UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFO~RMATICA N
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

JONAS DEYSON BRITO DOS SANTOS

A Framework for Developing and
Benchmarking Sampling and Denoising
Algorithms

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Manuel Menezes de Oliveira
Neto

Porto Alegre
November 2019

CIP — CATALOGING-IN-PUBLICATION

Brito dos Santos, Jonas Deyson

A Framework for Developing and Benchmarking Sampling
and Denoising Algorithms / Jonas Deyson Brito dos Santos. —
Porto Alegre: PPGC da UFRGS, 2019.

96 f.: il.

Thesis (Ph.D.) — Universidade Federal do Rio Grande do Sul.
Programa de P6s-Graduagdao em Computacao, Porto Alegre, BR—
RS, 2019. Advisor: Manuel Menezes de Oliveira Neto.

1. Monte carlo rendering. 2. Adaptive sampling and recon-
struction. 3. Denoising. 4. Benchmark. I. Oliveira Neto, Manuel
Menezes de. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitora: Prof?. Jane Fraga Tutikian

Pré-Reitor de Pés-Graduacgdo: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informatica: Prof®. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Prof®. Luciana Salete Buriol

Bibliotecdria-chefe do Instituto de Informadtica: Beatriz Regina Bastos Haro

ABSTRACT

In the context of Monte Carlo rendering, although many sampling and denoising techniques
have been proposed in the last few years, the case for which one should be used for a
specific scene is still to be made. Moreover, developing a new technique has required
selecting a particular rendering system, which makes the technique tightly coupled to the
chosen renderer and limits the amount of scenes it can be tested on. In this work, we
propose a renderer-agnostic framework for developing and benchmarking sampling and
denoising techniques for Monte Carlo rendering. It decouples techniques from rendering
systems by hiding the renderer details behind a general API. This improves productivity
and allows for direct comparisons among techniques using scenes from different rendering
systems. The proposed framework contains two main parts: a software development kit
that helps users to develop and and test their techniques locally, and an online system
that allows users to submit their techniques and have them automatically benchmarked
on our servers. We demonstrate its effectiveness by using our API to instrument four
rendering systems and a variety of Monte Carlo denoising techniques — including re-

cent learning-based ones — and performing a benchmark across different rendering systems.

Keywords: Monte carlo rendering. adaptive sampling and reconstruction. denoising.

benchmark.

Um Ambiente para Desevonvoimento de Algoritmos de Amostragem e Remocao de

Ruido

RESUMO

No contexto de Monte Carlo rendering, apesar de diversas técnicas de amostragem e
remocao de ruido tenham sido propostas nos dltimos anos, aportar qual técnica deve
ser usada para uma cena especifica ainda € uma tarefa dificil. Além disso, desenvolver
uma nova técnica requer escolher um renderizador em particular, o que torna a técnica
dependente do renderizador escolhido e limita a quantidade de cenas disponiveis para
testar a técnica. Neste trabalho, um framework para desenvolvimento e avaliacdo de
técnicas de amostragem e remocdo de ruido para Monte Carlo rendering € proposto.
Ele permite desacoplar as técnicas dos renderizadores por meio de uma API genérica,
promovendo a reprodutibilidade e permitindo comparagdes entre técnicas utilizando-se
cenas de diferentes renderizadores. O sistema proposto contém duas partes principais:
um kit de desenvolvimento de software que ajuda os usudrios a desenvolver e testar suas
técnicas localmente, e um sistema online que permite que usudrios submetam técnicas para
que as mesmas sejam automaticamente avaliadas no nosso servidor. Para demonstramos a
efetividade do ambiante proposto, modificamos quatro renderizadores e vdrias técnicas de
remocao de ruido — incluindo técnicas recentes baseadas em aprendizado de maquina —

e efetuamos uma avaliagdo utilizando cenas de diferentes renderizadores.

Palavras-chave: Renderizacdo de Monte Carlo, Amostragem e Recostrugdo.

LIST OF ABBREVIATIONS AND ACRONYMS

API Aplication Programming Interface

ASR Adaptive Sampling and Reconstruction

BRDF Bidirectional Reflectance Distribution Function
CNN Convolutional Neural Network

FBKSD A Framework for Developing and Benchmarking Sampling and Denoising Algo-

rithms for Monte Carlo Rendering
GAN Generative Adversarial Network
GUI Graphical User Interface
HVS Human Visual System
MC Monte Carlo
PBR Pysically Based Rendering

SDK Software Development Kit

LIST OF FIGURES

Figure 2.1 Scene The Green Dragon (from Zacharias Reinhardt). (a) Rendered with
a real-time renderer (Blender’s Eevee engine). (b) Rendered with an unbiased

physically-based renderer (Blender’s Cycles engine).ccoocueeevieeniiienieenieennne 15
Figure 2.2 Solid angle.coouiiiiiiiiiiiiieeee e 17
Figure 2.3 Radiance measurement.ccovveerierieenieniieiienee e s 18
Figure 2.4 Typical noise in an image rendered with a Monte Carlo technique. (a)

Reference image. (b) Noisy image rendered with 16 samples per pixel................. 19
Figure 2.5 Ray tracing funcCtion.............ccocveriieiiiinienieeiieeee e e 21

Figure 2.6 Path tracing method. (a) Estimate for the first term 7T L,. (b) Estimate for
the second term 72L,. The circle represents a light source, and the squares
represent other non-emitting surfaces in the SCene.ccccveevieeeiieenciieenieenieeene, 22

Figure 3.1 Typical blue-noise power spectrum. (a) Spacial sampling distribution.
(b) Power spectrum. (c) Radial mean profile. (Figure adapted from Wei and

WanG (2011)) coueeiieieeee ettt ettt sttt 29
Figure 3.2 First 1024 Sobol sample points in 2D..........ccccciieviieriiieniieeiieeiee e 32
Figure 3.3 First 1024 stratified sample points in 2D. The samples were stratified in a

32 X 32 @IHAu ettt ettt sb ettt neene s 33

Figure 4.1 Typical Monte Carlo rendering system pipeline: The sampling module
produces random sampling positions, the light transport module computes the
radiance values from the sampling positions, and the reconstruction module
produces the final image pixels from the radiance values............cccceecvvverviennnennne. 34

Figure 4.2 Rendering pipeline using the FBKSD system: we modified the typical
pipeline by factoring out the sampling, reconstruction, and light transport
modules into separate processes. The communication between the processes is
done through our API and is intermediated by the FBKSD Manager module.35

Figure 4.3 Main components Of the SYSteML.ccceeeriieriiiiniieniieeieeeieeeriee e 37
Figure 4.4 Sequence diagram of a typical execution of the system.c.ccceeeervennnne 38
Figure 4.5 Structure for techniques supported by our System.ccceeveeeriieerrveenneene 39

Figure 4.6 Examples of production (left) and experimental (right) scenes. While
production scenes provide a combination of several features (global illumination,
motion blur, etc.), the experimental ones are design to stress specific aspects of

the techniques UNAET tESL.c.c.ueiiiiiiiiiiiiieeee e 40
Figure 4.7 Sequence diagram showing the computation of benchmark results using
Image Quality Assessment teChniques.coovveeiiiiiiiiiiniiiiieeeeeeee 41

Figure 4.8 Error maps produces by the IQA methods included in FBKSD: (a)
Reference image. (b) Image produced by the NFOR denosing technique with
16 spp. (c) MSE error map. (d) rMSE error map. (d) SSIM error map................. 41

Figure 5.1 Initial pages shown when a user accesses the online submission system
website (https:/fbksd.inf.ufr@s.br)cocveviiiiiiiii 49
Figure 5.2 Pages showing the steps needed to requesting a benchmark execution:
click on “CI/CD -> Pipelines” on the left panel (1) to open the page shown on
(a), then click on “Run Pipeline” (2) to open the “Run Pipeline” page shown on
(b). Type the variable FBKSD_RUN (3) and click on the “Run Pipeline” button
(4). The pipeline will be queued for eXecution.cceeveeerieiniieiniiiiniccneeee 51

https://cgboost.com/
https://fbksd.inf.ufrgs.br

Figure 5.3 Pages showing the pipeline execution status: (a) shows the pipeline status
with its two tasks (“build” and “run”) successfully finished (green marks).
Click on the “run” task (5) to open the log shown on page (b). In the log, you
can see the link for the private results page.cccceevvieieiiieniiiiiiieeieeceeeeee, 52
Figure 5.4 Server application architecture. The arrows with solid lines represent
call directions (A — B means A calls B). Arrows with dashed lines represent
data flow directions. Blue squares represent ProCesses.ooueeerveerrureerveessveeennnens 53

Figure 6.1 Rendering using geometric features. Reference image (left). Overblurring
on transmitted scene details caused by relying on features at the first intersection
point (center). Using features from the first non-specular intersection allows

the denoiser to preserve those details (right).cceevevieeiiieiiiiiieeeeeee 56
Figure 6.2 Images generated with our system using PBRT v2 and the techniques
NFOR, RHF, and GEM, respectiVely........cccceeeiiiiiiiiiniiiiiieenieeeieeeeeeee e 56

Figure 6.3 Examples of experimental scenes rendered with our system using a
procedural renderer. (left) Mandelbrot set. (right) Increasing sinusoidal bands
(SIIUA2)). oottt enenns 57

Figure 6.4 Texture details in the specular component of some materials (see the
checker pattern on the light gray rectangle in the reference image) are not part

of the “albedo” feature, making the denoisers to remove such details.................... 58
Figure 6.5 Use of our system’s GUI for interactive exploration of the quantitative

results generated by a benchmark.ccoooiiiiiiiiiiiini 59
Figure 6.6 Quantitative results for the images shown in Figure 6.7 according to the

rMSE, PSNR, and SSTIM MELIICS.ouuuumiiieiiiiieeeieeeeee et 59

Figure 6.7 Results from a benchmark including seven MC denoising techniques and

nine scenes (from our scene pool) that pose challenges to denoising methods.

All results were generated with 128 samples per pixel.ccccoeveveviieniieiniienieenn, 60
Figure 6.8 Results from the KPCN technique using FBKSD’s Python API. The

Golden Killeroo (top row) and the Spaceship (bottom row) scenes were rendered

with PBRT-v2 and Mitsuba, respectively. Using scenes from different renderers

poses a bigger challenge for CNN techniques trained with only one renderer. 61
Figure 6.9 Image comparison panel included in the results visualization GUI. The

top bar contains several controls for selecting the current scene (1), image (2),

buffer (3), and spp value for the current technique (4). The central area shows

the currently selected image, and allows zooming and panning. At to bottom,

the miniatures for all the techniques are shown (7). The miniatures are zoomed

in portions of the corresponding images centered at the cursor position (5).

The size of the miniatures can be adjusted (6).........cccevvvereviieeriieeniieenieeeeeee e 63
Figure 6.10 Charts panel included in results visualization GUI. The top bar contains

controls for selecting the current scene (1), changing the execution time unit to

seconds or minutes (2), and showing equal-time comparison charts (3). Each

individual chart also supports user interaction: showing numeric values by

hovering the cursor (4), showing/hiding individual lines by clicking on the

corresponding label (5), and exporting the chart in several bitmap and vector

formats by opening the pop-up menu (6)........ccovveeeiieerieeeiieeniieeie e 64
Figure 6.11 Execution time in seconds of a simple box filter technique written using

our C++ API (CppBox) vs the Python version (PyBox). The overhead is negligible.65

Figure C.1 Procedural 3D sphere result generated by our procedural renderer. 96

CONTENTS

1 INTRODUCTION..... .10
1.1 Contributions A1
1.2 Thesis Structure .. .14
2 BACKGROUND ON PHYSICALLY BASED RENDERING A5
2.1 Radiometry. .16
2101 FIUX ottt et et b et et e bt e ateeneas 16
2.1.2 TITAATANCE ...ttt st et b e sttt et 16
2.1.3 RAQIANCE....ceeeiiiiie ettt ettt e e et e e et e e e eatreeesnbaaeeenseeesensaeeeanns 17
2.2 Rendering Equation 18
2.3 Monte Carlo Integration . .19
2.4 Monte Carlo Ray Tracing 20
2401 PAEI TEACING ..ottt et et e e st e e et e e e s abaeesensaeaeenns 21
2.5 Sampling and Reconstruction 22
3 RELATED WORK24
3.1 Meta-Research in Graphics 24
3.2 Benchmarking Systems in Computer Vision.. . . w25
3.2.1 OPtiCAl FIOW.....oiiiiiiiiiiiiececee ettt 25
3.2.2 Stere0 COrreSPONAENICEccevruvieeeriiiieieiiieeeniiteeesiieeeesiteeeesitreeeesbreessabeeessseeeesnns 25
3.2.3 AIPha MatliNgcc.eeoiiiiiiiieniceieeieeee ettt 25
3.2.4 VIideO MAttNG ...coeiiiiiiieeiiieeiieeiee ettt ettt e et st e e eae e s teeenbeeenbeeensaeesnseeennne 26
3.3 Monte Carlo Denoising Algorithms .26
3.4 Sampling Algorithms .28
3.4.1 Blue-noise/Poisson Disk Samphng .. 30
3.4.2 Low Discrepancy SamMPIiNgcoccueeriuieeiiieniiieeiiieeiieesieeeieeesteesieeesseeseeeesneees 31
3.4.3 Stratified/Jittered SAMPINg.........coooveviiiiiiiii e 32
4 PROPOSED FRAMEWORK 34
4.1 API Overview 35
4.2 Main Components. 36
4.2.1 CHENE PIOCESS. .. uviiiiiiiieeeiiiiee ettt e eetee e et e e et e e e steeeesateeeessseeessnssaeesensseeesnnnseens 37
4.2.2 Benchmark PrOCESScccoiiiiiiiiiiiieiieeiteeeeeee ettt 39
4.2.3 Rendering PrOCESS.c.ueiiuiiiiiiiiiiieiieeeee ettt 39
4.3 Scenes 40
4.4 Image Quality Assessment40
4.4.1 Mean Squared Error (IMSE)cooouiiiiiiiiiiieeeeeeeete et 42
4.4.2 Relative Mean Squared Error (RMSE)oooviiiiiiiiieeeeeeeeeen 42
4.4.3 Peak Signal-to-noise Ratio (PSNR)ccccooiiiiiiiiiiiieee e 42
4.4.4 Structural STMilarity (SSIM)......oeiiiiiiiieie e 43
4.5 Implementation Details ... 44
4.5.1 Inter-process Communication and Tile-based Data Transfer............ccccceeevvrennennn. 44
4.6 Summary..... 45
5 ONLINE SUBMISSION SYSTEM ...46
5.1 Motivation... .46
5.2 Requirements .46
5.3 Workflow..... .48
5.3.1 REZISITAION ettt ettt e st e et e e s b e eaaeesnsee e 48
5.3.2 SUDMUSSION ...uiiiiieeiiiie ettt e e e et e e et e e e s abeeeeearaeeeetaeaeenns 48
5.3.3 Benchmarking and Results ReViewing...........ccccceeeviiiniiiiiniiiniieieeceeeeeee 49
5.3.4 Results PUDLICAtION.cccuiiiiiiiiieeiiie et e et e et e e 50

5.4 Implementation Details ...

50

5.5 Summary..... .53
6 CASE STUDY. . . .55
6.1 Learning-Based Techniques....... .59
6.2 Visualization Interface..... .62
6.3 Discussion ... 62
6.3.1 Communication OVerheadccuiiieiiiiiiiiiiie et e e 62
6.3.2 Memory OVerheadcc.eeeiuiiiriieeiieeeiee ettt e e re et e et e e b e e saaeessee e e 63
6.3.3 Python APIT OVErheadccccuviiiviiiiiiiiiiiieeieeee ettt 64
6.4 Summary..... .65
7 CONCLUSIONS AND FUTURE WORK .66
7.1 Future Work 66
REFERENCES..68
APPENDIX A — FBKSD C++ API REFERENCE .75
A.1 Denoising Technique Example.. w75
A.2 Sampling Technique Example... .76
A.3 IQA Metric Example 77
A.4 Renderer Example .78
A.5 Classes80
A.5.1 BenChmarKCLIeNT . .coiiiiiiieieiiiiee ettt ettt e et ee e et e e e eeaeeeennaneees 80
Y N Y ol <) 4 LN I 4 o PSR PSRP 82
A5.3 SAMPLELAYOUT ..uvvviiiiiiiieiiieiiee ettt eeeetar e e e e eeettrareeeeeeeentraneeeaens 83
ALSA TQA oottt ettt e et e e a bt e e bt e e ate e e bt e e e nbeeebeeesaneeeas 85
N T T & 1T RO RPN 87
A.5.60 RENAETINGSEIVEY ...ceiieieiiiie ettt e et e e e e eetre e e e e e e eerareeeeeeeesesaareeeeesenanns 88
AT SAMPLESPIPE. .. e e e e e e tbaaaaaaaas 90
A58 SAMPLEBULTET ...oveiiiiiiiieee et e e et 91
APPENDIX B — FBKSD PYTHON API REFERENCE 92
B.1 Denoising Technique Example .. .92
B.2 Classes93
B.2.1 BenchmarkKCLi@NtTccooiiiiiiiiiiieeeiiie et et e e e 93
B.2.2 SCONEINTO ..ot et e e et e e e nnaaae s 94
APPENDIX C — PROCEDURAL RENDERER 95
C.1 Scene Description. 95

10

1 INTRODUCTION

Rendering is one of the most important problems in computer graphics and has
been the subject of over half a century of research. In particular, there has been a
tremendous amount of exploration on Monte Carlo (MC) physically-based rendering (PBR)
systems (COOK; PORTER; CARPENTER, 1984) such as path-tracing (KAJIYA, 1986)
and its various extensions (VEACH; GUIBAS, 1997). To address shortcomings in Monte
Carlo rendering, more than three decades of research has explored a wide variety of
different ideas, including adaptive sampling and reconstruction algorithms (HACHISUKA
et al., 2008), faster acceleration structures and intersection algorithms (SAMET, 2010),
improved sampling patterns (HECK; SCHLOMER; DEUSSEN, 2013), and Monte Carlo de-
noisers (SEN; DARABI, 2012; ROUSSELLE; MANZI; ZWICKER, 2013; KALANTARLI;
BAKO; SEN, 2015) to name a few broad categories.

Although developing a new algorithm that successfully improves Monte Carlo
rendering in some way is a challenging task in itself, researchers face further challenges,

namely:

1. They must implement their algorithm into an actual rendering system so they can test
it on complex scenes. After all, renderers have several key components required to
produce high-quality images (e.g., scene 1/O, samplers, ray-traversal acceleration data
structures, primitive-ray intersectors, shading systems, and reconstruction filters),
and many of these components are often orthogonal to the algorithm being explored.
Therefore, researchers often leverage the infrastructure provided by existing rendering
systems. However, integrating the algorithm into a rendering system is often an
error-prone and time-consuming task, since available systems usually do not provide
the necessary features and need to be “hacked” (deeply modified) to support the new
technique;

2. They must find several high-quality scenes to test their algorithm and demonstrate
its performance. Since most researchers are not digital artists, constructing com-
plex aesthetically pleasing scenes is often a non-trivial, time-consuming task, and
“programmer-art” scenes do not tend to be of the same quality as those constructed by
professional artists. Thus, researchers tend to stick to a handful of publicly-available
test scenes that have been used in previous papers or are included in textbooks
on physically-based rendering (PHARR; JAKOB; HUMPHREYS, 2016; PHARR;
HUMPHREYS, 2010a);

11

3. To compare their new algorithms with previous ones, they often need to port the
previous algorithms to the same rendering system they adopted, which can also be
tricky, since the developers performing the port are usually not very familiar with
the other algorithm’s source codes. This process can introduce bugs and may not
produce ideal results, since the algorithmic parameters that worked successfully for
one rendering system might not work for the new one. Trying to determine the
optimal parameters for an algorithm that one did not develop can be a very time

consuming task.

The consequence of these challenges is that, in most occasions, researchers end up
demonstrating their algorithms on a single rendering system using a small number of test
scenes, and comparing them against a handful of competing methods converted in a hurry
from other rendering systems. These competing methods are usually chosen for being
considered the best ones, but this conclusion may have been made based on results from
different test scenes. This significantly limits one’s ability to thoroughly test and explore
the proposed method, as well as the reviewers’ ability to properly evaluate its performance.
These problems can have a negative impact on the reproducibility of results on this field.

Having good “apples-to-apples” comparisons is important when trying to gauge the
benefits of new and existing algorithms, and from the problems stated above, we consider
that, in its current state, the rendering research community lacks the adoption of a standard
benchmark. Such benchmark would benefit both the research community — by making it
easier to develop a new technique, and to have a better picture of the state-of-the-art — and

the end users — by making it easier to choose the best technique for a certain scene.

1.1 Contributions

In this thesis, we present a novel framework that allows researchers to develop,
test, and compare algorithms for Monte Carlo rendering. Specifically, we propose an
application program interface (API) and a software development kit (SDK) that allow
developers to easily run their algorithms on different rendering systems by providing the
necessary communication between such algorithms and the other components of an existing
rendering system. In other words, instead of having the researchers port their algorithms to
multiple rendering systems, we have done the leg work for them by instrumenting rendering

systems to provide the necessary services through our API. Also, we are releasing an

12

online service that allows researches to submit their techniques, have them automatically
benchmarked in our server, and the results published online.

Therefore, a researcher only needs to implement an algorithm once, and can
immediately use it with all rendering systems that support our framework. This allows
researchers to rapidly test and deploy their algorithms on a range of rendering systems, and
test them on a wide variety of scenes. This allows for automatic independent benchmarking
between algorithms, which is quite useful when submitting new techniques for publication.

We have initially instrumented three well known rendering systems used by the
research comunity (PBRT v3, PBRT v2 and Mitsuba), and a fourth custom procedural
renderer developed from scratch. Since our framework is publicly available on GitHub
(https://github.com/fbksd/fbksd) under the MIT license, anyone can extend our API
providing support to other rendering systems.

To demonstrate the effectiveness of our framework, we conduct a case study
involving Monte Carlo (MC) denoising algorithms. Such a study illustrates key aspects of
our system: provide easy integration of algorithms and rendering systems (by means of
just a few calls to the API); provide an independent benchmark for MC techniques that
works across various rendering systems; and, allow developers to evaluate the performance
of rendering systems with various algorithms, and vice versa. These are desirable features
for algorithm and rendering system developers, as well as for the academic, industry,
and end-user communities, who should be able to make better informed decisions when
choosing a technique for a given scene.

For our study, we have instrumented (adapted the original code from the authors to
our API, or written the method from scratch based on the paper) a significant number of state-
of-the-art MC denoising algorithms: NFOR (BITTERLI et al., 2016), LBF (KALANTARI;
BAKO:; SEN, 2015), RHF (DELBRACIO et al., 2014), LWR (MOON; CARR; YOON,
2014), RDFC (ROUSSELLE; MANZI; ZWICKER, 2013), RPF (SEN; DARABI, 2012),
SBF (LI; WU; CHUANG, 2012), NLM (ROUSSELLE; KNAUS; ZWICKER, 2012),
GEM (ROUSSELLE; KNAUS; ZWICKER, 2011), and KPCN (BAKO et al., 2017). This
allows them to be used with the four rendering systems, even though they have been
originally developed for a single renderer.

The techniques we chose form a representative sample of the techniques found in the
field, including adaptive, non-adaptive, a priori, and a posteriori methods (ZWICKER et
al., 2015). Furthermore, our system’s ability to automatically generate benchmark reports

allows for the comparison of the different methods on an even playing field. In our study,

https://github.com/fbksd/fbksd

13

we compare the performance of different MC denoising methods and discuss some of their
identified potential limitations.

Although this work does not propose a new MC rendering algorithm per se, this
kind of meta-research system (i.e., a system designed to aid the research process) is not
new to the graphics and vision communities. Successful examples include the Middlebury
dataset (SCHARSTEIN; SZELISKI, 2002; SCHARSTEIN; SZELISKI; HIRSCHMiLLER,
2002), which has transformed the way two-frame dense stereo correspondence algorithms
are developed and compared, as well as the benchmarks on Alpha Matting (RHEMANN et
al., 2009b; RHEMANN et al., 2009a), optical flow (BARRON; FLEET; BEAUCHEMIN,
1994; BAKER et al., 2011b; BAKER et al., 2011a), and video matting (EROFEEYV et al.,
2015; EROFEEV et al., 2014). More recently, Anderson et al. (ANDERSON et al., 2017)
proposed a framework to compile PDF sampling patterns for Monte Carlo.

Inspired by these works, our system provides test scenes intended to stress the
limits of Monte Carlo techniques and reveal their potential limitations. It is extensible,
allowing for easy support of new rendering systems, as well as sampling and reconstruction
strategies. The community should be able to contribute new scenes and techniques in a
simple way.

The summary of the contributions of this thesis include:

o A framework for developing and benchmarking sampling and denoising algorithms
for MC rendering. Our framework decouples the algorithms from rendering systems
by means of an API, allowing researchers to implement their techniques once and
run them on any rendering system supporting our framework. Our framework can
be dynamically extended to support new algorithms, rendering systems, and testing

datasets;

e An automatic and independent benchmarking system for comparing Monte Carlo
algorithms across multiple rendering systems and supporting a large number of
scenes. This should be a useful tool for assessing the quality of new Monte Carlo
algorithms against established ones, especially for submission purposes;

e An online submission system for sampling and denoising techniques, which allows
users to have their techniques automatically benchmarked in our server and the results
published online;

e A detailed evaluation of the state-of-the-art Monte Carlo denoising and sampling

algorithms using our framework and a discussion of their performance and limitations.

14

1.2 Thesis Structure

We start by giving a brief overview of physically based rendering in Chapter 2. We
cover the following topics: Radiometry, Rendering Equation, Monte Carlo Integration,
Monte Carlo Ray Tracing, and Sampling and Reconstruction. For a more in-depth
discussion on these and other topics on PBR, refer to Dutre et al. (2006) and Pharr and
Humphreys (2010b).

In Chapter 3, we discuss the related work: Meta-research in graphics, benchmark
systems, Monte Carlo denoising, and sampling algorithms.

In Chapter 4, we present the our proposed system — called FBKSD. Chapter 5
presents an online system powered by FBKSD, which allows users to submit sampling
and denoising techniques and have them automatically benchmarked and published in our
server. A case study showing results for several state-of-the-art denoising techniques is
presented in Chapter 6, followed by our conclusions and a discussion on possible future

work directions in Chapter 7.

15

2 BACKGROUND ON PHYSICALLY BASED RENDERING

A physically based rendering (PBR) system seeks to produce — based on the
description of a three-dimensional scene — photorealistic images. As defined by (FERW-
ERDA, 2003), a photorealistic image is one that produces the same visual response as the
real scene. In other words, a photorealistic image will look indistinguishable from a picture
of a real-world scene to an average observer. Another term sometimes used to describe
images produces by PBR systems is the term physically correct. A physically correct or
physically realistic image is one that provides the same visual stimulation as the real scene.
This can be seen as a stronger condition than photorealism. In other words, an image can
be photorealistic without being physically correct. This makes physically correct rendering
techniques the gold standard, when it comes to computer graphics image generation.

For some applications (e.g., games, interactive visualization, etc.), performance is
more important then physically correctness, therefore, they usually employ more aggressive
simplifications that sacrifice physically correctness, but still deliver a satisfactory level
of realism for their purposes. Techniques that are not guaranteed to produce physically
correct results due to those compromises are called biased. Figure 2.1 shows a comparison
of the same scene being rendered with a biased real-time renderer and an unbiased

physically-based one.

Figure 2.1: Scene The Green Dragon (from Zacharias Reinhardt). (a) Rendered with a real-
time renderer (Blender’s Eevee engine). (b) Rendered with an unbiased physically-based
renderer (Blender’s Cycles engine).

Most unbiased PBR systems utilize a model of light based on geometrical optics.
Although this model is not detailed enough to describe phenomena that occurs when light
interacts with very small objects (sizes close to the light wavelength), such as dispersion and

interference, it is good enough for solving most rendering problems in computer graphics

https://cgboost.com/

16

without being intractable.

2.1 Radiometry

Since the main task of a PBR system is simulating light propagation and interaction
with objects, we will start by giving an overview of the fundamental units and light

measurement concepts, a subject called Radiometry — the science of measuring light.

2.1.1 Flux

The energy Q of a single photon with wavelength A is given by

Q=— 2.1)

where £ is the Planck’s constant (4 ~ 6.626 X 1073*J - s), and ¢ is the speed of light in
vacuum (¢ = 299,472,458 m/s). The flux (also known as radiant power) is the total amount

of energy traversing a surface or region per unit time:

dg
b=—. 2.2
” (2.2)
The unit of flux is the watt (W). Flux is commonly used to describe total power of light

sources.

2.1.2 Irradiance

Consider an sphere of radius r with a light source of power @ in its center. If we
increase the radius of the sphere, its surface will appear dimmer, even though the same
total flux is hitting the surface. To measure how much energy a point receives (or emits),
we also need to account for area. Irradiance (E) is the amount of flux per unit area arriving

at a surface. It is given by
_do

E=—.
dA

(2.3)

Usually, when the flux is leaving the surface, the term radiant exitance (M) (also known as

radiosity (B)), is used.

17

In the example of the sphere with a light in the center we gave previously, the

irradiance at any point on the surface is

B ®
 dar?’
where @ is the power of the light source, and r is the radius of the sphere. Note that the

energy arriving at a point falls off with the squared distance.

2.1.3 Radiance

Although irradiance tells us how much light a point receives, it does not account for
directionality: the energy arriving at a point comes from all directions. We want to be able
to tell how much energy a point receives from a particular direction, but first we need to
define solid angle.

The solid angle S of an object C viewed from a point p is the projected area of C
onto the unit sphere centered at p (Figure 2.2). The unit of solid angle is the steradian (sr),

and its value can range from zero to 4.

Figure 2.2: Solid angle.

Radiance (L) is the quantity that considers both area and solid angle. It is defined

as the flux per unit area perpendicular to the beam, per unit solid angle:

d*®

L=—"—— 2.4
dw dA cos()’ 24)

where 6 is the angle between the surface normal and the direction w (Figure 2.3).

Radiance is the most important radiometric quantity in PBR: all other quantities

18

Figure 2.3: Radiance measurement.

can be obtained from it by integrating area or solid angle, also, radiance remain constant

along a ray in empty space.

2.2 Rendering Equation

The rendering equation (KAJIYA, 1986) gives the radiance L, leaving a point p on
a surface in a given direction w,, in terms of the incident radiance from all directions and

the material properties on that point:

Lo(p, o) = Le(py o) + / £(p, wor 0 Li(ps w03)| cos(6)| dw . 2.5)
Q

where L.(p, w,) is the radiance emitted by the point p in the direction w, (if the point p
belongs to a light source), f,. is the BRDF (bidirectional reflectance distribution function),
which represents the characteristics of the material at p, 6; is the angle between the surface
normal at p and w;, and L;(p, w;) is the incident radiance on the point p coming from the
direction w;.

The rendering equation is a Fredholm integral equation of the second type (ARVO,
1995). It has no analytical solution for the general case and the high dimensionality
of the domain makes traditional numerical integration methods very inefficient (curse
of dimensionality). Therefore, the Monte Carlo integration method has been the most
successful at solving the general light transport problem. However, due to its stochastic
nature, this method produces noise in the resulting image due to variance in the estimates,

and requires a large number of samples to achieve high-quality results.

19

2.3 Monte Carlo Integration

Monte Carlo (MC) is a numerical integration method that uses random points
generated in the integrand domain to estimate the result. It is conceptually a very simple
method and is capable of elegantly handle high-dimensional domains, like the rendering
equation: it only requires the ability to evaluate the function being integrated at arbitrary
points in its domain.

The Monte Carlo estimator for the integral of a function g using n random points is

given by

/ g()dx ~ 8(x) (2.6)
D n = '

where p is the probability distribution function (PDF) used to generate the random points
x; € D.

The approximate solution given by Equation 2.6 is correct on average, but has a
certain variance which, in rendering, manifests itself as noise in the generated images
(Figure 2.4). This variance can be reduced by increasing the number of samples, but this
strategy is not satisfactory since it is known that the variance of a Monte Carlo estimate
drops at a rate of O(+/n) of the number of samples (VEACH, 1998), Thus, it is necessary

to quadruple the number of samples to halve variance.

Figure 2.4: Typical noise in an image rendered with a Monte Carlo technique. (a) Reference
image. (b) Noisy image rendered with 16 samples per pixel.

(b)

20

2.4 Monte Carlo Ray Tracing

Currently, most PBR systems utilize ray tracing to find light paths between the
camera and the light sources. A light path is a sequence of vertices connected by straight
lines, where the first vertex belongs to the camera sensor, the last vertex belongs to a light
source, and the inner vertices represent interactions with the other objects in the scene.

The term ray tracing is very broad, since it can be used to describe techniques with
very different capabilities, for example: ray casting (APPEL, 1968), classic ray tracing
(WHITTED, 1980), distributed ray tracing (COOK; PORTER; CARPENTER, 1984), path
tracing (KAJIYA, 1986), etc. A more specific term used to describe those techniques that
use ray tracing in conjunction with Monte Carlo — which usually are the ones used in PBR
systems — is Monte Carlo ray tracing.

To better describe the capabilities of different techniques, we can use a notation
introduced by Heckbert (1990). This notation describes all possible light paths that a
technique can compute using a regular expression! like E(S|D)*L, where E is a vertex on
the camera sensor, S and D are vertices on surfaces where specular and diffuse interactions
occurred, respectively, and L is a vertex on a light source.

Using this notation, the ray casting (APPEL, 1968) method is capable of calculating
paths of the type E(D|e)L, which is called local or direct lighting. The classic ray
tracing (WHITTED, 1980) method includes perfect specular reflections and refractions by
recursively tracing rays from specular objects, resulting in paths of the type E(D|e)S* L.
Distributed ray tracing (COOK; PORTER; CARPENTER, 1984) does not allow new light
path types, but it includes distributed effects like motion blur and depth-of-field. Finally,
path tracing (KAJIYA, 1986) includes paths of the type E(D|S)* L, which is the most general
type according to this classification. Later improvements, like bidirectional path tracing
(LAFORTUNE; WILLEMS, 1993) and Metropolis light transport (VEACH; GUIBAS,
1997), are optimizations that allow faster convergence in harder lighting conditions, but the

capabilities in terms of light path types are the same.

IRegular expression notation: Y* denotes zero or more occurrences of ¥, Y* denotes one or more
occurrences of Y, Y|Z matches either Y or Z, € is the empty string, and parenthesis are used for grouping.

21

2.4.1 Path Tracing

The path tracing method finds light paths by tracing rays that start from the camera,
bounce off objects in the scene, and reach the light sources. To formalize this idea, consider
a ray tracing function #(p, w) that returns the first intersection point found by tracing a ray
from the point p in the direction w (Figure 2.5). The camera measures the radiance L;
arriving at the point p on the sensor, and since radiance does not change along a ray, we
can write L;(p, w) = L,(t(p, w), —w). So, to compute the radiance arriving at a point in
the sensor, we trace a ray from the camera with a direction w, find the first intersection
point with the objects in the scene, and compute the radiance L, leaving that point in the

direction —w.

Figure 2.5: Ray tracing function.

(st

From the rendering equation (Equation 2.5), if we drop the subscripts from L, and

L;, we can see that L appears on both sides of the equation:
L=L,+TL, (2.7)

where we use T as the integral operator, for brevity. If we expand L on the right side, we

get the following Neumann series:
L=L,+TL +T*L,+.... (2.8)

The L, term gives the light emitted by the object (if the object is a light source itself), T L,
gives the light that bounces off once, which is usually called direct illumination, the T?L,
term gives the light that bounces off twice, and so on. The total contribution from the
terms T'L,, with i > 1, sums up to what is usually called indirect illumination.

The path tracing method estimates the term 7%*! L, using Monte Carlo and by
reusing the previous path segment used for the term 7% L,. Figure 2.6 illustrates the process.

At the first intersection point py, the direct illumination (7'L,) is calculated by sampling a

22

light source. Then, from this point, another ray is traced by sampling a random direction,
obtaining a second intersection point p,. The direct illumination on this second point is
also calculated, and the fraction of this radiance that bounces off the first point gives the
estimate for 72L,. The end of this process is determined by a probabilistic technique called
Russian roulette (ARVO; KIRK, 1990), which allows the algorithm to remain unbiased

even though paths of finite length are computed.

Figure 2.6: Path tracing method. (a) Estimate for the first term 7TL,. (b) Estimate for the
second term T2L,. The circle represents a light source, and the squares represent other
non-emitting surfaces in the scene.

T

= r =~

L,

e

Since the path tracing algorithm generates paths only starting from the camera,
convergence can be very slow in difficult lighting situations — when only a small fraction
of all the paths end up hitting a light source. A technique that performs better in these
scenarios is to also trace paths starting from the light sources, and combine them with the
ones generated from the camera. This is the basic idea of the Bidirectional Path-tracing

(LAFORTUNE; WILLEMS, 1993) method.

2.5 Sampling and Reconstruction

The final step of a PBR system is to generate a digital image — a 2D matrix (grid)
of pixels — from the radiance values computed by solving the rendering equation. To better
understand this process, we first explain the distinction between the scene function, defined
on the continuous camera raster space, and the digital image (grid of pixels) generated
from it.

Given the camera sensor with dimensions width X height in raster space, the scene

23

function f returns a radiance value L for each point (x, y) on the sensor:

flx,y)—> L, (2.9)

where (x, y) € [0, height]x[0, width]. This function encapsulates the details of the particular
method used to compute the radiance values. But since in PBR systems Monte Carlo is
usually used at some point, the scene function also needs several other parameters as input,
e.g., a point (&, v) in the camera lens, a time parameter ¢, points on the surfaces of the light

sources, etc. Therefore, it is also common to write the scene function as:
f(x, y,t,u,v,ri,ra,...) > L. (2.10)

Also note that, besides radiance values, PBR systems can also output other scene features,
e.g., geometric features like normal and position for the ray/object intersection points
found during ray tracing, texture values, etc. We will call the scene function input
(x, y,t,u,v,r1, 1, ...) sample position, and the output (radiance and any other features)
sample value.

During rendering, a PBR system generates a set of random sample positions
(Section 3.4), which are used to evaluate the scene function, the resulting sample values are
then used to reconstruct the pixel values of the final image. This is done by interpolating

sample values near the center of each pixel:

1= 2P~ X pi = Vi) f (ke i)
! 2k w(pi = Xk P = Vi)

(2.11)

where [;; is the value of the pixel (i, j), (xk, yx) are the sample positions on the sensor,
(pi» pj) is the center of pixel (i, j) in raster space, w is the reconstruction filter, and f is the
scene function. The filter w determines how much a certain sample contributes to the final
pixel value based on the distance between the sample position and the center of the pixel.

Although the reconstruction filter w in Equation 2.11 uses only (x, y) coordinates
to compute the distance between the pixel center and the sample position — which is true
for simple filters — in practice, many sophisticated denoising techniques (Section 3.3) may

leverage other features provided by the system.

24

3 RELATED WORK

We begin by discussing meta-research systems in both graphics and vision which,
like our own framework, have been developed to facilitate/improve the research process.
Afterwards, we focus on previous work on Monte Carlo denoising, and sampling, which is

the application that we use to illustrate the benefits of our framework.

3.1 Meta-Research in Graphics

Several systems have been proposed over the years to facilitate research development
in graphics. Some of the most popular ones include Cg (MARK et al., 2003), Brook (BUCK
etal.,2004), and Halide (RAGAN-KELLEY etal.,2012). Cgis a general-purpose, hardware-
oriented, programming language and supporting system designed for the development of
efficient GPU applications, and providing easy integration with the two major 3D graphics
APIs (OpenGL and Direct 3D). Brook (BUCK et al., 2004) is also a system for general-
purpose computation that allows developers to use programmable GPUs as streaming
co-processors, while abstracting GPU architectural details. Halide (RAGAN-KELLEY et
al., 2012) tries to optimize image-processing algorithms by decoupling the algorithm’s
description from its schedule. This allows for an algorithm to be described once, while
specific schedules are provided for different target platforms (e.g., CPUs, GPUs, mobile
devices, etc.). Automatic generation of optimized schedules in Halide has been addressed
in a follow-up work (MULLAPUDI et al., 2016).

While the primary goal of these systems is to generate efficient code while abstracting
hardware details from developers, our focus is on decoupling Monte Carlo algorithms
from rendering systems. This greatly simplifies the task of porting algorithms to multiple
rendering systems, freeing developers from the burden of knowing implementation details
of specific renderers to be able to perform integration. Our system also makes a wider
range of scenes available for testing, providing a comprehensive, multi-rendering system
benchmark for Monte Carlo algorithms. Recently, Anderson et al. (ANDERSON et al.,
2017) proposed an approach to compile sampling BRDFs for MC applications. Their

method complements our work.

25

3.2 Benchmarking Systems in Computer Vision

Quantitative benchmarks have been proposed for several computer visions areas,
including optical flow (BARRON; FLEET; BEAUCHEMIN, 1994; BAKER et al., 2011b),
dense two-frame stereo correspondence (SCHARSTEIN; SZELISKI, 2002), and alpha
matting (RHEMANN et al., 2009b). These initiatives have provided independent tools for
assessing the quality of the results produced by existing and new algorithms, and have led

to significant progress in these areas.

3.2.1 Optical Flow

Barron et al. (BARRON; FLEET; BEAUCHEMIN, 1994) compared accuracy,
reliability, and density of velocity measurements for several established optical flow
algorithms, and showed that their performance could vary significantly from one technique
to another. Baker et al. (BAKER et al., 2011b) proposed another benchmark for optical-flow
algorithms that considers aspects not covered by Barron et al. These include sequences
containing non-rigid motion, realistic synthetic images, high frame-rate video to study
interpolation errors, and modified stereo sequences of static scenes. The authors have made
their datasets and evaluation results publicly available, and provide the option for one to

submit his own results for evaluation (BAKER et al., 2011a)

3.2.2 Stereo Correspondence

The Middlebury benchmark (SCHARSTEIN; SZELISKI, 2002) provided a taxon-
omy and evaluation for dense two-frame stereo correspondence algorithms. The datasets

and evaluation are publicly available on the web, and anyone can submit results for

evaluation (SCHARSTEIN; SZELISKI; HIRSCHMULLER, 2002).

3.2.3 Alpha Matting

Rhemann et al. (RHEMANN et al., 2009b) introduced a benchmark system for
alpha matting techniques. The authors provide some training data and use a test dataset for

which the corresponding ground truth has not been disclosed. Similarly to the optical-flow

26

and dense stereo correspondence benchmarks mentioned before, the results are available

on-line, and anyone can submit results for evaluation (RHEMANN et al., 2009a).

3.2.4 Video Matting

Erofeev et al. (EROFEEYV et al., 2015) extended the alpha matting benchmark to
videos, supporting both objective and subjective evaluations of video matting techniques.
Training and test datasets are provided, with results and submissions being available through
the web (EROFEEV et al., 2014).

Unlike such systems, ours goes beyond rating submitted results computed off-line.
It provides an API that allows Monte Carlo algorithms to be tested with different rendering
systems using a variety of scenes. Thus, it can compare different techniques across multiple
rendering systems, something that was not previously possible without requiring the
developer to create multiple implementations tailored to individual rendering systems. We

intend to make our system freely available to the research and industry communities soon.

3.3 Monte Carlo Denoising Algorithms

Although there has been a significant amount of work on reducing the variance of MC
rendered images through sampling/reconstruction (see (PHARR; JAKOB; HUMPHREYS,
2016; ZWICKER et al., 2015)), for brevity we shall only focus on previous post-processing
approaches that filter general Monte Carlo noise (i.e., noise from any and all distributed
effects, path tracing, and so on).

Soon after the seminal paper by Cook et al. (COOK; PORTER; CARPENTER,
1984) raised the problem of MC noise, there was some early work in general MC filtering,
including approaches using nonlinear median and alpha-trimmed mean filters for edge-
aware spike removal (LEE; REDNER, 1990) and variable-width filter kernels to preserve
energy and salient details (RUSHMEIER; WARD, 1994). However, in the years that
followed, researchers largely ignored general MC filtering algorithms in favor of other
variance reduction techniques, due to the inability of these filters to successfully remove
the MC noise while preserving scene detail.

Recently, interest in general MC filtering algorithms has enjoyed a significant

revival. For example, Sen and Darabi (SEN; DARABI, 2012) demonstrated that filters

27

could effectively distinguish between noisy scene detail and MC noise. To do this, they
used mutual information to determine dependencies between random parameters and scene
features, and combined these dependencies to weight a cross-bilateral filter at each pixel in
the image. Rousselle et al. (ROUSSELLE; KNAUS; ZWICKER, 2012) proposed to use a
non-local means filter to remove general MC noise. Kalantari and Sen (KALANTARI;
SEN, 2013) applied median absolute deviation to estimate the noise level at every pixel
to use any image denoising technique for filtering the MC noise. Finally, Delbracio
et al. (DELBRACIO et al., 2014) modified the non-local means filter to use the color
histograms of patches, rather than the noisy color patches, in the distance function.

Other approaches have effectively used error estimation for filtering general dis-
tributed effects. For example, Rousselle et al (ROUSSELLE; KNAUS; ZWICKER, 2011)
used error estimates to select different filter scales for every pixel to minimize reconstruction
error. Furthermore, Li et al. (LI; WU; CHUANG, 2012) proposed to use Stein’s unbiased
risk estimator (SURE) (STEIN, 1981) to select the best parameter for the spatial term of a
cross-bilateral filter. Rousselle et al. (ROUSSELLE; MANZI; ZWICKER, 2013) extended
this idea to apply the SURE metric to choose the best of three candidate filters. Moon et
al. (MOON; CARR; YOON, 2014) estimated the error for discrete sets of filter parameters
using a weighted local regression. Bauszat et al. (BAUSZAT et al., 2015) posed the filter
selection problem as an optimization and solved it with graph cuts. Although these methods
attempt to minimize the error between the filtered image and the ground truth, they are
limited and often have artifacts due to poorly-chosen filter candidates.

More recently, several techniques based on machine learning were proposed. The
first one was proposed by Kalantari, Bako and Sen (2015), which employs supervised
learning on a multilayer perceptron neural network to drive the weights of either a joint
bilateral or a joint non-local means denoising filter. They first train the neural network by
minimizing the error between the filtered and the ground truth image. Then, at run-time,
the neural network estimates the parameters for the denoising filter to produce the final
image. A more general approach was proposed by Bako et al. (2017), which instead of
using explicit hardcoded filters, leverages a deep convolutional neural network (CNN) to
allow more general kernels. This technique (KPCN) was later improved (VOGELS et al.,
2018), enabling temporal and multiscale filtering, requiring less reference images on the
training set, and allowing more control of the variance-bias tradeoff.

A CNN-based method that employs adaptive sampling was proposed by Kuznetsov,

Kalantari and Ramamoorthi (2018). It uses two CNNs, both in a encoder-decoder

28

architecture. The first network uses a 1 spp noisy image to create a sampling map, which is
then used to perform adaptive sampling with the remaining sample budget. The resulting
image is then denoised by the second network. The encoder-decoder architecture is a
simpler version (without the recurrent connections) of the one used by Chaitanya et al.
(2017).

A sample-based approach — which uses individual sample values instead of pixel
values and statistics — was proposed by Gharbi et al. (2019). It adopts a kernel-predicting
CNN similar to Vogels et al. (2018), but operating on individual samples. Kettunen,
Hirkonen and Lehtinen (2019) proposed a combination of gradient-domain path tracing
with a CNN-based reconstruction method.

Generative Adversarial Networks (GANs) (GOODFELLOW et al., 2014) have
obtained impressive results tasks like image generation and restoration. The idea is to
setup a competitive game between a generator and a discriminator network. While the
generator tries to fool the discriminator by generating perceptually convincing images,
the discriminator tries to distinguish the generated images from the real targets. Xu et al.
(2019) proposed the use of GANs for Monte Carlo denoising, focusing on obtaining images
of better perceptual quality, as opposed to using fixed image-space metrics. Similarly to
KPCN (BAKO et al., 2017), their strategy also process diffuse and specular components
separately.

All of these techniques have strengths and weaknesses in terms of the scene features
they can satisfactorily handle, memory costs, execution time, etc. All these variables
make a direct comparison of the various algorithms difficult. Without an independent,
rendering-system agnostic benchmarking framework, the answer to the question what
combination of MC denoising algorithm and rendering system is most appropriate for
rendering a given scene under a given time budget? is non-trivial. Our framework is
intended to fill-in this gap. Hopefully, it will help developers better understand the interplay
among the various involved elements and available metrics, shedding some light on the
occasional situations in which publications seem to disagree about the quality rank of

different techniques.

3.4 Sampling Algorithms

An important class of techniques that also impact on the final image quality

generated by Monte Carlo renderers, and that usually do not fall in the category of

29

“denoising techniques” presented in Section 3.3, are sampling techniques (or samplers).
These techniques form an important part of any MC rendering system, and are responsible
for generating high-dimensional sample positions, which are used to: sample, and ultimately
integrate using MC, the light transport equation; sample lens and time for distributed
effects like motion blur and depth-of-field; and sample positions on the image plane for
pixel reconstruction.

Sampling techniques impact both the amount of aliasing — which was first identified
in rendering by Crow (1977) — and noise in the rendered image. The common approach is
to use random sampling patterns to replace aliasing by noise — since aliasing is considered
to be a more visually objectionable artifact than high-frequency noise. This approach was
first used by Cook (1986) and Dippé and Wold (1985), who proposed the use of random
distributions based on Poisson disk and jittered sampling.

Many techniques for generating high-quality sampling patterns have been developed.
The term high quality used broadly here means: sampling patterns that produce visually
good results. What precisely characterizes a good sampling pattern is a complex subject,
since the visual quality of the resulting rendered images is hard to predict. Some commonly
cited characteristics of such sampling patterns are: blue noise spectrum, low discrepancy,
and the ability to maintain those properties when projected in lower dimensions.

Blue noise is a characteristic of the distribution’s power spectrum that can be
summarized as: central DC peak surrounded by a annulus of low energy, followed by a
sharp transition region, and a flatter high-frequency region (LAGAE; DUTRé, 2008), as
shown on Figure 3.1. Discrepancy is a quantitative measure of how much equidistributed
the samples are, where very equidistributed samples have low discrepancy (SHIRLEY,

1991).

Figure 3.1: Typical blue-noise power spectrum. (a) Spacial sampling distribution. (b)
Power spectrum. (c) Radial mean profile. (Figure adapted from Wei and Wang (2011))

(a) (b) (c)

LA oo ° 0,0 o ° o,
° o0 D o® o) .
. L) . CIAN
LA c‘.o.‘.o..: ° 00, %,

| | | | | | | |
10 20 30 40 50 60 70 80 90
frequency

30

3.4.1 Blue-noise/Poisson Disk Sampling

Poisson-disk samples are uniformly-distributed patterns where no two points are
closer than a fixed minimum distance. The idea of using Poisson-disk sampling in rendering
applications (DIPPE; WOLD, 1985; COOK, 1986) was inspired by previous investigations
on the distribution of photoreceptors in the eyes of Rhesus monkeys (YELLOTT, 1983).

Brute-force Poisson-disk sampling by dart throwing — where a sample is generated
uniformly and kept in the sequence only if it is farther than a minimum distance from the
other samples already kept — is too slow, and several acceleration methods were proposed.
An early survey of Poisson-disk sampling methods, which compares the quality of various
algorithms (LAGAE; DUTRE, 2006; JONES, 2006; DUNBAR; HUMPHREYS, 2006;
WEI, 2008), was made by Lagae and Dutré (2008). It concluded that the (DUNBAR;
HUMPHREYS, 2006) was the fastest accurate technique (but still slow compared to
approximate ones), and their corner-based Poisson disk tiles approximate technique
(LAGAE; DUTRE, 2006) produced samples with the best spectral quality among the
approximate techniques, while the technique proposed by (KOPF et al., 2006) was the
fastest but with below average spectral properties.

Wei (2008) proposed a parallelization scheme that subdivides the sampling domain
into grid cells, and concurrently draws samples from cells that are far apart. A slower, but
more accurate method was proposed by Ebeida et al. (2011). This method can produce
correct unbiased results and can be implemented on the GPU, but it is not as fast as
approximate methods. Kalantari and Sen (2012) introduces a faster approximate method
that uses a initial set of points generated using any Poisson-disk procedure, and replicates
this initial set to fill the whole sampling space using a process similar to convolution,
preserving the blue-noise property, but introducing some error.

An important observation made by Mitchell (1991) was that an n-dimensional
Poisson-disk distribution is not ideal for general integration problems in graphics: it is
good for distribution on the image plane to have the Poisson-disk property, but on the other
dimensions, it is beneficial to have a more samples more widely spaced. A construction for
n-dimensional distributions that maintain the Poisson-disk characteristic under projection
onto lower-dimensional subsets was proposed by Reinert et al. (2015).

Yuksel (2015) proposed a simple greedy Poisson-disk sampling algorithm based
on sample elimination. The algorithm works well in high dimensions and can produce

progressive sample sets. Given an input sample set, the algorithm tries to find a subset with

31

the largest Poisson disk radius. This is an NP-Complete problem, hence the proposed greedy
method is approximate — does not guarantee maximal coverage — and has O(N log N)
time complexity on the number of samples.

From the power spectrum point-of-view, an idealized blue-noise distribution should
have a step-like spectrum — zero power in frequencies lower than vy, and constant in
higher frequencies. Such sequencies are able to recover frequencies below vy and map
higher frequencies to white noise, hence larger vy values are desired. Heck, Schlomer and
Deussen (2013) noted that such ideal power spectra are not always realizable: a sample
distribution with this power spectrum does not exist. They proposed a solution to increase
the zero-frequency radius vy — while keeping the spectrum realizable — by adding an
adjustable mid-frequency peak centered in vo. This approach sacrifices spectral quality,
introducing low-frequency artifacts and mid-frequency aliasing. Another technique that
allows larger vg values, producing larger alias-free low-frequency regions was proposed by
Kailkhura et al. (2016). It uses as stair-like power spectrum shape, instead of a single peak.
Recently, a technique for high-dimensional blue-noise sampling coverage guarantees and

approximately smooth step-like spectrum was proposed by Mitchell et al. (2018).

3.4.2 Low Discrepancy Sampling

The use of discrepancy to evaluate the quality of sampling patterns in computer
graphics was first introduced by Shirley (1991), and later developments were done by
Mitchell (1992), Dobkin and Mitchell (1993). Some theoretically good low-discrepancy
patterns do not perform as well as expected when used for image sampling. An arbitrary-
edge discrepancy measure that better reflects antialiasing behavior was proposed by Dobkin,
Eppstein and Mitchell (1996).

The idea of using a deterministic (quasi-random) low-discrepancy sequence for
sampling was introduced by Mitchell (1992). Such quasi-random sequences for the basis
for quasi-Monte Carlo methods ((NIEDERREITER, 1992)). A popular quasi-random
low-discrepancy sequence used in modern PBR systems is based on a the Sobol sequence
((SOBOL, 1967)). Figure 3.2 shows an example with 1024 sample points generated using
the Sobol method.

A recent technique for generating low-discrepancy sequences with improved spectral
characteristics was proposed by Perrier et al. (2018). The technique achieves almost blue-

noise spectrum in 2D projections of the sampling domain, while inheriting the efficiency

32

Figure 3.2: First 1024 Sobol sample points in 2D.

1o},

08 . L

06 .+ -

04"

02F o

OAO C \’ Il Il : Il Il |
0.0 02 04 0.6 08 1.0

and low discrepancy of quasi-random techniques.

3.4.3 Stratified/Jittered Sampling

A good discussion on the benefits of stratified sampling patterns over random
patterns was done by Mitchell (1996). It shows that stratified sampling performs better
the smoother the function being sampled is. For scenes with high-dimensional scene
functions with possible high-frequency content, the benefits of sophisticated stratified
patterns decrease. Figure 3.3 shows an example with 1024 sample points generated using
stratification.

Chiu, Shirley and Wang (1994) proposed a 2D sampling technique based on
randomly shuffling the x and y coordinates of a canonical jittered pattern. A improvement
that produces much better results by using the same permutation for both dimensions was
proposed by Kensler (2013). It showed that this approach can produce lower discrepancy
than Sobol pattern while being perceptually better (less aliasing artifacts).

Recently, a new technique that achieves results with lower variance, produce high-
dimensional samples that preserve stratification across all lower-dimensional projections,
while avoiding the structured artifacts found in quasi-random sequences was proposed by
Jarosz et al. (2019). The technique is based on the concept of orthogonal arrays from

statistics.

33

Figure 3.3: First 1024 stratified sample points in 2D. The samples were stratified in a
32 x 32 grid.

081 of ¢ Yo

0.6

04F [T

02+

0.0} 3 °

34

4 PROPOSED FRAMEWORK

A physically-based rendering (PBR) system has to perform several tasks in order
to generate an image, for instance: read the scene description file, build an internal
scene representation data structure for accelerating ray intersection computations, generate
well-distributed sampling positions in a high-dimensional space, compute shading, compute
global illumination, reconstruct the final image, and save the result. Some of these tasks
hide a significant amount of complexity.

PBR systems implementations usually employ common abstractions that allows
some level of modularity and extensibility. For example, it is common practice to have the
concept of BSDFs, geometric shapes, cameras, samplers, reconstruction filters, etc., and
facilitate adding new implementations for these concepts through the use of inheritance!.

Figure 4.1 shows the typical pipeline for a Monte Carlo rendering system.

Figure 4.1: Typical Monte Carlo rendering system pipeline: The sampling module produces
random sampling positions, the light transport module computes the radiance values from
the sampling positions, and the reconstruction module produces the final image pixels from
the radiance values.

Sampling = (x, y,...) =) | Light Transport | =) f(x, y, ...) = | Reconstruction |==p ¢!

values

Although different renderers use similar abstractions, implementing a new technique
— a new denoising filter, for example — still requires choosing a particular renderer. This
makes it hard to compare techniques implemented in different systems. Our Framework
for Developing and Benchmarking Sampling and Denoising Algorithms for Monte Carlo
Rendering (FBKSD) avoids these limitations by decoupling the implementation of a new
technique from any specific rendering system. This is done by hiding the specific sample
value computation details associated to each rendering system behind a general sampling
evaluation interface (API). Thus, it allows for any technique to be seamlessly integrated with
different rendering systems, and provides a direct and simple mechanism for comparing
these techniques. Figure 4.2 shows the rendering pipeline using our proposed API.

Our system assumes that a PBR system is a black box that receives sample positions
as input, and outputs radiance values and other features for each sample position. The
internals of this black box typically include global illumination calculations, BSDF

evaluations, ray intersection computations, etc. These internal details are highly coupled

!Object-oriented programming.

35

Figure 4.2: Rendering pipeline using the FBKSD system: we modified the typical pipeline
by factoring out the sampling, reconstruction, and light transport modules into separate
processes. The communication between the processes is done through our API and is
intermediated by the FBKSD Manager module.

Technique API API Renderer

Sampling = (x,y,...) =

= FBKSD PEEN

Manager Light Transport

€= f(xy,...) <=
=) Pixel values =)

Reconstruction

and renderer-dependent, so we try to avoid disrupting their interplay. Therefore, we define
the scope of the techniques supported by our system as the set of techniques that can reside
outside the black box, namely: sampling techiques, which generate the sample positions
that are used as input, and reconstruction or denoising techniques, which reconstruct the
final image pixels from the radiance values return by the PBR system. Note, however,
that although we make this distinction between sampling and denoising techniques, some
techniques (adaptive denoising techniques) do both the job of sampling and reconstruction,

in this case we classify them as just denoising techniques, since that is their main task.

4.1 API Overview

To be able to perform their job, sampling and denoising techniques may need to:

e Request information about the scene being rendered, like the dimensions of the image
and the total amount of samples the technique can request/generate (sample budget).
This is required by all techniques;

e Provide sample positions as input to the renderer. This is only required by sampling
techniques, or advanced denoising techniques that also perform adaptive sampling;

e Read the sample values computed by the renderer. This is only needed by denoising

techniques, since they need to reconstruct the image form the sample values.

Our system system provides a generic, renderer-agnostic API that supports these operations.

Also, as explained in Section 2.5, different techniques may have different require-
ments when it comes to sample data access: a simple box filter, for example, only needs the
RGB color for each sample, while a more advanced denoising technique may also require

several geometric features like world position, normals, etc. Our API allows techniques to

36

customize which sample components they need access to — what we call sample layout.
The sample layout determines which sample components are present in the buffer used to
deliver sample data to the technique.

Implementing a technique using our API has three main advantages: the technique
can be written in a more generic and modular way, without having to deal with details of a
particular renderer; it has access to a bigger set of scenes from all the renderers ported
to our system; and it allows a convenient and fair way of comparing the results against
existing techniques implemented using our API. Those advantages make the proposed
system a good test bed for developing new techniques, as well as evaluating existing ones.

For the complete C++ and Python API references, refer to Appendices A and B.

4.2 Main Components

The core of our system consists of a software development kit (SDK) that provides:
C++ and Python libraries that support adding new techniques and renderers, a command line
interface (CLI) used to manage and run benchmarks, and an interactive results visualization
page used to display benchmark results. The libraries provide the API needed to make
techniques (samplers and denoisers) compatible with FBKSD, so they can be benchmarked
and compared using Image Quality Assessment (IQA) metrics. The libraries also support
adapting renderers to be used as rendering back-ends, and implementing new IQA metrics
to be used when computing benchmark results.

Figure 4.3 shows an overview of the architecture of the proposed system. There
are three main components: the client process, the benchmark process, and the renderer
process. The client process implements the technique being evaluated (e.g. a denoising or
sampling technique). The rendering process is the actual rendering system that computes
the sample values requested by the client process. The benchmark process controls and
mediates the overall execution, and saves the final image along with some useful information,
such as execution times.

Figure 4.4 shows a sequence diagram of a typical benchmark execution. The
benchmark process is executed with a list of parameters specifying the scenes to be
rendered, the sample budget for each scene, and the techniques to be evaluated. The
rendering process is executed for each new scene, while the client process is executed
for each new scene and sample budget. When the client process begins, it starts making

several requests, which usually follow this sequence: request information about the scene

37

Figure 4.3: Main components of the system.

Benchmark Process

RendererClient H BenchmarkManager H BenchmarkServer

—> Shared Memory [<------------ 1

I>

¢ EE——
<

socket communication S

socket communication

____________________>

Renderelf Process Client Process

A\

‘ RenderingServer

Renderer ’:I ‘ Sampling Technique H-“ Denoising Technique "’-‘
! !
! !

being rendered, set a sample layout, request sample values, and send the resulting image

!

‘ BenchmarkClient |

to the benchmark process. The benchmark process mediates the communication between
the client and rendering processes, while keeping track of the execution time and sample
budget limits. The samples requested by the client process are delivered in tiles. Once the
client process receives the requested samples, it reconstructs the final image and sends it to
the benchmark process.

The separation between client and rendering processes allows us to provide a clean
API to the client process, simplifying the task of implementing a new technique. Once a
new technique is implemented using this renderer-agnostic API, it can be readily executed
on a variety of scenes and compared against other techniques.

On the renderer side, this separation allows us to provide different renderers as
back-ends to the system, which increases the availability of scenes. When rendering a
scene, the client process does not need to know the specific renderer being used. This also
tests the robustness of the technique to variations in sample values computed by different

renderers.

4.2.1 Client Process

The client process implements a sampling or a denoising technique. Depending
on the kind of technique being implemented, this process is responsible for generating

sample positions — in the case of sampling techniques or denoisers that also perform

Figure 4.4: Sequence diagram of a typical execution of the system.

|
|
l — m
|
- start benchmark process
> P g k Process

for each scene

Rendering Process
start rendering process

for current scene

=
-

for each SRP

Distart client process Client Process
I

i

{TigetScenelnfo()
r scene info

I

| <

setSampleLayout()

|

I

setSampleLayout()

[[

for each sample request

N--———-1

evaluateSamples()

allocate shared buffers

il

[«——evaluateSamples()

fgr pach tile
[€«———getNextTile()

[€—— getNextTile()

1 I
T 1

PsendResult()ﬂ
r D

save benchmark results

[I finish

o
==t

|

T
==

adaptive sampling — and generating the final image from the sample values computed by
the renderer.

The system expects techniques to follow the structure shown in Figure 4.5. This
structure is general enough to cover a large variety of techniques, including MC denoising

— adaptive, non-adaptive, a priori and a posteriori (ZWICKER et al., 2015) — as well as
sampling techniques.

When the client process starts, it is given a sample budget. In the initial sampling
step, the technique decides what portion of the sample budget to spend initially. If the
technique is non-adaptive, the entire budget is spent in this step. Otherwise, one or more
iterations of sample analysis and adaptive sampling are performed, until the sample budget
is completely consumed. After the final image is reconstructed, the client process finishes.
Besides the sample budget, the client has access to more information about the scene being
rendered through a scene information querying API. This information allows the technique

to adjust its parameters depending on the characteristics of the scene.

39

Figure 4.5: Structure for techniques supported by our system.

Initial sampling Sample analysis

A

More samples? Reconstruction

Y

Adaptive sampling (Final image)

Our framework is general enough to support advanced techniques with adaptive
sampling, allowing them to generate sample positions based on information from previous
iterations. If the technique does not perform adaptive sampling, the renderer itself generates

the sample positions using a uniform sample pattern generator.

4.2.2 Benchmark Process

The benchmark process manages the system execution and mediates the communi-
cation between client and rendering processes (Figure 4.4). It is responsible for starting the
rendering process with the scene to be rendered, and later, collecting the computed samples
to be forwarded to the client technique. The benchmark process keeps track of the current
sample budget and client process execution time, and also saves the image reconstructed by

the client process, along with an execution log.

4.2.3 Rendering Process

The rendering process consists of a rendering system that has been instrumented to
communicate with the benchmark process and provide the required API endpoints. It is
responsible for computing the samples needed by the client process, as well as providing
information about the current loaded scene. To help instrumenting existing rendering
systems, we provide a few auxiliary classes that implement the necessary API and help

collecting the sample data throughout the system.

40

4.3 Scenes

Our system includes two general categories of scenes: production, and experimental.
The first category includes scenes one would usually find in a production environment.
They usually contain more detailed geometry and textures, a bigger variety of illumination
settings, and aesthetically pleasing results. The second category includes scenes we
designed specifically to stress certain aspects of the filters. Figure 4.6 shows examples of
scenes from both categories. By including a good variety of scenes in both categories, we

hope to avoid biases when comparing different techniques.

Figure 4.6: Examples of production (left) and experimental (right) scenes. While production
scenes provide a combination of several features (global illumination, motion blur, etc.),
the experimental ones are design to stress specific aspects of the techniques under test.

When evaluating a scene, we consider two main aspects: features and noise sources.
Features are legitimate details that denoising techniques must preserve, like textures and
materials, geometric details, shading highlights, etc. Noise sources are elements that
introduce undesired noise artifacts, like camera effects (motion blur and depth-of-field),

glossy materials, area lights, and indirect illumination.

4.4 Image Quality Assessment

After executing a benchmark, FBKSD uses Image Quality Assessment (IQA) metrics

to compare the test images produced by the techniques with reference images computed

41

with a large number of samples. The values produces by each IQA metric are compiled in
the charts displayed on the results visualization page. Figure 4.7 shows a sequence diagram
of the results computation process. Besides the included IQA techniques (MSE, rMSE,
PSNR, and SSIM), our framework also allows users to implement new IQA methods. The

definitions for the provided IQA methods are presented in the next subsections.

Figure 4.7: Sequence diagram showing the computation of benchmark results using Image
Quality Assessment techniques.

~

|

[:] request calculation of results |
|

f—

> FBKSD CLI

Y

IQA Process

start IQA process
to compare current

|

|

|

|

|

|

|

|

|

| i

! C .
! result with reference comgggesg’;z |Irg1ages
] image 9
|

|

|

|

|

|

|

{

T

IQA techniques can also produce error maps, which are also displayed in the results
page. The error maps are images with larger pixel values indicating larger error. The

images are color mapped using a heat color map (Figure 4.8).

Figure 4.8: Error maps produces by the IQA methods included in FBKSD: (a) Reference
image. (b) Image produced by the NFOR denosing technique with 16 spp. (c) MSE error
map. (d) rMSE error map. (d) SSIM error map.

©) (d) (e)

42

4.4.1 Mean Squared Error (MSE)

The Mean Squared Error (MSE) is the most commonly used metric to asses the

error between two images. The MSE definition is given in Equation 4.1.

N
1 .
MSE = ¥ i§=1 (& —¢)?, 4.1)

where N is the number of pixels in the image, and ¢; and ¢; are the color values of the pixel

i from the test and reference images, respectively.

4.4.2 Relative Mean Squared Error (RMSE)

The Relative Mean Squared Error (RMSE) is a modification of the standard MSE
proposed by Rousselle, Knaus and Zwicker (2011). When compared to the standard MSE,
the RMSE metric gives more importance to the darker regions of the image. This is a
desirable characteristic, since the human visual system is more sensitive to noise in dark

areas. Equation 4.2 gives RMSE definition.

RMSE = — Z(“‘C’ , “2)
C + €

where N is the number of pixels in the image, ¢; and ¢; are the color values of the pixel i
from the test and reference images, respectively, and € is a small value to avoid division by

Z€10.

4.4.3 Peak Signal-to-noise Ratio (PSNR)

The Peak Signal-to-noise Ratio (PSNR) is another popular image quality assessment
method. It is most commonly used in evaluating quality of lossy compression codecs. The
PSNR definition is given in Equation 4.3.

4.3)

2
PSNR = 10log (255)

MSE

43
4.4.4 Structural Similarity (SSIM)

The Structural Similarity (SSIM) (Zhou Wang et al., 2004) method is based on
the hypothesis that the human visual system (HVS) is highly adapted for extracting
structural information. The method then tries to estimate the perceived changes in structural
information variation between two images.

To compute the SSIM between a reference image X and a test image Y, the method
first calculates statistics from small windows x and y around each pixel of the two images

X and Y, respectively:

N
Hx = Z WiXi
i=1
N
Hy = Z Wili
i=1

N :
oy = (Z wi(xi — ,ux)z)

i=1

N 5
oy = (Z wi(yi - ,Uy)z)

i=1

N
Ty = Z wixi —)i = Hy),
i=1
where N is the number of pixels in each window, x; and y; are the color values of pixel
i from the windows x and y, and w; are the weights of a normalized Gaussian kernel
(Zf.\; | wi = 1) — in our implementation, we use a Gaussian kernel with standard deviation

1.5. Using these statistics, the SSIM index between two windows is given by:

(zlux,uy + Cl)(zo_xy + ()

SSIM(x,y) = ,
(13 + 13 + C)(oF + 03 + Cr)

where C; and C, are constants — in our implementation, we use C; = 6.5025 and
Cy = 58.5225. The final SSIM value for the whole images X and Y is calculated by
averaging the SSIM index from all the M windows:

M
1
SSIM = Z; SSIM(x;, ;). (4.4)

44

4.5 Implementation Details

4.5.1 Inter-process Communication and Tile-based Data Transfer

During a benchmark execution, the inter-process communication between the
three processes (renderer, benchmark, and client) is done using TCP socket messages on
predefined local ports, and a shared memory buffer. The TCP messages are mainly for
synchronization purposes and do not transfer large amounts of data. The shared memory
buffer is used for transferring the sample data requested by the client and generated by the
renderer, as well as the result image generated by the client.

Since we use a shared buffer to transfer sample data between the processes, trying
to allocate a buffer big enough to hold all the sample budget available to the client, the size
of this buffer could be a problem. This is because some techniques require many sample
components. To prevent this problem, we avoid allocating a full-sized buffer by using a
tile-based approach.

A parallelization strategy commonly employed by rendering systems is to partition
the image being rendered in tiles — small pieces of the full image, usually consisting of
64 x 64 pixels each — and render each tile in parallel. A popular implementation is to use
a task queue: a task is created to render each tile, and all tasks are put in a queue. The
tasks are then executed in parallel by a pool of threads: when a thread finishes executing a
task, it gets another one from the queue and the cycle continues until the queue is empty.

A key observation is that the the maximum number of tasks being executed at the
same time is fixed — it usually corresponds to the number of cores available in the machine.
This allows us to allocate a buffer with a size based on this fixed number, and synchronize
its use with the client process.

When a rendering thread starts executing a task, we allocate a chunk of memory
from our buffer to that thread. The thread then renders the tile, saves the sample data in
the memory chunk, and finishes. We then communicate to the client that the tile is ready
to be consumed by calling a callback function provided by the client. When the client
finishes consuming the tile (the callback function returns), we mark that memory chunk as
available, so it can be used by another thread. If no memory chunk is available when a task
begins (because the client does not consume the tiles fast enough, for example), the thread
bocks until one is available.

If the client needs to write on the memory buffer — which is the case for sampling

45

and adaptive denoisers — we perform an additional communication step: before we make
a memory chunk available to a rendering thread, we block it and request the client to write
the input sample data on that tile, only then we give the memory chunk to the thread, which

will now contain the input data.

4.6 Summary

In this chapter, we presented the main motivation, design decisions, scope, and
implementation aspects of our proposed framework (FBKSD). An overview of the proposed
API was presented in Section 4.1. Then we presented the main system components, their
role, and how they interact (Section 4.2). In Section 4.3, we explained what aspects guide
our scene selection/creation process. Section 4.4 showed how Image Quality Assessment
methods are employed by our system to compute the error of the images produced by the
techniques under test. Finally, some implementation details were presented (Section 4.5),
including a discussion about how our system avoids large memory overheads by using a

tile-based data transfer.

46

5 ONLINE SUBMISSION SYSTEM

In Chapter 4, we discussed our proposed framework that allows writing and
benchmarking techniques in a renderer-independent way. In this chapter, we introduce
an online submission system that allows users to submit their techniques and have them

benchmarked in a controlled environment, and the results published online.

5.1 Motivation

Being able to download and install our system locally is an important feature that
allows authors to quickly prototype new techniques, benchmark them with different scenes,
fine-tune their parameters, and compare them with other techniques. However, there are a

few caveats with such a local solution, namely:

e To compare their techniques against existing ones, the user needs to download and
execute them with all the desired scenes, which can be a computational intensive
task if the number of scenes is high;

e This approach does not allow comparing results generated by different users;

e Sharing results with others is not very convenient, since it requires hosting a web

server with the results page, or sending a large amount of data.

To solve those limitations, we provide an experimental online submission system
(https://fbksd.inf.ufrgs.br). This system allows users to submit new techniques, and have
them automatically executed in our server. The results are then made available online, first
in a hidden location disclosed only to the technique’s author, and later in a public location
(if the author requests the publication of the results). This can be an invaluable tool for
researchers, rendering systems authors, and anyone interested in sampling and denoising

techniques for Monte Carlo rendering.

5.2 Requirements

We specified the following main functional requirements for our online system:

e User account management: Users need to be able to manage (create/edit/delete)

their accounts. Accounts need to include an e-mail address for account validation

https://fbksd.inf.ufrgs.br

47

and notification purposes.

¢ Project management: Users need to be able to manage projects. A project contains

the source code for a technique.

e Benchmark execution: Users can request a benchmark execution for a project. The

execution will happen in our server.

e Private results review: After a benchmark is executed for a technique, the results
are made available to the user in a private location. The user can review the results

and decide to publish or discard them.

e Results publication: Users can decide to publish the results of a benchmark
execution. When the results are published, they become available online in a known

public location.

After analysing the requirements, we decided to search for an off-the-shelf solution
that could satisfy as many of them as possible, while being flexible enough to allow
us to implement the others. The solution we decided to adopt was GitLab (GITLAB,
2019). GitLab is a popular git project hosting solution (akin to GitHub, BitBucket, and
others (GITHUB, 2019; BITBUCKET, 2019)) that provides a free self-hosted version with
a built-in continuous integration (CI) system. “Self-hosted” in this context means that we
are installing GitLab in our own server, as opposed to using their cloud-based alternative.
Although this approach incurs the cost of maintaining our own server, it give us better
control of the system and provides the level of customization we need.

As a git project hosting solution, GitLab supports user account and project manage-
ment out-of-the-box. Moreover, the continuous integration (CI) system allows projects to
configure a set of tasks that are triggered by certain events (a new commit, or a manual
request, for example). This set of tasks (called a pipeline'), when triggered, is executed
by a runner!, which is a special process responsible for acquiring and running tasks. Our
idea is to leverage the CI system to enable the remaining functional requirements. To
accomplish this, we can configure each request as a task for the CI system. When a task is
executed, it calls a custom application in the server to execute the corresponding request.
The main remaining challenge is then to implement this custom server application that is
responsible for executing the requests from the users.

Another advantage of using GitLab’s CI infrastructure is that it supports executing

the tasks in a sandboxed environment. This is an important non-functional requirement,

1GitLab nomenclature.

48

since we are dealing with untrusted code submitted online by users, and this code needs to
be automatically compiled and executed in our server. GitLab’s CI system accomplishes
this by running the tasks inside Docker (DOCKER, 2019) containers. A Docker container
can be seen as a lightweight virtual machine, used as a sandbox, running on top of the
Linux kernel. If a malicious program is executed and is able to gain root privileges, for
example, it does so only inside the container, and should not be able to compromise the
host machine.

From the point of view of the user, adopting a well-known off-the-shelf solution
like GitLab has the benefit of bringing all the collaborative features, for example, bug
tracking (users can report bugs in other projects), forks (users can create forks of existing
projects), and merge requests (users can contribute to other projects by submitting patches).
This creates an environment that makes it easer to do incremental improvements to existing

projects, which stimulates development and is more approachable to newcomers.

5.3 Workflow

The workflow for submitting, benchmarking, reviewing, and publishing a technique
using our online system is explained next. The requests are done using the online user
interface (standard GitLab interface), and should feel familiar to anyone who have used an

online git project hosting solution before.

5.3.1 Registration

The first step is to create an account in our GitLab server. Figure 5.1 shows the
initial page, where the user logs in or creates a new account. After registering, the user
receives a confirmation message in the provided e-mail account. Once the account is
validated (the user clicks the validation link in the confirmation message), the user can

sign-in and create a new project.

5.3.2 Submission

To submit a new technique, the user needs to create a project and upload (push) the

technique’s source code. Besides the technique’s source code, a project may also contain

49

Figure 5.1: Initial pages shown when a user accesses the online submission system website

(https://tbksd.inf.ufrgs.br)

(a) Sign-in page. (b) Registration page.
A A
FBKSD Online Submission System signin FBKSD Online Submission System Register

Submit, Benchmark, and Compare Adaptive Sampling
and Denoising Techniques for Monte Carlo Rendering

Submit, Benchmark, and Compare Adaptive Sampling ~ Usemame or email
and Denoising Techniques for Monte Carlo Rendering

uuuuuuuuuuuuuuu

eeeeeeeeeeee

Explore Help About GitLab Explore Help About GitLab

any documentation the author wishes to provide. A project can be set as private (only the
author can see), public (anyone can see), or internal (only logged-in users can see).

The source code must follow a structure specified in the FBKSD documentation
(available at https://fbksd.inf.ufrgs.br), which allow us to automate the build process in our

server. Namely, it should include:

e Ainfo. json file containing some information about the technique (e.g., technique’s
type, name, citation, etc.);
e A CMakelLists.txt build file;

e A .gitlab-ci.yml file, which contains the CI configuration.

Once the source code is uploaded (and every time a new commit is pushed), our
server will automatically execute some sanity checks (check if the code follows the expected
structure, etc.) and try to compile it. If any error occurs during this process, the user is
notified by e-mail. After the code is successfully compiled, the user can then request a

benchmark execution.

5.3.3 Benchmarking and Results Reviewing

To request a benchmark execution, the user needs to manually run a pipeline passing
the variable FBKSD_RUN, as shown in Figure 5.2. When the user requests a benchmark

execution, the server will execute the technique with all the scenes internally configured

https://fbksd.inf.ufrgs.br
https://fbksd.inf.ufrgs.br

50

in our server and generate a results page that is made available online in a secret location
disclosed only to the user (Figure 5.3). This page includes the results from the technique
that was executed, as well as all other techniques already published by other users. This
gives users a chance to compare their techniques with others, and decide if they want to
publish the results or tweak their techniques and try again.

Each private results page generated from successful benchmark executions has
the format https://fbksd.inf.ufrgs.br/results/<key>, where <key>is a random
128-bit universally unique identifier (UUID) string. This key is used to uniquely identify a
benchmark execution, and should be provided by the user when requesting the publication

of the results.

5.3.4 Results Publication

Once the user is satisfied with the results, he can then request the publication
of the results, which will make them available online, alongside the results from the
other published techniques, in a location known by everyone (the public results page
https://fbksd.inf.ufrgs.br/results/).

To request the publication of results for a technique, the process is analogous
to the one explained in Figure 5.2. The difference is that the variable name should be
FBKSD_PUBLISH, and the variable value should be the key that identifies the results to be
published (obtained from the log page in Figure 5.3(b)).

5.4 Implementation Details

As explained in Section 5.2, one important non-functional requirement is isolating
the processes dealing with code submitted by the users. More specifically, we have to
assume the submitted code is potentially malicious, and should not have direct access to
sensitive data.

Although the GitLab CI system supports executing tasks inside Docker containers,
a new container is created for each task, and is destroyed when the task finishes. Since
we need to keep some data after tasks finish (e.g., results data, users metadata, etc.), the
containers need to access a database in a permanent storage location on the host machine

(outside the container), which is a security risk. To mitigate this problem, instead of giving

https://fbksd.inf.ufrgs.br/results/

51

Figure 5.2: Pages showing the steps needed to requesting a benchmark execution: click on
“CI/CD -> Pipelines” on the left panel (1) to open the page shown on (a), then click on “Run
Pipeline” (2) to open the “Run Pipeline” page shown on (b). Type the variable FBKSD_RUN
(3) and click on the “Run Pipeline” button (4). The pipeline will be queued for execution.

(a)

7 Projectsv Groups v Activity Milestones Snippets [w v Searchorjump to. a 0N & o @
B o rite onas Deyson > Box Fiter > Pipelines
Al'9 Pending 0 Running 0 Finished 9 Branches Tags CWLPEIAN Clear Runner Caches ClI Lint
£ Project
D Repository Status Pipeline Commit Stages
O Issues C (Greet] #9by ¢ master o 921316cc & 000023
© passed O)
L : Change gitlabciymito usein.. # 3 months ago
11 Merge Requests 0
#8by <z master -o-921316cc ~\ & 00:01:00
cire (Crt) v % 0
Change gitlab-ci.yml to use in. s & 3 months ago
Pipelines
Jobs #7by ¢ Vmaster o 921316cc ~ & 00:00:20
® failed @ 6 o
(@ feited] : Change gitlab-ciymito usein.. = £ 3 months ago
Schedules
Charts #6by pmaster o 921316cc 0
P ¥ N & 00:01:01
©passed | “: Change gitlabciymltousein.. =/ # 3months ago
G Operations
o #5by ¢ VPmaster o 921316cc & 00:00:58
0 wiki @failed | g D® ¢
=) [1ates] : Change gitlab-ciyml to use in. AL & 3 months ago
o6 Snippets
— #4by <z VPmaster -o-921316cc N & 00:00:59
¥ Settings Opassed] “: Change gitlabciymltousein.. =\ # 3months ago
—— #3by ¢ Vmaster o 921316cc A~ N\ & 00:00:58
(@passed D@ 6
[1ates] £ Change gitlabciymitousein.. &\ £ 3 months ago
— #2by <z Vmaster o 921316cc ~ & 00:00:26
Change gitlab-ci.yml to use in. = £ 3 months ago
m #by? Pmaster o 921316cc ot
® 3 months
O failed CDEEEEMED < Change gitlabciymito usein @ 3months ago
&« Collapse sidebar

(b)

- Projects v Groups v Activity Milestones Snippets ©~ Searchorjumpto, Qa 0 N & @ Qv
B BoxFilter Box Fiter > Pipelines
& Project Run Pipeline
B Repository
Run for
O Issues 0
master
11 Merge Requests o Existing branch name or tag
Variables
cl/co
FBKSD_RUN ut variable value e
Pipelines)
Jobs putvariablekey — Inputvariable value
— ed in CI/CD settings
Schedules
crerts Run Pipeline Gancel
& Collapse sidebar

the container that runs the untrusted code direct access to the database, we do so through
a separate process, permanently running on a different container. The communication
between these two processes — the one running the untrusted code, and the one that has
access to the database — is done through a TCP socket API.

Figure 5.4 shows the main components of the server application. The GitLab runner
process constantly polls the web server for new tasks. When a new task is available, the
runner runs it by starting the fbksd-ci process inside a new container. The fbksd-ci

process only has direct access to non-sensitive read-only data (e.g. scene files) and a cache

52

Figure 5.3: Pages showing the pipeline execution status: (a) shows the pipeline status with
its two tasks (“build” and “run”) successfully finished (green marks). Click on the “run”
task (5) to open the log shown on page (b). In the log, you can see the link for the private
results page.

(a)

Projects v Groups v Activity Milestones Snippets [©+ Searchorjumpto..

B BoxFilter
& Project 9 passed | Pipeline #8 triggered 3 months ago by #* Jonas Deyson
B Rz Change .gitlab-ci.yml to use include.
O Issu

© 2jobs for master in 1 minute (queued for 2 seconds)

r 3
ci/cp
Pipelines < 921316cc — @
Jobs
Pipeline Jobs 2
Build Run
G Operations) o ® o

Projects v Groups v Activity Milestones Snippets ~ search orjump to.
B BoxFilter ! #20 run Ret
o Job #20 triggered 3 months ago by ¢+ Jonas Deyson
Duration: 34 seconds
@ Repositor Timeout: 1h (from project))
Runner: FBKSD runner (#1)
O Issu
Commit 921316cc @
n
Change gitlab-ci.yml to use include.
Cl/CD
<) Pipeline #8 for master
Pip
run
Jobs
+ @ mn
@ t
O Wik
&% Sni
% S

storage location (e.g. for writing results data when running a benchmark). Sensitive data
containing user information, result images, etc., is kept in a location accessible only by
the fbksd-server process, which runs in a separate long-lived container. This process
exposes an API on a local TCP port that can be reached by the fbksd-ci process. Both
fbksd-ci and fbksd-server were implemented in Rust (RUST, 2019)

Since the techniques submitted by the users are compiled and executed inside a

53

Figure 5.4: Server application architecture. The arrows with solid lines represent call
directions (A — B means A calls B). Arrows with dashed lines represent data flow
directions. Blue squares represent processes.

Container
./ ..‘ https | [GitLab Web | NttPs | GitLab _ tcp
¥ < fboksd-ci
'*a' Server Runner
—— /:\ /I\ /I\
Internet : : :
| - \
| £5 L.
i - = i
! Read-only Cache FBKSD !
i Data Database :

Docker container, this container needs to have all the required libraries installed. Also,
techniques can have wildly different requirements, for example, a technique written in
Python may require a certain Python deep learning framework, while another written
in C++ does not. While we do not allow users to install their own packages inside the
container, we provide a list of different environments the user can choose from. To select a
different environment, the user only needs to edit the .gitlab-ci.yml file located in the
root directory of the techniques’ project according to the documentation we will provide.

Currently, we run both the GitLab web server and the GitLab runner in the same
physical machine. This is not an ideal setup because if the web server experiences high
load while a technique is being benchmarked, it can potentially interfere negatively on the
execution time results for that technique. Fortunately, GitLab already allows the web server
and the runner to reside in different machines, the only requirement is that the runner must
be able to reach the web server over https. We hope to be able to migrate the system to a
better setup in the future — separate dedicated machines to host the web server and the

runner — once the system matures.

5.5 Summary

This chapter presented a complementing system to the FBKSD SDK — an online
submission system that allows users to submit, benchmark, and compare results with other
techniques. Section 5.1 presented a motivation for the online system, showing that a local
solution — one that users download and execute in their own machines — while important,

only goes so far. Section 5.2 gave the requirements the online system needs to fulfil. The

54

main workflow users need to follow to use the online system is presented in Section 5.3.
The workflow has three main steps: registration, submission, and benchmark execution
and results reviewing (Subsections 5.3.1, 5.3.2, and 5.3.3, respectively). Finally, some
implementation details are presented in Section 5.4, including the overall architecture of

server application, and how it deals with security concerns.

55

6 CASE STUDY

To demonstrate the effectiveness of our system, we adapted a several denoising
methods for Monte Carlo rendering: LWR (REN et al., 2013), NFOR (BITTERLI et al.,
2016), LBF (KALANTARI; BAKO; SEN, 2015), RPF (SEN; DARABI, 2012), SBF (LI;
WU; CHUANG, 2012), RHF (DELBRACIO et al., 2014), NLM (ROUSSELLE; KNAUS;
ZWICKER, 2012), RDFC (ROUSSELLE; MANZI; ZWICKER, 2013), GEM (ROUS-
SELLE; KNAUS; ZWICKER, 2011), and KPCN (BAKO et al., 2017). For this, we have
instrumented the original source code provided by the rendering systems’ developers and
by the authors of these techniques with calls to our API. In the case of NFOR, the authors
only provided some high-level pseudo-code, so we had to implement it from scratch. All
results were generated on a 4 GHz i7-4790K CPU with 32 GB of RAM.

As rendering beck-ends to our system, We ported three well-known renderers used by
the research community: PBRT-v2 (PHARR; HUMPHREYS, 2010a), PBRT-v3 (PHARR;
JAKOB; HUMPHREYS, 2016), and Mitsuba (JAKOB, 2010). We have also developed a
special-purpose custom procedural renderer (Appendix C), which is capable of rendering
scenes consisting of arbitrary mathematical expressions. These four renderers provide a
good variety of scenes for our tests.

We provide several examples illustrating the use of the four rendering systems and
eight MC denoising algorithms. Some techniques use geometric features from the first
intersection point to help them preserve scene details. This strategy tends to perform
poorly on scenes with transparent glass and mirrors, as shown in Figure 6.1 (center). To
make comparisons among techniques fairer, we implemented modified versions of these
techniques using the first non-specular intersection point instead. We indicate the modified
versions by a suffix “-mf” (modified features) — Figure 6.1 (right).

Figure 6.7 shows results of a benchmark created with seven MC denoising techniques
and nine scenes from our scene pool. The scenes were selected as to form a good
representative set of situations that can challenge a denoiser. Measure One contains several
glossy highlights, and Measure One Mooving adds motion blur on top of that. Crown in
Glass contains intricate bumpy textures with sources of caustics, all behind a layer of glass.
Furry Bunny and Curly Hair contain fine geometric features that can easily be overblurred.
Bathroom is a typical interior scene with several fine textures reflected by mirrors. Country
Kitchen Night is a challenging global illumination scene with hidden light sources, being

prone to fireflies (artifacts consisting of bright single pixels scattered over the image).

56

Figure 6.1: Rendering using geometric features. Reference image (left). Overblurring on
transmitted scene details caused by relying on features at the first intersection point (center).
Using features from the first non-specular intersection allows the denoiser to preserve those
details (right).

Reference LBF LBF-mf

Finally, Glass of Water is a mostly specular scene with many specular highlights.

The first row of Figure 6.7 shows thumbnails of the reference images (computed
with a very large number of samples per pixel) for the selected scenes. Although the image
resolutions vary, their typical size is about 1,024 x 1,024 pixels. A small square highlights
a challenging region in each scene. The corresponding regions for the noisy result, for the
outputs generated by the various denoising techniques, and for the reference images are
shown in the subsequent rows. From the scenes shown in Figure 6.7, Bathroom, Glass of
Water, and Country Kitchen Night were rendered using Mitsuba; the remaining six were
rendered using PBRT v3. Figures 6.2 and 6.3 show examples of images generated with our

framework using PBRT v2 and our custom procedural renderer, respectively.

Figure 6.2: Images generated with our system using PBRT v2 and the techniques NFOR,
RHEF, and GEM, respectively.

NFOR RHF GEM

The results in Figure 6.7 show that all techniques have some degree of trouble with

glossy highlights, as shown in the scene Measure One. The glossy highlights are often

57

Figure 6.3: Examples of experimental scenes rendered with our system using a procedural
renderer. (left) Mandelbrot set. (right) Increasing sinusoidal bands (sin(x?)).

Mandelbrot (reference) RDFC Sinusoidal bands (reference) LBF-mf

MR |

overblurred or contain patchy artifacts. Glossy highlights are troublesome because the

extra features used by the denoisers to tell legitimate scene details from noise do not help
detecting the highlights. Another instance of this problem can be seen in Figure 6.4. The
subtle checker patterns seen on the reference image (Figure 6.4 (bottom right)) come from
a texture applied to the specular component of the material. This specular component is
not part of the albedo feature used by the denoisers, causing them the remove the detail.

Back to Figure 6.7, scene Measure One Moving is a motion blur version of the
previous scene. The strong motion blur effect makes the overblurring of the glossy
highlights less visible, but it may also lead to other situations that may cause denoisers to
produce overblur. All techniques have trouble preserving the fine motion blur details over
the noisy glossy background.

The Crown in Glass scene contains bump-mapping details behind a layer of glass.
Some techniques do a good job at preserving these details on the less noisy areas (e.g.,
NLM and RDFC). In darker, noisier regions, all techniques introduce some degree of
overblurring.

Very fine geometry details, as commonly found in hair (Curly Hair) and fur (Furry
Bunny) is also a frequent source of problems. Notice that even denoisers that rely on
geometric features, as in the case with LBF, can overblur these details — although hair and
fur are being captured by the geometric features, the high-frequency detail in the presence
of noise constitutes a challenge.

Scenes with very challenging illumination conditions — which translates to high
levels of noise — are also problematic. High-energy spikes (fireflies) are very difficult to
spread out while preserving energy, causing blob artifacts. As the Country Kitchen Night
scene example shows, some techniques like RDFC do a good job at spreading fireflies, but
small variations in the geometry of the scene can cause artifacts.

The results shown in Figure 6.7 and the previous discussion illustrate the potential of

58

Figure 6.4: Texture details in the specular component of some materials (see the checker
pattern on the light gray rectangle in the reference image) are not part of the “albedo”
feature, making the denoisers to remove such details.

Input NLM

LBF-mf LWR-mf NFOR Reference

our framework to provide qualitative assessments of MC denoising techniques, as well as to
identify potential limitations of current approaches. As such, our system provides relevant
information for guiding future research in the area. Our framework also provides a GUI for
interactive exploration of benchmark results, which include quantitative assessments based
on several metrics (MSE, tMSE, PSNR, SSIM, and execution time). Figure 6.6 shows the
values of rMSE, PSNR, and SSIM for all the examples in Figure 6.7.

The benchmark data corresponding to Figure 6.7 and our web-based GUI can be
download from <https://goo.gl/znHKRD>. We would like to encourage the reader to
download and explore such material. We also provide a video (<https://goo.gl/cmUqcS>)
showing a brief tutorial on how to interactively explore the benchmark results. Since
our GUI can used with the results obtained for any technique that uses our framework,
together they can be an invaluable tool for the academic and industry communities, as well
as for general users. Figure 6.5 shows a snapshot of some of the quantitative information
obtained when using our framework to render the Bathroom scene using the seven denoising
techniques shown in Figure 6.7. The graphs compare the performance of the techniques

according to PSNR, rMSE, SSIM, and execution time for 16, 32, 64, and 128 spp.

https://goo.gl/znHKRD
https://goo.gl/cmUqcS

59

Figure 6.5: Use of our system’s GUI for interactive exploration of the quantitative results

generated by a benchmark.

PSNR

i

//

I ——

NFOR ~-NLM = LWAm{ & RHF - RDFC o LBFmi - SBFmf

ssm

spp

o NFOR ~NLM = LWRm{ -+ RHF -RDFC o LBFmi - SBFmf

Figure 6.6: Quantitative results for the images shown in Figure
PSNR, and SSIM metrics.

MSE

se

> NFOR

+NUM = LWRm -+ RHF % RDFC o LBFmf SBFmf

Execution Time

spp

o NFOR

- NUM = LWRmI o« RHF - RDFC o LBFmf - SBFmf

6.7 according to the rMSE,

NLM LBF-mf RHF NFOR LWR-mf RDFC SBF-mf
SSP | (MSE PSNR SSIM| rMSE_ PSNR _ SSIM| rMSE PSNR SSIM| rMSE_ PSNR SSIM| rMSE PSNR _ SSIM| rMSE_ PSNR _ SSIM| MSE__ PSNR _ SSIM
16| 00068 334152 08559| 00088 323764 05240 00097 320924 05249 00055 340426 08894| 0009 521409 0S138| 00076 328546 08428| 00094 32002 08239
Curly Hair| 2| 0008 sasse oswo| oo e os| oo mave 08| 000 S22 0914|008 R7i06 0865|0005 309 0800|0002 BIT 0857
urly Hairl ol o2 seeo2 0900|0001 343698 0sss3| 0000 343007 osss2| 00031 3edoes 0994 | 000 336052 oss2| 00055 3158 0sess| 0007 34126 08676
128) 00021 384619 09451| 00043 350522 0907| 00032 365669 09207 | 00024 375243 09442| 00048 348144 08817| 00031 365432 09248| 00045 35782 08877
16| o0u4 29913 08230 00145 290600 08061 O0OIl 30118 08066| 00095 30232 08614| 00150 283846 O08I36| 00104 305375 08602| 00113 298822 0251
Measure 32| 00087 3L0691 08501| 0012 300560 08267 | 0007 317795 0859 | 00068 316495 08882| 00097 30.1050 08497 00071 319288 08%5| 00085 309448 08530
One 64| o065 323305 0s737| o00s2 313141 08555| 00054 332394 08899 00050 330332 09089 00064 3LSSIS 08%06| 00052 332241 09070 00063 320505 08744
128) o004 337154 o0s971| 00057 327334 o0sss1| 00038 347063 09138 | 00037 343675 09246| 00044 335219 09053| 00037 345333 09239| o004 3mas ossu
" 16| 00065 326101 08951| 00117 305025 08228| 00077 318505 05472 00073 319393 0897 | 00105 304283 08831 0.001 328040 0909 | 00052 315 08365
casure 32| oooss 33875 09093 | 00082 319737 08444 | 00049 339239 0890 | 00046 338510 09220 00069 322812 09021 00041 344505 09275 00057 330608 08808
One 64| 00031 353087 09226| 00057 333805 08671| 00032 358296 09225| 00031 355887 09382| 00049 339451 09180 00029 360028 09404| 00041 345003 0.9069
Moving 128 00024 369161 09363| 00039 349353 08939 | 00021 37.675 09406 00020 375113 09509| 00034 356560 09319| 00020 377502 09511 | 00029 360110 09122
16| 00318 268069 08119 01184 250307 08526 00852 240379 07900 00367 26,0398 08831| 00557 224632 07759| 00269 271138 09148| 00318 250894 08702
h 32| 008> 2se2is 08522| 00656 252395 0891| 00358 258946 08415| 00261 262785 09098 00342 243322 08333 00225 271502 09305 00291 25321 08809
Bathroom | (] 00115 0468 0s910| ooi0s 254054 09108 0023 26989 05775 00214 263141 09267| 00253 253100 03| 00158 265017 09%81| 0027 255323 08938
128) 00062 331411 09275| 00274 257599 09246| 00165 278578 09071| 00197 262213 09380| 00205 25955 09180| 00189 266566 09441| 00247 257199 09045
16| 00388 254848 07975] 00716 223721 | 07458| 00879 232257 07316| 00508 245644 07813] 00514 245724 07531] 00383 258028 08292| 01046 230870 0812
Crownin | 32| 00233 27608 08460| 0049 237700 07866| 00473 253741 079%| 00393 256622 OSI31| 00325 264063 O08281| 00278 2110 OSSTL| 00707 246677 07401
Glass 64| ooz 293780 osms| ooss 257598 08290 | o026 277020 084s3| 00276 269539 08413| 00217 279946 0858 | 00198 284026 08750 00473 259973 07846
128 o0ws 310564 09022| 00223 277330 o0se32| 00140 209011 08854 | 00178 286235 08705| 00145 205715 08813| 00138 298623 08959 | 00288 27.4464 08259
16| 00125 307409 08577| 00298 279409 08093 00175 207712 08426 00079 322501 09I31| 0021l 290407 08246| 00177 207484 08461| 001 203658 08348
Furry 32| ooosz 3233 0sos| 0028 200784 08344 | 006 313199 08791| 00058 33582 09313| 00185 296635 08395 00132 30895 08715 00125 309737 08718
Bunny 64| 00057 3300 09216 00134 30806 08704 0007 329385 09085 | 00043 348727 09457| 00157 303354 08532| 0009 32338 08991 00092 322647 08978
128) 00040 353538 o09a22| 00073 331554 09103 00050 345040 09328| 00031 362011 09579| 00126 3Llele osess| 00059 340126 09256 | 00067 334865 09173
16| 00005 441372 09507| 00009 420877 09791| 00007 430729 0.9784| 00005 440520 09795 | 00006 433547 0.9761| 0.0006 434443 09500| 00006 435586 0.9786
« 32| 00004 449731 09s1s| 00007 428350 09803 | 00006 439832 09%01| 00004 451488 09812| 00005 442466 09752| 00005 441985 O9811| 00004 450087 09809
Smoke 64| 00004 454864 09525 | 00005 439138 09812| 00005 448552 09513 | 00004 459017 09822| 00004 450737 09799 | 00004 450065 0.9519| 0.0004 453505 09822
128 00004 458068 09529 | 00005 444741 09817| 00004 454951 09821 0.0003 463656 09527| 00004 456013 09508 0.0004 456926 09525| 00003 463678 09828
Country 16| 00138 278739 08140 00133 285459 08743 0015 208702 08368 00146 250630 08335| 00250 242337 07679] 00112 304661 08835| 00104 288515 08689
: 32| 00098 29239 08340| 0009 302083 08920 00068 318874 0876 | 00085 301918 08639 00185 253280 07845 00066 324528 09055 00083 293832 08827
Kitchen 64| 00069 307094 08546 00060 318616 09046 | 00045 334613 09028 | 00056 319737 0894 | 00121 269291 08139| 00039 341304 09220 00075 296946 08841
Night 128] 00047 32430 08775 00039 334580 09179 | 00029 351759 09226| 00033 341158 09192| 0007 288330 08464| 00023 359318 09367| 01017 304582 08927
16| 00171 287763 09273 00755 250882 08977| 00439 265674 09106 00435 261671 09067| 00278 265721 09128| 00349 270671 09206| 0032 262145 08984
Glass of 32| oous 305121 09457| 00643 256950 09065 | 00324 273999 09271 | 00305 27053 09167 00209 278729 0925| 00265 276904 09287 00272 272131 09124
Water 64| 0078 322051 09586 | 00587 259437 09128| 00220 285058 09404 | 00247 276811 09266| 00147 290346 09415| 00215 284385 09381 0019 282481 09264
128 o002 33897 09691 | 00557 261498 09168 | 00l56 207450 0953 | 00182 285106 09394 | 00105 300555 09537| 00156 292368 09480 | 00180 286043 09313
T6] 00155 310847 08623] 00383 29233 08491] 00309 300674 08410] 0019 308281 08827] 00241 290212 08390] OOI7I 31092 08874] 00256 209513 08i6H
| 32| oo 325659 ossor| oozes 02569 oseor| oo 31es33 osvss| oomo 3zo7al 09047| ool7 032n4 osez| ooz 09065| o018 310806 08720
Averages: | 4l ooo7 saoa2 oor4| o019 314235 0so6| o016 331470 09068 | oolos 3317 09217| oo0 sise osser| 000% 09226 oo1 32030 0899
128) 00045 356427 09311| 0043 326057 o09u2| 00071 346354 09287 | 00078 343823 09364| 00087 32796 09075| 00073 344688 09370| 00264 324659 09060

6.1 Learning-Based Techniques

Since the FBKSD API includes a Python version, it enables implementing tech-
niques that use popular deep learning frameworks like TensorFlow (ABADI et al., 2016),
Keras (CHOLLET et al., 2015), and PyTorch (PASZKE et al
case, we adapted the KPCN (BAKO et al., 2017) technique to our Python API. The original

, 2017). To demonstrate such

technique’s source code provided by the authors is written in Python and TensorFlow. We
utilized the trained model included in the original source code, therefore, we did not train
the neural network specifically for FBKSD. Figure 6.8 shows some results.

One particular characteristic of KPCN that is not present in the other techniques

60

Figure 6.7: Results from a benchmark including seven MC denoising techniques and nine
scenes (from our scene pool) that pose challenges to denoising methods. All results were
generated with 128 samples per pixel.

Measure One Measure One Crown in Glass Furry Bunny Smoke Bathroom Country Kitchen Curly Hair Glass of Water
Moving Nignt

I3

Input

NLM

LBF-mf

RHF

N

||
gomn

NFOR

AL
L

SBF-mf RDFC LWR-mf

T33

Reference

- = = 5 : =
” - . ‘ = ¢ | i

61

Figure 6.8: Results from the KPCN technique using FBKSD’s Python API. The Golden
Killeroo (top row) and the Spaceship (bottom row) scenes were rendered with PBRT-v2
and Mitsuba, respectively. Using scenes from different renderers poses a bigger challenge
for CNN techniques trained with only one renderer.

(a) Reference (b) KPCN (16spp)

we adapted, is its sample feature requirements. This technique uses a diffuse/specular
decomposition (ZIMMER et al., 2015) approach, which separates the input image into its
diffuse and specular components, so they can be processed separately. FBKSD supports
this decomposition by providing a diffuse component sample feature, which can then be
subtracted from the full color feature to obtain the specular component.

Although our framework was not specifically designed for training learning-based
techniques, it can be used for this purpose by saving the sample values as multilayer HDR
images (e.g., OpenEXR (OPENEXR, 2019)) and using the images for training purposes.
Using FBKSD in this manner offers the advantage of allowing scenes from different
rendering systems to be included in the training set, which can make the resulting technique
more robust to differences in dynamic range and noise signatures resulting from different
renderers. Another approach for increasing the training set is to convert existing scenes
from one renderer to the others (HAGEMANN; OLIVEIRA, 2018), which would better

isolate the differences between different renderers.

62

6.2 Visualization Interface

We developed a web-based graphical user interface (GUI) to allow the visualization
the results generated by the system. The GUI was implemented using the Angular JavaScript
framework (ANGULAR, 2019). For now, the GUI allows qualitative and quantitative
quality assessments. The interface allows visual comparisons, visualization of error maps,
and charts for all the included image quality assessment (IQA) metrics (MSE, rMSE,
PSNR, and SSIM). Figure 6.9 shows visual comparison page, which allows interactive
visual inspection of the images. It displays the current selected image in the center, and
the miniatures for all the techniques at the bottom. The miniatures show a zoomed in
portion of the image centered at the cursor. As the user moves the cursor, the miniatures
change accordingly. The top bar contains the controls for changing the current scene, image
(reference image or the result image for one of the techniques), color buffer or IQA error
map, and the spp value for the current technique.

For the quantitative assessments, charts showing execution time and error values
generated by the IQA metrics are included in the GUI (Figure 6.10). The charts support
common user interactions: zooming, displaying the numeric values by hovering the cursor,
and showing/hiding lines. The charts can also be exported in several bitmap (PNG and

JPEG) and vector (SVG and PDF) formats suitable for publication.

6.3 Discussion

6.3.1 Communication Overhead

The communication overhead can be significant depending on how a technique
requests samples. If the entire budget is requested in a single call, the overhead is negligible.
It increases with the number of calls. If, for instance, each call requests a single sample, as
in the case of MDAS (HACHISUKA et al., 2008), the overhead becomes prohibitive for

anything but a very small number of samples and image sizes.

63

Figure 6.9: Image comparison panel included in the results visualization GUI. The top bar
contains several controls for selecting the current scene (1), image (2), buffer (3), and spp
value for the current technique (4). The central area shows the currently selected image,
and allows zooming and panning. At to bottom, the miniatures for all the techniques are
shown (7). The miniatures are zoomed in portions of the corresponding images centered at
the cursor position (5). The size of the miniatures can be adjusted (6).

—— S
Scene: Bathroom (Mitsuba) v Image:‘ RDFC v\ ColorBuffer v SPP: 16 32 64 | 128 Go to Charts

] A

SN

=

b’

weraarsinsanrannennaed
ut
] nununnlru-u.'nr'

(A

6.3.2 Memory Overhead

Our system utilizes two main strategies to minimize memory overhead: use a
shared buffer to transfer the sample data between renderer and technique; and avoid
allocating a full-sized buffer by using a tile-based transfer approach. However, the current
implementation of some techniques do not leverage this design, and try to store all sample
data in another buffer allocated locally. This is the case of the RPF (SEN; DARABI, 2012)
technique, for example.

For such techniques, the memory overhead can be significant. For example,
rendering a full HD image (1920 x 1080) with 256 samples per pixel, and assuming the
technique configures a sample layout with 14 components, the total amount of main memory

required to store all sample data at once in a single buffer would be around 27.7 GB.

64

Figure 6.10: Charts panel included in results visualization GUI. The top bar contains
controls for selecting the current scene (1), changing the execution time unit to seconds
or minutes (2), and showing equal-time comparison charts (3). Each individual chart
also supports user interaction: showing numeric values by hovering the cursor (4),
showing/hiding individual lines by clicking on the corresponding label (5), and exporting
the chart in several bitmap and vector formats by opening the pop-up menu (6).

Scenes Glass of Water (mitsuba) * Execution time = seconds # Equal-time comparison

Execution Time = (JE SSIM

RDFC: 30.4290 ~

Gaussian: 10.3140 »
*Box 86890 | //
4 B8 »

4 8 1
SPP

RDFC -+~ Box Gaussian RDFC - Box Gaussian

MSE PSNR

PSNR

MSE

16 32 4 8 1
sPp or

RDFC -+ Box Gaussian RDFC -+ Box Gaussian

6.3.3 Python API Overhead

When developing a technique using our Python API, a performance loss is naturally
expected when compared to a C++ implementation. Our Python API is just a thin wrapper
(binding) over the native C++ one, so the loss in performance will come mainly from the
technique’s Python code itself, not from the API calls (inherent overhead).

To evaluate the inherent overhead, we compared the execution times of a simple
box filter implemented in C++ vs one implemented in Python (Figure 6.11). The execution
time overhead is negligible, and as expected, there is no difference in image quality.

As a technique becomes more complex, the performance hit is expected to become
more noticeable, since more Python code is executed. A good rule-of-thumb to keep in
mind when developing a technique in Python is to avoid raw loops and use numpy functions
whenever possible. If a numpy function is not available for the desired purpose, and the

overhead of a custom Python implementation is too high, it is possible to implement the

65

Figure 6.11: Execution time in seconds of a simple box filter technique written using our
C++ API (CppBox) vs the Python version (PyBox). The overhead is negligible.

Execution Time

50
40

30

seconds

20

10

2 4 8 16 32 64 128
SPP

PyBox - CppBox

function in C/C++ and call it from Python using Python’s cfypes mechanism.

6.4 Summary

This chapter presented a case study to demonstrate the use of our framework. We
provided results from a good variety of denoising techniques for Monte Carlo Rendering,
which we adapted to our framework, including a recent CNN-based technique (Section 6.1).
To serve as rendering back-end for our system, we also adapted four rendering systems.
The results visualization interface included with FBKSD was presented in Section 6.2,
showing its image comparison tool and charting features. We finished with a discussion on

types of overhead that can occur and how to avoid them (Section 6.3).

66

7 CONCLUSIONS AND FUTURE WORK

This thesis presented the FBKSD system — A Framework for Developing and
Benchmarking Sampling and Denoising Algorithms for Monte Carlo Rendering — which
allows developers to implement sampling and denoising algorithms in a general, renderer-
agnostic way. This makes it straightforward to perform extensive benchmarks involving
various algorithms across different renderers. Our system contains both a local version
consisting of an SDK that allows users to develop and test their techniques in their
own machines, and an online submission system that allows submitted techniques to be
automatically benchmarked and published.

FBKSD initially supports three well known rendering systems (PBRT v3, PBRT
v2, Mitsuba), as well as a custom procedural renderer. The system is flexible enough to
allow the addition of new renderers in the future. Having a good selection of renderers
increases the availability of scenes and also poses a more challenging test for techniques,
specially learning-based ones, which are usually trained using only one rendering system.

To demonstrate the capabilities of our framework, we adapted several denois-
ing techniques to our API (LWR (REN et al., 2013), NFOR (BITTERLI et al., 2016),
LBF (KALANTARI; BAKO; SEN, 2015), RPF (SEN; DARABI, 2012), SBF (LI; WU;
CHUANG, 2012), RHF (DELBRACIO et al., 2014), NLM (ROUSSELLE; KNAUS;
ZWICKER, 2012), RDFC (ROUSSELLE; MANZI; ZWICKER, 2013), GEM (ROUS-
SELLE; KNAUS; ZWICKER, 2011), and KPCN (BAKO et al., 2017)), and presented a
case study with an evaluation of the results produced. This significant set of techniques
form a good representation of the techniques in the field, which demonstrates the versatility
of our framework.

In combination with the online submission system, FBKSD greatly simplifies the
task of developing new techniques and comparing existing ones, which is an invaluable

addition to the rendering research community.

7.1 Future Work

The current result visualization page provided with our system has some limitations.
The main one is that it does not provide a ranking of the techniques. This could be
implemented in the future by ordering the techniques by error and assigning a score based

on the relative position of each technique for each scene.

67

Another improvement to the results page would be to add a classification system for
the scenes. The basic idea is to assign tags for each scene, denoting which characteristics
each scene contain. Scene characteristics can include, for example, the presence of certain
effects (e.g., motion blur, depth-of-field, caustics). This extra information would allow a
better classification of the benchmarked techniques according the their performance for
each effect. Implementing this feature requires changing both the FBKSD core and the
visualization page. The core needs to read the tags from the scene metadata files and save
them to the output files used to feed the visualization page. The visualization page needs
to read this new data and implement a convenient way of searching and classifying the

existing results according to the tags.

68

REFERENCES

ABADI, M. et al. Tensorflow: A system for large-scale machine learning.

In: Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation. Berkeley, CA, USA: USENIX Association, 2016.
(OSDI’'16), p. 265-283. ISBN 978-1-931971-33-1. Available from Internet:
<http://dl.acm.org/citation.cfm?id=3026877.3026899>.

ANDERSON, L. et al. A Domain-Specific Language for Monte Carlo Sampling. ACM
Trans. Graph., v. 36, n. 4, jul 2017.

ANGULAR. 2019. Available from Internet: <https://angular.io>.

APPEL, A. Some techniques for shading machine renderings of solids. In: Proceedings
of the April 30-May 2, 1968, Spring Joint Computer Conference. New York,

NY, USA: ACM, 1968. (AFIPS ’68 (Spring)), p. 37—45. Available from Internet:
<http://doi.acm.org/10.1145/1468075.1468082>.

ARVO, J. The role of functional analysis in global illumination. In: Rendering
Techniques ‘95. [S.1.]: Springer-Verlag, 1995. p. 115-126.

ARVO, J.; KIRK, D. Particle transport and image synthesis. In: Proceedings of the 17th
Annual Conference on Computer Graphics and Interactive Techniques. New York,
NY, USA: ACM, 1990. (SIGGRAPH ’90), p. 63—66. ISBN 0-89791-344-2. Available from
Internet: <http://doi.acm.org/10.1145/97879.97886>.

BAKER, S. et al. Middlebury Flow Accuracy and Interpolation Evaluation. 2011.
Available from Internet: <http://vision.middlebury.edu/flow/eval/>.

BAKER, S. et al. A database and evaluation methodology for optical flow. IJCV, Kluwer
Academic Publishers, Hingham, MA, USA, v. 92, n. 1, p. 1-31, mar. 2011. ISSN
0920-5691.

BAKO, S. et al. Kernel-predicting convolutional networks for denoising monte carlo
renderings. ACM Transactions on Graphics (TOG) (Proceedings of SIGGRAPH
2017), v. 36, n. 4, July 2017.

BARRON, J. L.; FLEET, D. J.; BEAUCHEMIN, S. S. Performance of optical flow
techniques. IJCV, Kluwer Academic Publishers, Hingham, MA, USA, v. 12, n. 1, p.
43-77, feb. 1994. ISSN 0920-5691.

BAUSZAT, P. et al. General and robust error estimation and reconstruction for monte carlo
rendering. Computer Graphics Forum, v. 34, n. 2, p. 597-608, 2015. ISSN 1467-8659.

BITBUCKET. 2019. Available from Internet: <https://bitbucket.org>.

BITTERLLI, B. et al. Nonlinearly Weighted First-order Regression for Denoising Monte
Carlo Renderings. Computer Graphics Forum, v. 35, n. 4, p. 107-117, jul 2016. ISSN
01677055.

BUCK, I. et al. Brook for gpus: Stream computing on graphics hardware. ACM Trans.
Graph., ACM, New York, NY, USA, v. 23, n. 3, p. 777-786, aug. 2004. ISSN 0730-0301.

http://dl.acm.org/citation.cfm?id=3026877.3026899
https://angular.io
http://doi.acm.org/10.1145/1468075.1468082
http://doi.acm.org/10.1145/97879.97886
http://vision.middlebury.edu/flow/eval/
https://bitbucket.org

69

CHAITANYA, C. R. A. et al. Interactive reconstruction of monte carlo image sequences
using a recurrent denoising autoencoder. ACM Trans. Graph., ACM, New York, NY,
USA, v. 36, n. 4, p. 98:1-98:12, jul. 2017. ISSN 0730-0301. Available from Internet:
<http://doi.acm.org/10.1145/3072959.3073601>.

CHIU, K.; SHIRLEY, P.; WANG, C. Graphics gems iv. In:. HECKBERT, P. S.
(Ed.). San Diego, CA, USA: Academic Press Professional, Inc., 1994. chp.
Multi-jittered Sampling, p. 370-374. ISBN 0-12-336155-9. Available from Internet:
<http://dl.acm.org/citation.cfm?id=180895.180927>.

CHOLLET,F. et al. Keras. 2015. <https://keras.io>.

COOK, R. L. Stochastic sampling in computer graphics. ACM Trans. Graph., ACM,
New York, NY, USA, v. 5, n. 1, p. 51-72, jan. 1986. ISSN 0730-0301. Available from
Internet: <http://doi.acm.org/10.1145/7529.8927>.

COOK, R. L.; PORTER, T.; CARPENTER, L. Distributed ray tracing. In: Proc.
SIGGRAPH ’84. [S.I.: s.n.], 1984. p. 137-145. ISSN 0097-8930.

CROW, F. C. The aliasing problem in computer-generated shaded images. Commun.
ACM, ACM, New York, NY, USA, v. 20, n. 11, p. 799-805, nov. 1977. ISSN 0001-0782.
Available from Internet: <http://doi.acm.org/10.1145/359863.359869>.

DELBRACIO, M. et al. Boosting monte carlo rendering by ray histogram fusion. ACM
Trans. Graph., ACM, New York, NY, USA, v. 33, n. 1, p. 8:1-8:15, feb. 2014. ISSN
0730-0301.

DIPPE, M. A. Z.; WOLD, E. H. Antialiasing through stochastic sampling. SIGGRAPH
Comput. Graph., ACM, New York, NY, USA, v. 19, n. 3, p. 69-78, jul. 1985. ISSN
0097-8930. Available from Internet: <http://doi.acm.org/10.1145/325165.325182>.

DOBKIN, D. P.; EPPSTEIN, D.; MITCHELL, D. P. Computing the discrepancy with
applications to supersampling patterns. ACM Trans. Graph., ACM, New York, NY,
USA, v. 15, n. 4, p. 354-376, oct. 1996. ISSN 0730-0301. Available from Internet:
<http://doi.acm.org/10.1145/234535.234536>.

DOBKIN, D. P.; MITCHELL, D. P. Random-edge discrepancy of supersampling patterns.
In: Graphics Interface ’93. [S.I.: s.n.], 1993. p. 62-69.

DOCKER. 2019. Available from Internet: <https://www.docker.com>.

DUNBAR, D.; HUMPHREYS, G. A spatial data structure for fast poisson-
disk sample generation. ACM Trans. Graph., ACM, New York, NY, USA,
v. 25, n. 3, p. 503-508, jul. 2006. ISSN 0730-0301. Available from Internet:
<http://doi.acm.org/10.1145/1141911.1141915>.

DUTRE, P. et al. Advanced Global Illumination. [S.1.]: AK Peters Ltd, 2006. ISBN
1568813074.

EBEIDA, M. S. et al. Efficient maximal poisson-disk sampling. ACM Trans. Graph.,
ACM, New York, NY, USA, v. 30, n. 4, p. 49:1-49:12, jul. 2011. ISSN 0730-0301.
Available from Internet: <http://doi.acm.org/10.1145/2010324.1964944>.

http://doi.acm.org/10.1145/3072959.3073601
http://dl.acm.org/citation.cfm?id=180895.180927
https://keras.io
http://doi.acm.org/10.1145/7529.8927
http://doi.acm.org/10.1145/359863.359869
http://doi.acm.org/10.1145/325165.325182
http://doi.acm.org/10.1145/234535.234536
https://www.docker.com
http://doi.acm.org/10.1145/1141911.1141915
http://doi.acm.org/10.1145/2010324.1964944

70

EROFEEV, M. et al. VideoMatting. 2014. Available from Internet: <http:
/lvideomatting.com/>.

EROFEEV, M. et al. Perceptually motivated benchmark for video matting. In: XIE, X.;
JONES, M. W.; TAM, G. K. L. (Ed.). BMVA Press Proc. [S.I.: s.n.], 2015. p. 99.1-99.12.
ISBN 1-901725-53-7.

FERWERDA, J. A. Three varieties of realism in computer graphics. In. ROGOWITZ,
B. E.; PAPPAS, T. N. (Ed.). Human Vision and Electronic Imaging VIII. [S.1.]: SPIE,
2003. v. 5007, p. 290 — 297.

GHARBI, M. et al. Sample-based monte carlo denoising using a kernel-splatting network.
ACM Trans. Graph., ACM, v. 38, n. 4, p. 125:1-125:12, 2019.

GITHUB. 2019. Available from Internet: <https://github.com>.
GITLAB. 2019. Available from Internet: <https://gitlab.com>.

GOODFELLOW, I. et al. Generative adversarial nets. In:. GHAHRAMANI, Z. et
al. (Ed.). Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2014. p. 2672-2680. Available from Internet: <http://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf>.

HACHISUKA, T. et al. Multidimensional adaptive sampling and reconstruction for ray
tracing. ACM TOG, v. 27, n. 212, p. 1, 2008. ISSN 07300301.

HAGEMANN, L.; OLIVEIRA, M. M. Scene conversion for physically-based renderers. In:
2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).
[S.1.: s.n.], 2018. p. 226-233.

HECK, D.; SCHLOMER, T.; DEUSSEN, O. Blue noise sampling with controlled aliasing.
ACM Trans. Graph., ACM, New York, NY, USA, v. 32, n. 3, p. 25:1-25:12, jul. 2013.
ISSN 0730-0301.

HECKBERT, P. S. Adaptive radiosity textures for bidirectional ray tracing. SIGGRAPH
Comput. Graph., ACM, New York, NY, USA, v. 24, n. 4, p. 145-154, sep. 1990. ISSN
0097-8930. Available from Internet: <http://doi.acm.org/10.1145/97880.97895>.

JAKOB, W. Mitsuba renderer. 2010. Http://www.mitsuba-renderer.org.

JAROSZ, W. et al. Orthogonal array sampling for monte carlo rendering. Comput. Graph.
Forum, v. 38, p. 135-147, 2019.

JONES, T. R. Efficient generation of poisson-disk sampling patterns. Journal of
Graphics Tools, Taylor & Francis, v. 11, n. 2, p. 27-36, 2006. Available from Internet:
<https://doi.org/10.1080/2151237X.2006.10129217>.

KAILKHURA, B. et al. Stair blue noise sampling. ACM Trans. Graph., ACM, v. 35,
n. 6, p. 248:1-248:10, nov. 2016. ISSN 0730-0301.

KAIJIYA, J. T. The rendering equation. SIGGRAPH’86, ACM, New York, NY, USA,
v. 20, n. 4, p. 143-150, aug. 1986. ISSN 0097-8930.

http://videomatting.com/
http://videomatting.com/
https://github.com
https://gitlab.com
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://doi.acm.org/10.1145/97880.97895
https://doi.org/10.1080/2151237X.2006.10129217

71

KALANTARI, N. K.; BAKO, S.; SEN, P. A machine learning approach for filtering Monte
Carlo noise. ACM Trans. Graph., v. 34, n. 4, p. 122:1-122:12, jul 2015. ISSN 07300301.

KALANTARI, N. K.; SEN, P. Fast generation of approximate blue noise point sets.
Comput. Graph. Forum, The Eurographs Association & John Wiley & Sons,
Ltd., Chichester, UK, v. 31, n. 4, p. 1529-1535, jun. 2012. ISSN 0167-7055. Available
from Internet: <http://dx.doi.org/10.1111/j.1467-8659.2012.03149.x>.

KALANTARLI, N. K.; SEN, P. Removing the noise in monte carlo rendering with general
image denoising algorithms. Computer Graphics Forum, Blackwell Publishing Ltd,
v. 32, n. 2ptl, p. 93-102, 2013. ISSN 1467-8659.

KENSLER, A. Correlated multi-jittered sampling. In: Pixar Technical Memo 13-01,
Pixar Animation Studios. [S.1.: s.n.], 2013.

KETTUNEN, M.; HiRKONEN, E.; LEHTINEN, J. Deep convolutional reconstruction
for gradient-domain rendering. ACM Trans. Graph., ACM, New York, NY, USA,

v. 38, n. 4, p. 126:1-126:12, jul. 2019. ISSN 0730-0301. Available from Internet:
<http://doi.acm.org/10.1145/3306346.3323038>.

KOPF, J. et al. Recursive wang tiles for real-time blue noise. ACM Trans. Graph., ACM,
New York, NY, USA, v. 25, n. 3, p. 509-518, jul. 2006. ISSN 0730-0301. Available from
Internet: <http://doi.acm.org/10.1145/1141911.1141916>.

KUZNETSOV, A.; KALANTARI, N. K.; RAMAMOORTH]I, R. Deep adaptive sampling
for low sample count rendering. Computer Graphics Forum, v. 37, n. 4, p. 35-44, 2018.

LAFORTUNE, E. P.; WILLEMS, Y. D. Bi-Directional Path Tracing. In: Proceedings
of the 3rd international conference on Computational graphics and Visualization
techniques (COMPUGRAPHICS °93. [S.1.: s.n.], 1993. p. 145-153.

LAGAE, A.; DUTRE, P. An alternative for wang tiles: Colored edges versus
colored corners. ACM Trans. Graph., ACM, New York, NY, USA, v. 25,
n. 4, p. 1442—-1459, oct. 2006. ISSN 0730-0301. Available from Internet:
<http://doi.acm.org/10.1145/1183287.1183296>.

LAGAE, A.; DUTRé, P. A comparison of methods for generating poisson
disk distributions. Computer Graphics Forum, Blackwell Publishing Ltd,
v. 27, n. 1, p. 114-129, 2008. ISSN 1467-8659. Available from Internet:
<http://dx.doi.org/10.1111/j.1467-8659.2007.01100.x>.

LEE, M. E.; REDNER, R. A. Filtering: A note on the use of nonlinear filtering in
computer graphics. IEEE Comput. Graph. Appl., IEEE Computer Society Press, Los
Alamitos, CA, USA, v. 10, n. 3, p. 23-29, may 1990. ISSN 0272-1716.

LI, T.-M.; WU, Y.-t.; CHUANG, Y.-y. SURE-based optimization for adaptive sampling
and reconstruction. ACM Trans. Graph., v. 31, p. 1, 2012. ISSN 07300301.

MARK, W. R. et al. Cg: A system for programming graphics hardware in a c-like language.
ACM Trans. Graph., ACM, New York, NY, USA, v. 22, n. 3, p. 896-907, jul. 2003. ISSN
0730-0301.

http://dx.doi.org/10.1111/j.1467-8659.2012.03149.x
http://doi.acm.org/10.1145/3306346.3323038
http://doi.acm.org/10.1145/1141911.1141916
http://doi.acm.org/10.1145/1183287.1183296
http://dx.doi.org/10.1111/j.1467-8659.2007.01100.x

72

MITCHELL, D. P. Spectrally optimal sampling for distribution ray tracing. SIGGRAPH
Comput. Graph., ACM, New York, NY, USA, v. 25, n. 4, p. 157-164, jul. 1991. ISSN
0097-8930. Available from Internet: <http://doi.acm.org/10.1145/127719.122736>.

MITCHELL, D. P. Ray tracing and irregularities of distribution. In: In Third
Eurographics Workshop on Rendering. [S.1.: s.n.], 1992. p. 61-69.

MITCHELL, D. P. Consequences of stratified sampling in graphics. In: Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive Techniques.
New York, NY, USA: ACM, 1996. (SIGGRAPH ’96), p. 277-280. ISBN 0-89791-746-4.
Available from Internet: <http://doi.acm.org/10.1145/237170.237265>.

MITCHELL, S. A. et al. Spoke-darts for high-dimensional blue-noise sampling. ACM
Trans. Graph., ACM, v. 37, n. 2, p. 22:1-22:20, may 2018. ISSN 0730-0301.

MOON, B.; CARR, N.; YOON, S.-E. Adaptive rendering based on weighted local
regression. ACM Trans. Graph., ACM, New York, NY, USA, v. 33, n. 5, p. 170:1-170:14,
sep. 2014. ISSN 0730-0301.

MULLAPUDI, R. T. et al. Automatically scheduling halide image processing pipelines.
ACM Trans. Graph., ACM, New York, NY, USA, v. 35, n. 4, p. 83:1-83:11, jul. 2016.
ISSN 0730-0301.

NIEDERREITER, H. Random Number Generation and quasi-Monte Carlo Methods.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1992. ISBN
0-89871-295-5.

OPENEXR. 2019. Available from Internet: <https://www.openexr.com>.

PASZKE, A. et al. Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop.
[S.1.: s.n.], 2017.

PERRIER, H. et al. Sequences with low-discrepancy blue-noise 2-d projections. Comput.
Graph. Forum, v. 37, p. 339-353, 2018.

PHARR, M.; HUMPHREYS, G. Physically Based Rendering, from Theory to
Implementation. 2. ed. [S.1.]: Morgan Kaufmann, 2010.

PHARR, M.; HUMPHREYS, G. Physically Based Rendering, Second Edition: From
Theory To Implementation. 2nd. ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2010. ISBN 0123750792, 9780123750792.

PHARR, M.; JAKOB, W.; HUMPHREYS, G. Physically Based Rendering, from
Theory to Implementation. 3. ed. [S.].]: Morgan Kaufmann, 2016.

RAGAN-KELLEY, J. et al. Decoupling algorithms from schedules for easy optimization
of image processing pipelines. ACM Trans. Graph., ACM, New York, NY, USA, v. 31,
n. 4, p. 32:1-32:12, jul. 2012. ISSN 0730-0301.

REINERT, B. et al. Projective blue-noise sampling. Computer Graphics Forum, 2015.
ISSN 1467-8659.

REN, P. et al. Global illumination with radiance regression functions. ACM Trans.
Graph., v. 32, p. 1, 2013. ISSN 07300301.

http://doi.acm.org/10.1145/127719.122736
http://doi.acm.org/10.1145/237170.237265
https://www.openexr.com

73

RHEMANN, C. et al. Alpha Matting Evaluation Website. 2009. Available from Internet:
<http://www.alphamatting.com/eval_25.php>.

RHEMANN, C. et al. A perceptually motivated online benchmark for image matting. In:
CVPR. [S.1.: s.n.], 2009. p. 1826—1833. ISBN 978-1-4244-3992-8.

ROUSSELLE, E.; KNAUS, C.; ZWICKER, M. Adaptive sampling and reconstruction
using greedy error minimization. ACM Trans. Graph., v. 30, n. 6, dec. 2011.

ROUSSELLE, F.; KNAUS, C.; ZWICKER, M. Adaptive rendering with non-local means
filtering. ACM Trans. Graph., ACM, New York, NY, USA, v. 31, n. 6, p. 195:1-195:11,
nov. 2012. ISSN 0730-0301.

ROUSSELLE, F.; MANZI, M.; ZWICKER, M. Robust denoising using feature and color
information. Comput. Graph. Forum, v. 32, n. 7, p. 121-130, 2013.

RUSHMEIER, H. E.; WARD, G. J. Energy preserving non-linear filters. In: Proc.
SIGGRAPH °94. [S.1.: s.n.], 1994. p. 131-138. ISBN 0-89791-667-0.

RUST. 2019. Available from Internet: <https://www.rust-lang.org>.

SAMET, H. Sorting in space: Multidimensional, spatial, and metric data structures for
computer graphics applications. In: ACM SIGGRAPH ASIA 2010 Courses. [S.l.: s.n.],
2010. (SA ’10), p. 3:1-3:52. ISBN 978-1-4503-0527-3.

SCHARSTEIN, D.; SZELISKI, R. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. IJCV, Kluwer Academic Publishers, Hingham, MA, USA,
v. 47, n. 1-3, p. 7-42, abr. 2002. ISSN 0920-5691.

SCHARSTEIN, D.; SZELISKI, R.; HIRSCHMiLLER, H. Middlebury Stereo Vision
Page. 2002. Available from Internet: <http://vision.middlebury.edu/stereo/>.

SEN, P.; DARABI, S. On filtering the noise from the random parameters in Monte Carlo
rendering. ACM Trans. Graph., v. 31, n. 3, p. 1-15, may 2012. ISSN 07300301.

SHIRLEY, P. Discrepancy as a quality measure for sample distributions. In: In
Eurographics ’91. [S.1.]: Elsevier Science Publishers, 1991. p. 183-194.

SOBOL, 1. On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics,

v. 7, n. 4, p. 86 — 112, 1967. ISSN 0041-5553. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/0041555367901449>.

STEIN, C. M. Estimation of the mean of a multivariate normal distribution. Ann. Statist.,
The Institute of Mathematical Statistics, v. 9, n. 6, p. 11351151, 11 1981.

VEACH, E. Robust monte carlo methods for light transport simulation. Thesis (PhD),
Stanford, CA, USA, 1998. AAI9837162.

VEACH, E.; GUIBAS, L. J. Metropolis light transport. In: Proc. SIGGRAPH ’97. [S.1.:
s.n.], 1997. p. 65-76. ISBN 0-89791-896-7.

http://www.alphamatting.com/eval_25.php
https://www.rust-lang.org
http://vision.middlebury.edu/stereo/
http://www.sciencedirect.com/science/article/pii/0041555367901449

74

VOGELS, T. et al. Denoising with kernel prediction and asymmetric loss functions. ACM
Trans. Graph., ACM, New York, NY, USA, v. 37, n. 4, p. 124:1-124:15, jul. 2018. ISSN
0730-0301. Available from Internet: <http://doi.acm.org/10.1145/3197517.3201388>.

WEI, L.-Y. Parallel poisson disk sampling. ACM Trans. Graph., ACM, New York, NY,
USA, v. 27, n. 3, p. 20:1-20:9, aug. 2008. ISSN 0730-0301. Available from Internet:
<http://doi.acm.org/10.1145/1360612.1360619>.

WEI, L.-Y.; WANG, R. Differential domain analysis for non-uniform sampling. ACM
Trans. Graph., v. 30, p. 50, 2011.

WHITTED, T. An improved illumination model for shaded display. Commun. ACM,
ACM, New York, NY, USA, v. 23, n. 6, p. 343-349, jun. 1980. ISSN 0001-0782. Available
from Internet: <http://doi.acm.org/10.1145/358876.358882>.

XU, B. et al. Adversarial monte carlo denoising with conditioned auxiliary feature. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2019), v. 38, n. 6,
p. 224:1-224:12, 2019.

YELLOTT, J. Spectral consequences of photoreceptor sampling in the rhesus
retina. Science, American Association for the Advancement of Science, v. 221,
n. 4608, p. 382-385, 1983. ISSN 0036-8075. Available from Internet: <http:
//science.sciencemag.org/content/221/4608/382>.

YUKSEL, C. Sample elimination for generating poisson disk sample sets. Comput.
Graph. Forum, v. 34, n. 2, p. 25-32, may 2015. ISSN 0167-7055.

Zhou Wang et al. Image quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing, v. 13, n. 4, p. 600-612, April 2004.

ZIMMER, L. H. et al. Path-space motion estimation and decomposition for robust
animation filtering. Comput. Graph. Forum, v. 34, p. 131-142, 2015.

ZWICKER, M. et al. Recent Advances in Adaptive Sampling and Reconstruction for
Monte Carlo Rendering. Computer Graphics Forum, v. 34, n. 2, p. 667-681, may 2015.
ISSN 01677055.

http://doi.acm.org/10.1145/3197517.3201388
http://doi.acm.org/10.1145/1360612.1360619
http://doi.acm.org/10.1145/358876.358882
http://science.sciencemag.org/content/221/4608/382
http://science.sciencemag.org/content/221/4608/382

[N e Y R S

75

APPENDIX A — FBKSD C++ API REFERENCE

In this chapter, we provide FBKSD C++ API. To access the complete documentation,

visit https://fbksd.github.io/fbksd/docs/latest. The main repository for the FBKSD SDK is
available at https://github.com/fbksd/fbksd.

A.1 Denoising Technique Example

For developing denoisers or samplers, see the BenchmarkClient class. It contains

the main API used to communicate with the benchmark server. The code below shows a

simple box filter implemented using the client API.

#include <fbksd/client/BenchmarkClient.h>
using namespace fbksd;
int main(int argc, char* argv[])

{

// STEP 1: Instantiate the client object and get scene information.
BenchmarkClient client(argc, argv);

SceneInfo scene = client.getSceneInfo();

const auto w = scene.get<int64_t>("width");

const auto h = scene.get<int64_t>("height");

const auto spp = scene.get<int64_t>("max_spp");

// STEP 2: Set the sample layout.

SampleLayout layout;

layout ("COLOR_R") ("COLOR_G") ("COLOR_B");
client.setSampleLayout(layout);

float* result = client.getResultBuffer();

// STEP 3: Request samples.

client.evaluateSamples(SPP(spp), [&](const BufferTile& tile)

{
for(auto y = tile.beginY(Q); y < tile.endY(Q); ++y)
for(auto x = tile.beginX(); x < tile.endX(Q); ++x)
{
float* pixel = &result[y*w*3 + x*3];
for(int s = 0; s < spp; ++s)
{
float* sample = tile(x, y, S);
pixel[0] += sample[0];
pixel[1] += sample[1];
pixel[2] += sample[2];
}
}
b;

// STEP 4: Reconstruct the image.
const float sppInv = 1.f / (float)spp;
for(int64_t y = 0; y < h; ++y)
for(int64_t x = 0; X < W; ++X)

{
float* pixel = &result[y*w*3 + x*3];
pixel[0] *= spplnv;
pixel[1l] *= sppInv;
pixel[2] *= sppInv;
}

// STEP 5: Send result and finish.
client.sendResult();
return 0;

https://fbksd.github.io/fbksd/docs/latest
https://github.com/fbksd/fbksd

0NN AW =

el

76

A.2 Sampling Technique Example

Samplers are also implemented using BenchmarkClient class, the differences is
that a sampler needs to write random parameters for each sample. To accomplish this,
the method BenchmarkClient: :evaluateInputSamples() is used. It receives two
callback functions, where the first callback is used to generate the sample positions, and
the second one is used to consume the sample values (as in the denoiser example).

The example below shows an example of a sampling technique using our API. Note
that besides the RGB color, the sample layout contains the random parameters IMAGE_X,
IMAGE_Y, etc., which are all set as INPUT. These are the random parameters the sampler

needs to generate.

#include <fbksd/client/BenchmarkClient.h>
using namespace fbksd;

// Function this sampler uses to generate random sample positions.
float randomFloat();

int main(int argc, char* argv[])
{
// STEP 1: Instantiate the client object and get scene information.
BenchmarkClient client(argc, argv);
SceneInfo scene = client.getSceneInfo();
const auto w = scene.get<int64_t>("width");
const auto h = scene.get<int64_t>("height");
const auto spp = scene.get<int64_t>("max_spp");
// STEP 2: Set the sample layout.
SampleLayout layout;
layout ("IMAGE_X", SampleLayout: :INPUT)
("IMAGE_X", SampleLayout: :INPUT)
("LENS_U", Samplelayout::INPUT)
("LENS_V", SampleLayout: :INPUT)
("TIME", SampleLayout::INPUT)
("LIGHT_X", SampleLayout: :INPUT)
("LIGHT_Y", SampleLayout: :INPUT)
("COLOR_R™)
("COLOR_G™)
("COLOR_B™);
client.setSampleLayout(layout);
float* result = client.getResultBuffer();
// STEP 3: Request samples.
client.evaluateSamples(SPP(spp),
[&] (const BufferTile& tile)

{
// Generate sample positions
for(int64_t y = tile.beginY(); y < tile.endY(); ++y)
for(int64_t x = tile.beginX(); x < tile.endX(); ++x)
for(int s = 0; s < spp; ++s)
{
float* sample = tile(x, y, s);
sample[IMAGE_X] = randomFloat() + X;
sample[IMAGE_Y] = randomFloat() + y;
sample[LENS_U] = randomFloat();
sample[LENS_V] = randomFloat();
sample[TIME] = randomFloat();
sample[LIGHT_X] = randomFloat();
sample[LIGHT_Y] = randomFloat();
}
1,

[&] (const BufferTile& tile)

0NN WN =

BB DN DD DN DD DD DD = e e s e e e e e
N AN A WD~ OOV WD — O\

77

{
// Consume sample values
for(auto y = tile.beginY(); y < tile.endY(Q); ++y)
for(auto x = tile.beginX(); x < tile.endX(); ++x)
{
float* pixel = &result[y*w*3 + x*3];
for(int s = 0; s < spp; ++s)
{
float* sample = tile(x, y, S);
pixel[0®] += sample[0];
pixel[1l] += sample[1];
pixel[2] += sample[2];
}
}
}

)3

// STEP 4: Reconstruct the image.
const float sppInv = 1.f / (float)spp;
for(int64_t y = 0; y < h; ++y)
for(int64_t x = 0; X < W; ++X)

{
float* pixel = &result[y*w*3 + x*3];
pixel[0] *= spplInv;
pixel[1] *= sppInv;
pixel[2] *= spplInv;
}

// STEP 5: Send result and finish.
client.sendResult();
return 0;

A.3 IQA Metric Example

FBKSD provides an API that allows implementing IQA metrics to be used by the

system. The library is called fbksd-iqa, and is composed of two classes: IQA and Img.

The code bellow is an implementation of MSE IQA metric using OpenCV.

#include <fbksd/iga/iga.h>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace cv;

static float computeMSE(const Mat& imgl, const Mat& img2)

{

int

-~

Mat sl;

absdiff(imgl, img2, sl);

sl = sl.mul(sl);

Scalar s = sum(sl);

double sse = s.val[®] + s.val[l] + s.val[2];

double mse = sse / (double)(imgl.channels() * imgl.total());
return mse;

main(int argc, char* argv[])

// STEP 1: Create an instance of fbksd::IQA, passing the required information.

fbksd::IQA iqa(argc, argv, // argc, argv from main()
"My-MSE", // Metric's acronym
"My Simple Mean squared error metric", // Metric's full name
"y // Reference (optional)
true, // lowerIsBetter flag
false); // hasErrorMap flag

fbksd::Img ref;

01NNk WN =

[NCT YT O TN NG T NG Y S Gy Uy G G G G S
ARV~ OOV WD — OO

25

78

fbksd::Img test;

// STEP 2: Load the input images.

iga.loadInputImages(ref, test);

// STEP 3: Compute the IQA value comparing the two images.

Mat refMat(ref.height(), ref.width(), CV_32FC3, ref.data());
Mat testMat(ref.height(), ref.width(), CV_32FC3, test.data());
float error = computeMSE(refMat, testMat);

// STEP 4: Report the value (and the error map, if supported).
iga.report(error);

return 0;

A.4 Renderer Example

Porting renderers to be used as rendering back-ends is a bit more complex. The
main classes of interest are: RenderingServer, SamplesPipe and SampleBuffer.

The code below shows an example of simple renderer that always produces blue
images. For examples of real renderers, see the renderers provided in the fbksd-package

git repository.

#include <fbksd/renderer/RenderingServer.h>

#include <fbksd/renderer/samples.h>

#include <iostream>

#include <thread>

#include <cmath>

using namespace fbksd;

namespace

{

// Fixed image size and SPP.

// In a real renderer, this would be loaded from the scene file.
const int64_t g_width = 1000;

const int64_t g_height = 1000;

const int64_t g_spp = 1;

// Returns a SceneInfo with information about the scene.
SceneInfo getSceneInfo()

{
SceneInfo info;
info.set<int64_t>("width", g_width);
info.set<int64_t>("height", g_height);
info.set<int64_t>("max_spp", g_spp);
info.set<int64_t>("max_samples", g_width * g_height * g_spp);
return info;

}

void setLayout(const SampleLayout& layout)

{

}

void evaluateSamples(int64_t spp, int64_t remainder, int tileSize)

{
if(spp)
{

// break the image in tiles 16x16
int nTilesX = std::ceil(float(g_width) / 16);
int nTilesY = std::ceil(float(g_height) / 16);
for(int tileY = 0; tileY < nTilesY; ++tileY)
for(int tileX = 0; tileX < nTilesX; ++tileX)
{

int beginX = tileX*16;

int beginY = tileY*16;

int endX = std::min((tileX+1)*16, w);

int endY = std::min((tileY+1)*16, h);

int numPixels = (endX - beginX) * (endY - beginY);

108
109
110
111
112
113
114

}

SamplesPipe pipe({beginX, beginY}, {endX, endY}, spp * numPixels);
for(int y = beginY; y < endY; ++y)
for(int x = beginX; x < endX; ++x)

{
pipe.seek(x, y);
for(int64_t s = 0; s < spp; ++S)
{
SampleBuffer sampleBuffer = pipe.getBuffer();
sampleBuffer.set (IMAGE_X, Xx);
sampleBuffer.set (IMAGE_Y, y);
sampleBuffer.set (COLOR_R, 0.0);
sampleBuffer.set (COLOR_G, 0.0);
sampleBuffer.set(COLOR_B, 1.0);
pipe << sampleBuffer;
}
}
}
}
if(remainder)
{
// divide the remaining samples in tiles of maximum size.
int nTiles = std::ceil(float(remainder) / tileSize);
for(int tile = 0; tile < nTiles; ++tile)
{
int numSamples = tile == 0 ? remainder % tileSize : tileSize;
SamplesPipe pipe({0, 0}, {w, h}, numSamples);
for(int i = 0; i < numSamples; ++i)
{
SampleBuffer sampleBuffer = pipe.getBuffer();
int x = drand48() * g_width;
int y = drand48() * g_height;
sampleBuffer.set (IMAGE_X, Xx);
sampleBuffer.set (IMAGE_Y, y);
sampleBuffer.set (COLOR_R, 0.0);
sampleBuffer.set (COLOR_G, 0.0);
sampleBuffer.set(COLOR_B, 1.0);
pipe << sampleBuffer;
}
}
}

void finishQ)

{
3

std::cout << "Done." << std::endl;

} // namespace
int main(int argc, char* argv[])

{

// STEP 1: Crate rendering server object.
RenderingServer server;
// STEP 2: Set the callback functions or methods
// In our case, we'll break images in 16x16 tiles.
server.onGetTileSize([] () {return 16;1});
// getSceneInfo() will be called when the server need information
// about the scene being rendered.
server.onGetSceneInfo(&getSceneInfo);
// onSetParameters() will be called to inform the renderer about sample layout
server.onSetParameters(&setLayout);
// evaluateSamples() will be called each time the server requires samples.
// The sample data transfer between client and server is asynchronous.
// In this case we must run evaluteSamples() in another thread.
std::unique_ptr<std::thread> thread;
server.onEvaluateSamples([](int64_t spp, int64_t remainder, int tileSize){

if(thread && thread->joinable())

thread->join();

thread.reset(new std::thread(evaluateSamples, spp, remainder, tileSize));
b
// finish() will be called when the server is done with the current scene.
server.onFinish(&finish);
// STEP 3: Run the server.

requirements.

// This is a blocking call that will return only when the benchmark server decides.

server.run();
return 0;

79

115

—_
OO X JINWNB W~

— e e e
NN AW~

80

A.5 Classes

A.5.1 BenchmarkClient

* \brief The BenchmarkClient class is used to communicate with the benchmark server.

* This class provides query methods that allows a technique to get information about the scene,
* request samples to be rendered, end send the final result.

* Only one instance of this class should be created in your program.
*/
class BenchmarkClient
{
public:
using TileConsumer =
std: : function<void(const BufferTile&)>; //!< Tile consumer callback function (SPP version).
using TileProducer =
std: : function<void(const BufferTile&)>; //!< Tile producer callback function (SPP version).
using TileConsumer2 =
std:: function<void(int64_t count, float* samples)>; //!< Tile consumer callback function (non-
SPP version).
using TileProducer2 =
std::function<void(int64_t count, float* samples)>; //!< Tile producer callback function (non-
SPP version).

/%

* \brief Connects with the benchmark server.

* The BenchmarkClient object should be instantiated at the beginning of the main function.

* If you pass the argc and argv parameters from main(), the following command-line options
* become available:

--fbksd-renderer "<renderer_exec> <renderer_args> ...
Starts the renderer process with the given arguments.
--fbksd-spp <value>
Sets the sample budget available to client.

* This allows you to run your client program directly (for debugging purposes, for example).
B;gchmarkclient(int argc = 0, char* argv[] = nullptr);
BenchmarkClient(const BenchmarkClient&) = delete;
BenchmarkClient (BenchmarkClient&&) = default;

~BenchmarkClient();

/%

* \brief Get information about the scene being rendered.

* The more important information are:
* - image dimensions (width and height);
* - maximum number of samples available.

* This information allows you to configure your technique accordingly.
“ See SceneInfo for more details.

* \return ScenelInfo
*/

SceneInfo getSceneInfo();

57

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

81

* \brief Sets the sample layout.

* The layout is the way to inform the FBKSD server

* what data your technique requires for each sample, and how the data should
* be laid out in memory.

* Common data includes, for example, color RGB and (x,y) image plane position.

* This method should be called just once.
*/

void setSamplelLayout(const SamplelLayout& layout);

Vadi

o

\brief Returns a pointer to the buffer where the result image is stored.

* The user should write the final reconstructed image to this buffer before calling
* sendResult();

* The layout of the image in memory follows a scan-line pixel order:
* matrix of pixels with “width® columns, and "height® lines, with each pixel having

* R, G, and B values, in this order.

* @note BenchmarkClient owns the buffer: do not delete.

*/
float* getResultBuffer();
Vi

* @brief Request samples.

* The samples are computed by the renderer and sent in tiles. For each tile, the callback

* function BenchmarkClient::TileConsumer is called so you can consume the samples.

* @param Spp

* Number of samples as a multiple of the number of pixels.

* @param consumer

* Callback function that will be called for each tile produced by the renderer.

*/

void evaluateSamples(SPP spp, const TileConsumer& consumer);

/7‘:,

* @brief Request samples.

* This is an overload method that request a amount of samples that is not in SPP.
* Since the amount can be less then the number of pixels, there is no guarantee
* that all pixels are covered by samples.

* For each tile, the callback function BenchmarkClient::TileConsumer2 is called so
* you can consume the samples.

* @param numSamples

* Number of samples requested.

* @param consumer

* Callback function that will be called for each tile produced by the renderer.

*/

void evaluateSamples(int64_t numSamples, const TileConsumer2& consumer) ;

/

wke

* @brief Request samples with input values.
* This is the method you'll use to implement adaptive techniques.

* As opposed to the evaluateSamples() methods, this method allows samples with
* INPUT random parameters. The producer callback is called for each tile to allow
* you to write the input values.

* Once the renderer computes the sample results, the tile is passed to the consumer
* callback so you can read them.

* @param spp

* Number of samples as a multiple of the number of pixels.

* @param producer

“ Callback function that will be called for each tile required by the renderer.

82

130 * @param consumer
131 * Callback function that will be called for each tile produced by the renderer.
132 */
133 void evaluateInputSamples(SPP spp,
134 const TileProducer& producer,
135 const TileConsumer& consumer);
136
137 VA
138 * @brief Request samples with input values.
139 *
140 * This is an overload method that request a amount of samples that is not in SPP.
141 */
142 void evaluateInputSamples(int64_t numSamples,
143 const TileProducer2& producer,
144 const TileConsumer2& consumer);
145
146 VAl
147 * \brief Sends the final result (rgb image)
148 *
149 * Calling this method is must be the last method you do before you exiting.
150 */
151 void sendResult();
152 3}
A.5.2 SceneInfo
1 /==
2 * \brief The SceneInfo class gives information about the scene being rendered.
3 .
4 * The SceneInfo class stores information about the scene being rendered.
5 * You can use this information to tune the parameters of your algorithm.
6
7 * For example, to get the image size maximum number of samples,
8 * you do the following:
9 * \snippet SceneInfo_snippet.cpp 0
10 ¢
11 * The available query names are:
12
13 | Query | Type |
14 N I e e LT R et |
15 * | width | int64_t |
16 * | height | int64_t |
17 * | has_motion_blur | bool |
18 * | has_dof | bool |
19 * | max_samples | int64_t |
20 * | max_spp | int64_t
21 * | shutter_open | float |
22 | shutter_close | float
23
24 * @note Not all query names are available for all scenes.
25 ¥*
26 * \ingroup Core
27 */
28 class SceneInfo
29 {
30 public:
31 /s'r:':
32 * @brief Return bool if a info with the given name and type exists.
33 */
34 template<typename T>
35 bool has(const std::string& name) const;
36
37 VAo
38 * \brief Get the a info with the given type and name.
39 *
40 * If the info doesn't exist, returns T().
41 */
42 template<typename T>

43 T get(const std::string& name) const;

44
45
46
47
48
49
50
51
52
53
54
55
56
57

— OO0 0NN B WN

[S—

Vi

* \brief Set the a value with type T, key name, and value.

7‘:/
template<typename T>

void set(const std::string& name, const T& value);

Vi

* \brief Add all items from scene.

*

SceneInfo merged(const SceneInfo& scene) const;

*/
1

A.5.3 SampleLayout
/7’:1‘:

\brief The SampleLayout class permits to specify the layout of the samples in memory.

The sample layout is the order in which the sample elements appear in memory.

To specify a layout, use the operator(), like this:
\snippet BenchmarkClient_snippet.cpp 0
In this case the samples will follow the specified layout in memory, e.g:

\a sample = [<IMAGE_X>, <IMAGE_Y>, <COLOR_R>, <COLOR_G>, <COLOR_B>, <repeat...>].

* If this SceneInfo and “scene’ have items with the same key, they will be overwritten.

83

The elements can be random parameters, or features. The available random parameters and features

are:

| Random parameters
e |
IMAGE_X
IMAGE_Y
LENS_U
LENS_V
TIME
LIGHT_X
LIGHT_Y

Features

COLOR_R

COLOR_G

COLOR_B
DIRECT_LIGHT_R
DIRECT_LIGHT_G
DIRECT_LIGHT_B
DEPTH

NORMAL_X

NORMAL_Y

NORMAL_Z
TEXTURE_COLOR_R
TEXTURE_COLOR_G
TEXTURE_COLOR_B
WORLD_X_NS
WORLD_Y_NS
WORLD_Z_NS
NORMAL_X_NS
NORMAL_Y_NS
NORMAL_Z_NS
TEXTURE_COLOR_R_NS
TEXTURE_COLOR_G_NS
TEXTURE_COLOR_B_NS
DIFFUSE_COLOR_R
DIFFUSE_COLOR_G
DIFFUSE_COLOR_B

When implementing adaptive techniques, you may want to generate your own random parameters. In

Enumerable

no
no
no
no
no
no
no
yes
yes
yes
yes
yes
yes
no
no
no
no
no
no
no
no
no
no
no
no

o,
(o,
o,
(o,
(o,
(o,

D

D
D
D
D

Description

Final sample radiance value

"Incident direct light value on the
first intersection point"

Depth of the first intersection point
World normal

Texture value (albedo)

"World position on the first
non-specular intersection point"

"World normal on the first
non-specular intersection point"

"Texture value (albedo) on the first
non-specular intersection point"

"Diffuse component of the final sample
radiance"

84

this case,

52 random parameters can be given an optional SampleLayout::ElementIO flag, specifying the element
as input

53 (the user generates the element and gives it as input to the rendering system)

54 or output (the rendering system generates the element). All features are always considered input.

55 You can set the SampleLayout::ElementIO flag when specifying the layout, or latter, using the
setElementIO() method.

56

57 Some features can appear more than once, for example, in a path tracing renderer, the user may
want access to

58 the world position of the first two intersections. These features are called enumerable (see
Features table), and can be given an index specifying the corresponding intersection point (from
0 to N). The total index N depends on the kind of scene and integrator being used.

59 */

60 class Samplelayout

61 {

62 public:

63 VA

64 * \brief Used to specify if a sample element is \e input or \e output.

65 */

66 enum ElementIO : bool

67 {

68 OUTPUT = false,

69 INPUT = true,

70 };

71

72 VA

73 * \brief Adds an element to the sample layout.

74 *

75 * \param name Name of the element

76 * \param io Defines the element as OUTPUT or INPUT

77 =/

78 SampleLayout& operator() (const std::string& name, ElementIO io = OUTPUT);

79

80 Vadd

81 * \brief Defines the number of the last added element.

82 =/

83 SampleLayout& operator[](int num);

84

85 /:'.- %

86 * \brief Sets the element name as \a input or \a output.

87 */

88 SampleLayout& setElementIO(const std::string& name, ElementIO io);

89

90 SampleLayout& setElementIO(int index, ElementIO io);

91

92 Vadd

93 * \brief Returns the number of elements in the layout.

94 */

95 int getSampleSize() const;

96

97 VA

98 * \brief Returns the number of INPUT elements in the layout.

99 */

100 int getInputSize() const;

101

102 VA

103 * \brief Returns the number of OUTPUT elements in the layout.

104 *

105 * If you already have the input size, it's cheaper to call getSampleSize() - inputSize.

106 */

107 int getOutputSize() const;

108

109 VA

110 * \brief Checks if the element "name’ exists and is INPUT.

111 */

112 bool hasInput(const std::string& name) const;

113

114 VA

115 * \brief Checks if any element is INPUT.

116 =/

117 bool hasInput() const;

118

119
120

121
122

123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

O 001NN AW~

37
38

39
40
41

};

A

85

/7‘: ¥*

* @brief Sets the Beckmann roughness threshold used to decompose the diffuse sample radiance
values.

* The features 'DIFFUSE_COLOR_{R, G, B}, contain the diffuse part of the final sample radiance
values (" COLOR_{R,G,B}").

* A light-surface interaction is considered diffuse when the Beckmann roughness (alpha value) of
the material

is >= than the threshold.

* Increasing the threshold causes less energy to be included in the diffuse color features.

*

* @arg a Beckmann roughness value in the [0, inf) range.
*/
void setRoughnessThreshold(float a);

Vadd
* @brief Returns the Beckmann roughness threshold value.
*

* The default value is 0.1.
*/
float getRoughnessThreshold() const;

S.41IQA

* @brief Main API for implementing an image quality assessment (IQA) technique for fbksd.

* The IQA techniques are used to compute a value representing how close the results generated

* by the sampling and denoising techniques are from the reference images.

* A fbksd::IQA object should be constructed passing the “argc’ and “argv’
* parameters from ‘main()°. Only one instance must be created.

* The following CLI becomes available in your program:

T text

* Usage: ./<iga_exec> [options] <ref-img-path> <test-img-path>

* The IQA value is written to stdout in json format: " {"<acronym>":<value>}'.
* You can save the value in a file instead by using the option "--value-file".

* If supported by the method, the error map can be saved by using the option "--map-file.
* The file extension must be ".png . Passing "--map-file® to a technique that doesn't provide

* the error map to report() has not effect.

* Arguments:

<ref-img-path> Reference image path.
<test-img-path> Test image path.

* Options:

-h, --help Displays this help message and exits.
--info Displays information about this IQA method and exits.
--value-file <path/value-file> File name for the output value text file.

* --map-file <path/map-file> File name for the output error map image file.

* The two input images can be read using the loadInputImages() method.

* After you compare the two images and compute the IQA value, report the value by calling report().

Note that there are two overloads for the report method: report(float) and report(float, const Img
&) .

* If your IQA method can produce an error map with values in the [0, 1) range, passing the error map
* is recommended. In this case, also pass the flag "hasErrorMap == true when creating the IQA

cl

*/

instance.

ass IQA

86

42 {

43 public:

44 Vadd

45 * @brief Constructs a IQA object.

46 *

47 * If the images are not found, throws a std::runtime_error exception.

48 *

49 * @param argc

50 * argc from “main(int argc, char* argv[]) .

51 * @param argv

52 * argv from ‘main(int argc, char® argv[]) . Can not be null.

53 * @param acronym

54 * Acronym used as ID for this IQA technique (ex: "MSE"). Can not be empty.

55 * @param fullName

56 * Full name of the technique (ex: "Mean square error").

57 * @param reference

58 * Bibliographical reference for the technique.

59 * @param lowerIsBetter

60 * Flag indicating that lower values are to be considered better for this IQA method.

61 * @param hasErrorMap

62 * Flag indicating that this method provides an error map. If this flag is true,

63 * “report(float, const Img&) should be called, passing the error map.

64 =/

65 IQA(int argc,

66 char const* const* argv,

67 const std::string& acronym,

68 const std::string& fullName,

69 const std::string& reference,

70 bool lowerIsBetter,

71 bool hasErrorMap);

72

73 ~IQAQ);

74

75 VA

76 * @brief Loads the input images.

77 *

78 * The image files are read from disk.

79 *

80 * @param refImg Reference image.

81 * @param testImg Test image.

82 */

83 void loadInputImages(fbksd::Img& refImg, fbksd::Img& testImg);

84

85 Vi

86 * @brief Reports the IQA value.

87 %*

88 * @note If the IQA instance was created with “hasErrorMap == false®, call this overload.

89 %

90 * @param value

91 * The IQA value obtained by comparing the reference and the test images.

92 */

93 void report(float value);

94

95 /~,'.- %

96 * @brief Reports the IQA value and the error map.

9’7 *

98 * @note If the IQA instance was created with “hasErrorMap == true’, call this overload.

99 *

100 * @param value

101 * The IQA value obtained by comparing the reference and the test images.

102 * @param errorMap

103 * An image representing the error map, with pixel values in the [0, 1) range. Values outside

104 * this rage are clamped. The image must have the same size as the reference and test images.

105 * Also note that the map contains error values (e.g. larger is always worse), regardless of the
flag

106 * “lowerIsBetter passed to IQA::IQAQ).

107 */

108 void report(float value, const Img& errorMap);

109 3

O 001 W AW~

66

A.5.5 Img

Vol
* @brief A simple three-channel image class with float data type.
%/
class Img {
public:
Vadd
* @brief Constructs an empty image.
* An empty image has zero width and height and not memory buffer allocated
* (e.g. data() returns nullptr).
*/
Img() = default;

Vi
* @brief Constructs a uninitialized image of the given size.

*/

Img(int width, int height);

Vi

* @brief Constructs an image of the given size and initializes it with the value
*/

explicit Img(int width, int height, float v);

Vol

* @brief Constructs an image taking ownership of the given data.
*/

explicit Img(int width, int height, std::unique_ptr<float[]> data);
Vadd

* @brief Constructs an image copying the given data.

*/

explicit Img(int width, int height, const float* data);

Vo

* @brief Returns the image width (number of columns).

* /

int width() const;

Vadd

* @brief Returns the image height (number of rows).

*/

int height() const;

Vi

* @brief Returns a pointer to the internal data buffer.

*/

float* data(Q);

Vasi

* @brief Returns a pointer to the internal data buffer.

*/

const float* data() const;

Vadd
* @brief Returns a pointer to pixel (x, y).
* The pointer contains the RGB data: Ex:
" cpp
* float* p = img(x, y);
* float R = p[0];
* float G pl1];
* float B pl2];

* @param x Pixel x coordinate in the [0, width - 1] range.
* @param y Pixel y coordinate in the [0, height - 1] range.
*/

V.

87

68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95

O 001 WU AW~

88

float* operator()(int x, int y);

Vadd
* @brief Returns a pointer to pixel (x, y).
*/

const float* operator() (int x, int y) const;

Vi

* @brief Returns the value of channel c for the pixel (x, y).

* @param x Pixel x coordinate in the [0, width - 1] range.
* @param y Pixel y coordinate in the [®, height - 1] range.
* @param c Channel c in the [0, 2] range.

*/

float& operator() (int x, int y, int c);

Vadd
* @brief Returns the value of channel c for the pixel (x, y).
*/

const float& operator() (int x, int y, int c) const;

/ 1

* @brief Convert the pixel values to the [0, 256) range.

* The algorithm is based on the "exrtopng" tool from the exrtools package (http://scanline.ca/
exrtools/).

*/

void toneMap(Q);
1

A.5.6 RenderingServer

\brief Implements the server that provides samples and scene information to FBKSD.

* This class uses a callback mechanism. The renderer should provide the appropriate
* callback functions that will be called when the client makes the corresponding request.
*/
class RenderingServer
{
public:
using GetTileSize
= std::function<int()>;
using GetScenelInfo
= std::function<SceneInfo()>;
using SetParameters
= std::function<void(const SampleLayout& layout)>;
using EvaluateSamples
= std::function<void(int64_t spp, int64_t remainingCount, int pipeSize)>;
using LastTileConsumed
= std: :function<void()>;
using Finish
= std: : function<void()>;

* @brief Creates a rendering server.
*/
RenderingServer();
RenderingServer(const RenderingServer&) = delete;
RenderingServer (RenderingServer&&) = default;

~RenderingServer();

Vol
“ @brief Sets the GetTileSize callback.

* The callback is called just once when the renderer is started.

104
105
106
107
108

1

o

</

89

void onGetTileSize(const GetTileSize& callback);

/7‘: %*

* @brief Sets the GetSceneInfo callback.

o

* The callback is called when the client asks for scene information.

* The callback should return a SceneInfo object.

* Callback signature:
* \code{.cpp}
* SceneInfo callback(Q);

\endcode

*/
void onGetSceneInfo(const GetSceneInfo& callback);

Vi

* @brief Sets the SetParameters callback.

* The callback is called when the client sets the sample layout.

* The sample layout is passed to the callback.

* Callback signature:

* \code{.cpp}

* void callback(const SampleLayout& layout);
* \endcode

“/

void onSetParameters(const SetParameters& callback);

Vi

o

@brief Sets the EvaluateSamples callback.

* The callback is called every time the client asks for samples to be rendered.

* The parameters passed to the callback are:

“ - spp: number of requested samples per pixel

* - remainingCount: an extra number of samples (not multiple of the number of pixels)
“ - pipeSize: maximum number of samples allowable when creating a SamplesPipe.

* The callback should return true on success.

* Callback signature:
* \code{.cpp}

* bool callback(int64_t spp, int64_t remainingCount);

* \endcode

%

“/

void onEvaluateSamples(const EvaluateSamples& callback);

* @brief Sets the LastTileConsumed callback.

* The callback is called when the client consumes the last tile.

7‘:/
void onLastTileConsumed(const LastTileConsumed& callback);
Vo
* @brief Sets the Finish callback.
* the callback is called when the client wants the renderer to finish and exit.
* Callback signature:
* \code{.cpp}
* yoid callback();
* \endcode
*/
void onFinish(const Finish& callback);
Vas
* @brief run
*/
void runQ);

—_
OO X INNBWN =

PO N R m o = = m
AEON—~S 00T A W —

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

90

A.5.7 SamplesPipe

/7‘: ¥*

* \brief The SamplesPipe class is the main way of transferring samples between client and server.

* You can thing of this as a big memory region where samples are saved by the renderer

* and read by the client.

* During the rendering process, a rendering thread typically:
- instantiates a SamplesPipe
o f

*

*

*/

o

r each pixel to be rendered

sets the position of the pipe using one of the seek methods
calls getBuffer() to get a SampleBuffer for the current sample
renders the sample and save the data into the SampleBuffer
inserts the SampleBuffer into the pipe using the operator<<()

Several rendering threads can work in parallel, each one having their own pipe.
* In this case, they have to make sure that a pipe position is not written by
* different threads.

class SamplesPipe

{

public:

/.. *

*

* @brief Acquires a pipe for reading/writing samples.

The constructor tries to acquires exclusive hold of a buffer tile. If no buffer tile is

available,

"

* the constructor blocks until one is available.

* @param begin, end

* Define the window in the image where the pipe will cover.

* @param numSamples

*/
SamplesPipe(const Point21& begin, const Point2l& end, int64_t numSamples);

Number of samples that will be inserted in this pipe. The total number of samples

Vi

* @brief Releases the pipe, signaling that the it's ready to be consumed by the client.

*

/

~SamplesPipe();

Vol

* @brief Sets the pipe position using (x, y) pixel position.

*

* This is a more convenient whey of setting the pipe position

*

using a (x, y) pixel position.

* @param X, Yy

*/
void seek(int x, int y);

%

Pixel position.

Vi

* @brief Returns the current pipe position.
*/

size_t getPosition() const;

Vi

* @brief Returns the number of samples inserted so far.

*

</

size_t getNumSamples() const;

Vi

* @brief Returns a SampleBuffer for the current pipe position.

* If the client specified a sample layout with input random parameters,

.-,

*/

the returned sample buffer will contain the written by the client.

91

67 SampleBuffer getBuffer();
68
69 Vadd
70 * @brief Inserts SampleBuffer in the current pipe position and
71 * advances to the next position.
72 */
73 SamplesPipe& operator<<(const SampleBuffer& buffer);
74 3
A.5.8 SampleBuffer
1 /==
2 * \brief A SampleBuffer stores data for one sample and is used to get/send data to a SamplesPipe.
3 o«
4 * When the client sets the sample layout, it specifies two types of values:
5 * - Random parameters
6 * - Features
7
8 * Random parameters are values typically generated by a random sampler generator.
9 * These values can be specified as INPUT (provided by the client) or OUTPUT (provided by the renderer
).
10
11 * Features are the values computed by a rendering algorithm (e.g. color, depth, etc.)
12 =/
13 class SampleBuffer
14 {
15 public:
16 SampleBuffer();
17
18 Vo
19 * \brief Conditionally writes a random parameters value to the buffer.
20 *
21 * This method only writes the value to the buffer if the random parameter was specified as
22 * QUTPUT by the client, otherwise this call has no effect.
23 *
24 * @return The resulting value in the buffer.
25 */
26 float set(RandomParameter i, float v);
27
28
29 * @brief Returns a random parameter value.
30 */
31 float get(RandomParameter i);
32
33 VA
34 * \brief Write a feature value to the buffer
35 *
36 * @return The value v.
37 */
38 float set(Feature f, float v);
39
40 VA
41 * \brief Write a numbered feature value to the buffer.
42 *
43 * Numbered features are features that have one instance for each intersection point
44 * in a path from the camera.
45 * For example, world position x can be for the first intersection point (number ®: WORLD_X) or
46 * the second (number 1: WORLD_X_1).
47 *
48 * @return The value v.
49 */
50 float set(Feature f, int number, float v);
51
52 VA
53 * @brief Return a feature value.
54 */
55 float get(Feature f);

56 1};

0NN AW~

92

APPENDIX B — FBKSD PYTHON API REFERENCE

In this chapter, we provide FBKSD Python API. To access the complete documen-

tation, visit https://fbksd.github.io/fbksd/docs/python/latest. The main repository for the
FBKSD SDK is available at https://github.com/fbksd/fbksd.

B.1 Denoising Technique Example

To create a denosing technique using FBKSD’s Python API, import the module

fbksd.client. It supports only non-adaptive denoising techniques for now. The workflow

for is

1.

2
3
4.
5
6

basically the same as in the C++ API:

create a BenchmarkClient object;

. request information about the scene (get_scene_info());

. setup the sample layout (get_sample_layout());

request the samples (evaluate_samples());

. reconstruct the result image, saving it to the result image buffer;

. send the result (send_result()).

The code below shows a simple box filter written using the FBKSD Python API.

#!/usr/bin/env python3

import
import

result

step

fbksd.client as fc
numpy as np

= None

5

def process_samples(tile, offset):
(ny, nx, ns, ss) = tile.shape
(bx, by) = offset
res_window = result[by:by+ny, bx:bx+nx]

np

step
client

step
info =

.mean(tile, out=res_window, axis=2)

1
= fc.BenchmarkClient()

2
client.get_scene_info()

spp = info.get('max_spp')

step
client
result

step
client

step
client

3
.set_sample_layout(['COLOR_R', 'COLOR_G', 'COLOR_B'])
= client.get_result_buffer()

4
.evaluate_samples(spp, process_samples)

6
.send_result()

https://fbksd.github.io/fbksd/docs/python/latest
https://github.com/fbksd/fbksd

93

B.2 Classes

B.2.1 BenchmarkClient

class BenchmarkClient:
"""The BenchmarkClient class is used to communicate with the benchmark
server

evaluate_samples((BenchmarkClient)self, (object)spp, (object)consumer) -> None:
"""Request samples.

The samples are computed by the renderer and sent in tiles. For
each tile, the consumer callback function is called so you can
consume the samples.

Parameters:

dede Spp**
number of samples per pixel to evaluate.

consumer
Consumer callback function. The callback should accept two
parameters: "tile" and "offset".

The "tile" is a numpy.ndarray containing the tile data. It
has 4 dimensions, in this order: "height", "width", "spp",
and "sample_size", where "sample_size" is the number of
components of the sample specified in the
"set_sample_layout ()" method.

The "offset" is a tuple containing the (x, y) pixel
coordinates of the result image, corresponding to the
upper-left corner of the tile.

Note: Your callback function should return as fast as possible. So, try to avoid raw loops
when consuming the samples whenever possible.

get_result_buffer((BenchmarkClient)self) -> numpy.ndarray:
"""Returns a pointer to the buffer where the result image is
stored.

The user should write the final reconstructed image to this
buffer before calling "send_result()".

Returns:
A RGB image as a numpy.ndarray with shape "(height, width, 3)".

get_scene_info((BenchmarkClient)) -> Scenelnfo:
Returns:
Returns information about the scene being rendered.

Return type:
"SceneInfo".

send_result((BenchmarkClient)self) -> None:
"""Sends the final result."""

set_sample_layout ((BenchmarkClient)self, (list)layout[, (object)roughness=0.1]) -> None :
"""Sets the sample layout.

The layout is the way to inform the FBKSD server what data your
technique requires for each sample, and how the data should be
laid out in memory. Common data includes, for example, color RGB

63
64
65
66
67
68
69
70
71
72
73
74
75
76

94

and (x,y) image plane position.

Parameters:
:':;’:layoutin‘: (*1list*)
List of sample components.

A component can be a string (Ex: "'COLOR_R'"), or a pair with

a string and a number indicating

the enumeration value

(Ex: "('NORMAL_X', 1)", indication the x normal value for
the second intersection point). The list of available
components can be found in the C++ API reference.

*

*roughness** (*float*)

Beckmann roughness threshold used to decompose the diffuse sample radiance values.

B.2.2 SceneInfo

class Scenelnfo:

Contains information about the scene being rendered.

The list of available information can be found in the C++ API

reference.

get((SceneInfo)argl, (str)key) -> object:

has((SceneInfo)argl, (str)key) -> bool:
"""Returns *True* if the given key exists.

Returns the value for a given key. Throws an error if the key does not exists.

nun

nan

95

APPENDIX C — PROCEDURAL RENDERER

Our custom procedural renderer generates images from a scene consisting of pure
mathematical expressions described using the ExprTk syntax!, as opposed to geometry
data used by traditional renderers. The mathematical expressions describe how the sample

positions (input) translates into sample values (output).

C.1 Scene Description

The scene description is a text file with two sections separated by a # symbol. The
first section sets the image dimensions (width X height), and number of samples per pixel
(spp). The second section defines the mathematical expression used to compute the sample
values.

The Listing C.1 defines a scene consisting of a 3D sphere centered in the (0, 1]°
domain. It gets the IMAGE_X, IMAGE_Y, and TIME input random parameters, maps them to
the sphere domain as a (x, y, z) point, and checks if the point is inside the sphere. If it is,
the value 1.0 is written to the RGB output color. Figure C.1 shows the resulting image.
Note that the image contains some noise related to the TIME random parameter.

The full list of available random parameters and features can be found in the

SampleLayout class API documentation in Appendix A.

width := 500;
height := 500;
Spp := 64;

#

var c[3] := { 0.5, 0.5, 0.5 };

var r_sq := 0.542;

var d := ((IMAGE_X/width) - c[0])*2 + ((IMAGE_Y/height) - c[1]1)42 + (TIME - c[2])
v

COLORR :=d<=r_sq ? 1.0 : 0.0;

COLOR_G := COLOR_R;

COLOR_B := COLOR_R;

Listing C.1: 3D Sphere scene example.

thttp://www.partow.net/programming/exprtk/index.html

http://www.partow.net/programming/exprtk/index.html
http://www.partow.net/programming/exprtk/index.html

96

Figure C.1: Procedural 3D sphere result generated by our procedural renderer.

	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Thesis Structure

	2 Background On Physically Based Rendering
	2.1 Radiometry
	2.1.1 Flux
	2.1.2 Irradiance
	2.1.3 Radiance

	2.2 Rendering Equation
	2.3 Monte Carlo Integration
	2.4 Monte Carlo Ray Tracing
	2.4.1 Path Tracing

	2.5 Sampling and Reconstruction

	3 Related Work
	3.1 Meta-Research in Graphics
	3.2 Benchmarking Systems in Computer Vision
	3.2.1 Optical Flow
	3.2.2 Stereo Correspondence
	3.2.3 Alpha Matting
	3.2.4 Video Matting

	3.3 Monte Carlo Denoising Algorithms
	3.4 Sampling Algorithms
	3.4.1 Blue-noise/Poisson Disk Sampling
	3.4.2 Low Discrepancy Sampling
	3.4.3 Stratified/Jittered Sampling

	4 Proposed Framework
	4.1 API Overview
	4.2 Main Components
	4.2.1 Client Process
	4.2.2 Benchmark Process
	4.2.3 Rendering Process

	4.3 Scenes
	4.4 Image Quality Assessment
	4.4.1 Mean Squared Error (MSE)
	4.4.2 Relative Mean Squared Error (RMSE)
	4.4.3 Peak Signal-to-noise Ratio (PSNR)
	4.4.4 Structural Similarity (SSIM)

	4.5 Implementation Details
	4.5.1 Inter-process Communication and Tile-based Data Transfer

	4.6 Summary

	5 Online Submission System
	5.1 Motivation
	5.2 Requirements
	5.3 Workflow
	5.3.1 Registration
	5.3.2 Submission
	5.3.3 Benchmarking and Results Reviewing
	5.3.4 Results Publication

	5.4 Implementation Details
	5.5 Summary

	6 Case Study
	6.1 Learning-Based Techniques
	6.2 Visualization Interface
	6.3 Discussion
	6.3.1 Communication Overhead
	6.3.2 Memory Overhead
	6.3.3 Python API Overhead

	6.4 Summary

	7 Conclusions and Future Work
	7.1 Future Work

	References
	Appendix A — FBKSD C++ API Reference
	A.1 Denoising Technique Example
	A.2 Sampling Technique Example
	A.3 IQA Metric Example
	A.4 Renderer Example
	A.5 Classes
	A.5.1 BenchmarkClient
	A.5.2 SceneInfo
	A.5.3 SampleLayout
	A.5.4 IQA
	A.5.5 Img
	A.5.6 RenderingServer
	A.5.7 SamplesPipe
	A.5.8 SampleBuffer

	Appendix B — FBKSD Python API Reference
	B.1 Denoising Technique Example
	B.2 Classes
	B.2.1 BenchmarkClient
	B.2.2 SceneInfo

	Appendix C — Procedural Renderer
	C.1 Scene Description

