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ABSTRACT

Image matting aims at extracting foreground elements from an image by means of
color and opacity (alpha) estimation. While a lot of progress has been made in recent
years on improving the accuracy of matting techniques, one common problem persisted:
the low speed of matte computation.

This work presents the first real-time matting technique for natural images and videos.
The proposed technique is based on the observation that, for small neighborhoods, pix-
els tend to share similar attributes. Therefore, independently treating each pixel in the
unknown regions of a trimap results in a lot of redundant work. We show how this com-
putation can be significantly and safely reduced by means of a careful selection of pairs
of background and foreground samples.

Our technique achieves speedups of up to two orders of magnitude compared to previ-
ous ones, while producing high-quality alpha mattes. The quality of the presented results
has been verified through an independent benchmark. The speed of our technique enables,
for the first time, real-time alpha matting of videos, and has the potential to enable a new
class of exciting real-time applications.

Keywords: Alpha matting, compositing, image and video processing.



1 INTRODUCTION

Extraction and compositing of foreground objects are fundamental image and video
editing operations. These operations are extensively used by many applications in the
fields of computer vision and computer graphics, where common examples include com-
positing of images for magazines and newspapers, or even insertion of visual information
for television broadcasting. Likewise, it its commonplace in the film industry to extract
actors from videos captured in closed studios to insert them in novel locations, either due
to feasibility or cost. However, due to the discretization process involved in capturing
digital images, pixels located in boundary regions receive light from multiple scene ele-
ments. Consequently, boundary pixels p will have mixed colors, resulting from a linear
combination of colors from all objects covering p. This mixture is weighted by the rela-
tive coverage of each object in relation to the pixel. The process of estimating the original
colors and weights that form the final pixel color is known as alpha matting.

The matting problem was mathematically established by Porter and Duff (1984),
where they introduced the alpha channel (also known as matte) as the means to con-
trol the linear interpolation of foreground and background colors. Formally, to accurately
extract a foreground objects from images and videos, matting techniques need to estimate
foreground (F') and background (B) colors for all pixels belonging to an image I, along
with opacity («) values. These values are related by the compositing Equation 1.1, where
the observed color of pixel I; is expressed as a linear combination of F; and B;, with
interpolation parameter «;:

For natural images, F' and B are not constrained to a particular subset of values. Thus,
all variables on the right-hand side of Equation 1.1 are unknown, making the matting
problem inherently under-constrained — i.e., for RGB images, 7 unknown variables need
to be estimated from 3 known values.

Due to this highly ill-posed nature of the matting problem, most existing approaches
require additional constraints in the form of user input, either as trimaps or scribbles
(described in Chapter 2). This user-supplied information identifies pixels for which the
opacity value «; is known to be 1 or 0, i.e. known foreground and known background
pixels, respectively. The remaining unconstrained pixels are marked as unknown. The
goal of a digital matting algorithm is then to compute the values of «;, F;, and B; for all
pixels labeled as unknown. Finally, the foreground can be seamlessly composed onto a
novel background by replacing the original background B with a new background B’ in
Equation 1.1.



Existing matting techniques can be classified according to the underlying method used
for solving the matte (WANG; COHEN, 2008), which can be based on sampling, pixel
affinities or a combination of the two (detailed in Section 2.2). Most recent matting algo-
rithms (RHEMANN; ROTHER; SINGARAJU, 2009; LEVIN; RAV-ACHA; LISCHIN-
SKI, 2008; WANG; COHEN, 2007; LEVIN; LISCHINSKI; WEISS, 2008; RHEMANN;
ROTHER; GELAUTZ, 2008) fall in one of the last two categories, where local affinities
are employed in optimization steps for solving or refining the matte. This usually requires
the solution of large linear systems, and the size of these linear systems is directly propor-
tional to the percentage of unknown pixels in /. As a result, the dimensions of such linear
systems can get quite sizable. Furthermore, these optimization procedures solve for a
independently of F' and B, thus requiring an additional step for reconstructing F' and, if
necessary, also B. Consequently, state-of-the-art techniques take from several seconds to
minutes to generate alpha mattes for typical images (with about 1 Megapixels).

The slow processing speed of recent matting methods makes the matte creation pro-
cess a tedious task. Long offline computations have also prevented the use of natural
scenes in real-time matting applications, such as live video broadcasting.

This work presents the first real-time matting technique for natural images and videos.
The proposed approach is based on the key observation that pixels in a small neighbor-
hood tend to have highly similar values for («, F, B) triplets. Thus, a significant amount
of computation used to obtain the matte for neighboring pixels is in fact redundant and
can be safely eliminated. This work shows how to avoid such unnecessary computa-
tions by carefully distributing the work over neighboring pixels, which will then share
their results. Since the operations performed by the pixels are now complementary, they
can be performed independently and in parallel on modern GPUs. As a result, the pro-
posed approach can generate high-quality mattes up to 100 times faster than previous
techniques. The quality of these results have been confirmed by the independent image-
matting benchmark by Rhemann et al. (2009). According to this benchmark, the proposed
real-time technique ranked second among the current state-of-the-art techniques. Note,
however, that our technique is up to two orders of magnitude faster, allowing for real-time
alpha matting. Additionally, the proposed technique can be extended with an optimization
step at some performance cost, resulting in the best results ever achieved in Rhemann et
al.’s benchmark. This extended technique ranks first among all techniques (Section 6.1.2).

The main contribution of this work is the introduction of a new objective function for
identifying good pairs of background and foreground samples (Equation 4.11). This new
function takes into account spatial, photometric and probabilistic information extracted
from the image. Such a function allows the presented approach to achieve high-quality
results while still operating on a considerably small discrete search space.

Due to its speed, the proposed technique has the potential to enable new and excit-
ing real-time applications that have not been previously possible. This work illustrates
such potential (Chapter 6) by showing the first real-time alpha matting demonstration for
natural-scene videos (Section 6.3.1), and by providing real-time feedback to users during
interactive alpha-matting extraction sessions (Section 6.3.2).

Figure 1.1 shows an example of an alpha matte extracted with the proposed tech-
nique for a challenging example taken from the training dataset provided by Rhemann e?
al. (2009). The image on the top-left shows the original image, while the image on the
top-right shows its corresponding trimap (provided in the dataset). The extracted alpha
matte is shown on the bottom-left, and was computed in 0.043 seconds. The image on the
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Figure 1.1: Example of alpha matte extraction and compositing using the proposed tech-
nique. (a) Image (800 x 563 pixels) from the training dataset provided by (RHEMANN
et al., 2009). (b) Trimap provided in the dataset, with 40% of unknown pixels (gray rep-
resents unknown regions, while black and white represent known background and fore-
ground regions, respectively). (c) Alpha matte computed with the proposed technique in
0.043 seconds. (d) Composite of the extracted foreground on a new background.

bottom-right shows the composite of the extracted foreground on a new background. The
original image contains 800 x 563 pixels, and its trimap contains 40% of unknown pixels.

1.1 Structure of this work

The remaining of this work is organized as follows: Chapter 2 categorizes common
approaches to constrain and solve the matting problem; Chapter 3 discusses related work;
Chapter 4 presents the proposed technique for real-time alpha matting; Chapter 5 shows
how to extend the proposed technique with an optimization step; Chapter 6 compares
the results obtained by the proposed technique with the state-of-the-art and illustrates
potential applications for real-time alpha matting; Finally, Chapter 7 summarizes this
work and lists some paths for future work.
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2 SOLVING THE MATTING PROBLEM

To accurately extract foreground objects from images and videos, additional con-
straints need to be defined. Such constraints limit the valid solutions for Equation 1.1,
making the problem of solving the matte simpler and guaranteeing a meaningful final
result. Constraints for the matting problem can be divided in three main categories, ac-
cording to their origin: user supplied constraints, assumption constraints, and additional
information constraints.

User supplied constraints are those that arise from user interaction. The most com-
mon form of user constraint is the manual classification of some pixels as either belonging
to the foreground or belonging to the background. This is equivalent to manually fixing
the values of « in Equation 1.1: o = 1 for known foreground pixels and o« = 0 for known
background pixels.

Assumption constraints arise from the core concepts used to solve the matting prob-
lem. They define the strengths and weaknesses of a technique, and usually differ among
techniques. The weaker the assumption, the less general is the associated solution. An
example of a weak assumption is the one made in chroma keying techniques (VLAHOS,
1964), where the background is assumed to have a constant color, usually green or blue.
It is important to note that, if an input image breaks an assumption that constraints the
problem, the output result is almost certainly incorrect.

Additional information constraints originate from sources other than the input im-
age. This additional information can be used to reduce the size of the solution space,
typicallly resulting in more accurate mattes. Unfortunately, the extra information does
not come for free. It usually requires special conditions, such as custom designed captur-
ing devices (MCGUIRE et al., 2005), flash and non-flash image pairs (SUN et al., 2006)
or camera arrays (JOSHI; MATUSIK; AVIDAN, 2006). One example of such system can
be seen in Figure 2.1.

2.1 The Trimap

One common form of constraint representation, which can originate from any of the
previously defined categories, is the frimap. A trimap T expresses the segmentation of
the input image into three disjoint sets (pixel regions): known foreground (7'), known
background (73) and unknown (7},). This reduces the matting problem to estimating the
values of «, F' and B for pixels in the unknown region. And example of a trimap is shown
in Figure 1.1b.

For a user, accurately specifying a trimap requires significant amounts of effort. To
solve this problem, many matting approaches allow the user to specify only a small num-
ber of constrained pixels in the form of a few scribbles on top of the input image. This
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Figure 2.1: Example of specially designed device for constraining the matting problem:
custom camera array described in (JOSHI; MATUSIK; AVIDAN, 2006).

significantly reduces the time and effort required from the user, but increases the work
done by the matting algorithm, as the majority of the pixels will be marked as unknown.
Alternatively, the trimap can be obtained in a more automatic fashion — e.g., from a bi-
nary segmentation obtained using known techniques (BAI et al., 2009; BAI; SAPIRO,
2007; SUN et al., 2006; KIM et al., 2004; BOYKOV; KOLMOGOROV, 2003).

It is important to note that the trimap is a major factor influencing the quality of the
final matte. The unknown region in the trimap should be as small as possible, mean-
ing more known foreground and background information is available and less unknown
variables need to be estimated.

2.2 Categorizing Matting Techniques

According to Wang and Cohen (2008), matting techniques can be classified into three
categories according to the underlying method used for solving the matte, which can be
based on sampling, pixel affinities or a combination of the two:

e Sampling-based approaches make the assumption that the true foreground and
background colors of an unknown pixel can be explicitly estimated by analyzing
nearby known pixels (i.e., pixels in the trimap’s known regions — T or 1},). These
analyzed pixels are known as background or foreground samples. Once the fore-
ground (£") and background (B) colors are determined, « can be easily calculated
from the compositing Equation 1.1.

o Affinity-based approaches do not explicitly estimate foreground and background
colors. Instead, they model the matte gradient across the image lattice by defining
various affinities between neighboring pixels. These affinities are always defined in
a small pixel neighborhood, where pixel correlations are usually strong.
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e Combined approaches mix the two methodologies to achieve a good trade-off
between accuracy and robustness. Sampling-based approaches work better when
faced with distinct foreground and background colors, while affinity-based ap-
proaches are relatively insensitive to variations in user inputs, consistently gen-
erating smooth mattes.

Approaches involving affinities usually work by minimizing a quadratic energy func-
tion, which leads to large and sparse linear systems. Solving such big linear systems
requires a considerable amount of computational effort, thus is not applicable to real-time
alpha matting. For this reason, the proposed real-time matting technique is a sampling-
based approach. Nonetheless, local pixel affinities are explored to guarantee the local
smoothness of the matte, as described in Section 4.3.

Additionally, this work also presents a combined matting approach (Chapter 5), ob-
tained by extending the proposed real-time alpha matting algorithm (Chapter 4) with an
extra optimization step.

2.3 Evaluating Matting Results: Ground-Truth Mattes

In order to assess the quality of matting algorithms, their outputs (i.e., alpha mattes)
have to be compared against a ground-truth matte. This ground-truth matte represents the
ideal alpha values that should be attained, or, in other words, the true opacity value of all
pixels.

Ground-truth mattes are usually obtained in an extremely controlled environment by
using the triangulation technique proposed by Smith and Blinn (1996). They showed that
the acquisition of two (or more) images with a constant foreground but with different (and
known) backgrounds exceeds all requirements to solve the matting problem. These addi-
tional images provide enough information to generate an over-constrained linear system,
which can be solved using a least-squares framework.
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3 RELATED WORK

3.1 Sampling-based Approaches

The first technique to use sampling for estimating the alpha values of unknown pixels
was proposed by Mishima (1994). This technique assumes a blue background and ap-
proximates color distributions for the foreground and background colors as two triangular
meshes (polyhedras) in color space. The alpha value of an unknown pixel is then com-
puted by calculating its relative position to the two polyhedras. Following this idea, the
KnockOut2 (2002) system computes the foreground (background) color for an unknown
pixel as a weighted sum of nearby known foreground (background) colors. These values
are then used to estimate the alpha value for each unknown pixel.

Earlier systems also include the work of Ruzon and Tomasi (2000), where alpha val-
ues are measured along a manifold connecting the boundaries of each object’s color dis-
tribution. This approach assumes that the unknown region in the trimap is a narrow band
around the foreground boundary. This assumption is weak and does not hold even in fairly
simple images.

Bayesian matting (CHUANG et al., 2001) models local foreground and background
color distributions with spatially-varying sets of Gaussians. This approaches improves
on the work of Ruzon and Tomasi (2000) by using a continuously sliding window for
neighborhood definition, which marches inward from the foreground and background
regions. Nearby computed F's, Bs and as are also used to build these color distributions,
so that every pixel in the neighbourhood will contribute to the foreground and background
Gaussians. The matte is then solved using the maximum a posteriori (MAP) technique.

The iterative matting (WANG; COHEN, 2005) approach trains global Gaussian Mix-
ture Models (GMMs) using known foreground and background colors. The alpha value
of an unknown pixel is then estimated by sampling from all the Gaussians to cover all the
possible foreground colors for the pixel. The Geodesic matting technique (BAI; SAPIRO,
2007) also models global foreground and background color distributions using Gaussian
mixtures, but do so in Luwv color space. Fast kernel density estimation methods (YANG
et al., 2003) are used to reduce the computational complexity of constructing the fore-
ground and background Probability Density Functions (PDFs).

3.2 Affinity-based Approaches

Affinity-based approaches solve for v independent of the estimation of foreground
and background colors. The Poisson matting technique (SUN et al., 2004) observes that
if the foreground and background colors are locally smooth, the gradient of the matte can



15

be estimated from the gradient of the image

1
F-B

Va ~ VI (3.1)

where V = (%, 8%) is the gradient operator. In other words, the matte gradient is pro-
portional to the image gradient. To find the alpha values, ' — B is estimated by simply
choosing the nearest foreground and background colors for each unknown pixel. The
matte is then found by solving for a function (o) whose gradient matches the estimated
Va. For this, Poisson equations are used, with Dirichlet boundary condition defined by
the trimap.

The Random Walks method of Grady er al. (GRADY et al., 2005) propagates user
constraints to the entire image by minimizing a quadratic cost function. The alpha value
for an unknown pixel is estimated as the probability that a random walker starting from
this location will reach a pixel in the foreground before striking a pixel in the background
(when biased to avoid crossing the foreground-background boundary). These probabili-
ties can be calculated by solving a single system of linear equations.

The Closed-form matting technique from Levin e al. (2008) similarly solves the matte
by minimizing a cost function derived from careful analysis of the matting problem. The
assumption made in this approach is that each foreground and background color is a
linear mixture of two colors over a small 3 x 3 window around each pixel — this is
referred to as the color line model. Furthermore, Levin ef al. (2008) showed that F’
and B can be analytically eliminated from the cost function, yielding a quadratic cost in
only . Rhemann et al. (2009) further improved on this work by deriving new closed
form expressions for situations where the color line model does not hold.

3.3 Combined Approaches

The recent Robust matting approach of Wang and Cohen (WANG; COHEN, 2007)
uses an initial sampling step to adapt an energy function which is then minimized using
random walks. The central idea is to collect a large number of foreground and background
samples in a neighbourhood close to an unknown pixel p. These samples are considered
candidates for estimating the final alpha value of p. Their assumption is that the true
foreground and background colors should be close to the ones of some of the collected
samples. The authors discuss a way to calculate the confidence of the collected samples
for each pixel. This value is used in the optimization procedure, where only information
from high confidence pixels is used. This is motivated by the fact that color sampling will
not always be reliable for all pixels, thus the alpha value for pixels with low confidence
should rely more on the a-propagation induced by the optimization process.

The work of Rhemann et al.(RHEMANN; ROTHER; GELAUTZ, 2008) improves on
this idea by proposing new weights for the confidence metric. Furthermore, they im-
prove the search for suitable foreground samples by assuming that the foreground object
is spatially connected.

3.4 Interactive Matting

Interactive alpha matting of images is typically performed using a two-step iterative
process: first, the user refines the needed constraints (¢trimap or scribbles), which will
then be used for matte generation in a subsequent step. This process is repeated until
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the user is satisfied with the quality of the matte. As a consequence, any delays between
successive evaluations of the first step are enough to make this a time-consuming and
tedious task. The system proposed by Wang et al. (WANG; AGRAWALA; COHEN,
2007) tries to solve this problem by noting that the user modifies the system constraints
in a localized fashion. Therefore, the matte only needs to be (re)computed for a small
portion of the image at a time. Nevertheless, the user has the perception of real-time
computation, as the matte processing is interleaved with the tracing, by the user, of the
foreground element boundary. However, as noted by Rhemann et al. (RHEMANN et al.,
2008), the disadvantage of this tool is that long or complex boundaries are monotonous
and time-consuming to trace.

3.5 Video Matting

For segmentation and matting of videos, Bai and Sapiro (BAI; SAPIRO, 2007) use
the geodesic distance — based on the shortest path on a weighted graph — to interac-
tively make soft segmentation and matting of images and videos. The recent work by
Bai et al. (BAI et al., 2009) uses local classifiers to propagate a user defined segmenta-
tion across time. They further extend the work from (LEVIN; LISCHINSKI; WEISS,
2008) by adding a temporal coherence term to the cost function for generating mattes for
offline video sequences. None of these techniques, however, are suitable for real-time
alpha-matting of videos.
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4 REAL-TIME ALPHA MATTING

The proposed method for real-time alpha matting consists of four steps and takes as
input an image / (or video sequence) and its corresponding trimap(s). The first step per-
forms some expansion of known regions, where “known foreground" and “known back-
ground" regions in the trimap are extrapolated into the “unknown" region. The second and
third steps take care of sample selection, assuring that each pixel in the unknown region
selects the best pair of foreground and background samples among the ones available.
The final step guarantees the local smoothness of the matte while maintaining its distinct
features. The following sub-sections present the details of each of these steps.

4.1 Expansion of Known Regions

A trimap 7' segments an input image (or video frame) into three non-overlapping pixel
regions: known foreground (7'), known background (7;) and unknown (7;). The idea
behind expanding known regions is to exploit the affinity of neighboring pixels to reduce
the size of the unknown region. Thus, let D;;,q4(p, ¢) and D0, (p, ¢) be, respectively, the
image-space and color-space distances between two pixels p and q. The expansion process
consists of checking for each pixel p € T, if there exists a pixel ¢ € T, (r = {f,b}) such
that D;yage(P: 4) < Kis Deotor(p,q) < ke, and Dipa4e(p, ¢) is minimal for p. In such a
case, pixel p is labeled as belonging to region 7, based on its affinity to pixel ¢ € T,.
The value of the parameter k; depends on the image size (larger images require larger
values of k;). We found that k; = 10 pixels and k. = 5/256 units (measured as Euclidean
distance in the RGB color space) produce good results for typical images.

4.2 Sample Selection

For each remaining pixel p € T, our goal is to find an («, F, B) triplet that better
models p. For this, a sampling strategy inspired by the work of Wang and Cohen (WANG;
COHEN, 2007) is used, but differs from theirs in some fundamental aspects. For any
given pixel p € T,, Wang and Cohen’s idea is to collect a large number of foreground and
background samples in a neighborhood around p. Such samples are considered as candi-
dates for estimating the alpha value of p. Their assumption is that the true foreground and
background colors should be close to the ones of some of the collected samples. This is a
reasonable assumption when the initial sample set is large. For instance, in their approach,
Wang and Cohen analyze 400 pairs of foreground and background colors for each pixel
p (WANG; COHEN, 2007). Unfortunately, the use of larger sample sets requires a signifi-
cant amount of computation in order to find good pairs of foreground and background col-
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ors. The next sections will show that this computational cost can be significantly reduced
by exploiting affinities among neighboring pixels. Furthermore, a new and improved met-
ric for electing the best samples is presented, which takes into account image parameters
that were not considered in the sample-selection process described in (WANG; COHEN,
2007).

The proposed approach is based on the fundamental observation that pixels in a small
neighborhood often have highly similar values for their true («, F, B) triplets. From this,
it follows that: (1) the initial collection of samples gathered by nearby pixels differ only
by a small number of elements; and (2) close-by pixels usually select the same or very
similar pairs for their best foreground and background colors. This brings the conclusion
that performing the alpha matte computation for each pixel independently of its neighbors
results in a large amount of redundant work that can be safely avoided without compro-
mising the quality of the matte. In fact, as demonstrated in Chapter 6, it is possible to
achieve speedups of up to two orders of magnitude while still obtaining high-quality re-
sults.

To minimize the amount of redundant work while leveraging the high affinity among
neighboring pixels, the proposed approach separates the sample-selection procedure in
two steps:

1. Sample Gathering: at this stage, each pixel p € T;, selects the best pair from a
small set of samples from its neighborhood, gathered in a manner that maximizes
the chances that sample sets from neighboring pixels are disjoint;

2. Sample Refinement: in this second stage, each pixel p € T, analyzes the choices
made by its closest neighbors in 7;,, and then selects one of these choices as its best
pair.

As each pixel is trying to find candidates for both its true foreground and background
colors!, samples must be evaluated in pairs. These sample-pairs represent candidates
for the true color pair (F, B) of an unknown pixel. Thus, each pixel p € T, gathers
at most k, background and k, foreground samples, resulting in at most k; tested pairs of
background and foreground samples during the gathering phase. In the sample-refinement
phase, each pixel p analyzes the choices (without recombining them) of its (at most) k..
spatially closest pixels also in 7;,. Thus, while in practice p performs a total of k:; + k,
pair evaluations, due to the affinity among neighbor pixels, this is roughly equivalent to
performing a total of kg X k, pair comparisons. According to our experience, values of
kg, = 4 and k, = 40 produce very good results. For these values, the actual number of
performed pair comparisons is 56 (i.e., 16 + 40), while its net effect approximates a total
of 640 (i.e., 16 * 40) comparisons.

Sections 4.2.1 and 4.2.2 present the details of the sample gathering and sample refine-
ment sub-steps.

4.2.1 Sample Gathering

In the sample-gathering stage, each pixel p € 7T;, looks for possible foreground and
background samples along £, line segments starting at p. These segments divide the plane
of the image into k, disjoint sectors containing equal planar angles (Figure 4.1). The

slope of the first line segment associated to p is defined by an initial orientation 6 € [0, g}

IWe need both F' and B to estimate «
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Figure 4.1: The red line segments starting at p define the paths (sets of pixels) for search-
ing for background and foreground pixels. Each segment will contribute at most one
foreground and at most one background pixels (the first ones found when moving from p
outwards along the line segments). Selected samples for p are marked in orange. Pixel ¢
explores a different path (in green) when searching for its own background and foreground
samples (marked in cyan). Foreground samples are designated by squares, background
samples by circles.

measured with respect to the horizontal. Such an angle takes a different value for each
pixel ¢ € T, in a 3x3 window (Figure 4.1). The orientation of the other segments is given
by an angular increment given by 60,,. = i—: Starting from p and following a particular
line segment yields at most one background and at most one foreground sample — the
ones closer to p along the segment. Thus, p must find its best pair among, at most, k;
sample pairs.

According to Wang and Cohen (WANG; COHEN, 2007), good pairs of samples (i.e.,
candidates for background and foreground colors) can explain the color C, of pixel p € T,,
as a linear combination of themselves. They further argue that the colors of a good pair
of samples should also be widely separated in color space and try to enforce this in their
objective function. While their observation regarding linear interpolation is intuitively
sound according to Equation 1.1, their second statement is oversimplifying and does not
address the fundamental issues involved in the computation of a matte. As such, it does
not represent a good measure for comparison of candidate pairs. Figure 4.2a illustrates an
example where this oversimplification leads to a wrong decision in selecting the best pair
of samples.

This work presents a new objective function that combines photometric, spatial, and
probabilistic elements to select good quality sample pairs. The proposed approach is
the first to comprehensively consider all these aspects. Thus, let f; and b; be a pair of
foreground and background samples, whose colors are F** and B, respectively. Next, we
will derive an optimization function (Equation 4.11) for identifying the best sample-pair
for each pixel p € T,. Before describing this final function (Equation 4.11), its required
building blocks will be presented.
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Figure 4.2: (a) Example where the assumption made by Wang and Cohen (2007) —
that good pair of samples are widely separated in color space — does not hold. Here,
there is no guarantee that the pair (F, B;) more accurately represents, when compared
to (Fy, Bs), the true foreground and background colors of C.  (b) Illustration of the
chromatic distortion M, modeled by Equation 4.1.

Minimization of chromatic distortion Similar to what has been described by Wang
and Cohen (WANG; COHEN, 2007), the proposed approach favors the selection of pairs
of foreground and background colors that can model the color of pixel p as a linear com-
bination of themselves. This is modeled by the chromatic distortion M, (Equation 4.1),
whose value should be small for a good pair of candidate colors. Unlike their approach,
however, distant color pairs are not favored (i.e., they enforce the wide separation of fore-
ground and background colors with an additional denominator in Equation 4.1, dividing
it by ||[F* — B7||, which we do not do).

M,(F', B) = Cp = (4, F" + (1 - &,) BY) | 4.1)

where C), is the color of p, and &, is the estimated alpha value for p, obtained as the
color space projection of C), onto the line defined by " and B’ (Figure 4.2b). Although
a small M,(F", B?) is necessary for accurately representing the alpha value of p, it is
not a sufficient condition to elect a good sample pair. For this reason, we propose a new
color metric derived from two previously made observations: (i) Levin ef al. (LEVIN;
LISCHINSKI; WEISS, 2008) showed that small pixel neighborhoods tend to form locally
linear clusters in color space — this is particularly true for small windows located over
image edges (Figures 4.3a and 4.3b); and (i7) Sun et al. (SUN et al., 2004) showed that
if the foreground and background gradients VF' and V B are relatively small compared
with Va, than the matte gradient V« is directly proportional to the image gradient VI —
in other words, color variations in I are the effect of discontinuities in «.

Based on these observations, one concludes that in the unknown region of the trimap
— where Va is potentially very large — the locally-linear color variations observed by
Levin et al. (2008) are primarily caused by variations in «. Thus, all colors from pixels
in a small local window are situated along the line spanned by the true foreground and
background colors /' and B. This means that a good sample pair should also minimize
the least squares residual defined by the neighborhood affinity term:



21

0.8 -
06
0.4

02

Mg,

0l
06

v

0 0

(@) | ®) ©

Figure 4.3: (a) Local patch from a real image and the (b) RG B plot of its color distribu-
tion. From (LEVIN; LISCHINSKI; WEISS, 2008). (c) How the neighborhood affinity
term /N from Equation 4.2 helps in the selection of the best sample pair. Colors from
pixels in the neighborhood (2, are represented by small circles. It can be easily seen
that N (F,, By) < N(Fy, By), thus the pair (F», B2) more accurately represents the true
foreground and background colors of C'.

N(f;,b;) = > M,(F', B)? (4.2)
q€Qp
where (), is the pixel neighborhood of p, consisting of all pixels in a 3 x 3 window
centered on p, and M, is the operator defined in Equation 4.1, evaluated at the pixel g. An
example is shown in Figure 4.3c.

In addition to color space information, image space statistics should play a key role
in identifying good pair of samples. These image parameters were not considered in the
sample selection process of (WANG; COHEN, 2007), where only color space metrics
were used. Thus, let D,(s) = Dimage(p, s) = ||s — pl| be the image space distance from
a sample s to the current pixel p. We define the energy E,(s) to reach a foreground or
background sample s from the current pixel p as the squared path integral of VI along
the image space line segment L connecting p and s:

B = ferat = () 'Wr Y

Notice that the energy FE is directly proportional to the projection length of VI onto the
normalized direction of integration s —p. Thus, if the linear path from s to p crosses image
regions where ||V 1] is large — e.g., image edges — greater energy will be required to
reach s (Figure 4.4).

An estimate of the probabilities of p belonging to the foreground, according to the
energy function E,(s) and image space distance D,(s), can be obtained as:

fre wY) — Ep(bj)
Pellobs) = 56y + Byb) @
Dp(bj)

Dy(fi) + Dy(by)

Pl (£, b;) (4.5)
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Figure 4.4: Illustration of the energy E required to reach s (marked in red) from all
locations in the image. On the right, pixels with colors closer to white require more
energy to reach s. Notice how edges on the left image have a direct correspondence to
variations in the energy function on the right.

For example, if the energy E,(f;) required to reach the foreground sample f; is much
lower than E,(b;), PL(f;, b;) will be close to one — i.e., pixel p has a high probability of
belonging to the foreground. This is analogous for P{).

These probabilities are combined using relevance weights wg and wp associated with
E,(s) and D,(s), respectively. Such weights express the relevance of E,(s) (D,(s)) rela-
tive to the energy (distance) of all observed samples:

B E,(f;) — min;(E,(£;))
we(fi,b;) = exp { maxi(E,(£)) — mini(E,(£;))
E,(b;) — min;(E,(b;))
ma%( b;)) — min;(E,(b;)) } o

n(
Dy(f;) — mini(D,(f:))
p(£:)) — ming(Dp(f))

wp(fi,bj) = exp { _maxz(
Dy(b;) — min;(Dy(b;))

~ maz;(Dy(b;)) — min;(Dy(b;)) } “.7)

Finally, let ng (f;, b;) be the probability of p belonging to the foreground according
to the information available in the gathering stage. PJ (f;,b;) is defined as the weighted

average of PL(f,,b,) and P} (f;, b;):

) WE<fi>bj)
C&J(fz,b]) a wE(fi,bj) -+ wD(fi,bj) (48)
P!(f:,b;) = w(f;, b)) PL(fi,b;) + (1 — w(fi, b)) Ph(£;, b)) (4.9)

Intuitively, we want the computed alpha matte value ¢, (in Equation 4.1) to correlate
with the probability ng (fi,b;) of pixel p belonging to the foreground. This is enforced
by minimizing the function A(f;, b;) (Equation 4.10). Indeed, for a given pair of samples
(fi, b;), when Pf = 0, A = &,. Thus, minimizing A also minimizes the value of &,,.
Likewise, when Pf 1, A = (1 — ¢&,), so minimizing A maximizes &,. Finally, if
Pl =05, A= 0 9, and the value of &, has no effect on the minimization. Function
A(fi, b;) will be later used as one of the terms of Equation 4.11, which identifies good
pairs of background and foreground samples for pixel p.

A(f;,b;) = P/(f;,b;) + (1 — 2P/ (f;,b;)) d, (4.10)
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The resulting objective function that combines photometric and spatial affinity, as
well as probabilistic information for selecting good pairs of background and foreground
samples can be expressed as

g(fi,b;) = N(fi,b;) A(fi,b;) Dy(f;) Dy(b;) (4.11)

Here, N(f;,b;) minimizes chromatic distortion in the 3 x 3 neighborhood around p.
A(f;, b;) enforces that the computed alpha matte values correlate with the probability
of pixel p belonging to the foreground (according to f; and b;). D,(f;) and D,(b;) en-
force the spatial affinity criterium: the background and foreground samples should be as
close as possible to p. Thus, the best pair of foreground and background samples (fp, Bp)
for pixel p is obtained by evaluating ¢(f;, b,) for all possible sample-pairs:

(f,,b,) = argming , g(f;, b;) (4.12)

Let (FP, BY) be the corresponding colors of the best pair (f,,b,) for pixel p. We then
compute two variances 07 and o; as:

N

1 2
7 = N Xaen, [F] = Cif

2
2 _ 1 P _
Tp = N 2aen, | By OqH

(4.13)

where {2y and (2, are 3x3 pixel neighborhoods centered at fp and Bp, respectively, and
N = 9. Such variances measure how much the colors of the selected background and
foreground samples deviate from their own neighborhoods. Intuitively, the smaller these
variances, the bigger the confidence that the selected samples are good representatives for
their own neighborhoods, as opposed to being outliers.

The output of the sample gathering stage is a tuple 7, = (F?, B, o}, o7) for each
pixel p € T,,.

4.2.2 Sample Refinement

For small values of £, the total number of samples analyzed by any given pixel p €
T, during the sample gathering state is often not enough to reliably estimate either an
alpha value or the true foreground and background colors. To address this issue, a more
extensive search is performed by sharing the best results obtained by all pixels in 7.

At this stage of the sample-selection process, each pixel p will compare its own choice
of best sample-pair with the choices of its (at most) k, spatially closest pixels ¢ € T},. The
three tuples with the lowest values of M, (Fy, B) will then be averaged to create a new

tuple 7, = (ﬁ 7, Bg , &J%, %) for p. The purpose of this averaging is to reduce the occur-
rence of noise in the resulting alpha matte. This procedure is supported by the observation
that neighbor pixels tend to have similar values of alpha, as well as background and fore-
ground colors (i.e., neighbor pixels tend to present high affinity). Therefore, by averaging
the best few values in a given neighborhood, the occurrence of noise is reduced. The

confidence measure of this new sample-pair is computed as:
F(F?,BY) = exp { — X M,(F?, BY) } (4.14)

where AT models the rate of decrease of f. Thus, the confidence measure modeled by
Equation 4.14 decreases fast (but not too fast) as the foreground and background colors

fA = 10 in our implementation
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Fé’ and Bg fail to properly model the color C, of p. The output of the sample-refinement
stage for pixel p € T, is another tuple x, = (FP, BP, oF, f?), where:

o {Cp it |C, — F?|

T ~ .
F ; otherwise

2
<7

f (4.15)

~ 2
- ~9
B — { G, i |6 -By <3 (4.16)
Bg otherwise
r |F? — B '
fr= f(F, BY) (4.18)

Here, the subscript r represents quantities computed in the sample-refinement stage. The
intuition behind the computation of F? is that if the color C), of pixel p is sufficiently
close to the average color Fg’ of the best three foreground samples computed during the
gathering stage, then F? should be taken as C), thus keeping the original color. The case
for B? is similar. The alpha value o is computed as the relative length of the projection
of vector (C,, — BP) onto vector (F? — B?), defined by the computed foreground and
background colors. Thus, af represents the opacity of the foreground sample. Finally,
/P expresses the confidence of p in its candidate foreground and background colors F?
and BP, modeled by Equation 4.14. For completeness, output tuples for pixels outside
the unknown region are also defined; thus, for pixels v € Ty U T}, we have x, = (FY =
Cy, B} =C,, a?, f¥ =1), where:

v {O if refT,

r 1 ifreTy

4.3 Local Smoothness

Although the sample-selection process takes into account affinities among localized
groups of pixels, this is not enough to prevent discontinuities in the resulting matte. Thus,
an additional step is used to ensure the local smoothness of the final alpha values, while
maintaining its distinct features. This is achieved by computing, for each pixel p € T}, a
weighted average of the tuples r, of the closest k;" neighbors of p in image space. Such
neighbors can come from either 7, T, or ;. Let W, be such a neighborhood for pixel p.
The weights are defined in such way that details in the matte are preserved.

The final foreground and background colors /7 and B? of p are computed as:

G Dima e\ fj_ g 7? if
Wolpd) — { (Dimage(p, q)) a2 — | f, if p#q @19
G<Dimage(p7 q)) f;] lf p=4q
We(p, q) o F?
P = Zq“’? [ (. 9) } (4.20)

> o, [Welpi0) 0]
> ew, [Welp.a) (1= af) BY]
> ew, [Welp,a) (1= af)]

A value of k; = 40 is used in our implementation

BP

4.21)
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where G is a normalized Gaussian function with variance 02 = k; /97" pixels. The
weight W,(p, ¢) blends the foreground (background) colors of pixels p and ¢ taking into
account: (i) Spatial affinity — the colors of two pixels that are far apart in image space
should not be averaged. This is modeled by the Gaussian function; (ii) Difference in
alpha values — by minimizing ||V F'|| and ||V B|| where the estimated || V&/|| is large, we
make the final Vo ~ V1I; (iii) Confidence values — pixels with low confidence in their
foreground and background samples should not propagate their uncertainty.

The term o multiplying F? in Equation 4.20 denotes the confidence of pixel g in its
foreground color F?. This confidence is directly proportional to o — e.g., if af = 0,
q has zero confidence in its foreground color F¢, as Equation 4.17 yields zero for all
values of F?. Similarly, the term (1 — o) multiplying B¢ in Equation 4.21 denotes that
the confidence of pixel ¢ in its background color BY is inversely proportional to .

Having F? and B?, we can compute the final confidence f? of pixel p in these final
foreground and background colors. To do so, we first define in Equation 4.23 the mean
foreground-background distance Z (in color space) for the neighborhood W,,. This mean
is weighted by W, (q) (Equation 4.22) which is directly proportional to the confidence f4
of ¢ and 1s maximized for values of o} = 0.5 — where the confidence of ¢ in both F? and
B is potentially maximal — while being zero for a? = {0,1}. Z will be used next to
compute the final confidence f?.

Wiq) = flof (1-af) (4.22)

> ew, [Wela) 12 = BY ]
qu\pp W.(q)

The final confidence f” of pixel p in its final foreground and background colors
F? and B? is modeled by Equation 4.24. Here, the first term expresses the ratio of the
distance ||F? — BP|| to the mean foreground-background distance in the neighborhood
WV, (clamped to the range [0,1]). This ratio tries to detect pixels whose final foreground
and background colors deviate from those in the neighborhood W,. The second term is
analogous to Equation 4.14.

Z(Vp) (4.23)

[F7 — B7|

P = min (1, 2(3,) ) exp{ —A Mp(FP,BP)} (4.24)

Having FP, B? and f?, we can now compute the final alpha value «, of pixel p. In
order to do so, we first define the low frequency alpha of (Equation 4.26) as the weighted
average of alpha values in the neighborhood ¥,. The weights W, (p, ¢) are proportional
to the confidence f? of ¢ and inversely proportional to the image space distance of p and
g. Additionally, greater weights are given for pixels lying in T or 7, (i.e., known pixels).

Wap.a) = [ G (Dimage(p,q)) +6(q ¢ T0) (4.25)

Ozf _ qu\lfp {Wa(p’ Q) Oég} (4.26)

2w, Walp:q)

"1 The set W, of the closest k; pixels to p approximately forms an image space circle with area k;; thus,
k; can be expressed as k; = mr2. We want the farthest pixels in ¥, (with distance of 7 to p) to have weights
close to zero in the Gaussian (i.e., 7 = 30). Thus, k; = 7% = 7(3 0)2, which solves to 0% = k; /9.
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where ¢ is a boolean function returning O or 1, and G is the Gaussian function from
Equation 4.19.

The final alpha value o for p is given by Equation 4.27. This equation blends the
alpha value computed using F* and B? with the low frequency alpha o}, with blending
factor defined by the final confidence f?. Thus, pixels with a low final confidence will
accept alpha values from higher-confidence neighbors (modeled by o) to preserve local
smoothness.

(Cp — BP)- (F* — BP)

ol = fP
L

+(1 =/ af (4.27)

Finally, output of the proposed algorithm for the matting parameters of pixel p € T,
is given by the tuple (F?, BP, oP) with an associated confidence value of f?. For com-
pleteness, the matting parameters for pixels outside the unknown region are also defined.
Thus, for pixels ¢ € Ty we have the tuple (F? = C,, B? = C,;,a? = 1) with confidence
f? =1, and for pixels w € T, we have the tuple (F* = C,,, B* = C,,a" = 0) with
confidence f* = 1.

4.4 An Illustrated Example

This section provides a visual summary of the steps involved in the proposed real-
time matting technique. Images (a) and (b) show the matting inputs. The first step ex-
pands known regions and generates the trimap in (c). The sequences d-f and g-i show
the foreground and background colors estimated for each of the Gathering, Refinement
and Smoothness steps. Pixels in black in images (d) and (g) did not find any suitable
sample-pair in the initial Gathering stage. Notice, however, that in the refinement stage
(images (e) and (f)), these pixels have found pairs through the analysis of candidates from
their neighborhoods. The sequence j-1 shows the estimated alpha values and (m) shows
the foreground composed onto a new white background. Note the high-frequency noise
in o (j), which is removed in the smoothness step (1) while preserving details. Images
(n) and (o) show the foreground U]2c and background o} variances, while images (p) and
(q) show the refinement and final confidences f? and f”.



(a) Input image

Input and Constraints

(b) Input trimap

(c) Expanded trimap
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(d) Gathering: Fé’

Foreground estimation

(e) Refinement: FP

(f) Smoothness: final F?
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(g) Gathering: BY

Background estimation

(h) Refinement: B?

(i) Smoothness: final B?
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(j) Refinement: a?

Alpha estimation

(k) Smoothness: low freq. alpha of

(1) Smoothness: final alpha o”

(m) Final composite
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5 MATTE OPTIMIZATION

The output of the real-time alpha matting algorithm described in Chapter 4 can pro-
duce high-quality results for challenging images, as can be seen in Chapter 6. Neverthe-
less, some users might want to achieve the best possible final matte, even if this means
having higher computation times. This can be achieved by refining the matte obtained
in Chapter 4 using an additional optimization step. This step is analogous to the one in
(RHEMANN et al., 2008), where the final matte is obtained by minimizing a quadratic
cost function in «v. This cost function is comprised of a smoothness term and a data term.
Here, we use the same smoothness term as (RHEMANN et al., 2008), but for the data
term we use the matting parameters obtained in Chapter 4.

5.1 Smoothness term

The smoothness term uses the matting Laplacian L proposed by Levin et al. (2008).
The matting Laplacian is a matrix characterizing a cost function relating a-values for
pixels in small 3 x 3 pixel windows, and is derived from local smoothness assumptions
on foreground and background colors F' and B. Furthermore, Levin et al. showed that it
is possible to analytically eliminate /' and B, yielding a quadratic cost function in only .
A detailed derivation of L is out of the scope of this work and the readers are referred
to (LEVIN; LISCHINSKI; WEISS, 2008).

5.2 Data term

The data term is defined by the pixel-wise a” and confidence f” obtained in Chapter 4.
Intuitively, pixels with a high confidence value should respect this estimated a, while
pixels with a low confidence value should rely more on the o propagation induced by the
optimization process.

5.3 Solving for the matte

Leta? =[a® ... aP, ... a"]bea vector of all alpha values — obtained in Chapter 4
— for all n pixels in the input image. Let I' be a diagonal matrix where each diagonal
element ~y, is defined as

[ fP ifpeT,
%_{0 ifpeTrUT, -1



33

The final alpha matte is obtained by solving for
a=argmin a’La+\(a—a) " Dia—a&)+7 (a—a) T(a—a) (5.2)

where ) is some large number, 7' is a constant which defines the relative weighting be-
tween the data and smoothness term, L is the matting Laplacian and D is a diagonal
matrix whose diagonal elements are one for pixels in T’y U T}, and zero for all other pixels.
Equation 5.2 can be broken down as follows:

e The first term is the smoothness term. It guarantees the affinity of « values be-
tween neighboring pixels.

e The second term assures that the trimap’s constraints are respected. As A is large,
the final o that minimizes the right-hand-size of Equation 5.2 must match & for all
constrained pixels (i.e., pixels in Ty U T3).

e The third term is the data term. It guarantees that pixels with high confidence
values will respect the & values obtained in Chapter 4.

Equation 5.2 defines a quadratic cost in «, thus the global minimum may be found by
differentiating and setting the derivatives to zero. This amounts to solving the following
sparse linear system

(L+AD +4T) o = (AD +71) & (5.3)

The final alpha matte is obtained by first evaluating the real-time matting algorithm
(described in Chapter 4). The resulting matting parameters are then used to assemble
the sparse linear system from Equation 5.3, which is solved using Matlab’s “backslash”
operator (a direct solver). The matting Laplacian matrix L is obtained using the original
implementation of (LEVIN; LISCHINSKI; WEISS, 2008).

f~ = 10! in our implementation
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6 RESULTS

The technique described in this work was implemented using C++ and GLSL and was
used to process a large number of images and videos. Given that the search space associ-
ated with Equation 4.11 is both small and discrete, its minima is computed by evaluating
this equation for its corresponding entire search space and by selecting the sample-pair
with the smallest value. Since these operations can be performed independently for each
pixel p € T,,, we exploit the inherent parallelism of current GPUs to efficiently perform
these searches in parallel. All the results reported here were obtained using a 2.8 GHz
Quad Core PC with 8 GB of memory and a GeForce GTX 280 with 1024 MB of video
memory.

6.1 Matte Error Evaluation

In order to assess the quality of the results obtained by the proposed real-time matting
technique, the benchmark provided by Rhemann ef al. (RHEMANN et al., 2009) is used.
It evaluates and compares the accuracy of an image-matting technique against the results
produced by the state-of-the-art. Such a benchmark is composed of eight test images
publicly available at www.alphamatting.com (Figure 6.1), each accompanied by three
trimaps (small, large and user). These images are designed to be challenging represen-
tations of natural scenes, containing examples of highly textured backgrounds, as well
as images where background and foreground colors cannot be easily differentiated. The
ground-truth alpha mattes for each of the test images are used to assess the quality of the
results, but are not disclosed to the public. As such, Rhemann et al.’s benchmark provides
an independent and reliable mechanism for evaluating digital image-matting algorithms.

Figures 6.2 and 6.3 show four tables produced by Rhemann et al.’s benchmark. These
tables provide two types of error metrics — sum of absolute differences (SAD) and
mean squared error (MSE) — which are obtained by comparing each technique’s gen-
erated matte with the undisclosed ground-truth matte. Ranking information for each
image-trimap pair is also provided along with an “overall rank” (obtained by averag-
ing all raking results for each technique). However, such ranking algorithm is severely
oversimplified, resulting in a tendency to overestimate rank positions. For instance, in
the MSE table of Figure 6.2, under the “Donkey” image with a “large” trimap, all the
top five matting techniques obtain a MSE of 0.4. However, the proposed technique (Im-
proved Sampling Matting (Real-Time)), which also has a MSE of 0.4, gets ranked at the
fifth position (rank 5), which has a significant impact in our final “overall rank”. This
should not happen for such a small error difference' relative to the smallest error obtained

lequal to 0.09 in the worst case



35

Figure 6.1: All eight images from the test dataset of Rhemann et al.’s benchmark. These
images are designed as challenging representations of natural scenes. We have examples
of: low contrast between foreground and background colors; large unknown regions with
transparency; long, thin and transparent hair structures; discontinuities in the foreground
object border; and highly textured backgrounds. Ground-truth mattes are not disclosed to
the public. From www.alphamatting.com.

among all techniques (the second decimal place was not considered significant by the
benchmark authors and was not included in the benchmark’s tables). Another example
where this simplified ranking scheme fails to properly model the relative quality of mat-
ting results can be seen in Table 6.1. Here, the difference in error from rank 2 to rank 1
1s 0.8 — 0.7 = 0.1, while the difference in error from rank 3 to rank 2is 1.2 — 0.8 = 0.4,
which is four times larger. Yet, this important information is not accurately represented
in the final ranking. To address these problems we propose a new ranking methodology.

Matting Technique Rank MSE MSE diff.
Improved color matting 1 0.7 -
Improved Sampling Matting 2 0.8 0.1
Robust Matting 3 1.2 0.4

Table 6.1: Another example where the simplified ranking scheme in Rhemann et al.’s
benchmark fails to properly model the relative quality of matting results. Values obtained
from the MSE table of Figure 6.2, under the “Plant” image with a “large” trimap.

6.1.1 Raking by Relative Error

To generate an “overall rank”, each technique’s error values must be combined in
some specified way. However, there is no meaning in directly combining MSE or SAD
values, as they were obtained from different input images. To solve this problem, we first
transform these errors into a relative error form, where they can be meaningfully averaged
to assess the overall performance of a matting technique.

The relative error R of a matting technique M, for an image Z with a trimap 7 is
defined as

error(My,Z,T)

R(M,I,T) =
(M ) mini[error(Mi,I,T)}

(6.1)
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where error(...) is the SAD or MSE value obtained from the benchmark tables (Fig-
ures 6.2 and 6.3). The relative error R(My,Z, 7T ) accurately expresses the quality of a
matting technique M, relative to the smallest error obtained among all techniques. By
using this methodology, all the top five matting techniques (which have an MSE of 0.4) in
Figure 6.2, regarding the “Donkey” image with a “large” trimap, will have a relative error
R equal to 1 — i.e., their results have 0% more errors than the best obtained result. More
precisely, a technique with a value of R(...) = r produces results with 100 x (r — 1)%
more errors than the best obtained results. Table 6.2 shows this new ranking methodology
applied to the example of Table 6.1.

Matting Technique Relative Rank # MSE MSE diff.
Improved color matting 1.00 0.7 -
Improved Sampling Matting 1.14 0.8 0.1
Robust Matting 1.71 1.2 0.4

Table 6.2: The relative error R properly models the quality of matting techniques relative
to the smallest error obtained among all techniques.



Benchmark tables for the proposed real-time technique

Sum of Absolute Troll Dell ‘ Donkey ! Elephant ) Plant ) Pineapple ! Plastic bag ‘
Differences avg. | avg. |avg. | (Strongly Transparent) | (Strongly Transparent) | (Medium Transparent) | (Medium Transparent) (Little Transparent) (Little Transparent) (Highly Transparent) (Highly Transparent)
overall|small|large | user Input Input Input Input Input Input Input Input
rank |rank |rank |rank| small large user | small large user | small large user | small large user | small large user | small large user | small large  user small large user
Improved color matting 21 |23|19 |21 (1493 2453 204 672 952 851|462 613 433 263 542 343 753 991 1252 62 1011 842 |2612 2672 23.61| 23.81 2561 26.71
:ﬁ:';gtrﬁl‘.'ge?kse:r'rpl::.eg) 27 |29 |29 |23 |1292 2464 1752| 994 143 1023 | 441 561 421 274 623 364|611 1012 11.41| 561 1042 691 3697 3664 3864 3153 3814 3232
Closed-Form Matting 28 |28 |24 |34 1271 2192 17.21| 591 851 862 | 473 62 432 | 2221 4.61 332 935 1213 1935| 835 1495 1346 |34.24 3243 2742 2652 2572 4837
Robust Matting 41 |35 |45 |44|17.34 2846 2115|1015 1697 1145 | 484 655 55 285 735 445 732 145 1814 | 683 1464 1064 |22.71 26.11 3213 | 3444 373 384
High-res matting 48 |45 |55 |45|1866 2585 2466 | 863 1414 1114 55 6.24 484 | 252 836 321|784 144 2146|856 1818 1225|3535 3816 4267 | 3875 5467 3683
Random Walk Matting 6.8 |73 | 61|69 |1795 2031 1943|1136 1565 1186 | 586 76 638 346 674 466 (1318 2218 2748|1239 187 1579|4419 4359 416 7519 8189 8069
Geodesic Matting 74 |79 | 7 (7.3|2699 3859 3259|1427 1656 1747 |11.710 1411 9410|7610 1519 8710|1287 16.77 1513 | 734 1213 983 |3738 3745 4288 | 4868 506 4868
Iterative BP Matting 7.6 7 7.8 |81(2367 2997 27.27|16.78 2439 20.710| 6.78 98 637 387 1138 689 (1419 2289 2799|1148 199 1477|3343 3937 47510| 4066 4815 4516
Easy Matting 8 81|79| 8 |2398 3268 308 |17.19 2188 1949 637 757 0586 | 478 1057 567 |1216 1576 2297|1127 176 1488 (49.51049.610 46.29|77.810 108.6 11 109.2 10
Bayesian Matting 89 |89 |95 |84 |(3031042.41033.410{19.21025810 1848|1089 1249 10811| 669 18511 628 |142102981033.210|154103061019.710|3586 4068 3965 | 4537 76.88 4365
Poisson Matting 10.8 | 11 |10.6|10.8|51.81156.2 11 5211 |28.31143.51130.711|12.11113.710 9.29 |11.7111841011.211|22.411 36.81155.511|21.411 32.211 22.711|53.61172.91158.411|125.511 84.810 139.7 11
Troll Doll Donkey Elephant Plant Pineapple Plastic bag Net
Mean Squared Error avg. | avg. | avg. | (Strongly Transparent) | (Strongly Transparent) | (Medium Transparent) | (Medium Transparent) (Little Transparent) (Little Transparent) (Highly Transparent) (Highly Transparent)
overall | small | large | user Input Input Input Input Input Input Input Input
rank |rank |rank|rank| small large user | small large user | small large user | small large user | small large  user small large user | small large user small large user
Improved color matting 2 21| 21|18 | 083 244 154 032 052 051|031 043 031|013 032 023|074 071 091 041 071 072 22 192 141 131 152 151
Closed-Ferm Matting 3 3 25136051 182 111|031 041 062 033 042 032|011 031 022|126 145 236 086 165 166 34 273 192 132 121 58
:::gtrl‘:l“rgm:k::r-"l?llr:leg} 3.5 3.8 | 3.9 3 072 255 133 0.85 134 095 034 045 033|027 065 034 | 041 082 112 052 12 071|326 314 344 1.73 2.44 1.72
Robust Matting 3.7 3.1 | 3.9 4 115 287 175 074 155 094 032 044 034|014 054 035|052 123 193 053 154 124|151 181 263 244 233 294
High-res matting 4.4 41 | 46 |44 | 136 223 226 053 113 083 035 041 035|012 076 021|063 124 224 084 27 145 | 325 347 428 265 436 223
Iterative BP Matting 6.5 59 | 64| 73| 177 266 237 158 268 239 056 077 046|025 087 047 |115 26 3.17 17 26 167 | 283 336 459 36 3.85 366
Random Walk Matting 6.8 74 | 64 | 6.6 14 111 122 16 176 116 | 057 066 067|026 043 036 | 210 349 429 |168 238 218|469 449 46 839 949 859
Geodesic Matting 7.5 79 | 73| 73| 249 469 3410|157 187 197 |1l610 2111 119 |0.810 199 0910|187 257 2.25 085 143 113|337 325 417 388 437 427
Bayesian Matting 8.8 88|93 |83| 310 4610 349 | 239 329 218|149 159 1211|079 2110 068 | 188 4210 5210 (2210 4610 2910| 348 398 395 | 3.77 868 S5 E
Easy Matting 9 9 9 9 228 378 338 (2410 3210 2910|078 098 068 | 058 148 069 189 258 418 1.79 279 249 5410 5410 4710 1010 15911 16.310
Paoisson Matting 10.92 | 11 |10.8|109(6911 7511 7111|4711 7711 5311|1711 1910 1110(1.611 2511 1411|3511 6311 11.511(3.611 5711 3.911(6.111 9.411 681119411 1110 21611

Figure 6.2: Results of Rhemann et al.’s
The techniques listed in these tables are:

benchmark for the proposed real-time matting technique (Improved Sampling Matting (Real-Time)).
Improved color matting (RHEMANN; ROTHER; GELAUTZ, 2008), Closed-Form Matting (LEVIN;

LISCHINSKI; WEISS, 2008), Robust Matting (WANG; COHEN, 2007), High-res matting (RHEMANN et al., 2008), Random Walk Mat-
ting (GRADY et al., 2005), Geodesic Matting (BAI; SAPIRO, 2007), Iterative BP Matting (WANG; COHEN, 2005), Easy Matting (GUAN et al.,
2006), Bayesian Matting (CHUANG et al., 2001) and Poisson Matting (SUN et al., 2004).
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Benchmark tables for the proposed matting technique with the additional optimization step

sum of Absolute Troll Doll ) Donkey : Elephant ‘ Plant ) Pineapple ) Plastic bag ‘ Net
Differences avg. |avg. [avg.| (Strongly Transparent) | (Strongly Transparent) | (Medium Transparent) | (Medium Transparent) (Little Transparent) (Little Transparent) (Highly Transparent) (Highly Transparent)
overall|small|large | user Input Input Input Input Input Input Input Input
rank |rank|rank|rank| small large user | small large wser | small large user | small large user | small large user | small large user | small large  user small large user
Improved Sampling Matting| 2.2 |24 |24 |19 |10.51 2082 14.81 | 853 1193 873 | 421 541 391 242 T4 332 | 521 851 991 481 991 661 367 3544 3644 | 2663 3183 2742
Improved color matting 2.3 |24 |23|23|1493 2454 204 672 952 851 462 613 433 264 542 344 753 992 1252 62 1012 842 |2612 2672 23.61 | 23.81 2561 26.71
Closed-Form Matting 3 29 |25(|36 (1272 2193 1722 5.91 851 862 | 473 62 432 | 221 461 333 935 1213 1935 | 835 1495 1346 |34.24 3243 2742 | 2652 2572 4837
Robust Matting 4.2 |35 |46 |44|17.34 2846 2115|1015 1697 1145)| 484 655 55 285 735 445 732 145 1814 | 683 1464 1064|2271 26,11 3213 | 3444 374 384
High-res matting 49 |48 |55 |45|1866 2585 2466 | 864 1414 1114 55 6.24 484 253 836 3.21 7.84 144 2146 | 856 1818 1225|3535 3816 4267 | 38.75 5467 3683
Randoem Walk Matting 6.7 | 7.3 6 |69|1795 20,31 1943|1136 1565 1186 | 5.86 76 6.38 346 673 466 (13.18 2218 2748|1239 187 1579|4419 4359 416 75.19% 8189 8069
Geodesic Matting 7.4 | 7.9 7T |7.3|2699 3859 3259|1427 1656 1747 |11.710 1411 9410|7610 1519 8710|1287 16.77 1513 | 734 1213 983 |3738 3745 4288 | 4868 506 48.6 8
Iterative BP Matting 7.6 7 7.8 |81(2367 2997 2727|1678 2439 20.710| 6.78 98 6.37 387 1138 6.89 |1419 2289 2799|1148 199% 1477|3343 3937 47510| 4066 4815 4516
Easy Matting 8 81|79| 8 (2398 3268 308 (1719 2188 1949| 637 757 586 | 478 1057 567 |1216 1576 2297 |11.27 176 14.88 |49.51049.610 46.29|77.810 108.6 11109.2 10
Bayesian Matting 89 |89 |95 |84|303104241033.410{19.21025.810 1848 |10.8% 1249 10.811| 669 18511 6.28 |14.21029.81033.210|15.41030.61019.710|3586 4068 39.65| 4537 76.88 4365
Poisson Matting 10.8 | 11 |10.6|10.8(51.81156.211 5211 |28.31143.51130.711|1211113.710 9.29 (11.71118.41011.211|22.411 36.81155.511|21.411 32.21122.711|53.61172.91158.411|125.511 84.8 10 139.7 11
Troll Doll Donkey Elephant Plant Pineapple Plastic bag Net
Mean Squared Error avg. | avg. | avg. | (Strongly Transparent) | (Strongly Transparent) | (Medium Transparent) | (Medium Transparent) (Little Transparent) (Little Transparent) (Highly Transparent) (Highly Transparent)
overall [ small | large | user Input Input Input Input Input Input Input Input
rank | rank | rank | rank | small  large  user small large  user | small large user | small large user | small large  user small large user | small large user small large user
Improved Sampling Matting| 2.2 21 | 25 2 041 172 081 064 093 063|021 031 0.21 | 014 055 024|031 051 081 031 032 051 34 2.84 34 111 152 1.21
Improved color matting 2.4 25|26 21| 083 245 154 032 052 051 032 044 032 013 032 023|074 072 092 042 071 072 22 192 141 132 153 152
Closed-Form Matting 3.4 35 |28 |39| 052 183 112 031 041 0862 034 043 033|011 031 022|126 145 236 086 165 166 35 273 192 133 1.21 58
Robust Matting 3.9 35 |41 | 41| 115 287 175 075 155 095 033 045 034 015 054 035|052 123 193 053 154 124 | 151 181 263 244 234 294
High-res matting 4.6 4.3 G 45| 136 224 226 053 114 084 035 042 035 012 076 0.21 | 063 124 2.24 084 27 145|326 347 428 265 4386 223
Iterative BP Matting 6.5 6 64 | 73| L.77 2866 237 158 268 239 056 077 046 026 087 047 | 115 26 317 17 26 167 | 283 336 459 36 3.85 366
Random Walk Matting 6.9 75 | 64 | 6.8 14 111 123 16 1.76 116 057 066 067 027 043 036 210 349 429 1.68 238 218 |469 449 46 8.39 949 859
Geodesic Matting 7.5 79 |73 | 73| 249 469 3410|157 187 197 |1610 2111 119 (0810 199 0910|187 257 2.25 085 143 113|337 325 417 388 437 427
Bayesian Matting B.B 88 | 93 | 83 310 4610 349 239 329 218 149 159 1.211| 0.79 2110 068 | 188 4210 5210 (2.210 4610 2910|348 398 395 3.77 868 355
Easy Matting 9 9 9 9 228 378 338 |2410 3210 2910| 0.78 098 068 058 148 069 | 189 258 418 1.79 279 249 |5410 5410 4710 1010 15911 16.310
Poisson Matting 10.9 11 |10.8 (109} 6911 7511 7111|4711 7711 5311|1711 1910 1110|1611 2511 1411|3511 6311 11.511|3.611 5711 3911|6111 9411 681119411 1110 21611

Figure 6.3: Results of Rhemann et al.’s benchmark for the proposed matting technique with the additional optimization step (Improved Sampling
Matting). The techniques listed in these tables are: Improved color matting (RHEMANN; ROTHER; GELAUTZ, 2008), Closed-Form Mat-
ting (LEVIN; LISCHINSKI; WEISS, 2008), Robust Matting (WANG; COHEN, 2007), High-res matting (RHEMANN et al., 2008), Random Walk
Matting (GRADY et al., 2005), Geodesic Matting (BAI; SAPIRO, 2007), Iterative BP Matting (WANG; COHEN, 2005), Easy Matting (GUAN

et al., 2006), Bayesian Matting (CHUANG et al., 2001) and Poisson Matting (SUN et al., 2004).
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6.1.2 Evaluation of Obtained Results

Table 6.3 summarizes the overall ranking of matting techniques according to the rel-
ative error metric defined in Section 6.1.1. The proposed real-time matting technique
(Improved Sampling Matting (Real-Time)) ranks second. It is, however, up to 100 times
faster (as shown in Section 6.2), allowing, for the first time, alpha matting in real-time
applications. The proposed matting technique with the additional optimization step (Im-
proved Sampling Matting) ranks first, obtaining the best results ever achieved in Rhe-
mann et al.’s benchmark. Separate error values for all images in the test dataset can be
found in Appendix A.

Matting Technique Overall Rank SAD Rank MSE Rank
Improved Sampling Matting 1.21 1.14 1.28
Improved color matting 1.25 1.15 1.35
Improved Sampling Matting (Real-Time) 1.54 1.27 1.80
Closed-Form Matting 1.56 1.30 1.83
Robust Matting 1.69 1.43 1.95
High-res matting 1.88 1.56 2.21
Iterative BP Matting 2.62 1.97 3.16
Random Walk Matting 2.85 2.08 3.73
Geodesic Matting 3.26 2.13 4.38
Easy Matting 391 2.28 5.50
Bayesian Matting 4.05 2.60 5.55
Poisson Matting 7.25 3.84 10.65

Table 6.3 Relative error ranking for image-matting techniques.

These results, however, are worsened by the fact that one of the images in the test
dataset breaks the assumption made by the proposed sampling technique: the “plastic
bag” image (Figure 6.1, third image from the top-left) contains a completely transpar-
ent foreground object; thus, no foreground sample exists that approximates the true fore-
ground color of the object. If we remove this image from the ranking results, the proposed
technique has a much smaller relative error (Table 6.4, only the top four techniques are
shown).

Matting Technique Overall Rank SAD Rank MSE Rank
Improved Sampling Matting 1.14 1.09 1.19
Improved color matting 1.27 1.16 1.38
Improved Sampling Matting (Real-Time) 1.49 1.23 1.76
Closed-Form Matting 1.57 1.29 1.86

Table 6.4 Relative error ranking for image-matting techniques not considering the “plastic
bag” image, which breaks the assumption made by the proposed sampling approach.

Figure 6.4 shows the alpha mattes generated by the proposed real-time technique for
some images from the training dataset provided by (RHEMANN et al., 2009). For such
dataset, the ground-truth mattes are available and are shown next to our results for com-
parison.




Figure 6.4: Top row: Images from the training dataset provided by (RHEMANN et al., 2009). Center row: Alpha mattes extracted with the proposed
real-time technique using the trimaps supplied in the dataset. Bottom row: Ground-truth alpha mattes provided for comparison.
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| Image #of pixels % unknown Time (sec) | | Optimization (sec) |
elephant 536,800 16% 0.022 1.6
donkey 455,200 17% 0.021 1.6
pineapple 481,600 20% 0.027 1.8
doll 451,200 25% 0.027 2.4
plasticbag 529,600 28% 0.035 4.3
plant 425,600 35% 0.033 2.5
troll 512,000 40% 0.050 5.0
net 496,000 51% 0.063 12.5
(a) (b)

Table 6.5: (a) Comparison of the time taken to generate alpha mattes with the proposed
real-time technique for the images in Figure 6.1, using the most conservative trimaps (i.e.,
large). (b) Time taken by the additional optimization step to solve the linear system in
Equation 5.3 (using Matlab’s direct solver).

| Technique Time (sec) |
Closed-Form Matting (2008) 18
Easy Matting (2006) 300
Random Walk Matting (2005) 5
Robust Matting (2007) 50
High-res Matting (2008) 4.5
Fast Matting (2005) 4.5

Table 6.6: Comparison of the time taken to generate alpha mattes with state-of-the art
techniques for an image with 392, 000 pixels (0.3 Mpix). From (RHEMANN et al., 2008).

6.2 Performance Evaluation

Since existing techniques are not suitable for real-time applications, performance
comparisons considering the time required to compute the alpha matte have been over-
looked in many previous publications. The technique proposed in this work, on the other
hand, can compute alpha mattes for typical images in real-time. Table 6.5a summarizes
the time required by the proposed real-time technique to extract the alpha mattes for the
test set of images available from Rhemann e al.’s benchmark (RHEMANN et al., 2009)
using the most conservative trimaps (i.e., large). For each image, Table 6.5 provides its
dimensions, the number of pixels in the unknown region of the trimap, and the time re-
quired to compute the matte. For comparison, Table 6.6 shows the matte generation time
for six other techniques (image size is 392, 000 pixels, or 0.3 Mpix) — this table was
extracted from (RHEMANN et al., 2008), and all times were measured on the same ma-
chine. Note that the proposed technique is 100 times faster when compared to the fastest
state-of-the-art algorithms.

Additionally, as discussed in Chapter 5, the alpha matte obtained using the proposed
real-time technique can be further refined through an extra optimization step. This step
involves assembling and solving a sparse set of linear equations, thus requiring a con-
siderable amount of computational effort (Table 6.5b). However, as all state-of-the-art
techniques involve solving such a sparse linear system, our results for the extended mat-
ting technique have comparable computation times to the ones from current techniques.
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Figure 6.5: Some frames extracted from video sequences processed by the proposed tech-
nique for real-time matte extraction. The images on top show the original frames, while
the extracted mattes are shown on the bottom.

6.3 Applications of Real-Time Alpha Matting

6.3.1 Video Matting

The proposed method enables the use of alpha matting in real-time applications for the
first time. One possible such application is real-time matte generation for natural scene
videos. Since the proposed approach uses a trimap as input, it needs to rely on other tech-
niques for providing trimaps for each frame of the video in real-time. Figures 6.5 and 6.6
illustrate such an application for two video sequences. In these examples, the trimaps
were created by dilating the boundaries of the binary segmented video frames. Such
segmentation was obtained using a real-time background binary segmentation technique’

Briefly, background color samples are obtained under several lighting conditions, which are then are
used to model (offline) the background color probability density function (PDF) using the kernel density
estimation method. This pre-computed PDF is used for real-time binary background segmentation.
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described in Appendix B. Thus, given an input video sequence, the results shown were
entirely computed in real-time. This means that the whole sequence of operations com-
prising binary segmentation, boundary dilation, matte extraction and compositing was
performed in real time.

For highly textured backgrounds or greatly transparent foreground pixels, the pro-
duced matte might suffer from temporal noise, i.e. flickering. One can think of many
ideas for increasing the temporal coherence of the matte, such as temporal blending of
alpha values based on confidence values, or even selecting candidate samples along the
time axis, in addition to the image space. This is an interesting problem that remains to
be explored in future work.

Figure 6.6: Final composite for two frames extracted from video sequences processed by
the proposed technique in real-time. The images on the top-left show the original frames,
while the images on the bottom-left show the extracted foreground object. On the right,
the foreground is shown composited against a new background.
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4

Figure 6.7: Use of the proposed real-time technique for interactive segmentation and
composition of images by alpha matting. As the user scribbles over the image (top-left), a
trimap is automatically updated, providing instant feedback on the resulting segmentation.
The resulting trimap and alpha matte computed from the set of scribbles on the top-left
are shown on the top-right and bottom-left images, respectively.

6.3.2 Interactive Alpha Matting

Another benefit of the improved performance of the proposed technique is its ability to
provide real-time feedback to users during interactive alpha-matting extraction sessions.
We demonstrate this feature using a simple trimap creation interface. Initially, all pixels
in the image are labeled as belonging to the unknown region 7),. As one uses small
scribbles over the image, a trimap is automatically computed and refined, also providing
instant feedback on the resulting matte extraction. The scribbles are propagated using an
iterative flood-filling procedure, limited by a simple edge detector. Figure 6.7 illustrates
the concept using one of the images of the training dataset. On the top-left, one sees the
scribbles superimposed onto the original image. The blue color is a label for foreground
pixels, while red and yellow represent background and unknown pixels, respectively. The
image on the top-right shows the computed trimap, for which a gray shade indicates
uncertainty about whether a pixel belongs to the background (shown in black) or to the
foreground (shown in white). The extracted alpha matte is shown on the bottom-left, with
a detail crop on the bottom-right.

The speed of the proposed method makes the matte creation process much easier for
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the user, as there is no delay between input and matte refinement. This considerably
reduces the time taken to interactively segment images by alpha matting. The resulting
mattes are generated considerably faster for images with complex edges and topologies.
Only in the worst case one needs to completely trace the border of the foreground object,
which is always needed in the technique described in (WANG; AGRAWALA; COHEN,
2007). Furthermore, the simple trimap generation technique presented here was a proof of
concept, thus leaving to be explored the use of more advanced techniques for interactive
and real-time trimap generation.
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7 CONCLUSIONS AND FUTURE WORK

This work presented the first real-time matting technique for natural images and videos.
The proposed technique is based on the observation that pixels in a small neighborhood
in image space tend to have highly similar values for (o, F, B) triplets. As such, inde-
pendently computing such triplets for each pixel in the unknown region in a conventional
way tends to result in a lot of redundant work. The amount of required computation can
then be significantly and safely reduced by a careful selection of pairs of candidate back-
ground and foreground samples. The work required to perform this task can be distributed
among neighbor pixels, leading to considerable savings in computation cost. Moreover,
the required operations can be performed in parallel, allowing us to exploit the benefits of
programmable GPUs.

To obtain these results, this work proposes a new objective function for identifying
good pairs of background and foreground samples. Such a function takes into account
spatial and photometric, as well as some probabilistic information extracted from the
image. This improved objective function allows the proposed approach to achieve high-
quality results while still operating on a considerably small discrete search space. The
proposed approach can achieve speedups of up to two orders of magnitude compared to
previous approaches, while producing highly-accurate alpha mattes. The quality of the
generated results was assessed by performing the independently developed benchmark
by Rhemann et al. (RHEMANN et al., 2009). In such a benchmark, the proposed real-
time matting technique ranked second among current techniques. However, the proposed
technique is up to 100 times faster than the state-of-the-art, allowing for real-time alpha
matting. Additionally, the proposed technique can be extended with an extra optimization
step, resulting in the best results ever achieved in Rhemann er al.’s benchmark. The
extended technique ranks first among all techniques.

We have demonstrated that our technique can provide instant feedback to support
interactive extraction of high-quality alpha mattes. Our technique is also fast enough to,
for the first time, support alpha-matte computation for videos in real-time, given that the
corresponding trimaps are provided. This opens up exciting opportunities for new real-
time applications and for improved real-time trimap generation for videos. The works
described in (BAI et al., 2009) and (BAI; SAPIRO, 2007) are promising steps toward fast
binary segmentation, which can be used for trimap estimation. Finally, the problem of
handling temporal coherence for real-time matte remains to be explored.
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Sum of Absolute Differences overall rank Troll Doll Donkey Elephant
small large wuser | small large wuser | small large wuser | small large user
Improved Sampling Matting 1.14 1.00 102 1.00| 144 140 1.02| 1.00 1.00 1.00 | 1.09 1.52 1.03
Improved color matting 1.15 142 121 135 1.14 1.12 1.00 | 1.10 1.13 1.10| 1.18 1.17 1.06
Improved Sampling Matting (Real-Time) 1.27 1.23 121 1.18| 1.68 1.65 120 1.05 1.04 108 | 1.23 135 1.13
Closed-Form Matting 1.30 121 1.08 1.16| 1.00 1.00 1.01 | 1.12 1.11 1.10| 1.00 1.00 1.03
Robust Matting 1.43 1.65 140 143 | 1.71 199 134 1.14 120 128 | 1.27 159 1.38
High-res matting 1.56 1.77 127 166 | 146 166 131 | 1.19 1.15 123| 1.14 180 1.00
Random Walk Matting 1.97 .70 1.00 131 | 192 184 139| 1.38 130 1.62| 1.55 146 144
Iterative BP Matting 2.08 225 147 184 | 283 286 244 | 1.60 1.67 162 | 1.73 246 2.13
Geodesic Matting 2.13 256 190 220| 241 194 205| 279 259 241 | 345 328 272
Easy Matting 2.28 228 1.61 2.03| 290 256 228 | 1.50 139 149 | 2.14 228 1.75
Bayesian Matting 2.60 289 2.09 226 325 3.04 216| 257 230 277 | 3.00 4.02 194
Poisson Matting 3.84 493 277 351 480 5.12 3.61 | 288 254 236| 532 4.00 3.50

Sum of Absolute Differences overall rank Plant Pineapple Plastic Bag Net

small large wuser | small large wuser | small large wuser | small large user
Improved Sampling Matting 1.14 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.59 1.36 1.54| 1.12 1.24 1.03
Improved color matting 1.15 144 1.16 126 1.25 1.02 127 1.15 102 1.00| 1.00 1.00 1.00
Improved Sampling Matting (Real-Time) 1.27 1.17 1.19 1.15] 1.17 105 1.05] 1.63 140 164 | 132 149 1.21
Closed-Form Matting 1.30 1.79 142 195| 1.73 151 203 | 1.51 124 1.16| 1.11 1.00 1.81
Robust Matting 1.43 140 1.65 183 | 142 147 161 1.00 1.00 136| 145 145 142
High-res matting 1.56 1.50 1.65 216 | 1.77 183 185 | 1.56 146 181 | 1.63 2.13 1.38
Random Walk Matting 1.97 252 260 277|256 182 238| 194 1.67 1.74| 3.16 320 3.02
Iterative BP Matting 2.08 271 268 282|238 192 223 | 147 151 201 | 1.71 188 1.69
Geodesic Matting 2.13 246 196 153 | 1.52 122 148 | 1.64 143 181 | 2.04 195 1.82
Easy Matting 2.28 233 1.85 231|233 1.72 224 | 2,18 190 196 | 327 424 4.09
Bayesian Matting 2.60 273 351 335) 321 309 298| 158 156 1.68| 190 3.00 1.63
Poisson Matting 3.84 431 433 561 | 446 325 344 236 279 247 | 527 331 523

Table A.1: SAD Relative error for all images in the test dataset. See section 6.1.2.
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Mean Squared Error overall rank Troll Doll Donkey Elephant
small large wuser | small large wuser | small large wuser | small large user
Improved Sampling Matting 1.28 1.00 155 1.00 | 200 225 120 | 1.00 1.00 1.00 | 1.00 1.67 1.00
Improved color matting 1.35 200 218 188| 1.00 125 1.00 150 133 150| 1.00 1.00 1.00
Improved Sampling Matting (Real-Time) 1.80 .75 227 1.63 | 2,67 325 180 | 1.50 1.33 1.50| 2.00 2.00 1.50
Closed-Form Matting 1.83 125 164 138 1.00 100 120 | 1.50 133 150 1.00 1.00 1.00
Robust Matting 1.95 275 255 213|233 375 180 | 1.50 1.33 150 | 1.00 1.67 1.50
High-res matting 221 325 200 275|167 275 1.60 | 1.50 133 1.50| 1.00 233 1.00
Iterative BP Matting 3.16 425 236 287 | 500 650 460 | 250 233 2.00| 2.00 2.67 2.00
Random Walk Matting 3.73 250 1.00 150 | 333 425 220 | 250 200 3.00| 200 133 1.50
Geodesic Matting 4.38 6.00 4.18 4.25| 500 450 380 | 800 7.00 5.50| 800 633 4.0
Bayesian Matting 5.50 750 418 4.25| 767 800 420  7.00 5.00 6.00| 7.00 7.00 3.00
Easy Matting 5.55 550 336 4.12| 800 800 580 | 3.50 3.00 3.00| 5.00 4.67 3.00
Poisson Matting 10.65 17.25 6.82 8.87 | 15.67 19.25 10.60 | 850 6.33 5.50 | 16.00 8.33 7.00
Mean Squared Error overall rank Plant Pineapple Plastic Bag Net
small large user | small large wuser | small large wuser | small large user
Improved Sampling Matting 1.28 1.00 1.00 1.00 | 1.00 1.14 1.00| 2.00 1.56 2.14| 1.00 125 1.00
Improved color matting 1.35 233 140 1.13 | 133 1.00 140 133 1.06 1.00| 1.18 125 1.25
Improved Sampling Matting (Real-Time) 1.80 .33 1.60 138 | 1.67 143 140 | 2.13 1.72 243 | 155 200 142
Closed-Form Matting 1.83 4.00 280 287 | 267 229 320|200 150 136 | 1.18 1.00 4.17
Robust Matting 1.95 1.67 240 237 | 1.67 214 240 1.00 1.00 186 | 2.18 192 242
High-res matting 2.21 200 240 275 | 2,67 286 280 | 2.13 1.89 3.00| 236 358 1.83
Iterative BP Matting 3.16 367 400 388 | 333 286 320 | 1.87 1.83 321 | 273 3.17 3.00
Random Walk Matting 3.73 6.67 6.80 525 | 533 329 420 | 307 244 286 | 755 783 7.08
Geodesic Matting 4.38 6.00 5.00 275 | 2.67 200 220|220 178 293 | 345 358 3.50
Bayesian Matting 5.50 6.00 840 6.50 | 733 657 580 227 217 279 | 336 7.17 292
Easy Matting 5.55 6.00 5.00 5.12 | 5.67 3.86 4.80 | 3.60 3.00 3.36| 9.09 13.25 13.58
Poisson Matting 10.65 11.67 12.60 14.38 | 12.00 8.14 7.80 | 4.07 522 486 |17.64 9.17 18.00

Table A.2: MSE Relative error for all images in the test dataset. See section 6.1.2.
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APPENDIX B REAL-TIME BINARY SEGMENTATION UN-
DER VARIABLE LIGHTING CONDITIONS

A fast binary segmentation is essential to generate trimaps for use in real-time alpha-
matting applications. Although various techniques have been proposed for binary seg-
mentation of constant-color and multicolored static backgrounds, these approaches are
sensitive to changes in lighting conditions, requiring new calibration and/or changes in
their parameter values to adjust to these new conditions. Often, such limitations lend to
misclassification of background pixels subject to shading variations, such as shadows cast
by foreground objects. We present an improved model for binary segmentation that is
robust to changes in lighting conditions without new calibration, can be evaluated in real
time and supports moving cameras with multicolored backgrounds.

The technique presented here is divided in two steps: (i) background modeling, eval-
uated offline; and (ii) background segmentation, performed by testing all image pixels
against the background model — computed in the first step — in real-time.

B.1 Background Modeling

The background model is constructed offline by sampling the background under rel-
evant lighting conditions and estimating its probability density function B in the RGB
color space. Thus, for b; = (1, g;,b;), {r,g,b} € [0,1],letby,bs,...,b, ~ B be an inde-
pendent and identically-distributed sample of the background population. We estimate B
with a kernel density approximation as:

1 n
B(r,g,0) = — > _G(|l(r.9,0) = bil) (B.1)

where || - || is the Euclidean norm and G is a gaussian kernel with variance 0 = 2 x 107
(RGB units). The final background model is represented as the 3D isosurface S(c) defined
by B(r,g,b) = ¢, where ¢ = x is the maximum possible value for which the isosurface
S(x) contains no more than 99.9%! of the initial samples b;. Figure B.1 shows a initial
collection of samples from a multicolored background and its corresponding isosurface.

IThis percentage expresses our confidence in the gathered samples, and needs to be smaller if too much
noise is present.
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B

Figure B.1: Example of isosurface for a multicolored background. The initial collection
of background samples (left) is accurately modeled by the isosurface .S (right).

B.2 Background Segmentation

The value of the binary segmentation mask M (p) for each pixel p in the input image
(or video frame) is computed as:

0 if C), isinside S(c)

M(p) = B.2
®) { 1 if C,, isnot inside S(c) (82

where C,, = (7, g, bp) is the color of p. In practice, we substitute the test “is p inside
S(c)?” with a table lookup indexed by C,. For this, the RGB color space is discretized
into a 256 x 256 X 256 cube, and the test in Equation B.2 is precomputed into a 3D lookup
table H. Thus, the actual computation of the binary mask M is reduced to:

M(p) = H(rp, gp, bp) (B.3)

B.3 Results

The simplicity in the background model representation makes this a fast and efficient
technique. Equation B.3 can be evaluated in parallel for all pixels in the input image, thus
is a great candidate for a GPU implementation. We implemented this technique with C++
and GLSL and achieved more than 3, 000 frames per second for images of size 800 x 600
in a PC with a GeForce 8800GTS 512MB GPU and a 3.2GHz CPU. We note, however,
that such an application is CPU-bound due to the extremely small computation done on
the GPU.

The real-time binary segmentation technique presented here works for heterogeneous
and multicolored backgrounds, while being resistant to lighting variations (without re-
calibration) and allowing for a freely moving camera. We evaluate our results against
the ones obtained by the technique of Fernandes et al. (2006), which works under the
same environment conditions. Figure B.2 shows five images (left column) and their cor-
responding binary segmentation masks generated by Fernandes et al.’s technique (center
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column) and our technique (right column). For all these images, the ideal binary segmen-
tation mask would have in white all (and only) pixels belonging to foreground objects.
The first two rows show the robustness of the proposed technique against lighting varia-
tions, where the binary masks where generated with the same background model, without
re-calibration. The last two rows show heterogeneous background segmentation, where
the proposed technique generates binary masks with much less noise while preserving
fine details.
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Figure B.2: Evaluation of the results obtained by the proposed binary segmentation tech-
nique against the ones from Fernandes et al. (2006). Five images are shown (left column)
with their corresponding binary segmentation masks generated by Fernandes et al.’s tech-
nique (center column) and our technique (right column). For all these images, the ideal
binary segmentation mask would have in white all (and only) pixels belonging to fore-
ground objects.
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