channels at a time. The resulting three height functions

representing the three color channels are reconstructed using MLS and are resampled using

a procedure similar to the one used to recover the missing geometric information. After the

new points have been introduced, the final step is to remesh the complete model. Figure 4.4

illustrates the intermediate steps of the algorithm for the simple case of a planar surface.

(a) (b) (c)

Figure 4.4: Intermediate results of the algorithm: (a) a triangle mesh with the projection of
the vicinity points highlighted; (b) a mask image for the projection of the vicinity points
onto the reference plane; and (c) the reconstructed mesh.

4. HOLE FILLING AS A POST-PROCESS 53

Table 4.2: Comparison among four hole-filling algorithms. n is the number of points in the
point cloud, e is the number of edges in the polygonal model, and v is the number of voxels
used for spatial subdivision.

Algorithm Input Properties Cost
MLS points smooth transitions O(n log n)
MLS mesh smooth transitions O(e + mk)

Davis et al. partial meshes non-smooth transitions O(v)
Ju polygonal mesh minimal surfaces O(v)

Liepa oriented connected minimal surfaces O(e3)
manifold meshes later smoothed

Sharf et al. points surface features O(v)
copied from vicinity

4.3 Results

We have implemented the described algorithm and used it to fill holes in models of both

real and synthetic objects. In all cases, the input to the algorithm consisted of unorganized

point clouds. For real objects, we used datasets acquired with laser scanners. The point

clouds for synthetic objects were obtained by rendering 3D models and saving the contents

of the corresponding color and depth buffers. Such information was later used to reproject

colored points in 3D. We used the surface reconstruction algorithm described by Gopi

et al. [43] to create the initial triangle meshes and to remesh the model after new points

were added. For the examples shown in this chapter, we used α = 1
16

(Equation 4.6).

The experiments were performed on a 2.0 GHz Pentium 4 PC with 512 MB of memory.

Table 4.1 presents some statistics and the running times for applying our algorithm to the

examples shown in the chapter.

In order to illustrate the effectiveness of our algorithm, we used the techniques de-

scribed by Wang et al. [134] to segment and reconstruct a chair model from range images

acquired from a real environment (the UNC reading room). We then applied the proposed

algorithm to the resulting model. Figure 4.6(a) shows the original samples of the chair

4. HOLE FILLING AS A POST-PROCESS 54

rendered as a triangle mesh. Notice the existence of a big hole. Figure 4.6(b) shows the

reconstruction of the same chair model after the use of the symmetry-based techniques de-

scribed by Wang et al. [134]. Many small holes are still left due to the nonexistence of

data in either side of the symmetry plane and to the inability of the surface reconstruc-

tion algorithm used [43] to work in areas containing local variations of sampling density.

Figure 4.6(c) shows the resulting chair model after applying our hole filling algorithm to

the model shown in (b). Notice that the holes have been eliminated. The original incom-

plete chair model has 41,511 points and 82,065 triangles. Those numbers change to 64,159

points and 126,588 triangles after reconstruction using symmetry information [134]. The

complete chair model (geometry and color), reconstructed with the hole-filling algorithm,

has 65,114 vertices and 136,002 triangles, and was obtained in 10.93 seconds.

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 4.5: Reconstruction of the surfaces shown in using different algorithms: (a)-(b) the
model with a hole of different sizes; (c)-(d): results produced by the algorithm of Davis et
al. [31]; (e)-(f) results produced by the algorithm of Ju [57]; and (g)-(h) results produced
by our MLS algorithm.

Figure 4.1 shows the three stages of the reconstruction of the chair model in a real

environment. The remaining of the scene (walls, shelves, etc.) was also reconstructed

4. HOLE FILLING AS A POST-PROCESS 55

Table 4.3: Parameters used to reconstruct the models shown in Figure 4.5. The original
sphere has radius equal to 5.0 units and the side of a voxel was set to 0.16 units.

Algorithm / Model Figure 4.5(a)(c)(e)(f) Figure 4.5(b)(d)(f)(h)
Davis et al. 73× 73× 104 volume 73× 73× 135 volume

Ju 64× 64× 64 volume 64× 64× 64 volume
MLS 180 points 180 points

using the pipeline presented by Wang et al. [134]. The original reading room scene was

edited by replacing the floor texture with a clear one and by repositioning the chair in order

to emphasize the existence of holes in the model (Figures 4.1(a) and (b)).

(a) (b) (c)

Figure 4.6: UNC reading room armchair: (a) model reconstructed as a triangle mesh using
only the original samples. Notice the large missing areas; (b) model obtained after pro-
cessing the samples in (a) with our symmetry-based techniques [134]; and (c) final model
without holes obtained by applying our hole filling algorithm to the model shown in (b).

Figure 4.7(a) shows the Stanford bunny, which is known for containing a few holes

in its bottom. The dataset consists of 35,947 points and 1,246 of these points were used

as vicinity points for filling all the holes. Figure 4.7(b) shows the resulting model after

hole filling. It contains 36,478 points and was obtained in 6.43 seconds. The previous two

examples illustrate that our algorithm can be applied to both surfaces with boundaries as

well as closed surfaces.

4. HOLE FILLING AS A POST-PROCESS 56

(a) (b)

Figure 4.7: The Stanford bunny: (a) the original model contains some holes; and (b) bunny
model after hole filling performed with our algorithm.

The bust and angel models shown in Figures 4.8 and Figure 4.9, respectively, are syn-

thetic models used illustrate the steps of the algorithm. In Figure 4.8(a), one sees the trian-

gle mesh reconstructed from the point cloud. The highlighted points represent the vicinity

of the hole, used as input for the MLS interpolation. Figure 4.8(b) shows the points resam-

pled from the interpolated surface. The final model is shown in Figure 4.8(c). The larger

reconstruction time for this model is as explained by the bigger number of resampled points

(3,309), computed as the number of final point minus the number of original points (see

Table 4.1).

(a) (b) (c)

Figure 4.8: Bust with a hole in the head used to illustrate the steps of our algorithm: (a) tri-
angle mesh with the hole and vicinity identified; (b) points resampled from the interpolated
patch; and (c) final model after hole filling.

Figure 4.9(a) shows an angel model with a hole in one its wings. The vicinity points are

highlighted to show the identified hole. Figure 4.9(b) shows the points resampled from the

4. HOLE FILLING AS A POST-PROCESS 57

patch that fills the hole. Figure 4.9(c) presents the reconstructed model, while Figure 4.9(d)

shows the original model for comparison. Notice that although not the same as the original

surface, the reconstructed patch is a plausible one.

(a) (b) (c) (d)

Figure 4.9: Angel with a hole on one wing: (a) triangle mesh highlighting the vicinity of
the hole; (b) points added inside the hole; (c) reconstructed model after hole filling; and (d)
the actual model for comparison.

Figure 4.10 illustrates the local nature of our algorithm. Figure 4.10(b) shows the

Happy Buddha model after a few patches (highlighted in Figure 4.10(a)) have been re-

moved, partially taking away some surface details. The locations where the patches were

removed from were chosen to cover both low and high-frequency surface areas. The sur-

faces visible through the holes correspond to the back of the statue. The resulting model,

after the five patches have been removed, contains 143,298 samples . The total number

of vicinity points for the five holes is 1,154 samples and the number of resampled (new)

points is 1,075. The time required to perform hole filling was 10.32 seconds. Figure 4.10(c)

shows the result produced by our hole filling algorithm. Notice that such a reconstruction

is quite plausible. Figure 4.10(d) displays the original model for comparison.

The cost of searching for boundary edges is linear in the number e of edges of the mesh.

Once such an edge is found, tracing the boundary requires, in the worst case, following e−1

edges. Since each boundary edge has exactly two adjacent boundary edges (which can be

identified by their shared vertices), the cost of automatically finding hole boundaries is

O(e).

The cost of the MLS fitting depends on the number k of new points to be added and

4. HOLE FILLING AS A POST-PROCESS 58

(a) (b) (c) (d)

Figure 4.10: Happy buddha: (a) holes are obtained by cutting off dark regions; (b) the
model after hole cutting; (c) the model after hole filling performed by our algorithm; and
(d) the original model for comparison.

on the size of vicinity, m, thus O(mk). Therefore, the cost of the hole-filling algorithm

is O(e + mk). In practice, however, we observe that the running time of the algorithm is

mostly influenced by the size of the vicinity and by the number of resampled points used

to fill the holes, as can be seen in Table 4.1 (for instance, compare the running times for

the Bust and Buddha models). If a point cloud is provided as input, the cost of creating a

mesh from the point cloud, O(n log n) on the number of points [43], needs to be added to

the total cost of the algorithm.

4. HOLE FILLING AS A POST-PROCESS 59

4.4 Discussion and Comparisons

The approaches presented by Davis et al. [31] and by Ju [57] use contouring algorithms

to reconstruct polygonal models from intermediate voxel-based representations. Thus, un-

like in our approach, the resulting models do not preserve the original meshes. Ju’s ap-

proach [57] fills holes by reconstructing minimal surfaces, which tend to blend poorly with

the original meshes as the sizes of the holes increase. Essentially, hole-filling techniques

based on minimal surfaces only perform well on very small holes or when the surface is

locally flat. Liepa’s technique [71] uses an O(n3) algorithm for filling holes with minimal-

surface patches. These are later processed to produce smoother surfaces. The approach

presented by Sharf et al. [114] is intended for filling holes on highly-complex geometric

regions and, therefore, is target toward a different domain than ours. Table 4.2 summarizes

the major features of all these algorithms, including input type, properties of the interpo-

lated patches, and cost.

Figures 4.5(a) and (b) shows two smooth surfaces with boundaries obtained after re-

moving caps of different sizes from the surface of a sphere. The surface on the left contains

3,001 vertices and 5,940 triangles, while the one on the right contains 2,401 vertices and

4,740 triangles. These surfaces were used to compare how smoothly the patches recon-

structed by the different techniques blend with the original meshes. A sphere was chosen

as a reference shape because of its smoothness and symmetry, and because one has a clear

idea about what to expect from an exact reconstruction.

We reconstructed the surfaces shown in Figure 4.5 using the techniques by Davis et

al. [31], Ju [57], and our MLS approach. Davis’s et al. and Ju’s techniques were chosen

because they are representatives of the state-of-the-art in hole filling and their source codes

are available on the web. Table 4.3 shows the parameters used by the different algorithms.

4. HOLE FILLING AS A POST-PROCESS 60

Table 4.4: Number of vertices and triangles in the models produced by each technique. The
percentages are computed with respect to the corresponding values in the input models.

Algorithm Figure 4.5(a)(c)(e)(g) Figure 4.5(b)(d)(f)(h)
] of vertices] of triangles] of vertices] of triangles

Input 3,001 (100.0%) 5,940 (100.0%) 2,401 (100.0%) 4,740 (100.0%)
Davis et al. 10,323 (343.9%) 20,904 (351.9%) 10,454 (435.4%) 20,904 (441.0%)

Ju 6,858 (228.5%) 13,712 (230.8%) 5,978 (248.9%) 11,952 (252.1%)
MLS 3,542 (118.0%) 7,080 (119.2%) 3,672 (152.9%) 7,098 (149.7%)

In order to use Davis’s et al. code, the triangle meshes were first converted to the PLY for-

mat. The resolution of the voxel space was defined experimentally by setting the voxel size

to 0.16 in the Ply2Vri program (73 ≈ 10.0/0.16 + 10 fringe voxels). The third dimension

of the voxel space was chosen so that the resulting surface could fit inside the volume.

Figure 4.5 shows the reconstructed results produced by the three algorithms for the sur-

faces shown in Figure 4.5. Figures 4.5 (c), (e) and (g) were reconstructed from the surface

shown in Figure 4.5 (a), whereas Figures 4.5 (d), (f) and (h) are reconstructions of the sur-

face shown in Figure 4.5 (b). The results shown in the second column of Figure 4.5 were

produced by the algorithm of Davis et at [31]. Notice the existence of some protrusions

on the reconstructed patches, which become more evident as the size of the hole increases.

The abrupt cut on the largest highlight visible in Figure 4.5(d) indicates that: (i) the recon-

structed patch does not smoothly blend into the original mesh and (ii) the original mesh

was not preserved. The results produced by Ju’s technique [57] are shown in Figures 4.5(e)

and (f). Notice the minimal surfaces reconstructed by the technique, showing that it can

only be used for filling small holes.

Figures 4.5(g) and (h) show the results produced by the MLS technique using 180

samples in the vicinity of each hole. The results are quite smooth, with the reconstructed

patches naturally blending themselves into the original meshes. In Figure 4.5(e), the sphere

was very satisfactorily recovered. In the case of the bigger hole, the algorithm reconstructed

4. HOLE FILLING AS A POST-PROCESS 61

an egg-like shape, which is a plausible solution for the ill-posed problem of surface inter-

polation. The extended highlight indicates the smooth blending of the reconstructed patch

with the original mesh. Table 4.4 shows the numbers of vertices and triangles produced

by the three algorithms. The percentage values were computed with respect to the corre-

sponding numbers in the input models. The meshes obtained with the algorithm by Davis

et al. [31] present the largest numbers of primitives, followed by the meshes produced by

Ju’s algorithm [57]. This is due to the fact that these meshes are extracted using contouring

techniques [58, 73]. As a result, the number of resulting polygons depends on the res-

olution of the voxel space used, and not on the number of original vertices. Notice the

significant increase on the numbers of vertices and triangles in the models produced by

these techniques, even though a relatively low-resolution voxel space has been used (see

Table 4.3) and the space is mostly empty. In these techniques, the entire model, and not

only the interpolating patch, is extracted at voxel-space resolution.

An important feature of our algorithm is that the shape of the resulting patches can be

reasonably predicted by the vicinities of the holes. For example, as we project the vertices

belonging to the vicinity of the hole shown in Figure 4.5 (b) onto the reference plane (the

cutting plane for the missing cap), the distances between any two pairs of projected (U, V)

coordinates will be smaller than the difference between their corresponding heights (the

S coordinates). As a result, abs(∂S
∂U

) > 1.0 and abs(∂S
∂V

) > 1.0, producing the resulting

egg-like shape.

Our algorithm might fail if the vicinity region presents folds or twists, which will not

define a one-to-one mapping when projected onto the reference plane. In this case, that part

of the hole might not be filled properly. When the size of a hole increases, the possibility

of facing such a situation tends to grow. This problem could be addressed by, instead of a

plane, using a curved domain for projecting the vicinity points onto.

62

Chapter 5

Noise Tolerant Surface Reconstruction

The problem of surface reconstruction from unorganized point clouds is challenging

and ill-posed. Moreover, in range scans acquired from real objects, noise tends to contam-

inate the data, making the reconstruction task harder. Whenever it is difficult to accurately

estimate normals at the samples (e.g., in noisy datasets), existing implicit methods tend to

fail to create distance fields that correctly represent surface details and topology.

Figure 5.1: Reconstruction of David’s head using our algorithm.

One way is to assume that the surface to be reconstructed are 2-manifolds of piecewise

C1 continuity, with isolated small irregular regions of high curvatures, sophisticated local

5. NOISE TOLERANT SURFACE RECONSTRUCTION 63

topology or abrupt burst of noise. At each sample point, a quadric field is locally fitted

quadric fields vis modified moving least squares method moving least squares method [69].

These locally fitted quadric fields are then blended together to produce a pseudo-signed

distance field using Shepard’s method [116]. We introduce a prioritized front growing

scheme in the process of local quadrics fitting. Flatter surface areas tend to grow faster.

The already fitted regions will subsequently guide the fitting of those irregular regions in

their neighborhood. We refer interested readers to [144] for the details.

As an alternative, we introduce, in this chapter, a new implicit method that only requires

information about the positions of points and, therefore, can be used for surface reconstruc-

tion from both clean and noisy datasets. Our method is based on two key observations: (1)

a highly accurate distance field is not necessary for reconstruction when the data is quite

noisy. In these cases, it is sufficient to have an approximate smooth distance field whose

error near the surface is bounded by the amount of noise in the data. (2) Assuming the sur-

face to be reconstructed is closed, one can use a bounding box containing the point cloud to

orient the surface (i.e., to define its exterior). Based on these observations, we approximate

the distance field using an adaptive and hierarchical framework. Although no formal proofs

are presented, we provide some intuitive evidence that the proposed approach guarantees

the orientability of the reconstructed surfaces, preserves topology, and that the reconstruc-

tion error is bounded by the amount of noise and by the sample density of the input point

cloud.

The contributions of this chapter include:

• An improved implicit method for surface reconstruction from point clouds that only

requires information about the positions of the samples and is robust to the presence

of noise and missing data (Sections 5.1 and 5.2).

• A new algorithm for computing approximate distance fields based on oriented

5. NOISE TOLERANT SURFACE RECONSTRUCTION 64

charges (Section 5.1);

• A hierarchical and adaptive representation for performing surface reconstruction at

different levels of detail as well as hole filling (Section 5.5).

The idea of oriented charges was inspired by the notion of oriented particle systems

[119], but it distinguishes itself from the latter, which has no relation to distance fields. In

our approach, a global distance field is formed by blending local distance fields of nearby

oriented charges. Our approach also differs from Ohtake’s algorithm [91] because we com-

pute the implicit function based only on the location of points while Othake’s approach

also uses information about normals. Moreover, our approach is less sensitive to noise,

producing reasonable results even for very noisy datasets.

5.1 Oriented Charges

An oriented charge Qi(pi, qi, ni) (OC) is a charge instantiated at a point pi, with mag-

nitude qi and orientation ni, where ‖ni‖ = 1. It implies a linear local distance field at

position x given by

Fi(x) = qi − (x− pi) · ni (5.1)

Let O be an octree defining a subdivision of the space containing a point cloud. The

adaptive subdivision of the octree is trigged by the number of points inside a given node,

up to a maximum specified octree level. In our current implementation, we recursively

subdivide an octree node until it contains no more than six samples. In order to approximate

the distance field induced by the surface represented by the point cloud, a set of oriented

charges are instantiated at the neighborhood of the nodes containing the original samples

(Section 5.2).

Each charge Qi has an associated linear distance field, whose iso-surfaces are the set

5. NOISE TOLERANT SURFACE RECONSTRUCTION 65

of parallel planes perpendicular to ni. This can be easily seen by rewriting Equation 5.1 as

Fi(x) = qi − α, where α = (x − pi) · ni. Although, according to Equation 5.1, Fi can

assume arbitrarily large values both in the positive and negative ranges, the local distance

field of an oriented charge is made effective only within a 3t×3t×3t neighborhood centered

at the oriented charge itself. Here, t is the side of the associated octree node. To combine

overlapping distance fields into a global one, we use a scaled version of a Gaussian function

as the weight for each oriented charge Qi

ωi(x) = 2le
− ‖pi−x‖2

σ2
l (5.2)

where l is the level of its associated octree node and σl varies with the size of that octree

node (in our experiments we used σl = 1.5t). This weight function was designed such that

oriented charges at coarser levels have larger areas of influence than at finer levels. The

field induced by multiple oriented charges is a weighted average of Equation 5.1:

F (x) =

∑
i Fi(x) ∗ ωi(x)∑

i ωi(x)
(5.3)

Given an octree O enclosing a set of samples in 3D, its nodes can be classified as either

exterior, interior, boundary, hole or unknown nodes. The notion of octree-node inside-

outside classification was first introduced by Samet [108] and has also been recently used

to support CSG operations in point-based graphics [1].

Initially, each octree node is labeled either as a boundary or as an unknown node, de-

pending on whether it contains some or no samples, respectively. After that, all nodes

of the octree are traversed and once an unknown node is found, it is re-labeled as either

exterior, interior or hole node. Exterior/interior nodes are outside/inside the object (i.e.,

outside/inside the object’s closed surface representation). Boundary nodes and hole nodes

5. NOISE TOLERANT SURFACE RECONSTRUCTION 66

intersect the zero-set surface of the object. We use the term crust to refer to a closed thin

shell of octree nodes, all at the same level of the octree. The surface crust is composed

only of boundary and hole nodes. The exterior and interior crusts, on the other hand, only

have exterior and interior nodes, respectively, and together tightly bound the surface crust.

Oriented charges are only instantiated in the exterior and interior crusts.

5.2 Surface Representation with Oriented Charges

In order to identify the exterior and interior crusts where oriented charges will be in-

stantiated, we first find two crusts which are absolutely outside and inside the surface and

refer to them as the exterior and interior frontiers, respectively. The propagation of fron-

tiers is based on an adaptive refinement approach that re-labels unknown nodes and finally

finds the surface, the exterior and the interior crusts (Figure 5.2 and Section 5.2.2).

The algorithm for instantiating oriented charges is shown in Algorithm 5.1. Starting

from a coarser to a finer level of the octree, first the exterior and interior frontiers are

identified (Section 5.2.1). These frontiers are propagated to compute the crusts at that

given level of the octree (Section 5.2.3). The resulting information is then used as input to

the subsequent finer level. Once we reach the finest level, oriented charges are instantiated

at the exterior and interior crusts.

for octree level= 1 to MAX do
Find the exterior and interior frontiers for the current level;

Propagate the frontiers to find the exterior and interior crusts;

end

Instantiate OCs in the exterior and interior crusts;
Algorithm 5.1: Instantiation of oriented charges

5. NOISE TOLERANT SURFACE RECONSTRUCTION 67

(a) (b) (c)

(d) (e) (f)
unknown exterior interior boundary

hole interior frontierexterior frontier

Figure 5.2: Propagation stages of the frontiers: (a) initial exterior frontier; (b) exterior and
surface crusts at the coarsest one. Remaining unknown nodes set as inside; (c) boundary
nodes are subdivided and labeled as unknown; (d) new exterior/interior frontiers; and (f)
final classification.

5.2.1 Finding and Propagating Frontiers

We revise the tagging algorithm of Zhao et al. [151] to find the exterior and interior

surface crusts. We make the original algorithm adaptive to sampling density and progres-

sively enlarge the trusted exterior/interior regions. The algorithm assumes that the outer

nodes of the octree contain no samples and, therefore, can be safely set as exterior nodes

(Figure 5.2(a)). Starting at a coarser level, the exterior frontier is propagated until nodes

containing at least one sample are reached. These nodes are labeled as boundary nodes.

5. NOISE TOLERANT SURFACE RECONSTRUCTION 68

The remaining empty nodes (i.e., that could not be reached from the exterior frontier) are

then labeled as interior nodes (Figures 5.2(b)). At this point, the algorithm refines this

initial tagging (Figures 5.2 (c) to (f)).

During a node refinement, the children of an exterior/interior/hole node are also labeled

as exterior/interior/hole nodes. The children of a boundary node, however, can become

exterior, interior, boundary or hole nodes. Thus, when all the nodes at a coarser level have

been labeled, at the next level the algorithm only needs to classify the children of boundary

nodes. Initially, we mark all children of boundary nodes as unknown nodes (Figure 5.2(c)).

The refinement proceeds using the children of the of previous-level exterior/interior fron-

tier as the new exterior/interior frontier (Figure 5.2(d)). The final result is illustrated in

Figure 5.2(f).

5.2.2 The Crusts

The next step is to find the interior, exterior and surface crusts. First, we compute the

average location of samples inside each boundary node. Then, we compute the Euclidean

distances between the centers of exterior/interior frontier nodes and the average locations of

the samples in the boundary nodes under their radius of influence (a 3×3×3 neighborhood).

We record the minimal distance in each frontier node. Based on their minimal distances,

nodes in the frontiers are heap sorted. For each iteration, the node at the top of the heap

(i.e., with the biggest distance) is taken out and processed as follows. If this node has

the smallest distance compared to its adjacent unknown nodes, it will be marked as a hole

node. Otherwise, it is discarded and all its adjacent unknown nodes are inserted into the

heap. When the iteration ends, boundary and hole nodes compose the surface crust and

exterior/interior nodes touching the boundary/hole nodes become the exterior/interior crust

(Figure 5.2(e) and (f)).

5. NOISE TOLERANT SURFACE RECONSTRUCTION 69

ni

(a) (b) (c)

pipi

exterior interior boundary

Figure 5.3: Creating the oriented charge: (a) a candidate oriented charge; (b) the candidate
with smallest magnitude is selected; and (c) the global distance field (the thick black curve)
is created combining the distance fields of the exterior and interior crusts.

5.2.3 Instantiating Oriented Charges

One oriented charge Qi is instantiated at the centers of each node in the exterior and

the interior crusts. For a given node Ni in the exterior/interior crust, the final magnitude,

qi, and orientation, ni, of Qi is defined by the set S of surface-crust nodes in the 3× 3× 3

neighborhood of Ni. First, for each node sk in S, we compute a candidate oriented charge

cQj for Ni. The orientation of cQj is computed as the centerline of the cone with apex at

pi (the center of Ni) that bounds all samples in sk. This is illustrated in Figure 5.3 (a). The

magnitude cqj of cQj is computed as

min
cqj

|cqj| (5.4)

such that (cqj − (pi − dk)) · nj ≥ 0 holds for at least γ% of the dk samples inside sk.

γ is a parameter to counteract the effect of noise and outliers. Intuitively, Equation 5.4

finds, for each external and internal crust node, the closest plane perpendicular to nj that

separates the samples inside sk into two groups, such that at least γ% of the points lie on

5. NOISE TOLERANT SURFACE RECONSTRUCTION 70

one side of the plane. We obtain such a plane using linear programming. Then, the tuple

(pi, cqi, ni) with the smallest |cqi| is selected as the oriented charge Qi for Ni. The sign of

cqi is set to “+” or “-”, depending on whether the node is in the exterior or in the interior

crust, respectively. If a node sk in S is a hole node (i.e., it contains no samples), a virtual

sample is instantiated at the center of sk before computing cqi and ni using the procedure

just described. This situation is illustrated in Figure 5.3(b), where a virtual sample has been

instantiated at the center of the bottom left surface crust.

To create oriented charges at a coarser level of the octree, the oriented charges in adja-

cent nodes are considered. Suppose we have all oriented charges at a finer level. For every

such oriented charge Qi, a virtual point is computed as located at pi−qini. To compute ori-

ented charges at the coarser level, we collect virtual points instead of real points within its

neighborhood before Equation 5.4 is applied. This bottom-up process computes oriented

charges from the finest level to the coarsest level.

5.3 OC Properties

Surface Orientability Preservation. Since the exterior/interior crust bounds the sur-

face of the object tightly, it represents a manifold itself. Besides, all oriented charges in

the exterior/interior crust are pointing to the object’s surface inwardly/outwardly. Thus,

the exterior/interior distance field has correct orientability. The associated gradient field is

nonzero everywhere in the surface crust (the internal and external distance fields have op-

posite signs: negative and positive, respectively) having a direction from outside to inside.

When weighted averaging the exterior and interior distance fields, the resulting gradient

field is nonzero everywhere on the surface crust. Therefore, inside the region of interest,

the resulting distance field has no twists or singular points, and the reconstructed surface is

well oriented.

5. NOISE TOLERANT SURFACE RECONSTRUCTION 71

Topology Preservation. Given that the original surface has been sampled at the appro-

priate sampling rate, the topology of the surface is preserved. The thickness of the thin

volume composed by the exterior, interior and surface crusts decreases as the octree nodes

are subdivided. When the thickness is small enough, the manifold represented by the thin

volume has the same topology as the surface. Since the reconstructed surface lies within the

thin volume, it will approximate the surface accurately (e.g., showing the correct connec-

tion and genus). The assumption that surfaces are sampled at appropriate rates guarantees

correct topology for clean datasets. In the case of noisy ones, we are limited by the amount

of noise relatively to the sizes of the local structures of the objects. Thus, small (relative

to the amount of noise) structures may not be correctly reconstructed. This situation is

illustrated in Figure 5.8(d), where the small holes under buddha’s arms have collapsed due

to the presence of large amounts of noise.

(a) (b)

linear mesh and its vertice

zero-set
surface

sample

surface

exterior

boundary

Figure 5.4: Comparison of the actual surface and the reconstructed surface: (a) the actual
surface and samples; and (b) the reconstructed surface.

Error Bounding. A given oriented charge induces a local linear distance field, whose

zero-set surface is an infinite plane. When weighted averaging the influence of two adjacent

oriented charges, the intersection line of two zero-set planes is part of the resulting zero-

set surface. To estimate the error bound, the zero-set surfaces of the exterior and interior

distance fields are approximated by piecewise meshes (shown in 2D in Figure 5.4). Let τ

be the error bound in the input samples. Because the influential region of oriented charge

5. NOISE TOLERANT SURFACE RECONSTRUCTION 72

is limited within a 3 × 3 × 3 subvolume, the error bound on the reconstructed surface is

τ + 3
√

3
2

t (i.e., τ plus half of the diagonal of the 3 × 3 × 3 subvolume), where t is the size

of the octree’s leaf nodes.

5.4 Iso-Surface Extraction and Cost Analysis

Iso-surface extraction is obtained using a variant of the Marching Cubes algorithm [20].

To efficiently improve the accuracy, the size of the marching cubes is made compatible to

the smallest node of the octree. Since the details of the surfaces are mainly captured by

the oriented charges at the octree’s leaf nodes, we use all oriented charges at neighboring

nodes at the same and direct coarser levels to compute the corresponding distance fields

using Equation 5.3. While the traditional Marching Cubes algorithm tends to unnecessarily

reconstruct many small triangles over flat areas, an adaptive solution could be used to avoid

this problem [111].

5.4.1 Mesh Refinement

Since oriented charges define piecewise linear implicit functions, they may lead to

coarse reconstruction in regions with high curvatures. Jeong et al. [55] use subdivision

surfaces with adaptive sampling to improve a coarse model. We, instead, address this prob-

lem with a mesh-refinement step that follows surface extraction. Since the reconstructed

model is already quite close to the real surface, one can move vertices of the mesh along

their normals to make them closer to their nearest samples (Figure 5.5). Notice these nor-

mals are computed at the vertices, after mesh extraction and are not used for computing the

distance field. The range of adjustment is limited by the size of the finest octree node to

avoid mesh self-intersection.

5. NOISE TOLERANT SURFACE RECONSTRUCTION 73

(a) (b)

Figure 5.5: Mesh refinement: (a) mesh extracted by the Marching Cubes algorithm. Small
dots are original samples; and (b) final mesh after vertex displacement.

(a)

(b)

(c)

Figure 5.6: Reconstruction of (a) a vase; (b) a golf club; and (c) a balljoint, using our
algorithm.

5. NOISE TOLERANT SURFACE RECONSTRUCTION 74

5.4.2 Cost Analysis

Let n be the number of samples in a given point cloud and assume that each octree

leaf node contains at most one sample. Since each octree node, except for the first level,

must have a parent node, the total number of occupied cells that need to be stored can be

expressed as Σ = n + n/8 + n/64 + ... + 1. Σ converges to (8/7)n. In our current imple-

mentation, for each occupied node we currently store links to its 26 neighbors, making the

total memory requirements of the algorithm 27(8/7)n ≈ 31n = O(n). The cost is linear

on the number of samples and the big constant is due to the data structure we used, not

inherent to the algorithm itself.

The tagging procedure is based on heap sort and has cost O(n log n). Since surface

extraction is done locally at octree neighborhoods, each evaluation of the distance field has

cost O(1). Thus, the total time complexity of the algorithm is Ω(n log n) and its upper

bound will depend on the level of refinement of the octree (i.e., on the number of times the

implicit function is evaluated during surface extraction).

5.5 Results

We have tested our algorithms on a series of clean and noisy datasets, including range

scans of real objects. Because it is hard to tell the amount of noise present on such range

scans, in order to keep control of the amount of noise in each case, we have added noise

to originally ”clean” models. For each model, the bound to the perturbation added to the

position of its original samples is expressed as a fraction of the largest size of the bounding

box that contains the point cloud (Table 5.1). No scaling was applied to the input data.

Except when explicitly stated otherwise, reconstruction was performed at level 9 of the

octree. The relative error bounds shown in Table 5.1 were obtained by dividing each error

5. NOISE TOLERANT SURFACE RECONSTRUCTION 75

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Bunny with noise bounded by (a) 0; (b) 1/60; or (c) 1/30 of the largest side.
Reconstructions: (d); (e); or (f), respectively.

bound by the smallest dimension of the corresponding dataset’s bounding box. Entries

with an asterisk indicate that the input data were obtained from range scans (no precise

information about the amount of noisy was available - N/A).

Figures 5.7 and 5.10(a) show several reconstruction results for the Stanford bunny with

different levels of noise. Figure 5.10(a) also shows the bunny model, this time reconstructed

after merging ten range scans containing noise, registration errors and outliers. Note the

quality of the reconstructed model. Figure 5.10(b) shows the dragon model reconstructed

from a set of 60 range scans also containing noise, outliers and registration errors. These

examples demonstrate the effectiveness of the proposed technique to handle data captured

from the real world.

Figures 5.1, 5.6, 5.8(a), and 5.9(a) show examples of surface reconstruction from

5. NOISE TOLERANT SURFACE RECONSTRUCTION 76

clean datasets using the proposed technique. David’s head (Figure 5.1), the dragon (Fig-

ure 5.9(a)) and the buddha (Figure 5.8(a)) illustrate the case of surface reconstruction in-

volving large datasets. Table 5.1 provides some statistics associated with the models. The

measurements were performed on a Pentium 4 2.2GHz PC with 1GB of memory. The clean

models show a bound on the relative error varying from 0.2% to 0.5%. This error varies

with the size of the octree leaves and can be further reduced with extra refinement of the

octree. For the very noisy example shown in Figure 5.7(f), the relative error bound is 3.9%.

Although, in practice, it may not be desirable to perform surface reconstruction of very

noisy datasets (without previous smoothing), we have included some examples to illustrate

the robustness of our approach in the presence of noise (Figures 5.7(f), 5.8(c), and 5.9(b)).

The hierarchical representation of oriented charges provides a natural way for creating

smoother versions from both clean and noisy datasets. This is illustrated in Figure 5.8(b),

where the Buddha model has been reconstructed using a coarser level of the octree. This

is similar to applying a low-pass filter to the geometric information [92]. However, when a

very coarse level is used for reconstruction, some dimples may be created (Figure 5.8(c)),

as some mesh vertices may be moved too far by the vertex displacement procedure.

We have compared the results of our algorithm with the ones produced by the MPU

approach [91]. For noiseless datasets, the visual quality of the reconstructed models are

similar, although MPU does a better job in reconstructing sharp features. This situation is

illustrated on the left part of Figure 5.9, where the image at the top was produced using our

algorithm and the one at the bottom was created using Ohtake’s own code. For the dragon

example, MPU’s running time was 93 seconds, while our algorithm took 119 seconds.

Our approach is, however, more general in the sense that it handles datasets with min-

imal information and is considerably more robust to noise. In order to verify this, we

added noise bounded by 1% to both the bunny and the dragon point clouds and tried to

5. NOISE TOLERANT SURFACE RECONSTRUCTION 77

(a) (b) (c)

Figure 5.8: The reconstructed buddha model: (a) no noise (level 9); (b) no noise (level 7);
and (c) with noise bounded by 1/50 of the bounding box size (level 9).

reconstruct the resulting models using MPU and our approach. Since MPU requires nor-

mals, these were computed using Hoppe’s normal estimation algorithm [52], considering

different numbers of neighbor samples. Figure 5.11 illustrates the normals obtained us-

ing a neighborhood of ten samples for the bunny containing no and 1% noise. For these

noisy datasets with estimated normals, MPU was unable to reconstruct the models. The

RBF-based technique described by Tobor et al. [125] was also unable to perform the recon-

struction. Figure 5.9(b) shows the reconstructed dragon model produced by our algorithm

and illustrates its robustness to the presence of noise. Figure 5.9(d) shows the result pro-

duced by MPU when the noisy dragon dataset and the normals of the clean model were

given as input. For the noisy dragon example, MPU’s running time was 466 seconds while

our algorithm took only 272 seconds.

WE HAVE ALSO RECONSTRUCTED THE NOISY (1% NOISE) BUNNY MODEL USING A

VARIANT [82] OF THE BALL-PIVOTING ALGORITHM [13] FOR COMPARISON. WE USE

5. NOISE TOLERANT SURFACE RECONSTRUCTION 78

(a) (b)

(c) (d)

Figure 5.9: Dragon model reconstructed using our approach ((a) and (b)) and MPU ((c)
and (d)). Datasets: clean ((a) and (c)) and 1% noise ((b) and (d)).

Figure 5.10: Models reconstructed by our algorithm from actual range scans.

THE ”AUTOGUESS” MODE FOR THE BALL SIZE IN THE EXPERIMENTS. THE RESULTS

ARE SHOWN IN FIGURE 5.12. THE RECONSTRUCTED MODEL OF THE CLEAN DATASET

IS GOOD EXCEPT FOR SOME SMALL HOLES IN HIGH CURVATURE REGIONS. IN COM-

PARISON, THE RECONSTRUCTION OF THE NOISY DATASET HAS NUMEROUS HOLES. IT

5. NOISE TOLERANT SURFACE RECONSTRUCTION 79

SHOWS THAT THE BALL-PIVOTING ALGORITHM DOES NOT WORKS WELL FOR VERY

NOISY DATASETS OR DATASETS WITH SIGNIFICANT CHANGES OF SAMPLING RATES.

(a) (b)

Figure 5.11: Bunny normals computed from: (a) a clean point cloud and; (b) a 1% noisy
point cloud.

(a) (b)

Figure 5.12: Bunny models reconstructed using a variant of the ball-pivoting algorithm
from: (a) a clean point cloud and; (b) a 1% noisy point cloud.

The implicit function induced by oriented charges provides a natural way for filling

small holes in the model. The hierarchical nature of OC’s allows for the filling of larger

ones. This situation is illustrated in Figure 5.13. Due to the adaptive subdivision of the

octree, nodes inside large holes tend to be at much coarser levels than nodes on the bound-

ary crust. Because the tips of the vectors representing the oriented charges covering such

regions will be at the centers of these larger octree nodes, this tends to introduce discrepan-

cies around the boundary of large holes. Therefore, the reconstructed surface for relatively

5. NOISE TOLERANT SURFACE RECONSTRUCTION 80

Table 5.1: Running times and error bounds for various models. Times are measured in
seconds and the number of points are shown in thousands.

Model # of Noise Time Time Error
points OC mesh bound

Balljoint 137.06 0 8.42 86.80 0.5%
Buddha 543.65 0 12.32 120.32 0.5%
Buddha 543.65 1/50 12.52 123.32 1.5%
Bunny 34.83 0 10.74 90.80 0.5%
Bunny 34.83 1/30 10.66 90.32 3.9%

Merged Bunny 362.27 N/A 11.28 91.32 N/A
Dragon 437.64 0 11.04 107.22 0.5%
Dragon 437.64 1/100 11.21 108.43 1.5%

Merged Dragon 1,769.51 N/A 39.28 233.19 N/A
Golf club 209.77 0 8.74 82.80 0.2%

Head 394.18 0 16.32 194.32 0.5%
Vase 68.09 0 7.32 69.77 0.2%

large holes might present some small bumps, as illustrated in Figure 5.13(b).

(a) (b)

Figure 5.13: Hole filling: (a) holes at the bottom of the Bunny; and (b) bunny model with
holes filled.

5.6 Discussion

In our current implementation, the evaluation of the distance field slows down the re-

construction process. This can be improved using either an adaptive polygonizer or a field

pre-evaluation approach similar to the fast multipole method [26].

5. NOISE TOLERANT SURFACE RECONSTRUCTION 81

When surface features are smaller than the size of the smallest octree nodes, they may

not be appropriately reconstructed. The solution, in this case, is to further subdivide some

of the octree cells.

THE CREATION OF ORIENTED CHARGES RELY ON THE ACCURATE CLASSIFICATION

OF EXTERIOR/INTERIOR OCTREE NODES. FOR THIS REASON, THE PROPOSED FRAME-

WORK CAN NOT BE USED TO RECONSTRUCT A NON-CLOSED SURFACE, FOR EXAMPLE

THE INDOOR SCENE MODEL IN FIGURE 3.13. APPARENTLY, IF THE POINT CLOUD IS

EQUIPPED WITH POINT NORMALS, THEY BE USED TO HELP DISTINGUISH THE EXTE-

RIOR/INTERIOR. HOWEVER, THE PROPOSED ALGORITHM ASSUMES THAT THE INPUT

HAS MINIMAL INFORMATION AND DOES NOT TAKE ADVANTAGE OF ADDITIONAL IN-

FORMATION SUCH AS NORMALS.

The local nature of oriented charges and of the evaluation process used for reconstruc-

tion suggests that the entire procedure (tagging, instantiation of oriented charges and sur-

face extraction) can be performed on the fly for small neighborhoods. This should allow the

reconstruction of arbitrarily large models with fine details, using out-of-core techniques.

82

Chapter 6

Non-Manifold Surface Reconstruction

Surface reconstruction from unorganized points has many practical applications ranging

from reverse engineering [130], entertainment, and analysis of forensic records, to digitiza-

tion of cultural heritage [70] and creation of virtual museums. This subject has gotten con-

siderable attention in recent years due to the increasing availability of 3D scanning devices,

which are capable of sampling complex geometric objects at very high resolutions. Sur-

face reconstruction from unorganized point clouds is, however, a challenging and ill-posed

problem and although much progress has been made in the last few years [7, 26, 52, 91],

(a) (b) (c) (d) (e)

Figure 6.1: Examples of surfaces with different topologies reconstructed with our algo-
rithm. Here a single framework handles all cases: (a) a view of the Stanford bunny; (b)
surface reconstruction with hole filling; (c) surface reconstruction with boundary preserva-
tion; (d) non-orientable surface; and (e) non-manifold surface.

6. NON-MANIFOLD SURFACE RECONSTRUCTION 83

currently no single approach can consistently handle all possible surface configurations.

Moreover, essentially all approaches seem to assume that point clouds represent the sur-

faces of solids, and very little attention has been given to reconstructing surfaces with

boundaries or non-orientable surfaces [2].

In this chapter, we present a novel approach for surface reconstruction from unorga-

nized point clouds. Our approach is general in the sense that it naturally handles manifold

and non-manifold surfaces, surfaces with boundaries, as well as non-orientable surfaces,

all in a consistent way. It does not require any extra geometric information other than the

positions of the samples. Depending on no extra information makes this algorithm suitable

for a broader range of applications. Our method is robust to irregular sampling and surface

gaps, and relatively robust to the presence of noise. Furthermore, it is fast, parallelizable

and easy to implement because it is based on simple local operations.

In addition to its central contribution, the new reconstruction algorithm, this chapter

also introduces three other original results:

• An extension to Tsao and Fu’s algorithm [127] to perform thinning while preserving

surface boundaries (Section 6.2.2);

• An extension to Azernikov’s meshing algorithm [11] to support the creation of polyg-

onal meshes for non-manifold surfaces represented as point clouds (Section 6.2.3);

• A new algorithm for smoothing surface boundaries that significantly improves the

quality of the meshes reconstructed for surfaces with boundaries (Section 6.2.3.1).

In our approach, surface reconstruction is performed using a three-step process. First,

the space containing the point cloud is subdivided, creating a voxel representation. Gap

filling is performed at this stage (Section 6.2.1). Then, a voxel surface with the same

topology of the sampled surface is computed using topological thinning operations based

6. NON-MANIFOLD SURFACE RECONSTRUCTION 84

on Tsao and Fu’s algorithm [127] (Section 6.2.2). Finally, a polygonal mesh is extracted

using a modified version of Azernikov’s algorithm (Section 6.2.3). Figure 6.1 illustrates

the versatility of our technique to reconstruct surfaces with different topologies.

6.1 Related Work

According to Bloomenthal et al. [21], boundaries are usually specified, in the implicit

function based methods, via additional functions that are required to have all the same

sign. Bloomenthal and Ferguson [22] describe an algorithm for polygonizing non-manifold

implicit surfaces defined by multiple regions of space. The algorithm can handle surfaces

with boundaries and intersections, but the existence of multiple regions significantly adds

to the complexity of the polygonizer. Park et al. [97] identify the surface boundaries on the

point model before filling the hole by copying similar region into the hole.

Adamson and Alexa [2] present a point-based algorithm for rendering (not reconstruct-

ing) surfaces with boundaries and non-orientable surfaces. In their approach, a dense set

of points defines an implicit surface, which is identical to a moving least squares (MLS)

surface approximation [3]. The technique can only be used for rendering manifold sur-

faces and is based on ray casting. A surface with boundary is then locally defined as the

set of points x (on the implicit surface), whose distances to a weighted average position

in a neighborhood Ω that contains x is less than a user-specified threshold. Thus, sparsely

sampled regions are rendered as holes. Unlike [2], our technique actually reconstructs a

polygonal representation for these surfaces.

Azernikov’s approach [11] constructs a connectivity graph and then creates facets by

traversing the graph and finding minimal loops. In the resulting mesh, each voxel yields

one vertex, computed as the centroid of input points inside the associated voxel. The algo-

rithm cannot guarantee that the voxel surface has a well-defined local topology. Therefore,

6. NON-MANIFOLD SURFACE RECONSTRUCTION 85

a number of heuristics are used to assure the correctness of the resulting mesh. It also

assumes that its input consists of a densely sampled point cloud and does not fill gaps.

There are three major differences between our modified meshing strategy and Azernikov’s

algorithm: (1) we only find a connectivity graph for surface and border voxels (see Sec-

tion 6.2.2 for a definition of these terms); (2) our approach handles non-manifold surfaces;

and (3) because some empty octree voxels corresponding to holes need to be incorporated

in the voxel surface (in order to automatically fill them), we employ a new way to identify

such voxels and assign vertices to them.

6.2 The Surface Reconstruction Algorithm

Our surface reconstruction algorithm constructs a polygonal mesh from a point cloud

using voxels as an intermediate representation. The steps of the algorithm are shown in

Algorithm 6.1. First, the point cloud is turned into a voxel representation. At this stage,

gaps are filled using a new gap-filling algorithm. Then, topological thinning is used to

create a voxel surface representation. Finally, a polygonal mesh is extracted from the voxel

surface.
1. voxelization and gap filling;

2. topological thinning;

3. meshing.
Algorithm 6.1: Surface reconstruction algorithm

6.2.1 Voxelization and Gap Filling

The algorithm starts by computing a tight bounding box for the point cloud, which is

then subdivided into voxels. The voxel size should be small enough to avoid merging dis-

tinct surface features, but large enough to avoid unnecessary computations. Currently, the

6. NON-MANIFOLD SURFACE RECONSTRUCTION 86

voxelization process is performed based on a user-specified voxel size. Voxels containing

original points are called p-voxels. Some empty voxels (i.e., not containing points) falling

in between p-voxels and representing non-sampled surface patches are called g-voxels. g-

voxels will later be used for gap filling (Section 6.2.1.2 explains how to identify g-voxels).

We call foreground voxels the set defined by the union of p-voxels and g-voxels. Fore-

ground voxels are used for topological thinning (Section 6.2.2). Because they only occupy

a small portion of the space, we use a dexel data structure [50] to store them. The com-

plement of the foreground voxels with respect to the bounding box is called background

voxels.

interior

boundary
surface

junction

half surface

Figure 6.2: Topological classification of voxels.

6.2.1.1 Topological Classification of Voxels

We are interested in reconstructing surfaces and surface junctions, while preserving

surface boundaries. The local topological type of a voxel is determined by the number of

foreground and background connected components in its neighborhood. A voxel is called

a junction voxel if it is at the junction of two or more surfaces. Likewise, a voxel is called

a boundary voxel if it is at the boundary of some surface, along some curve, or just an

isolated voxel. Half surface voxels are on one side of a thick voxel surface and are the

only ones to be deleted during topological thinning. The existence of thick voxel surfaces

6. NON-MANIFOLD SURFACE RECONSTRUCTION 87

Table 6.1: Voxel topological types

Topological type NFC3 NBC3 NBC>3

interior 1 0 any
boundary >1 or 0 any any
boundary 1 1 1
surface 1 2 2
junction 1 ≥2 > 2

half surface 1 1 2

is usually associated with the presence of noise in the dataset. Figure 6.2 illustrates the

different topological types of a voxel.

To compute the local topological type of a voxel v, one needs to compute NFC

and NBC, the number of connected components formed exclusively by foreground (18-

connected) and background (6-connected) voxels, respectively, in the neighborhood of v.

Before computing NFC, v should be deleted from its neighborhood. The appropriate size

for the neighborhood depends on the level of noise in the point cloud and on the surface

features to be reconstructed. According to our experience, a maximum neighborhood size

of 5× 5× 5 voxels seems to work well in practice for most situations. All examples shown

in the chapter were reconstructed using a 5× 5× 5 voxel neighborhood.

The topological type of a voxel v is determined by looking up Table 6.1 using the values

of NFC and NBC. The subscripts of NFC and NBC in Table 6.1 represent the size of a

neighborhood (e.g., a subscript value k indicates a k× k× k neighborhood). For efficiency

reasons, we first search the 3 × 3 × 3 neighborhood of v. If the NBC3 = 0, we have an

interior voxel, and the classification process stops. If, on the other hand, NFC3 > 1 or

NFC3 = 0, v is a boundary voxel. Although Table 6.1 shows the necessary conditions for

identifying v’s topological type on a 3 × 3 × 3 neighborhood, such a small neighborhood

size can only be safely used with clean datasets. Noise tends to cause voxel surfaces to

appear thicker. In this case, the use of a 3 × 3 × 3 neighborhood is often insufficient to

6. NON-MANIFOLD SURFACE RECONSTRUCTION 88

correctly characterize the different components in v’s neighborhood, thus leading to a in-

correct topological classification. If v’s topological type cannot be safely identified based

on the values of NFC3 and NBC3, we increase the neighborhood size to 5 × 5 × 5 and

recompute NBC. In this case, if NFC3 = 1 and NBC3 = 1 and NBC5 = 1 then

v is a boundary voxel. If NFC3 = 1 and NBC3 = 1 and NBC5 = 2 then v is a

half surface voxel. Otherwise, if NBC5 = 2, v is a surface voxel. If NBC5 > 2, v

is a junction voxel. These conditions are summarized in Table 6.1 and in Algorithm 6.2.

compute NFC3 and NBC3 for v;

if (NBC3 = 0)

return interior voxel;

if (NFC3 > 1 or NFC3 = 0)

return boundary voxel;

else

compute NBC5 for v;

if (NBC3 = 1)

if (NBC5 = 1)

return boundary voxel;

else

return half surface voxel;

else

if (NBC5 > 2)

return junction voxel;

else

return surface voxel;
Algorithm 6.2: Topological classification (v: voxel)

6. NON-MANIFOLD SURFACE RECONSTRUCTION 89

(a) (c)(b) (d)

v0
v1

v2

v3

Figure 6.3: Possible situations in gap filling: (a) a surface with an inner hole. Here <
v2, v3 > is a valid voxel line segment, but < v0, v1 > is not; (b) the surface reconstructed
from (a) with hole filled; (c) several surface patches with in-between gaps; and (d) the
surface reconstructed from (c).

6.2.1.2 Identifying g-voxels and Filling Gaps

The voxel surface defined by the set of p-voxels may contain holes and/or gaps due to

insufficient sampling, as illustrated in Figure 6.3(a) and (c). We will not make a distinction

between a hole (Figure 6.3(a)) and a gap (Figure 6.3(c)). For simplicity, we use the term

”gap” to refer to hole and gap. Because we adopt a more general definition of “gap”,

the classical hole-filling schemes (i.e., finding hole boundary before filling the hole [57])

cannot be applied here. Algorithm 6.3 fills gaps before a polygonal mesh is extracted from

the voxel surface. The algorithm uses two dexel data structures Dpg and Db, which are

both initialized with all p-voxels. At the end of the procedure, Dpg will contain the set

of foreground voxels (p-voxels and g-voxels) and will be used as input for the topological

thinning procedure; Db, on the other hand, will contain the set of boundary voxels, and will

be used to prevent boundary voxels in Dpg from being eroded during topological thinning

(Section 6.2.2).

The idea behind Algorithm 6.3 is straightforward: after initializing Dpg and Db with p-

voxels, the algorithm tries to fill gaps by filling voxel line segments with increasing lengths

ranging from 1 to L (a maximum user-specified value). Each segment should connect a

pair < v0, v1 > of boundary voxels (classified using Algorithm 6.2). Before a voxel line

6. NON-MANIFOLD SURFACE RECONSTRUCTION 90

segment is filled, the segment has to pass a validation test.

Gap refers to the background voxels between adjacent patches of the same surface com-

ponent. And we call the background voxels separating two different surface components

separation. In Algorithm 6.3, we first fill gaps with small width. When the length of

voxel line segments become larger, we need to test whether they are connecting already

connected patches.

store all p-voxels in both Dpg and Db;

for d=1 to hole size L;

for each voxel v in Db;

check the topological type of v in Dpg;

if v is not a boundary voxel;

delete v from Db;

for each voxel v0 in Db;

for each v1 in Db with ‖v1 − v0‖ ≤ d;

if voxel line segment < v0, v1 > is valid;

create g-voxels connecting v0 to v1;

add these g-voxels to Dpg and Db;
Algorithm 6.3: Gap filling in voxel space

The validity tests of voxel line segment < v0, v1 > include the following: (1) except the

two end boundary voxels, the voxel line segment should be solely composed of background

voxels; (2) v0 and v1 do not come from the same outmost boundary (e.g., v0 and v1 in Fig-

ure 6.3(a)). If the voxel line segment passes the tests, all (empty) voxels along the segment

are turned into g-voxels, and used to fill gaps. g-voxels are automatically incorporated into

the set of foreground voxels.

A boundary is a closed voxel curve. We start from an arbitrary voxel and propagate

it via adjacency along the curve until all voxels along the curve have been reached. The

6. NON-MANIFOLD SURFACE RECONSTRUCTION 91

number of propagation becomes then the length of the curve. If we propagate a boundary

towards adjacent non-boundary regions, we obtain a new voxel curve. If the boundary is

longer than the new curve, it is considered to be an outmost one. In practice, however, this

criterion could fail and users might want to preserve some hole boundaries (e.g., the holes

in the bottom of the bunny in Figure 6.1(b)). For these reasons, the user is allowed to mark

any boundary as outmost later.

(a) (b) (c)

surface voxel boundary voxel

Figure 6.4: Gap filling and topological thinning: (a) fragment of a voxel surface with a
boundary highlighted in red; and (b) result of the gap filling procedure; and (c) resulting
voxel surface after topological thinning.

6.2.2 Topological Thinning

Before converting the voxel representation into a polygonal mesh, we should remove

all voxels that cause the “surface” to be unnecessarily thicker than one voxel deep. Such

voxels are called half-surface voxels (see Figure 6.2) and usually result from the existence

of noise in the point cloud or inappropriately large voxel size. In order to create a thin voxel

shell, we perform a topological thinning operation. By iteratively removing boundary vox-

els and reclassifying the remaining voxels, Tsao and Fu [127] find the skeleton (medial

axis or medial surface) from voxel representations. However, their algorithm erodes sur-

face boundaries as well, which we want to preserve. Therefore, we have extended Tsao’s

and Fu’s original algorithm to preserve boundaries. In the extended algorithm, thinning

is applied to the set of foreground voxels Dpg, while Db (the set of boundary voxels) is

6. NON-MANIFOLD SURFACE RECONSTRUCTION 92

checked to avoid improper removal of boundary voxels. Both Dpg and Db are computed

using Algorithm 6.3. At the end of the thinning process, Dpg contains a voxel surface (more

precisely, Dpg will contain a set of connected components representing the surface).

Figure 6.4 illustrates the process of gap filling and topological thinning. The red voxels

represent a surface boundary and the result of gap filling is shown in Figure 6.4(b). Note the

existence of some extra voxels. Figure 6.4(c) shows the output produced by our topological

thinning algorithm, which will be used as input for the meshing stage (last step of our

surface-reconstruction algorithm).

6.2.3 Meshing

Meshing is performed using a variation of the algorithm presented by Azernikov et

al. [11]. Since the local topological type of all voxels in Dpg is known, the step in Az-

ernikov’s algorithm required to eliminate “false facets” (i.e., facets that might appear in the

connectivity graph but do not belong to the original surface) can be safely skipped. For

the case of manifold surfaces, this simpler version of the algorithm can be used. Since

Azernikov’s algorithm does not handle non-manifold surfaces, we modified the original

algorithm by allowing one surface to be composed of several sub-surfaces connected at

junction voxels.

Given two surface patches Pi and Pj , their intersection defines a set of junction voxels.

Figure 6.5 illustrates this situation in 2D showing a slice (side view) through two interpen-

etrating surface patches. In Figure 6.5, blue squares represent junction voxels. Red squares

represent surface voxels. Surface voxels touching junction voxels are called border vox-

els. A set of border voxels of a given patch defines a border curve for the patch. We call

intersection curve the curve defined by the set of junction voxels.

Given an intersection between two patches Pi and Pj , there are three possible types of

6. NON-MANIFOLD SURFACE RECONSTRUCTION 93

border curves for one participating patch, as illustrated in Figure 6.6 for the case of patch

I: two disconnected border curves (Figure 6.6a), one open border curve (Figure 6.6b), and

one closed border curve ((Figure 6.6c). For the cases (b) and (c), each patch still consists

of a single connected component. Meshing can then be performed after junction voxels are

connected to voxels of the border curve, and the resulting set of voxels is submitted to a

thinning operation.

If the intersection causes a patch to be split into two disjoint connected components

(Figure 6.6(a)), the algorithm needs to regroup all components into a single mesh. Fig-

ure 6.5 illustrates this situation for a pair of intersecting patches Pi and Pj , resulting in four

disjoint connected components S0, S1, S2 and S3, shown in red in Figure 6.5(a).

The process of regrouping starts by identifying all components and, for each one, cre-

ating a mesh using the simplified version of Azernikov’s algorithm. After these meshes

have been created, a normal vector is computed for each border voxel by averaging the

normals of all faces sharing that particular voxel (Figure 6.5(a)). We start with a voxel

in the intersection curve and walk along this curve. Let vj be the current junction voxel

in the intersection curve. Also, let va and vb be any two border voxels adjacent to vj and

belonging to different border curves Cp and Cq. We compute ma,b = |na · nb|, where na

and nb are the normals of border voxels va and vb, respectively. We use a triangular matrix

M to store in element Mp,q the average of all values ma,b such that va is in border curve Cp

and vb is in border curve Cq. In this case, averaging is used to compensate for the fact that

different border curves may have different numbers of border voxels.

After the walk through all junction voxels in the intersection curve is over, let Mp,q be

the element of matrix M with the biggest value. Then, we connect the components asso-

ciated with border curves Cp and Cq and set Mp,q to zero. The rationale here is that the

orientation of border voxels belonging to these two components correlate the most. This

is interpreted as a strong indication that the two components belong to the same surface.

6. NON-MANIFOLD SURFACE RECONSTRUCTION 94

Then, we identify the element in M with the next biggest value, connect their correspond-

ing components and set the matrix cell to zero. This process is repeated until M contains no

non-zero elements. The entire process is illustrated in Figure 6.5. First, components S1 and

S2 are connected (Figure 6.5(b)), then S0 and S3 are also connected (Figure 6.5(c)). Con-

necting two components amounts to computing the union between the voxels belonging to

the components themselves and the associated junction voxels, performing a thinning op-

eration, and finally using the simplified version of Azernikov’s algorithm to create a mesh.

Figure 6.5(c) shows the final result after the algorithm is applied to the four components

shown in Figure 6.5(a). The position of the vertex associated with a junction voxel is given

(a) (b)

s0 s1

s2 s3

s0 s1

s2 s3

(c)

s0 s1

s2 s3

background voxel surface voxel

junction voxel intersection curve

Figure 6.5: Creating non-manifold surfaces: (a) individual surfaces are reconstructed. s1

and s2 are part of the same surface intersected by the surface defined by s0 and s3; (b)
surface (s1, s2) is reconnected; and (c) surface (s0, s3) is reconnected, thus reconstructing
the non-manifold surface.

by the average position of all points falling inside the corresponding voxel. On the other

hand, the vertex position inside a g-voxel is initially at the center of the voxel. In order

to produce smoother meshes, these positions can be relaxed using any active contour tech-

niques [19]. Currently, we minimize the following energy with a simplistic mass-spring

system:

E =
∑
i∈G

(‖
∑

k∈M(vi)

(vk − vi)‖)2 (6.1)

6. NON-MANIFOLD SURFACE RECONSTRUCTION 95

(a) (b) (c)

I I
I

II II

II

Figure 6.6: Three types of border curves in surface intersections (considered with respect
to patch I): (a) two border curves; (b) a single non-closed border curve; and (c) a single
closed border curve.

where G is the set of junction voxels and g-voxels, and M(v) is the set of voxels which are

directly connected to v in the resulting mesh. In order to accelerate the convergence, we

solve the system iteratively until E becomes negligible.

6.2.3.1 Smoothing Boundaries

The representation of boundaries of surfaces is usually affected by under-sampling and

noise. Also, the spatial discretization imposed by the voxelization process tends to worsen

the problem. As a result, the meshing procedure described in section 6.2.3 tends to recon-

struct ragged boundaries. This situation is illustrated in Figure 6.7(a) for the case of a mesh

fragment showing a surface boundary. In order to improve the appearance of boundaries,

we take groups of three consecutive boundary vertices and set the position of the middle

one as a weighted average of the other two. Thus, let c be the vertex position associated

with a voxel v at the boundary of a given surface S, and let cl and cr be the positions of the

vertices associated with vl and vr, the left and right neighbors, respectively, of v at the same

boundary. We then make c be collinear with cl and cr. As we proceed to the next group of

three neighbor boundary voxels, the collinearity among cl, c and cr is lost, but the boundary

6. NON-MANIFOLD SURFACE RECONSTRUCTION 96

(a) (b)

Figure 6.7: Smoothing the jagged boundaries. Here the meshes in the bottom are the
zoom-in view of the red square regions in the top: (a) low sampling, noise, and spatial
discretization imposed by the voxels can lead to the reconstruction of ragged boundaries;
and (b) new mesh obtained after boundary smoothing.

smoothing effect is preserved. Using this simple procedure, the resulting boundary (Fig-

ure 6.7b) becomes much smoother, leading to more pleasing results. Figure 6.10 compares

the results produced by mesh extraction (a) without and (b) with boundary smoothing and

illustrates the significant improvement obtained with this technique.

6.2.4 Cost of the Algorithm

Let n be the number of samples in the point cloud and let m be the number of voxels

used to discretize its bounding box. The cost of assigning a given input point to a voxel

is O(1), adding up to O(n) for the entire input data. The topological classification of

one voxel is done by analyzing a finite neighborhood and, thus is O(1). Therefore, the

classification of all voxels is performed in O(m). During gap filling, we have at most

(2L + 1)3 voxel line segments and may have up to L(2L + 1)4m voxel operations, where

L the maximum length allowed for a segment. Gap filling is then performed in O(m).

6. NON-MANIFOLD SURFACE RECONSTRUCTION 97

Thus, the first step of the surface reconstruction algorithm has cost O(n + m). Topological

thinning is performed in O(m), since each voxel is visited and either deleted, if it is a half

surface voxel, or kept, otherwise. Finally, for meshing, we need to process all foreground

voxels (i.e., p- and g-voxels) in order to compute the average position of the sets of points

inside each voxel. Since the cost of creating the mesh itself is O(m), the cost of the entire

meshing stage is O(n+m). Therefore, the total cost of our surface reconstruction algorithm

is O(m + n).

(a) (b) (c) (d)

Figure 6.8: Reconstruction of the Bunny model: (a) Stanford bunny reconstructed from
10 range scans using the proposed algorithm; (b) reconstruction of the bunny as a closed
surface; (c) reconstruction of the bunny preserving the holes (boundaries); and (d) noisy
bunny.

Figure 6.9: The reconstruction of the dragon model obtained from 60 range scans (contain-
ing registration errors, noise and outliers) using our algorithm.

6. NON-MANIFOLD SURFACE RECONSTRUCTION 98

6.3 Results

We have implemented the described algorithm and used it to reconstruct manifold and

non-manifold surfaces with different topologies. The point clouds used as input for the

reconstruction process were obtained from actual range scans as well as from synthetic

datasets. Figure 6.1 illustrates the versatility of our approach showing reconstruction re-

sults for different kinds of topologies. Our algorithm can be used to reconstruct closed

surfaces (Figure 6.1(b)), surfaces with boundaries (Figure 6.1(c)), non-orientable surfaces

(Figure 6.1(d)) and non-manifold surfaces (Figure 6.1(e)), all using a single framework.

For rendering, the meshes were obtained using the procedure described in section 6.2.3

and were then triangulated. Vertex normals were approximated by averaging the normals

of all faces sharing the given vertex.

Relying on the voxelization, topological classification and gap filling procedures, our

algorithm is robust to the presence of noise and irregular sampling. Figures 6.8 and 6.9

illustrate the results of the proposed algorithm applied to actual range scans. Figure 6.8

shows several reconstructions of the Stanford bunny obtained from a point cloud created

after merging 10 range scans (containing noise and registration errors), with a total of

362,272 points. The bunny model (Figure 6.8a) is well known to have holes at the bottom.

Figure 6.8(b) shows the reconstructed bunny with the holes filled, whereas in Figure 6.8(c)

the boundaries were preserved. We also added Gaussian noise with magnitude of 1% of

the size of the original bounding box to the point cloud. The resulting reconstructed model

is shown in Figure 6.8(d). The large number of g-voxels in the noisy bunny model (see

Table 6.2) results from the existence of many small holes due to the added noise.

Figure 6.9 shows the Stanford dragon reconstructed with our algorithm after merging

60 range scans containing noise and registration errors. The merged dataset for this genus-

2 model has about 1.7 million points and includes a number of noticeable outliers. Using

6. NON-MANIFOLD SURFACE RECONSTRUCTION 99

our approach, the global topology is correctly reconstructed and delicate surface details are

nicely preserved. No pre- or post-processing step is required for removing the outliers.

Figure 6.10 shows the reconstruction of a Möbius strip model (a non-manifold) and

illustrates the ability of our approach to handle non-orientable surfaces with boundaries. On

the left, we show the reconstructed model before boundary smoothing. Notice the ragged

edges. On the right, one sees the result after our smoothing boundary algorithm has been

used. The new boundaries are significantly smoother, resulting in a more pleasant model.

Figure 6.7 shows close-up views of the two meshes for comparison. One should note

that the ability to reconstruct non-manifold and non-orientable surfaces has more than just

theoretical importance. For example, these surfaces have been represented using points [2],

which one may want to visualize using polygonal models.

(a) (b)

Figure 6.10: Reconstruction results of a non-orientable surface (Möbius strip): (a) before;
and (b) after smoothing of boundaries.

Figure 6.11 shows another view of the non-manifold model shown in Figure 6.1(e),

which consists of two intersecting surfaces. This is a particularly challenging test and has

been perfectly reconstructed by our approach. To the best of our knowledge, no other

contemporary surface-reconstruction algorithm is capable of reconstructing such a model.

Figure 6.12 shows reconstruction results for a vase model with varying sampling rates

and illustrates the ability of our approach to work with sparse datasets. Figure 6.12(a)

shows a point cloud obtained by randomly selecting only 20% of the points (13,619 points)

6. NON-MANIFOLD SURFACE RECONSTRUCTION 100

from a digitized vase model. The small square highlights the irregular sampling in the

resulting point cloud. Undersampling can also be observed by comparing the number of

g-voxels in Table 6.2. The number of such voxels for the reduced model is considerably

bigger, thus implying severe undersampling. Figure 6.12(b) shows the reconstructed model

obtained from the point cloud shown in (a). For comparison, Figure 6.12(c) shows the

reconstructed vase using the full dataset (68,097 points). Although it is possible to observe

differences on the vase’s relief and at the boundary of its base, all major features were

faithfully reconstructed from a much smaller dataset.

Table 6.2 presents some statistics associated with the models shown in the chapter.

Measurements were performed on a Pentium 4, 2 GHz PC with 1GB of memory. The last

three columns of the table show the running times, in seconds, of the three steps of our

surface reconstruction algorithm.

Figure 6.11: Non-manifold surface reconstructed with our algorithm. The surface consists
of two intersecting patches.

WE ALSO APPLIED THE PROPOSED ALGORITHM TO AN INDOOR SCENE. WE HAVE

TWO DIFFERENT RANGE SCANS OF THE SCENE. THE SCENE HAS SOME CHANDELIERS

SUSPENDED FROM THE CEILING AND HIGHLY SPARSE AND VARYING SAMPLING RATES

6. NON-MANIFOLD SURFACE RECONSTRUCTION 101

(a) (b) (c)

Figure 6.12: Reconstruction of sparsely and unevenly sampled objects: (a) A point cloud
obtained by randomly selecting 20% of the points (13,619 points) of a digitized vase model.
The small square highlights the irregular sampling. (b) Vase model reconstructed from the
point cloud in (a). (c) Vase reconstructed from the full point cloud (68,097 points). Notice
that all important features were appropriately reconstructed in (b).

FOR SOME REGIONS. THE STRINGS ATTACHING THE CHANDELIERS ARE SAMPLED AS

POINTS ALONG A SINGLE LINE. THE CHANDELIERS OCCLUDE THE RANGE SCANNER

AND LEAVE SEVERAL MISSING REGIONS IN THE CEILING. IN FIGURE 6.13, THE TWO

SCANS ARE RECONSTRUCTED USING THE PROPOSED ALGORITHM IN THIS CHAPTER.

WE TRIED TO RECONSTRUCT THE MODEL WITH ALL GAPS PRESERVED. IN ADDITION,

WE RECONSTRUCT THE MODEL WITH A SELECTED GAP SIZE OF 2. GAP-FILLING WITH

A LARGER SIZE IS NOT SUCCESSFUL BECAUSE IT WILL CONNECT UNRELATED SUR-

FACE COMPONENTS. FOR EXAMPLE, ONE END OF THE STRING OF A CHANDELIER IS

TOO CLOSE THE BOUNDARY OF THE HOLE CAUSED BY THIS CHANDELIER. THE GAP-

FILLING ALGORITHM MAY CONNECT THEM BEFORE FILLING THE HOLES, LEADING TO

A TOPOLOGICALLY INCORRECT RECONSTRUCTION. THE STRINGS OF THE CHANDE-

LIERS ARE NOT RECONSTRUCTED BECAUSE THEY ARE PRESENTED MERELY BY bound-

ary VOXELS IN VOXELIZED MODEL.

6. NON-MANIFOLD SURFACE RECONSTRUCTION 102

(a) (b)

(c) (d)

Figure 6.13: Reconstruction of the indoor scene: (a) reconstructed surface with all bound-
aries preserved of the first range scan; (b) reconstructed surface with small gaps filled of
the first scan; (c) reconstructed surface with all boundaries preserved of the second range
scan; and (d) reconstructed surface with small gaps filled of the second scan.

THE PROPOSED ALGORITHM DOES NOT WORK WELL FOR SHARP FEATURES. IN

FIGURE 6.14, WE HAVE POINTS REPRESENTING THE STEPS OF THE INDOOR SCENE.

AFTER THINNING, WE HAVE A VOXEL SURFACE REPRESENTING THE STEPS. BECAUSE

THE MAJOR VOLUME AXIS DO NOT ALIGN WITH THE DIRECTION OF THE STEPS, WE

END UP HAVING A ZIGZAG STYLE FOR THE SHARP EDGES. SINCE EACH SURFACE

VOXEL WILL YIELD ONE VERTEX FOR THE RESULTING MESH AND THE LOCATION OF

THIS VERTEX IS COMPUTED AS THE AVERAGE OF THE SAMPLES INSIDE. IF MULTIPLE

SAMPLES ARE INSIDE, THE VERTEX WILL BE NOT EXACTLY ALONG THE EDGE. FOR

6. NON-MANIFOLD SURFACE RECONSTRUCTION 103

(a) (b) (c)

Figure 6.14: The proposed framework is not capable of preserve sharp features: (a) the
points representing steps in the indoor scene; (b) the surface voxels representing the steps
in our algorithm; (c) the reconstructed steps.

THIS REASON, THE SHARP FEATURES WILL NOT BE PRESERVED.

For models with dense and regular samples, we obtain voxel surfaces with correct lo-

cal topological types for each voxel. In the presence of noise, sample positions tend to be

shifted, creating “inflated” voxel surfaces and possibly introducing small gaps in the sur-

face. In most cases, the level of noise in the dataset is smaller than the voxel size. Thus the

introduced gaps are at most one voxel wide and can be filled with ease using Algorithm 6.3

with L = 2.

Our approach subdivides the bounding box of the point cloud into voxels with uniform

sizes. While the use of an adaptive data structure, such as an octree, has advantages in terms

of memory requirements, the topological thinning algorithm requires a constant voxel size.

Note that using small voxels impacts the running time of the algorithm. Thus, the most

suitable voxel size can be understood as the biggest one that still allows the reconstruction

of the intended surface details. Such a value can be obtained based on the user experience

or using a binary-search-based trial and error process.

Our approach does not require point normals. However, if the dataset contains normals,

they can be used to help thinning and meshing. For instance, the sub-directions for thinning

6. NON-MANIFOLD SURFACE RECONSTRUCTION 104

could be reduced from 6 to 2 and one could further optimize the obtained mesh by applying

the constraints on surface normals.

The major limitation of the proposed approach is that the hole filling algorithm relies

on the assumption that the size of gaps to be filled is smaller than the size of separation

between surface components, which should not be filled. In the case of increased noise

level or missing samples, the assumption might be broken and the proposed algorithm will

not work.

6. NON-MANIFOLD SURFACE RECONSTRUCTION 105

Ta
bl

e
6.

2:
St

at
is

tic
s

of
so

m
e

re
co

ns
tr

uc
tio

n
re

su
lts

(t
im

e
in

se
co

nd
s)

M
od

el
#

of
in

pu
t

vo
xe

l
#

of
#

of
#

of
tim

e
of

tim
e

of
tim

e
of

po
in

ts
gr

id
p-

vo
xe

ls
g-

vo
xe

ls
fa

ce
ts

ga
p

fil
lin

g
th

in
ni

ng
m

es
hi

ng
M

er
ge

d
B

un
ny

36
2,

27
2

12
83

25
,7

51
41

9
27

,9
53

5.
64

11
.0

0
0.

56
M

er
ge

d
D

ra
go

n
1,

76
9,

51
3

25
63

41
,2

43
66

2
10

1,
99

7
20

.8
0

28
.6

0
3.

79
M

öb
iu

s
St

ri
p

7,
56

0
64

3
2,

91
2

0
2,

83
8

0.
89

1.
23

0.
11

In
te

rs
ec

te
d

su
rf

ac
es

20
,4

02
32

3
2,

17
1

0
2,

02
1

0.
43

0.
00

0.
11

N
oi

sy
bu

nn
y

(w
ith

1%
no

is
e)

34
,8

34
12

83
19

,1
22

13
,9

17
35

,5
31

75
.6

1
29

.2
3

1.
32

V
as

e
68

,0
97

64
3

11
,8

30
45

9
13

,6
54

1.
40

2.
78

0.
35

U
nd

er
sa

m
pl

ed
V

as
e

13
,6

19
64

3
6,

41
3

6,
09

2
13

,8
55

7.
50

4.
20

0.
37

106

Chapter 7

Reconstructing Regular Meshes from

Points

Given a set of points P = {pi = (xi, yi, zi)} sampled from an object’s surface, the goal

of surface reconstruction techniques [52, 91] is to compute a meshM that approximates the

underlying surface. This is essentially an ill-posed problem as it admits multiple solutions.

Usually, the solution with minimal energy in some sense will be chosen as the optimal

result.

Thus, for instance, one may want to minimize the distance between the original points

and the reconstructed surface. Often, however, it will be important to have well-shaped

(e.g., nearly equilateral) triangles for the best visual quality and for some subsequent use

by other procedures, such as finite element analysis [23]. Triangles with nice aspect ratios

are also important for animation and rendering (shading) [25].

While one would like to preserve the detailed information available in the original data

as much as possible, surface reconstruction from points often leads to some loss. In this

chapter, we propose a new approach for reconstructing regular meshes from point clouds.

Here the point connectivity is inferred using a neighborhood relation and detailed geometric

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 107

features are preserved with the use of a new point parameterization. Given the set of input

points, meshes with arbitrary resolutions can be extracted by sampling the patches using a

regular grid.

The proposed approach consists of two steps as shown in Figure 7.1. First, a parame-

terization is computed for the point cloud. Then, a mesh is extracted based on the resulting

parameterization. The parameterization process can be summarized as follows: given a

3D point cloud representing a surface with arbitrary topology, it is segmented into several

non-overlapping patches, each topologically equivalent to a disk. The points in any patch

are assigned a 2D parameterization via a propagation procedure. This results in a set of

2D parameter patches. Although patches do not overlap, a patch boundary may be adja-

cent to several other patches. During meshing, shared vertices are created along the patch

boundaries, while the interior of the patches are tiled using a regular triangular pattern.

Surface remeshing techniques [5, 6, 103, 118] create regular meshes, but they take

another mesh as input and, therefore, already have connectivity information. Basically,

these techniques compute parameters for each original vertex, and new vertices are created

by resampling [118]. In this chapter, an alternative paradigm is employed: first we compute

the point parameterization, and then resample the parameterization domain for meshing.

This breaks the direct coupling between the original points and the resulting mesh, and has

some advantages. For instance, it allows the preservation of details on the point side, and

for more flexibility during meshing. Thus, meshes with arbitrary resolutions can be easily

created. It is also a direct reconstruction approach without involving an intermediate mesh.

The use of intermediate representations tends to cause loss of information.

The proposed algorithm requires only the location of the points and, therefore, is gen-

eral enough to handle all kinds of point datasets. Since a point parameterization is produced

as a by-product of the reconstruction process, several operations can be directly applied to

the resulting mesh, such as texture and bump mapping. As the digitization of real models

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 108

using laser scanners is becoming increasingly popular, the automatic parameterization of

reconstructed models provided by our approach can potentially save modelers some signif-

icant amount of work.

The main contributions of this chapter include:

• A new approach for reconstructing regular meshes from point clouds that produces

nearly equilateral triangles. It is based on a new paradigm that decouples parameter-

ization from meshing, thus improving the flexibility of the meshing process, while

the obtained parameterization can also be used for other applications (Section 7.2);

• A robust boundary-identification algorithm to find surface boundaries, including hole

boundaries (Section 7.3.2);

• A novel approach for parameterizing cuts between parameter patches that allows

points along cuts to have more than one associated parameter value (Section 7.3.3);

• A solution for creating triangles from the borders towards the center of the parameter

patch, thus counteracting the effect that some patches might overlap (Section 7.4);

• A new approach to optimize the location of interior vertices so as to adjust the trian-

gles around the patch boundary (Section 7.4.2).

cut
handling

point parameterization

parameter
propagation

boundary
identification

points mesh

meshing

cut
vertices

triangle
placementpatches

Figure 7.1: Pipeline for creating regular meshes from point clouds. Given a point cloud,
a point parameterization is used to create a set of 2D parameter patches, which are in turn
used as input to the meshing process.

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 109

7.1 Related Work

Our approach falls into the category of representing geometrical information using im-

ages [74]. Geometry images [46] parameterize a 3D mesh to a rectangular domain based

on geometric stretch. More theoretically sound results are obtained using spherical param-

eterization [45] and conformal mapping [56]. In comparison, we start with points without

any connectivity information. In our approach, parameterized points form several patches,

which may overlap and have non-rectangular shapes. The use of patches reduces the dis-

tortion and solves the nonuniform sampling problems inherent in the aforementioned ap-

proaches.

Our approach is also similar to Floater and Reimers [40] and Hormann and Reimers

[53]. However, these methods force the parameterized surface to fit within a convex shape

(e.g., a disk), thus large distortion will be introduced. Mencl and Muller [81] first create

some skeleton edges from the point dataset. Then triangles are created to fill the surface

under the constraint of the skeleton edges. In these algorithms, the original data points are

used as vertices. As a result, no guarantees can be given to the aspect ratio of the resulting

triangles. In contrast, vertices created by our approach are not necessarily located at the

original data points.

Zwicker et al. [152] have proposed an interactive approach to locally compute a pa-

rameterization with minimal distortion. However, user interaction is needed to assign some

feature points and this parameterization approach could not be applied to the entire sur-

face of a manifold object. Moving least squares surface [10, 112] finds the location of the

extremal surface from the point clouds. Its major advantage is to reduce noise. In [112],

an adaptive direct meshing approach is employed. A guide field is used to control the tri-

angle size according to curvature and other features. The major difference between this

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 110

approach and ours is that the former can not output nearly equilateral triangles. In addi-

tion, it pre-computes the guide field while we compute the 2D parameter for each point via

propagation.

7.2 Algorithm Overview

The pipeline of the proposed algorithm is illustrated in Figure 7.1. It includes two steps:

point parameterization and meshing. For point parameterization, we compute several 3D

patches from the point cloud via propagation. The parameter values of the points inside the

patches are computed, forming several 2D parameter patches. Each point pi on a 3D patch

will then have an associated parameter qi = (ui, vi). Within any given 3D patch, there is

a nearly isometric mapping to its parameter patch. That is, for any two 3D points pi and

pj in a local neighborhood, their Euclidean distance nearly equals the distance computed

in 2D using their corresponding parameters (‖pi − pj‖ ≈ ‖qi − qj‖). Since each 3D patch

and its related parameter patch both refer to the same set of points, we often make no

distinction between them and refer to both simply as patches. Whenever we need to refer

to a particular kind of patch, we will use the specific terms.

A patch boundary may represent the presence of non-sampled regions on the surface.

Alternatively, it may represent a parameter discontinuity with respect to adjacent patches.

The patch boundaries are termed cuts because they represent discontinuities in the param-

eter values.

In the stage of meshing (Figure 7.1), we first add vertices along cuts and force them to

be evenly distributed along the cuts. Then triangles are placed inside each patch using a

regular pattern. In the algorithm, a Kd-tree is used to expedite the query of the k nearest

neighborhood (kNN) of a point in 3D space.

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 111

7.3 Point Parameterization

Isometric mappings only exist for developable surfaces [32]. In this chapter, we instead

find a nearly isometric parameterization for patches as large as possible. A propagation

scheme is used to compute the parameter q for each point p. During the propagation, cuts

may be introduced to separate different patches where a parameter discontinuity occurs.

Since a cut is related to multiple patches, points along a cut might have multiple parameter

values. This situation is illustrated in Figure 7.3.

We parameterize a point cloud via propagation. During the process, a tag selected from

the set {unvisited, patch, gap, cut, boundary } will be assigned to each point to indicate its

current status. Initially, all points are set as unvisited. After propagation, points belonging

to any patch become patch points. The remaining points are gap points, representing the

boundaries of the patches. In the next step, we find among the patch points the exterior and

interior (hole) boundaries of the surface and mark the related points as boundary points.

Finally, we convert the gap and boundary points into several cuts and parameterize the

cuts. Algorithm 7.1 presents the steps associated with the point parameterization stage of

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 112

the pipeline shown in Figure 7.1.

// Point parameterization stage:

// (1) parameter propagation (Section 4.1)

for each point p in the point cloud do

if p is not visited then
CreateOnePatch(p)

end

end

// (2) boundary identification (Section 4.2)

for each edge in the patch adjacency graph do

if this is part of the boundary then
Mark the edge points as boundary points

end

end

// (3) cut handling (Section 4.3)

construct the gap point adjacency graph;

find cut points by extracting pruned minimum spanning trees from the graph;

find the patch boundary curve from the boundary points;

traverse the patch boundary curve to parameterize the cuts

function CreateOnePatch(point p);

begin
push p to a stack;

while stack is not empty do
pop the point at the top;

compute its parameters;

add adjacent unvisited points into the stack

end
end

Algorithm 7.1: Point parameterization pipeline.

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 113

7.3.1 Parameter Propagation

pi

pc

pi

c

~Zi

~Xi

~Yi

~Zi
c

~Xi
c

~Y i
c

β

β

l

Figure 7.2: Parameter propagation from a patch point pi.

We use our algorithm [149] to turn unvisited points into patch points, if applicable.

Accordingly, each patch point pi will be assigned a local coordinate frame (
−→
Xi,

−→
Yi ,

−→
Zi) and

a parameter qi = (ui, vi). Initially, all unvisited points are put into a priority queue, sorted

by the number of patch neighbors in their kNN. While the queue is not empty, we pop

the current top point pc, which has the largest number of patch neighbors. If pc has no

patch neighbors in kNN(pc), it is the first patch point in this patch. Its
−→
Zc is computed

as the eigenvector associated with the smallest eigenvalue of the covariance matrix defined

in the points in the kNN(pc).
−→
Xc,

−→
Yc and qc are chosen arbitrarily (qc = (0, 0) in our

experiments), given that
−→
Xc,

−→
Yc and

−→
Zc form an orthonormal basis.

In case pc already has some patch neighbors in kNN(pc),
−→
Xc,

−→
Yc ,

−→
Zc and qc are com-

puted from the patch neighbors of pc. Let N = {pi|pi ∈ kNN(pc)} be the set of points in

kNN(pc). For each pi ∈ N , we project pc onto the
−→
Xi
−→
Yi plane as pi

c (see Figure 7.2). pi
c

is moved along the vector
−−→
pip

i
c such that ‖pc − pi‖ = ‖pi

c − pi‖. The new local coordinate

system (
−→
X i

c,
−→
Y i

c ,
−→
Zi

c) is computed for pc by rotating (
−→
Xi,

−→
Yi ,

−→
Zi) about l by β degrees, where

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 114

l is a line passing through pi and perpendicular to plane pi
cpipc (see Figure 7.2). Parameters

qi
c = (ui

c, v
i
c) are computed from qi = (ui, vi) as (ui +

−−→
pip

i
c ·
−→
X i

c, vi +
−−→
pip

i
c ·
−→
Y i

c). A weight

is also computed for pc from pi as wi
c = 1/‖pc − pi‖. We compute

−→
Xc,

−→
Yc ,

−→
Zc and qc as the

weighted average of all
−→
X i

c,
−→
Y i

c ,
−→
Zi

c and qi
c, respectively.

Two kinds of distortions are computed for point pc: position distortion Dpos(pc) and

orientation distortion Dori(pc) using a variation of the estimates described in [149]. Note

that the normalization of the weights wi
c is embodied in the definition of Dpos and Dori.

Dpos(pc) = max(
wi

c‖qi
c − qc‖∑
wi

c

) (7.1)

Dori(pc) = max
(wi

c(2−
−→
X i

c ·
−→
Xc −

−→
Y i

c ·
−→
Yc))∑

wi
c

(7.2)

If αDpos + (1 − α)Dori ≥ E, this point becomes a gap point, where α is the relative

weight for the two errors and E is the maximum error. Otherwise, it becomes a patch point.

we record the edges connecting pc to all its patch neighbors in a patch point adjacency

graph Gp, which will be used later to parameterize the cuts. In all our experiments, we

used α = 0.5 and E is computed adaptively as the largest distance between a point and any

neighbor in its kNN.

Once pc becomes a patch point, the number of adjacent patch points for its adjacent

unvisited points needs to be updated and the priority queue is adjusted accordingly. After

parameter propagation, we obtain several patches. Note that a parameter patch might

overlap with itself in parameter space. This might happen, for instance, if the boundary

follows a curved path and overlaps itself in the 2D parameter space. Consider, for example,

two patch points p1 and p2, which are far from each other in 3D, but whose 2D parameter

values are very close. During propagation, the parameters of the unknown neighbors of p1

are computed based only on the 3D point location. Thus, the existence of a nearby point

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 115

(i.e., p2) in the 2D parameter space will not be taken into account.

cuts

(a) (b)

Figure 7.3: (a) The cuts (green curves) separating patches, created from the point parame-
terization; (b) The 2D parameter patch is bounded by the cuts.

7.3.2 Boundary Identification

In the case the point model does not represent a closed 2-manifold surface, we need

an algorithm to identify the surface boundaries (exterior and interior, i.e., holes). In the

literature, an angle criterion [47] is often used to check whether a point pi belongs to the

boundary. It consists of projecting the neighborhood N of pi (including itself) onto its

tangent plane (the plane fitted to N). By connecting pi to its neighbor points on the tangent

plane, one has a number of edges sharing pi. The algorithm then finds the maximum angle

between any two such adjacent edges. If such an angle is larger than a threshold, pi is

considered to be part of the boundary. Unfortunately, this approach is not robust in the case

of varying sampling rates or high curvatures.

We propose a new criterion for identifying boundary edges that takes the computed

local parameterization into account. Note that a boundary edge can be either a surface-

boundary edge (in the case of a manifold with boundary) or a regular patch-boundary edge.

Any surface-boundary edge also belongs to the edge of a given patch. The two kinds can

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 116

be distinguished from one another because internal patch-boundary edges have gap points

as some of their neighbors. Let e = (v0, v1) be an edge in the patch point adjacency graph

Gp, connecting vertices v0 and v1. We say that e is part of the surface boundary if e is not

shared by two triangles. Thus, let ui be the 2D parameter value associated to vertex vi and

expressed in homogeneous coordinates. Thus, the line supporting e in parameter space can

be represented as u0 × u1, where × is the cross-product operator. Thus, for any vertex vj

with associated parameter uj , such a vertex is at one side of e if (uj · (u0 × u1)) > 0 and is

at the other side if (uj · (u0×u1)) < 0. The vertices of the adjacency graph represent patch

points, while the edges represent neighboring relations. Thus, e = (v0, v1) is considered

a boundary edge if and only if for all vertices vk in Gp and adjacent to both v0 and v1, the

triple product uk · (u0 × u1) has the same sign for all vk.

The algorithm for identifying boundary points has cost O(m), where m is the number

of edges in Gp. Figure 7.4 (b) shows the boundary points identified by the algorithm on a

single range image of a mug model (Figure 7.4 (a)), whose point cloud was obtained using

a structured light scanner [107]. Note the small holes on the model due to high reflectivity

and some noise. This example illustrates the robustness of our algorithm to find boundaries.

(a) (b)

Figure 7.4: (a) One range image of a mug; (b) The identified boundary points.

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 117

7.3.3 Cut Handling

The last step of the point parameterization stage (Figure 7.1) is cut handling. A cut

is a curve defined by points for which the accumulated error in the propagated parameter

values is bigger than some threshold. Cuts separate different patches but can also define a

limit between two regions on the same patch (Fig 7.3).

Points along the cuts are special in the sense that they might have multiple parameters

while points inside any patch have a single parameter value. Cut points are computed from

gap points. For each gap point pg we find its kNN using an approach similar to the one

of Pauly et al. [99]. Edges connecting pg and its gap neighbors are added to a gap point

adjacency graph Gg. Minimum spanning trees (MST) are then extracted from all connected

subgraphs of Gg
1. From each spanning tree Ti, we remove all branches whose lengths are

shorter than 3E, where E is the average length of the kNN for all patch points. The value

3E was defined empirically based on our experiments. The pruned version of Ti becomes

a cut curve Ci and its points are stored in a graph Gc (later, cut branches will be extracted

from this graph and parameterized). Cut curves are shown as green curves in Figure 7.3,

which depicts the parameterization of a point cloud representing a sphere.

Starting with the set of boundary points, we also build MSTs and compute pruned

versions of them. Each resulting curve is then closed by creating an edge between the first

and last point, and is called a patch boundary curve. The set of all patch boundary curves

tightly enclose the cuts. Patch boundary curves are shown in red in Fig 7.5, while cuts are

shown in green.

Conceptually, each cut point can be assigned an arbitrary number of different param-

eter values, which are obtained from patch boundary points. Note that, in this case, each

parameter value is associated to a different patch and is only used in the context of such a

1A minimum spanning tree connects all vertices of a connected (sub)graph while minimizing the sum of
the weights of the selected edges.

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 118

patch. Thus, let C be a cut and let pc be a cut point with degree 1 (i.e., connected to only

one other cut point). We proceed the cut parameterization by first finding, for each pc, its

nearest point in the patch boundary curves separated by C (Figure 7.5). In case pc separates

two parts of the same patch, we find its two closest points in the patch boundary curve (one

at each side of pc).

The order of these nearest points along the patch boundary curve determines the order of

cut branches (i.e., the minimum sets of connected edges in Gc enclosed by two cut points

of degree 1). For each point on a cut branch, we find the nearest patch point along the

corresponding portion of the patch boundary curve (Figure 7.5). The approach described

in Section 7.3.1 is used to parameterize the cut points.

patch boundary curve

patch boundary curve

cut branch

Figure 7.5: We use patch boundary curves (shown in red) to help order and parameterize
the points along a cut (green curve). Here, the squares represent points along the same cut
branch, while the ×’s are their corresponding points along the patch boundary curves.

7.4 Meshing from Parameterization

Once the parameterizations of all patches are available, one can proceed to create a

triangle mesh with arbitrary resolution. To create a complete mesh, the user needs to specify

the side length L of the equilateral triangles. To preserve geometric details and avoid

the occurrence of T-vertices in the resulting mesh, we first create vertices along the cuts,

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 119

forming the boundary vertices of the parameter patches. Then, interior vertices are created

using a regular sampling pattern. Algorithm 7.2 presents some pseudo code describing this

process.

Procedure Meshing()

create shared vertices along the cuts

place vertices inside patches

created triangles via edge flipping

optimize the location of interior vertices
Algorithm 7.2: The meshing pipeline

7.4.1 Vertices Along Cuts

We create vertices along each cut branch by marching from one end to the other, adding

vertices in-between. It is enforced that the distance in 3D between adjacent vertices is L.

If the distance between one end and its nearest vertex becomes less than L
2

, we delete that

vertex. After that, this distance is in the range of [L
2
, 3L

2
]. We relax the location of vertices,

except those at the end points, along the cut branch and make the distances between every

vertex and its previous/next neighbors equal. The 2D parameters and the 3D location of

in-between cut vertices are obtained by linearly interpolating adjacent cut points.

7.4.2 Triangle Placement

Interior vertices of a parameter patch are created by sampling it using a grid pattern

composed of equilateral triangles, as shown in Figure 7.6(a). Interior vertices are located on

the grid points and their parameters are determined implicitly. Conceptually, the meshing

process can be understood as follows: let β be the set of points along the boundary of

a patch Pi (matching its surrounding cut curves) and represented in 2D parameter space.

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 120

Such points are shown in red in Figure 7.6 (a). For each pair (βi, βj) of adjacent points

along the boundary, we compute the coordinates of the interior vertex βk that, together

with βi and βj , would result in an equilateral triangle. However, in order to keep the mesh

as regular as possible, we do not use βk. Instead, we use the grid point closest to βk as

the third triangle vertex. This causes all interior vertices of the mesh to be on the grid

pattern, and the triangles with vertices on the borders to be the only ones that might not

be equilateral (Figure 7.6 (a)). An optimization procedure later tries to improve the aspect

ratio of such triangles, which may slightly change the aspect ratio of some interior triangles.

(a) (b)

Figure 7.6: (a) Vertex pattern used for resampling a patch. Red squares are samples along
the boundary. Black and blue squares are samples inside the patch. The blue ones are too
close to the red squares and are rejected (deleted). The red and black ones, together with the
connection between them comprise a mass-spring system. (b) The resulting nearly regular
mesh.

In practice, we start from one triangle on the boundary of the parameter patch which

takes one interior vertex and two cut vertices, and propagate triangles around using an

approach similar to the ball-pivoting strategy of Bernardini et al. [13]. Starting from one

triangle, we keep flipping the triangle about its edges to create new triangles. The flipping

stops when the current edge is part of the patch boundary or the flipped triangle has already

been created. We show the triangles created after different numbers of propagation steps in

Figure 7.7.

For each interior vertex, we need to find its nearest patch point (NPP). For cut vertices,

their NPP are their nearest points in the patch boundary curve. When we find a new triangle

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 121

(a) (b)

Figure 7.7: Triangles created inside a patch after (a) 1 step, and (b) 100 steps. Red dots
are the original points and the green line represents a cut curve. The resulting triangles are
shown in blue.

by flipping, we will need to find the NPP of the new vertex from the NPP of the vertices of

the edge. Starting from the NPP of these two vertices of the edge, we repeatedly find the

nearest neighbor point in the parameter space to the new vertex until the process stops. This

process is illustrated in Figure 7.8. Here the triangle v0v1v2 is flipped about edge (v0, v1)

to create a new triangle v0v1v3. For the new interior vertex v3, we need to compute its 2D

parameter values as well as its 3D location. The 2D parameters are obtained with ease. To

compute the 3D location, we first need to find the NPP of v3, using the process described

above. During this triangle-flipping process, we check the shortest distance between v3 and

any cut vertex. If this is ≤ L
2

, v3 is too close to the boundary and is discarded.

v0

v1

v3

v2

NPP1

NPP3

p

Figure 7.8: The path (red) to find the NPP of an interior vertex v3. Due to patch overlapping,
NPP3 (the NPP of v3) is found by following the path from NPP1. Note that although p is
closest to v3 in the 2D parameter space, NPP3 is closest to v3 in 3D space.

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 122

Note that the triangles around the boundary are not equilateral, even in the 2D parameter

space. To reduce this problem, we relax the obtained mesh using a mass-spring system.

Each vertex becomes a mass point and any edge connecting vertices becomes a spring. The

2D parameters of the interior vertices are then relaxed to minimize the following energy

function, while the 2D parameters of the vertices along the cut are fixed:

E =
∑

i

(
∑

qj∈kNN(qi)

(qi − qj))
2 (7.3)

The 3D location of an interior vertex is computed from the NPP and its kNN in Gp. We

use a moving-least-square fitting scheme [64, 135] to find the 3D location of this interior

vertex. In this case, we compute the X, Y, Z coordinates separately. We try to minimize

the following error function:

E(s) =
N∑

i=1

wi(pi)(s(pi)− fi)
2 (7.4)

where

s(u, v) = a0 + a1u + a2v + a3u
2 + a4v

2 + a5uv (7.5)

is a low order polynomial surface and fi is the height value related with each point. wi(p) =

e−αd2
i (p)

d2
i (p)

is the point-wise weight function and di(p) is the distance from the query location

p to point pi. The parameter α controls the influence of vicinity features. Using the X, Y, Z

coordinates of the points to define f , one obtains the various sets of coefficients a0 to a5,

from which the the 3D location of the interior vertices can be resampled.

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 123

7.5 Results and Discussion

We have used our algorithm to reconstruct meshes from a variety of point cloud

datasets, including some real-world medical and 3D scanning data. All the experiments

were carried on a Pentium 4 2.2 GHz PC with 768M memory. The human colon dataset

was obtained from CT scans of a real human body. The 3D points are computed using

the Marching Cubes algorithm. We show the cuts generated by our algorithm for the pa-

rameterization of the virtual colon dataset in Figure 7.11(a). The reconstruction result is

shown in Figure 7.11(b) and Figure 7.11(c). Figure 7.12 presents a view of the inside of

the colon. The resulting mesh is composed of triangles with good aspect ratios. Note that

since the 3D mesh is seen in perspective, the projection of the triangles whose normals are

almost perpendicular to the viewing direction appears distorted. The obtained mesh allows

very nice colon visualizations during the exploration of the model, which contains 61,334

points. It took 30.23s for parameter propagation and 50.04s for meshing using L = E. The

number of resulting triangles and vertices are 33,566 and 18,743, respectively.

The sphere model is used to show the quality of the resulting mesh. Figure 7.9 shows

two meshes with different resolutions created from the original point cloud. Due to the

constraint of shared vertices along cuts, one can expect some irregular arrangement of edges

along the cuts. While within a patch, edges of triangles only have six possible directions,

edges along a cut can have arbitrary directions. This tends to happen regardless of the

resolution used to extract the resulting mesh. The sphere model has 10,270 points. It took

3.02s for the propagation, and 4.87s and 2.44s to obtain the meshing results for these two

models, respectively. For the model with L = E, we have 987 triangles and 710 vertices.

For the model with L = 1.5E, we obtain 455 triangles and 320 vertices.

The reconstruction of the mug model is shown in Figure 7.10. Note that the boundaries

of this model, including a small hole on the surface, are well preserved by our algorithm.

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 124

One should note the regular shape of the resulting triangles (Figure 7.10 b). This model

has 34,916 points. It took 6.92s and 6.77s for the propagation and meshing, respectively.

The resulting model with L = E contains 3,504 triangles and 1,872 vertices.

(a) (b)

Figure 7.9: Reconstruction result of the sphere model: (a) L = E. (b) L = 1.5E. The
green curve is a cut, where the triangles created around it have distorted shapes.

(a) (b)

Figure 7.10: Reconstruction result of the mug model: (a) Shaded model. (b) Wireframe.
Note the regular shapes of the resulting triangles.

The resulting parameterization can be used to perform texture mapping (Figure 7.13a)

and bump mapping (Figure 7.13b). While cuts (parameter discontinuities) may introduce

seams when using textures containing regular patterns, this problem can be alleviated with

the use of stochastic textures (Figure 7.13a). Haitao et al. [149] have proposed an approach

to synthesize a seamless textures using this kind of parameterization.

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 125

(a) (b) (c)

Figure 7.11: Reconstruction of a human colon model: (a) the point model and the cuts
generated using point parameterization; (b) the shaded view of the reconstructed model;
and (c) the wireframe view.

Figure 7.12: An inside view of the reconstructed colon model seen in perspective, which
cause the projection of some triangles to appear to have poor aspect ratio. In fact, all
triangles are nearly equilateral.

In our approach, a global parameterization assures a nearly globally isometric mapping

between the 3D space and the parameterization space, producing nearly equilateral trian-

gles. Since it is a two-step algorithm, the quality of the parameterization is critical for the

meshing result. The chosen parameterization approach is robust to varying sampling rate

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 126

(a) (b)

Figure 7.13: Applications of our point parameterization for (a) texture mapping and (b)
bump mapping.

and a moderate amount of noise. Because the parameterization relies on local operations, it

could handle complex topologies as long as the local neighborhood represents a topological

disk. However, the error accumulates due to the progressive nature of the parameterization

algorithm. The number of the parameter patches also increase with increased noise level.

In this case, the mesh tends to become more irregular with longer cuts.

In this approach, we do not fill the holes. Instead, we preserve surface boundaries,

including hole boundaries. One may apply the algorithm of Sharf et al. [114] to fill the

holes directly on the point model before generating the mesh.

IF THE POINT CLOUD BE NATURALLY SEPARATED INTO SEVERAL CLUSTERS, THE

PARAMETERIZATION AND RECONSTRUCTION OF THESE CLUSTERS ARE CONDUCTED

INDEPENDENTLY. IF ONE CLUSTER REPRESENTS A SURFACE PATCH WITH A NUMBER

OF SMALL HOLES, THE RESULT COULD BE VERY BAD DUE TO THE FACT THAT THERE

EXIST SO MANY CUTS AND THESE CUTS ARE CLOSE TO EACH OTHER, DISTORTING

THE TRIANGLE MESH GREATLY.

IN ADDITION, THE POINT PARAMETERIZATION APPROACH ADOPTED HERE IN THE

ALGORITHM DOES NOT TAKE SHAPE FEATURES INTO ACCOUNT. THE PARAMETERS OF

A POINT WILL BE DISTORTED GREATLY BECAUSE THE EUCLIDEAN DISTANCE DIFFERS

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 127

GREATLY WITH THE GEODESIC DISTANCE. IN THE MESHING STAGE, THE ALGORITHM

ALSO DOES NOT PAY ATTENTION TO THE SHARP FEATURES.

IF THE FEATURE IS A REALLY SHARP (ACUTE ANGLE) ONE, THE PARAMETERIZA-

TION MAY FOLD OVER IN AN INCORRECT DIRECTION. AN EXAMPLE OF THIS PROB-

LEM IS SHOWN IN FIGURE 7.14. WE EXPECT ITS POINT PARAMETERIZATION PATCH

OF THIS MODEL WITH SHARP EDGES IS A 2D RECTANGLE. THE REASON FOR THIS

PROBLEM IS THAT THE PARAMETERS OF A POINT ON ONE SIDE OF THE SHARP EDGE

MAY BE COMPUTED BASED ON ITS k-NEIGHBORHOOD ON THE OTHER SIDE. BECAUSE

THE SHARP EDGE FORMS AN ACUTE ANGLE, THE POINT WILL BE PROJECTED ONTO

THE WRONG SIDE OF THE 2D EDGE ON THE PARAMETER SPACE.

IF WE HAVE A MODEL WITH ABRUPT CHANGE OF SAMPLE RATES, THE POINT

MODEL IS ACTUALLY SEPARATED INTO SEVERAL SMALL PATCHES. ALTHOUGH THE

PARAMETERIZATION OF EACH SMALL PATCH IS REASONABLE, THESE SMALL PATCHES

ARE NOT WELL ORIENTED GLOBALLY, AS SHOWN IN FIGURE 7.15. FOR THOSE POINTS

WITH A LOWER SAMPLING RATE, THEY ARE PARAMETERIZED BY ONE patch POINT

MOST OF THE TIME. THEREFORE, THE ERROR ACCUMULATES AND PROPAGATES EAS-

ILY.

The main limitation of our approach lies in that the parameterization procedure is not

optimized within each parameter patch. Due to error propagation that happens during pa-

rameter propagation, points visited later in the same patch might accumulate considerable

distortion, for which we do not have a measurement/control for the error bound. In ad-

dition, the discontinuity of the parameterization across cuts tends to exhibit seams when

it is used for mapping highly regular texture patterns. Note that even in the presence of

parameter discontinuities, the resulting meshes will be nice and regular. Thus, one could

compute some global parameterization to the mesh as a post-processing using, for instance,

the approaches described in [46, 56]. Alternatively, one could apply a transition rule at the

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 128

(a) (b)

Figure 7.14: Problems of parameterization with respect to abrupt change of sampling rates:
(a) a point model with a sharp edge; and (b)the parameterization patch of the model.

(a) (b)

Figure 7.15: The indoor scene model has abruptly varying sample rates: (a) the point
model; and (b) the parameterization patch.

vicinity of the cuts consisting of blending the multiple parameters (one from each adjacent

patch that shares the vertex) associated to the cut vertices.

This chapter presented a new surface reconstruction algorithm for producing meshes

with regular triangles from unorganized point clouds. The algorithm consists of generating

7. RECONSTRUCTING REGULAR MESHES FROM POINTS 129

a point parameterization before obtaining the resulting mesh. This approach preserves de-

tailed geometric information and gives the meshing process great flexibility. The obtained

meshes consist of nearly equilateral triangles, thus leading to better visualizations and mak-

ing them suitable for specialized operations such as finite element analysis. In the future,

we would like to explicitly find certain kinds of geometric details before parameterization,

such as surface boundary [142] and sharp features [99]. These features could then be used

as additional constraints for propagation. By saving them as part of the cuts, vertices could

be created along them, guaranteeing that they are more faithfully preserved. In addition,

we intend to use a different re-sampling pattern to create meshes with the size of trian-

gles adapted to some geometrical properties, such as curvature. Right now, all extracted

triangles have approximately the same size.

130

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have described several novel techniques and algorithms as an attempt

to solve a number of challenging problems in surface reconstruction from point clouds. Our

work includes missing region recovery, hole filling, reconstructing noisy and non-manifold

point models, creating regular meshes, and reconstructing surfaces from endoscopic videos.

In short, our completed projects can be summarized as follows.

We have proposed an novel framework to efficiently utilize user knowledge to recover

missing regions in point models from indoor environments. In this framework, large pla-

nar regions are first identified by Hough transform, thus separating the points into two

parts: planar regions and non-planar regions. Planar regions are replaced directly by poly-

gons while the associated texture is recovered by exploiting the symmetry information.

Non-planar surfaces are reconstructed with some missing regions are recovered using the

symmetry of man-made objects. The complete model is obtained in the end by combining

planar polygons and non-planar surfaces.

We have implemented a hole-filling algorithm for meshes. This algorithm could be

8. CONCLUSIONS AND FUTURE WORK 131

incorporated into the system mentioned above to eliminate the remaining holes. Otherwise

it could be used as an independent postprocess module for hole filling. We first find the

vicinity points of each hole. These points provide clues for the shape and shading of the

missing region. A moving least squares fitting approach is then employed to compute

vertices inside that hole. These vertices are later triangulated to create a tight and smooth

filling.

We have also introduced a novel method to reconstruct surfaces from noisy points with-

out point normals. This approach creates an oriented charge for each voxel adjacent to the

actual surface. Oriented charge represents the local distance field and approximates the

local shape. This novel representation enables a hierarchical and adaptive construction of

the global distance field. The resulting mesh is extracted from the distance field using the

Marching Cubes algorithm.

In addition, we have presented a generalized framework to reconstruct non-manifold

surfaces as well as manifold surfaces. The point cloud is first converted into voxels. We

then thin the voxel surface to eliminate noise and identify the local shape for each voxel.

Voxels representing non-manifold regions are thus located. We use a direct meshing algo-

rithm to convert voxels into a mesh while the non-manifold regions are specially handled.

We have described a new algorithm to reconstruct regular meshes from point models.

Regular meshes are composed of nearly equilateral triangles, which provide a great visual

quality for rendering and a suitable input for some specific applications, such as Finite

Element Analysis. We first obtain a nearly isometric point parameterization for the points.

Holes and patch boundaries are identified and vertices are created along them. A regular

sampling pattern is then imposed on the 2D parameter domain to create meshes with regular

triangles.

8. CONCLUSIONS AND FUTURE WORK 132

THE PROPOSED ALGORITHMS AND FRAMEWORKS ARE DIRECTLY TARGETED TO-

WARDS IMPERFECTIONS. IN OTHER CASES, ONE COULD USE THE EXISTING POP-

ULAR RECONSTRUCTION ALGORITHMS, SUCH AS THE BALL-PIVOTING ALGORITHM

[13] AND THE MULTIPLE PARTITION OF UNITY ALGORITHM [91]. IF THE MODEL IS IN

THE CASE THAT USER HAS A PRIORI KNOWLEDGE ABOUT THE SCENE TO BE RECON-

STRUCTED, ESPECIALLY THE EXISTENCE OF LARGE PLANAR REGIONS AND OBJECTS

WITH BILATERAL SYMMETRY, THE ALGORITHM FOR RECOVERING MISSING REGIONS

COULD BE USED TO RECOVER THE MISSING REGIONS. THE POST-PROCESS HOLE-

FILLING MODULE CAN BE USED TO FILL THE HOLES IN THE MESH, WHICH COULD

BE OBTAINED USING VARIOUS RECONSTRUCTION ALGORITHMS. THIS MODULE EN-

SURES A SMOOTH AND REASONABLE FILLING OF THE HOLE REGIONS. FOR CLOSED-

SURFACE MANIFOLD MODELS, OUR ALGORITHM OF COMPUTING ORIENTED CHARGES

FOR A GLOBAL DISTANCE FIELD IS CAPABLE OF FILLING SMALL HOLES AND HAN-

DLE SIGNIFICANT NOISE. TO PRESERVE BOUNDARIES OR TO RECONSTRUCT NON-

MANIFOLD SURFACES, ONE COULD USE THE PROPOSED FRAMEWORK, WHICH ALSO

HAS THE CAPABILITY TO FILL GAPS. TO GENERATE REGULAR MESHES FROM THE

POINT MODEL, THE PROPOSED ALGORITHM COMPUTES THE NEARLY ISOMETRIC PA-

RAMETERIZATION IN THE FIRST PLACE AND NEARLY EQUILATERAL TRIANGLES ARE

CREATED THEN FROM THE OBTAINED PARAMETERIZATION.

USER SHOULD SELECT THE MOST APPROPRIATE ALGORITHM FOR HIS RECON-

STRUCTION BASED ON HOW MUCH INFORMATION IS ASSOCIATED WITH THE INPUT

DATA, WHAT ASSUMPTION WE COULD MAKE ABOUT THE MISSING REGION, AND WHAT

IS REQUIRED FOR THE RESULTING MESH. IN A NUTSHELL, ONE MIGHT SELECT THE

SPECIFIC ALGORITHM INTRODUCED IN THE PREVIOUS CHAPTERS ACCORDING TO TA-

BLE 8.1.

8. CONCLUSIONS AND FUTURE WORK 133

Table 8.1: The simple rules to select the appropriate algorithm

Features Algorithm
Chapter 3 Known knowledge of planarity and symmetry
Chapter 4 Triangular mesh with holes
Chapter 5 Very noisy closed-surface model
Chapter 6 Preserved boundaries or non-manifold model
Chapter 7 Require a regular mesh as output

8.2 Future Work

8.2.1 Short-term Future Work

During the range scanning process, missing regions are unavoidable in most cases due

to occlusion and limited accessibility. In addition, the sampling rate for different directions

may vary dramatically. For example, samples are more sparsely scattered in the Y direc-

tion for the top of a tall building when we scan this building from the ground. We plan

to propose a generic hole filling algorithm which exploits more user knowledge about the

object, besides planarity and symmetry, to fill the holes. A possible solution is to construct

a shape database. And then we can query in the for the best guess of the missing regions.

Furthermore, we plan to propose a novel texture synthesis algorithm to automatically ana-

lyze the type of texture of the object from the “good” regions and synthesize new textures

for the missing regions.

We have presented several algorithms to reconstruct surfaces from noisy points without

point normals. However, these algorithms are not capable of preserving important features.

To enhance these algorithms, a global operation is required to identify features. The chal-

lenges are how to design an effective means to define the features, how to identify these

features robustly in noisy environments, and how to effectively use the features as the con-

straints for the existing algorithms. In Chapter 7, we have proposed an algorithm to create

8. CONCLUSIONS AND FUTURE WORK 134

regular meshes based on the nearly isometric parameterization. Certain geometric details

such as surface boundary [142] and sharp features [99], can be applied as the constraints

for the parameterization. Besides, we intend to use a different re-sampling pattern to create

meshes with the size of triangles adapted to the geometrical properties such as curvature.

We also want to accelerate the proposed algorithms by exploring the inherent paral-

lelism of these algorithms. For example, in Chapter 6, the local topological type of each

voxel could be identified in parallel. Thanks to the rapid development of graphics hard-

ware, we are able to do so using the Graphics Processing Unit (GPU). One issue is that the

data sent to the GPU have to be organized in the texture format. The challenge is how to

make it an effective process. The other issue is how to balance the load between CPU and

GPU to achieve the best performance.

8.2.2 Long-term Future Work

Our long-term future work will be to devise a smart system for surface reconstruction

from points. We found that the type of inputs for reconstruction may vary dramatically,

depending on the acquisition devices, environment, lighting conditions, and the material of

the surface. At the same time, user may want different results (e.g., different resolutions,

different error bounds and different processing times). And we have a number of algo-

rithms, which could be selected. Our plan is then to develop a system which could analyze

the requirements of users and find the best algorithm to meet their needs. The features of

this system should include:

• Specification of the input points and the performance. Users need to specify the type

and certain parameters of the input points. They also need to specify the requirement

for the resulting mesh and the performance.

• Algorithm selection and assembly. Different algorithms should be implemented as

8. CONCLUSIONS AND FUTURE WORK 135

plug-ins with clearly defined input/ouput. The system will select algorithms based on

user’s requirements. If the requirements could not be met by the current collection of

algorithms, the system should report to the user. User may change his requirements

or the system could select the optimal algorithms. After selecting the best algorithms,

the system may assemble them into a pipeline.

• Executable export. Base on the result of algorithm selection and assembly, the system

should output an optimized executable program or an optimized library to the user.

In our vision, the ranger scanning process will become more accurate, more efficient,

more robust, and more automatic. The acquired samples will cover the whole surface with

more detailed information. In addition, range scanners will automatically find the best

position for the next shot. With the aid of high resolution GPS, a ranger device will be well

aware of its motion during the scanning process, thus enabling an accurate registration.

And the sampling density might be always sufficient enough. Furthermore, point graphics

will be well developed in ten years and graphics hardware will support points directly as

well as polygons. From this point of view, we will face a new set of challenges, such as

efficient retrieval of features from point models and animation using point models.

136

Bibliography

[1] B. Adams and P. Dutré. Interactive boolean operations on surfel-bounded solids.

SIGGRAPH, pages 26–31, 2003.

[2] A. Adamson and M. Alexa. Approximating bounded, non-orientable surfaces from

points. Shape Modeling International, pages 243–252, 2004.

[3] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva. Point set

surfaces. IEEE Visualization, pages 21–28, 2001.

[4] D. Aliaga and I. Carlbom. Plenoptic stitching: A scalable method for reconstructing

3D interactive walkthroughs. SIGGRAPH, pages 443–450, 2001.

[5] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, and M. Desbrun. Anisotropic

polygonal remeshing. SIGGRAPH, pages 485–493, 2003.

[6] P. Alliez, M. Meyer, B. Levy, and M. Desbrun. Interactive geometry remeshing.

SIGGRAPH, pages 347–354, 2002.

[7] N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi-based surface reconstruc-

tion algorithm. SIGGRAPH, pages 415–421, 1998.

BIBLIOGRAPHY 137

[8] N. Amenta, S. Choi, T. Dey, and N. Leekha. A simple algorithm for homeomorphic

surface reconstruction. 16th ACM Symposium on Computational Geometry, pages

213–222, 2000.

[9] N. Amenta, S. Choi, and K. Kulluri. The power crust. Sixth ACM Symposium on

Solid Modeling and Applications, pages 249–260, 2001.

[10] N. Amenta and Y. J. Kil. Defining point-set surfaces. SIGGRAPH, pages 264–270,

2004.

[11] S. Azernikov, A. Miropolsky, and A. Fischer. Surface reconstruction of freeform

objects based on multiresolution volumetric method. 8th ACM Symposium on Solid

Modeling and Applications, pages 115–126, 2003.

[12] C. Bajaj, F. Bernardini, and G. Xu. Automatic reconstruction of surfaces and scalar

fields from 3D scans. SIGGRAPH, pages 109–118, 1995.

[13] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taublin. The ball-

pivoting algorithm for surface reconstruction. IEEE Trans. on Visualization and

Computer Graphics, 5(4):349–359, 1999.

[14] F. Bernardini and H. Rushmeier. The 3D model acquisition pipeline. Computer

Graphics Forum, 21(2):149–172, 2002.

[15] M. Bertalmio, G. Shapiro, V. Caselles, and C. Ballester. Image inpainting. SIG-

GRAPH, pages 417–424, 2000.

[16] P. Besl. Advances in Machine Vision, Chapter 1 - Active Optical Range Sensors.

Springer Verlag, 1989.

[17] P. Besl and A. Jain. Segmentation through variable-order surface fitting. IEEE Trans.

on Pattern Analysis and Machine Inteligence, 10(2):167–192, 1988.

BIBLIOGRAPHY 138

[18] P. Besl and N. Mckay. A method for registration of 3D shapes. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 18(5):239–256, 1992.

[19] A. Blake and M. Isard. Active Contours. Springer-Verlag, 1998.

[20] J. Bloomenthal. An implicit surface polygonizer. In P. Heckbert, editor, Graphics

Gems IV, pages 324–349. Academic Press, Boston, 1994.

[21] J. Bloomenthal, C. Bajaj, J. Blinn, M. Cani-Gascuel, A. Rockwood, B. Wyvill, and

G. Wyvill. Introduction to Implicit Surfaces. Morgan Kaufmann, 1997.

[22] J. Bloomenthal and K. Ferguson. Polygonization of non-manifold implicit surfaces.

SIGGRAPH, pages 309–316, 1995.

[23] M. Botsch and L. Kobbelt. A robust procedure to eliminate degenerate faces from

triangle meshes. Vision Modeling and Visualization Conference, pages 283–290,

2001.

[24] T. Boult and J. Kender. Visual surface reconstruction using sparse depth data. Com-

puter Vision and Pattern Recognition, pages 68–76, 1986.

[25] O. Bunsen and G. Fleischmann. Mesh optimization for animation purposes. Sim-

ulation & Animation, Society for Computer Simulation International, pages 66–75,

1997.

[26] J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. Fright, B. McCallum, and T. Evans.

Reconstruction and representation of 3D objects with radial basis functions. SIG-

GRAPH, pages 67–76, 2001.

[27] J. Carr, R. Beatson, B. McCallum, W. Fright, T. McLennan, and T. Mitchell. Smooth

surface reconstruction from noisy range data. ACM GRAPHITE, pages 119–126,

2003.

BIBLIOGRAPHY 139

[28] E. Chen. Quicktime vr - an image-based approach to virtual environment navigation.

SIGGRAPH, pages 29–38, 1995.

[29] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, and R. Dusu. A finite element method

for surface restoration with smooth boundary conditions. Computer Aided Geomet-

ric Design, 21(5):427–445, 2004.

[30] B. Curless and M. Levoy. A volumetric method for building complex models from

range images. SIGGRAPH, pages 303–312, 1996.

[31] J. Davis, S. Marschner, M. Garr, and M. Levoy. Filling holes in complex surfaces

using volumetric diffision. First Symposium on 3D Data Processing, Visualization,

Transmission, pages 428–438, 2002.

[32] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface meshes.

Computer Graphics Forum (Eurographics), 21(3):209–218, 2002.

[33] T. Dey, J. Giesen, and J. Hudson. Delaunay based shape reconstruction from large

data. IEEE Symposium in Parallel and Large Data Visualization and Graphics,

pages 19–27, 2001.

[34] H. Dinh, G. Turk, and G. Slabaugh. Reconstructing surfaces by volumetric regular-

ization using radial basis functions. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 24(10):1358–1371, 2002.

[35] H. Edelsbrunner and E. Muche. Three-dimensional alpha shapes. ACM Trans. on

Graphics, 13:43–72, 1994.

[36] A. Efros and W. Freeman. Image quilting for texture synthesis and transfer. SIG-

GRAPH, pages 341–348, 2001.

BIBLIOGRAPHY 140

[37] L. Fang and D. Gossard. Multidimensional curve fitting to unorganized data points

by nonlinear minimization. Computer-Aided Design, 21(1):48–58, 1995.

[38] S. Fleishman, D. Cohen-Or, M. Alexa, and C. Silva. Progressive point set surfaces.

ACM Transactions on Graphics, 22(2):997–1011, 2003.

[39] S. Fleishman, D. Cohen-Or, and C. Silva. Robust moving least-squares fitting with

sharp features. SIGGRAPH, pages 544–552, 2005.

[40] M. Floater and M. Reimers. Meshless parameterization and surface reconstruction.

Comp. Aided Geom. Design., 18:77–92, 2001.

[41] R. Franke. Scattered data interpolation: tests of some methods. Mathematics of

Computation, 38:181–200, 1982.

[42] R. Franke and G. Nielson. Smooth interpolation of large sets of scattered data. Int.

Journal for Numerical Methods in Engeneering, 15:1691–1704, 1980.

[43] M. Gopi and S. Krishnan. A fast and efficient projection based approach for sur-

face reconstruction. International Journal of High Performance Computer Graphics,

Multimedia and Visualisation, 1(1):1–12, 2000.

[44] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. SIGGRAPH,

pages 43–54, 1996.

[45] G. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization.

SIGGRAPH, 2003.

[46] X. Gu, S. Gortler, and H. Hoppe. Geometry images. SIGGRAPH, pages 355–361,

2002.

BIBLIOGRAPHY 141

[47] S. Gumhold, X. Wang, and R. McLeod. Feature extraction from point clouds. 10th

International Meshing Roundtable, pages 293–305, 2001.

[48] I. Hargittai and M. Hargittai. Symmetry: A Unifying Concept. Shelter Publications

Inc., 1994.

[49] R. Hoffman and A. Jain. Segmentation and classification of range images. IEEE

Trans. on Pattern Analysis and Machine Inteligence, 9(5):608–620, 1987.

[50] T. Hook. Real-time shaded NC milling display. SIGGRAPH, pages 15–20, 1986.

[51] B. Hoover, G. Jean-Baptiste, X. Jiang, P. Flynn, H. Bunke, D. Goldgof, K. Bowyer,

D. Eggert, A. Fitzgibbon, and R. Fisher. An experimental comparison of range image

segmentation algorithms. IEEE Trans. on Pattern Analysis and Machine Inteligence,

pages 673–689, 1996.

[52] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface recon-

struction from unorganized points. SIGGRAPH, pages 71–78, 1992.

[53] K. Hormann and M. Reimers. Triangulating point clouds with spherical topology.

Curve and Surface Design, pages 215–224, 2003.

[54] P. Jenke, M. Wand, M. Bokeloh, A. Schilling, and W. Strasser. Bayesian point cloud

reconstruction. EUROGRAPHICS, 2006.

[55] W. Jeong, K. Kähler, J. Haber, and H. Seidel. Automatic generation of subdivision

surface head models from point cloud data. Graphics Interface, pages 181–188,

2002.

[56] M. Jin, Y. Wang, S. Yau, and X. Gu. Optimal global conformal surface parameteri-

zation. IEEE Visualization, pages 267–274, 2004.

BIBLIOGRAPHY 142

[57] T. Ju. Robust repair of polygonal models. SIGGRAPH, pages 888–895, 2004.

[58] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data.

SIGGRAPH, pages 339–346, 2002.

[59] T. Kanade, P. Rander, and P. Narayanan. Virtualized reality: Constructing virtual

worlds from real scenes. IEEE Multimedia, 4(1):34–37, 1997.

[60] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka. A stereo machine for

video-rate dense depth mapping and its new applications. Computer Vision and

Pattern Recognition, pages 196–202, 1996.

[61] M. Kazhdan. Reconstruction of solid models from oriented point sets. Symposium

on Geometry Processing, pages 73–82, 2005.

[62] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. Symposium

on Geometry Processing, pages 61–70, 2006.

[63] D. Keren and C. Gotsman. Fitting curve and surfaces with constrained implicit

polynomials. IEEE Transactions on Pattern Analysis and Machine Intelligence,

21(1):21–31, 1999.

[64] P. Lancaster and K. Salkauskas. Curve and Surface Fitting: An Introduction. Aca-

demic Press, 1986.

[65] M. Lee and G. Medioni. Segmented surface description from stereo data. Computer

Vision and Pattern Recognition, 1998.

[66] H. Lensch, J. Kautz, M. Goesele, J. Lang, and H. Seidel. Virtualizing real-world

objects. Computer Graphics International, pages 134–141, 2003.

BIBLIOGRAPHY 143

[67] A. Leonardis, A. Gupta, and R. Bajcsy. Segmentation of range images as the

search for geometric parametric models. International Journal of Computer Vision,

14(3):253–277, 1995.

[68] J. Leou and W. Tsai. Automatic rotational symmetry determination for shape analy-

sis. Pattern Recognition, 20(6):571–582, 1987.

[69] D. Levin. The approximation power of moving least squares. Mathematics of Com-

putation, 67(224):1517–1531, 1998.

[70] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton,

S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital michelangelo

project: 3D scanning of large statues. SIGGRAPH, pages 131–144, 2000.

[71] P. Liepa. Filling holes in meshes. Symposium on Geometry Processing, pages 200–

205, 2003.

[72] Y. Liu. Computational symmetry. Technical Report CMU-RI-TR-00-31, The

Robotics Institute, Carnegie Mellon University, 2000.

[73] W. Lorensen and H. Cline. Marching cubes: A high resolution 3D surface construc-

tion algorithm. SIGGRAPH, pages 163–169, 1987.

[74] F. Losasso, H. Hoppe, S. Schaefer, and J. Warren. Smooth geometry images. Euro-

graphics Symposium on Geometry Processing, pages 138–145, 2003.

[75] W. Mark. Post-rendering 3D image warping: Visibility, reconstruction, and per-

formance for depth-image warping. Ph.D. Dissertation. UNC Computer Science

Technical Report TR99-022, University of North Carolina, 1999.

[76] K. Matsushita and T. Kaneko. Efficient and handy texture mapping on 3D surfaces.

Computer Graphics Forum (Eurographics), 18(3):349–357, 1999.

BIBLIOGRAPHY 144

[77] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image based visual

hulls. SIGGRAPH, pages 367–374, 2000.

[78] D. McAllister, L. Nyland, V. Popescu, A. Lastra, and C. McCue. Real time rendering

of real world environments. Rendering Techniques, pages 145–160, 1999.

[79] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system.

SIGGRAPH, pages 39–46, 1995.

[80] V. Mello, L. Velho, and G. Taubin. Estimating the in/out function of a surface rep-

resented by points. 8th ACM symposium on Solid modeling and applications, pages

108–114, 2003.

[81] R. Mencl and H. Müller. Graph-based surface reconstruction using structures in

scattered point sets. Computer Graphics International, pages 298–311, 1998.

[82] Meshlab. http://meshlab.sourceforge.net.

[83] B. Mills, F. Langbein, A. Marshall, and R. Martin. Approximate symmetry detection

for reverse engineering. Proceedings of the ACM Symposium on Solid Modeling and

Applications, pages 241–248, 2001.

[84] N. Mitra, L. Guibas, and M. Pauly. Partial and approximate symmetry detection for

3d geometry. SIGGRAPH, pages 560–568, 2006.

[85] B. Morse, T. Yoo, P. Rheingans, D. Chen, and K. Subramanian. Interpolating im-

plicit surfaces from scattered surface data using compactly supported radial basis

functions. Shape Modeling International, pages 89–98, 2001.

[86] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi. Efficiently combining

positions and normals for precise 3D geometry. SIGGRAPH, pages 536–543, 2005.

BIBLIOGRAPHY 145

[87] P. Neugebauer and K. Klein. Texturing 3D models of real world objects from mul-

tiple unregistered photoraphics views. Computer Graphics Forum (Eurographics),

18(3):245–256, 1999.

[88] O. Nilsson, D. Breen, and K. Museth. Surface reconstruction via contour metamor-

phosis: An eulerian approach with lagrangian particle tracking. IEEE Visualization,

pages 407– 414, 2005.

[89] L. Nyland, A. Lastra, D. McAllister, V. Popescu, and C. McCue. Captur-

ing,processing and rendering real-world scenes. Videometrics and Optical Methods

for 3D Shape Measurement, Electronic Imaging, SPIE, 4309, 2001.

[90] L. Nyland, D. McAllister, V. Popescu, C. McCue, A. Lastra, P. Rademacher,

M. Oliveira, G. Bishop, G. Meenakshisundaram, M. Cutts, and H. Fuchs. The im-

pact of dense range data on computer graphics. Multi-View Modeling and Analysis

Workshop, pages 3–10, 1999.

[91] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. Seidel. Multi-level partition of

unity implicits. SIGGRAPH, pages 463–470, 2003.

[92] Y. Ohtake, A. Belyaev, and H. Seidel. A multi-scale approach to 3D scattered data

interpolation with compactly supported basis functions. Shape Modeling Interna-

tional, pages 292–300, 2003.

[93] M. Oliveira, B. Bowen, R. McKenna, and Y. Chang. Fast digital image inpainting.

International Conference on Visualization, Imaging and Image Processing, pages

261–265, 2001.

BIBLIOGRAPHY 146

[94] D. O’Mara and R. Owens. Measuring bilateral symmetry in three dimensional mag-

netic resonance images. TENCON Digital Signal Processing Applications, pages

151–156, 1996.

[95] A. Oppenheim, R. Schafer, and J. Buck. Discrete-Time Signal Processing (2nd Edi-

tion). Prentice Hall, 1999.

[96] P. Palojärvi, K. Määttä, and J. Kostamovaara. Integrated time-of-flight laser radar.

IEEE Transactions on Instrumentation and Measurement, 46(4):996–999, 1997.

[97] S. Park, X. Guo, H. Shin, and H. Qin. Surface completion for shape and appearance.

The Visual Computer, 22(3):168–180, 2006.

[98] S. Parui and D. Majumder. Symmetry analysis by computer. Pattern Recognition,

16(1):63–67, 1983.

[99] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape modeling with point-sampled

geometry. SIGGRAPH, 22(3):641 – 650, 2003.

[100] A. Pentland. Automatic extraction of deformable part models. International Journal

of Computer Vision, 4:107 – 126, 1990.

[101] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T. Funkhouser. A planar

reflective symmetry transform for 3D shapes. SIGGRAPH, pages 549–559, 2006.

[102] E. Prados and O. Faugeras. Shape from shading: a well-posed problem? IEEE

Conference on Computer Vision and Pattern Recognition, pages 870–877, 2005.

[103] E. Praun and H. Hoppe. Spherical parametrization and remeshing. SIGGRAPH,

2003.

BIBLIOGRAPHY 147

[104] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C:

The Art of Scientific Computing, second edition. Cambridge University Press, 1992.

[105] M. Proesmans, L. V. Gool, and F. Defoort. Reading between the lines - a method for

extracting dynamic 3D with texture. IEEE International Conference on Computer

Vision, pages 1081–1086, 1998.

[106] R. Raskar, et al. The office of the future: A unified approach to image-based model-

ing. SIGGRAPH, pages 179–188, 1998.

[107] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3D model acquisition.

SIGGRAPH, 21(3):438–446, 2002.

[108] H. Samet. The design and analysis of spatial data structures. Addison-Wesley

Longman Publishing Co., Inc., 1990.

[109] V. Savchenko and N. Kojekine. An approach to blend surfaces. Computer Graphics

International, pages 139–150, 2002.

[110] V. Savchenko, A. Pasko, O. Okunev, and T. Kunii. Function representation of solids

reconstructed from scattered surface points and contours. Computer Graphics Fo-

rum, 14(4):181–188, 1995.

[111] S. Schaefer and J. Warren. Dual marching cubes: Primal contouring of dual grids.

Pacific Graphics, pages 70–76, 2004.

[112] C. Scheidegger, S. Fleishman, and C. Silva. Triangulating point set surfaces with

bounded error. Symposium on Geometry Processing, pages 63–72, 2005.

[113] S. Sclaroff and A. Pentland. Generalized implicit functions for computer graphics.

SIGGRAPH, 25(4):247–250, 1991.

BIBLIOGRAPHY 148

[114] A. Sharf, M. Alexa, and D. Cohen-Or. Context-based surface completion. SIG-

GRAPH, pages 878–887, 2004.

[115] A. Sharf, T. Lewiner, A. Shamir, L. Kobbelt, and D. Cohen-Or. Competing fronts

for coarse-to-fine surface reconstruction. EUROGRAPHICS, pages 389–398, 2006.

[116] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data.

23rd ACM National Conference, pages 517–524, 1968.

[117] H. Shum and L. He. Rendering with concentric mosaics. SIGGRAPH, pages 296–

306, 1999.

[118] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion

piecewise mesh parametrization. IEEE Visualization, pages 355–362, 2002.

[119] R. Szeliski and D. Tonnesen. Surface modeling with oriented particle systems. SIG-

GRAPH, 26:185–194, 1992.

[120] C. Tang and G. Medioni. Inference of integrated surface, curve, and junction descrip-

tion from sparse 3D data. IEEE Trans. on Pattern Analysis and Machine Intelligence,

20:1206–1223, 1998.

[121] G. Taubin. Estimation of planar curves, surfaces and nonplanar space curves defined

by implicit equations, with applications to edge and range image segmentation. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 13:1115–1138, 1991.

[122] G. Taubin. An improved algorithm for algebraic curve and surface fitting. Proceed-

ings Fourth International Conference on Computer Vision, pages 658–665, 19913.

[123] D. Terzopoulos. The computation of visible surface representations. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 10(4):417–438, 1998.

BIBLIOGRAPHY 149

[124] D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and global defor-

mations: Deformable superquadrics. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 13:703–714, 1991.

[125] I. Tobor, P. Reuter, and C. Schlick. Efficient reconstruction of large scattered ge-

ometric datasets using the partition of unity and radial basis functions. Journal of

WSCG, 12:467–474, 2004.

[126] E. Trucco and A.Verri. Introductory Techniques for 3-D Computer Graphics. Pren-

tice Hall, 1998.

[127] Y. Tsao and K. Fu. A parallel thinning algorithm for 3D pictures. Computer Graph-

ics Image Processing, 17:315–331, 1981.

[128] G. Turk and M. Levoy. Zippered polygon meshes from range images. SIGGRAPH,

pages 311–318, 1994.

[129] G. Turk and J. O’Brien. Variational implicit surfaces. Technical Report GIT-GVU-

99-15, Georgia Institute of Technology, 1999.

[130] T. Varady, R. Martin, and J. Cox. Reverse enginnering of geometric models - an

introduction. Computer Aided Design, 29(4):255–268, 1997.

[131] J. Verdera, V. Caselles, M. Bertalmio, and G. Sapiro. Inpainting surface holes. In-

ternational Conference on Image Processing, pages 903–906, 2003.

[132] J. Wang, O. Hall-Holt, P. Konecny, and A. Kaufman. A hole filling strategy for

reconstruction of smooth surfaces in range images. XVI Brazilian Symposium on

Computer Graphics and Image Processing, pages 11–18, 2003.

[133] J. Wang, O. Hall-Holt, P. Konecny, and A. Kaufman. Per-pixel camera calibration

for 3D range scanning. SPIE Electronic Imaging, 5665:342–352, 2005.

BIBLIOGRAPHY 150

[134] J. Wang and M. Oliveira. Improved scene reconstruction from range images. Com-

puter Graphics Forum (Eurographics), 21(3):521–530, 2002.

[135] J. Wang and M. Oliveira. Filling holes on locally smooth surfaces reconstructed

from point clouds. Image and Vision Computing, 25:103–113, 2007.

[136] J. Wang, M. Oliveira, and A. Kaufman. Reconstructing manifold and non-manifold

surfaces from point clouds. IEEE Visualization, pages 415–422, 2005.

[137] J. Wang, M. Oliveira, H. Xie, and A. Kaufman. Surface reconstruction using oriented

charges. Computer Graphics International, pages 122–128, 2005.

[138] D. Washburn and D. Crowe. Symmetries of Culture: Theory and Practice of Plane

Pattern Analysis. University of Washington Press, 1988.

[139] L. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quantiza-

tion. SIGGRAPH, pages 479–488, 2000.

[140] H. Wendland. Piecewise polynomial, positive definite and compactly supported ra-

dial basis functions of minimum degree. Advances in Comp. Math., 4:389–396,

1995.

[141] H. Weyl. Symmetry. Princeton University Press, 1952.

[142] C. Xia, W. Hsu, M. Lee, and B. Ooi. Border: Efficient computation of boundary

points. IEEE Transactions on Knowledge and Data Engineering, 18(3):289–303,

2006.

[143] H. Xie, K. McDonnell, and H. Qin. Surface reconstruction of noisy and defective

data sets. IEEE Visualization, pages 259–266, 2004.

BIBLIOGRAPHY 151

[144] H. Xie, J. Wang, J. Hua, H. Qin, and A. Kaufman. Piecewise c1 continuous surface

reconstruction of noisy point clouds via local implicit quadric regression. IEEE

Visualization, pages 91–98, 2003.

[145] R. Yip. A hough transform technique for the detection of rotational symmetry. Pat-

tern Recognitions Letters, 15:919–928, 1994.

[146] R. Yip. A hough transform technique for the detection of reflectional symmetry and

skew-symmetry. Pattern Recognitions Letters, 21:117–130, 2000.

[147] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse global illumination: Recov-

ering reflectance models of real scenes from photographs. SIGGRAPH, pages 215–

224, 1999.

[148] Y. Yu, A. Ferencz, and J. Malik. Extracting objects from range and radiance images.

IEEE Trans. on Visualization and Computer Graphics, 7(4):351–364, 2001.

[149] H. Zhang, F. Qiu, and A. Kaufman. Fast hybrid approach for texturing point models.

Computer Graphics Forum, 23(4):715–725, 2004.

[150] R. Zhang, P. Tsai, J. Cryer, and M. Shah. Shape from shading: A survey. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 21(3):690–706, 1999.

[151] H. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level set

method. First IEEE Workshop on Variational and Level Set Methods, pages 194–

202, 2001.

[152] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop3D: An interactive system

for point-based surface editing. SIGGRAPH, pages 322–329, 2002.

