
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

FERNANDO TREBIEN

A GPU-based Real-Time Modular Audio
Processing System

Undergraduate Thesis presented in partial
fulfillment of the requirements for the degree of
Bachelor of Computer Science

Prof. Manuel Menezes de Oliveira Neto
Advisor

Porto Alegre, June 2006

CIP – CATALOGING-IN-PUBLICATION

Trebien, Fernando

A GPU-based Real-Time Modular Audio Processing System
/ Fernando Trebien. – Porto Alegre: CIC da UFRGS, 2006.

71 f.: il.

Undergraduate Thesis – Universidade Federal do Rio Grande
do Sul. Curso de Ciência da Computação, Porto Alegre, BR–RS,
2006. Advisor: Manuel Menezes de Oliveira Neto.

1. Computer music. 2. Electronic music. 3. Signal processing.
4. Sound synthesis. 5. Sound effects. 6. GPU. 7. GPGPU. 8. Re-
altime systems. 9. Modular systems. I. Neto, Manuel Menezes de
Oliveira. II. Title.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitor Adjunto de Graduação: Prof. Carlos Alexandre Netto
Coordenador do CIC: Prof. Raul Fernando Weber
Diretor do Instituto de Informática: Prof. Philippe Olivier Alexandre Navaux
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENT

I’m very thankful to my advisor, Prof. Manuel Menezes de Oliveira Neto, for his
support, good will, encouragement, comprehension and trust throughout all semesters he
has instructed me. I also thank my previous teachers for their dedication in teaching me
much more than knowledge—in fact, proper ways of thinking. Among them, I thank
specially Prof. Marcelo de Oliveira Johann, for providing me a consistent introduction to
computer music and encouragement for innovation.

I acknowledge many of my colleagues for their help on the development of this work.
I acknowledge specially:

• Carlos A. Dietrich, for directions on building early GPGPU prototypes of the ap-
plication;

• Marcos P. B. Slomp, for providing his monograph as a model to build this text; and

• Marcus A. C. Farias, for helping with issues regarding Microsoft COM.

At last, I thank my parents for providing me the necessary infrastructure for study
and research on this subject, which is a challenging and considerable step toward a dream
in my life, and my friends, who have inspired me to pursue my dreams and helped me
through hard times.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 6

LIST OF FIGURES . 8

LIST OF TABLES . 9

LIST OF LISTINGS . 10

ABSTRACT . 11

RESUMO . 12

1 INTRODUCTION . 13
1.1 Text Structure . 14

2 RELATED WORK . 16
2.1 Audio Processing Using the GPU . 16
2.2 Summary . 18

3 AUDIO PROCESSES . 19
3.1 Concepts of Sound, Acoustics and Music 19
3.1.1 Sound Waves . 20
3.1.2 Sound Generation and Propagation . 22
3.1.3 Sound in Music . 23
3.2 Introduction to Audio Systems . 25
3.2.1 Signal Processing . 28
3.2.2 Audio Applications . 30
3.2.3 Digital Audio Processes . 31
3.3 Audio Streaming and Audio Device Setup 37
3.4 Summary . 39

4 AUDIO PROCESSING ON THE GPU 40
4.1 Introduction to Graphics Systems . 40
4.1.1 Rendering and the Graphics Pipeline . 41
4.1.2 GPGPU Techniques . 41
4.2 Using the GPU for Audio Processing . 43
4.3 Module System . 45
4.4 Implementation . 46
4.4.1 Primitive Waveforms . 46
4.4.2 Mixing . 46

4.4.3 Wavetable Resampling . 48
4.4.4 Echo Effect . 48
4.4.5 Filters . 52
4.5 Summary . 52

5 RESULTS . 53
5.1 Performance Measurements . 53
5.2 Quality Evaluation . 54
5.3 Limitations . 55
5.4 Summary . 55

6 FINAL REMARKS . 56
6.1 Future Work . 56

REFERENCES . 58

APPENDIX A COMMERCIAL AUDIO SYSTEMS 62
A.1 Audio Equipment . 62
A.2 Software Solutions . 64
A.3 Plug-in Architectures . 65

APPENDIX B REPORT ON ASIO ISSUES 67
B.1 An Overview of ASIO . 67
B.2 The Process Crash and Lock Problem 68
B.3 Summary . 69

APPENDIX C IMPLEMENTATION REFERENCE 70
C.1 OpenGL State Configuration . 70

LIST OF ABBREVIATIONS AND ACRONYMS

ADC Analog-to-Digital Converter (hardware component)

AGP Accelerated Graphics Port (bus interface)

ALSA Advanced Linux Sound Architecture (software interface)

AM Amplitude Modulation (sound synthesis method)

API Application Programming Interface (design concept)

ARB Architecture Review Board (organization)

ASIO Audio Stream Input Output1 (software interface)

Cg C for Graphics2 (shading language)

COM Component Object Model3 (software interface)

CPU Central Processing Unit (hardware component)

DAC Digital-to-Analog Converter (hardware component)

DFT Discrete Fourier Transform (mathematical concept)

DLL Dynamic-Link Library3 (design concept)

DSD Direct Stream Digital4,5 (digital sound format)

DSP Digital Signal Processing

DSSI DSSI Soft Synth Instrument (software interface)

FFT Fast Fourier Transform (mathematical concept)

FIR Finite Impulse Response (signal filter type)

FM Frequency Modulation (sound synthesis method)

FBO Framebuffer Object (OpenGL extension, software object)

GUI Graphical User Interface (design concept)

GmbH Gesellschaft mit beschränkter Haftung (from German, meaning “company
with limited liability”)

GLSL OpenGL Shading Language6

GSIF GigaStudio InterFace7 or GigaSampler InterFace8 (software interface)
1 Steinberg Media Technologies GmbH. 2 NVIDIA Corporation. 3 Microsoft Corporation. 4 Sony
Corporation. 5 Koninklijke Philips Electronics N.V. 6 OpenGL Architecture Review Board.
7 TASCAM. 8 Formerly from NemeSys.

GPGPU General Purpose GPU Programming (design concept)

GPU Graphics Processing Unit (hardware component)

IIR Infinte Impulse Response (signal filter type)

LFO Low-Frequency Oscillator (sound synthesis method)

MIDI Musical Instrument Digital Interface

MME MultiMedia Extensions3 (software interface)

MP3 MPEG-1 Audio Layer 3 (digital sound format)

OpenAL Open Audio Library9 (software interface)

OpenGL Open Graphics Library6 (software interface)

PCI Peripheral Component Interconnect (bus interface)

RMS Root Mean Square (mathematical concept)

SDK Software Development Kit (design concept)

SNR Signal-to-Noise Ratio (mathematical concept)

SQNR Signal-Quantization-Error-Noise Ratio (mathematical concept)

THD Total Harmonic Distortion (mathematical concept)

VST Virtual Studio Technology1 (software interface)

9 Creative Technology Limited.

LIST OF FIGURES

Figure 1.1: Overview of the proposed desktop-based audio processing system. . . 14

Figure 3.1: Examples of waveform composition. 22
Figure 3.2: Primitive waveforms for digital audio synthesis. 26
Figure 3.3: A processing model on a modular architecture. 31
Figure 3.4: Processing model of a filter in time domain. 32
Figure 3.5: An ADSR envelope applied to a sinusoidal wave. 34
Figure 3.6: Illustration of linear interpolation on wavetable synthesis. 35
Figure 3.7: Examples of FM waveforms. 36
Figure 3.8: Combined illustration of a delay and an echo effect. 38
Figure 3.9: Illustration of the audio “pipeline”. 39

Figure 4.1: Data produced by each stage of the graphics pipeline. 41
Figure 4.2: Illustration of a ping-ponging computation. 42
Figure 4.3: Full illustration of audio processing on the GPU. 44
Figure 4.4: Illustration of usage of mixing shaders. 48
Figure 4.5: Illustration of steps to compute an echo effect on the GPU. 52

Figure B.1: ASIO operation summary. 68

LIST OF TABLES

Table 3.1: The western musical scale. 25
Table 3.2: Formulas for primitive waveforms. 26
Table 3.3: Fourier series of primitive waveforms. 33

Table 4.1: Mapping audio concepts to graphic concepts. 43

Table 5.1: Performance comparison on rendering primitive waveforms. 54

LIST OF LISTINGS

4.1 Sinusoidal wave shader. 46
4.2 Sinusoidal wave generator using the CPU. 46
4.3 Sawtooth wave shader. 47
4.4 Square wave shader. 47
4.5 Triangle wave shader. 47
4.6 Signal mixing shader. 47
4.7 Wavetable shader with crossfading between two tables. 49
4.8 Primitive posting for the wavetable shader. 49
4.9 Note state update and primitive posting. 50
4.10 Copy shader. 50
4.11 Multiply and add shader. 50
4.12 Primitive posting for the multiply and add shader. 51
4.13 Echo processor shader call sequence. 51

ABSTRACT

The impressive growth in computational power experienced by GPUs in recent years
has attracted the attention of many researchers and the use of GPUs for applications other
than graphics ones is becoming increasingly popular. While GPUs have been successfully
used for the solution of linear algebra and partial differential equation problems, very little
attention has been given to some specific areas such as 1D signal processing.

This work presents a method for processing digital audio signals using the GPU. This
approach exploits the parallelism of fragment processors to achieve better performance
than previous CPU-based implementations. The method allows real-time generation and
transformation of multichannel sound signals in a flexible way, allowing easier and less re-
stricted development, inspired by current virtual modular synthesizers. As such, it should
be of interest for both audio professionals and performance enthusiasts. The processing
model computed on the GPU is customizable and controllable by the user. The effective-
ness of our approach is demonstrated with adapted versions of some classic algorithms
such as generation of primitive waveforms and a feedback delay, which are implemented
as fragment programs and combined on the fly to perform live music and audio effects.
This work also presents a discussion of some design issues, such as signal representation
and total system latency, and compares our results with similar optimized CPU versions.

Keywords: Computer music, electronic music, signal processing, sound synthesis, sound
effects, GPU, GPGPU, realtime systems, modular systems.

RESUMO

Um Sistema Modular de Processamento de Áudio em Tempo Real Baseado em
GPUs

O impressionante crescimento em capacidade computacional de GPUs nos últimos
anos tem atraído a atenção de muitos pesquisadores e o uso de GPUs para outras aplica-
ções além das gráficas está se tornando cada vez mais popular. Enquanto as GPUs têm
sido usadas com sucesso para a solução de problemas de álgebra e de equações diferen-
ciais parciais, pouca atenção tem sido dada a áreas específicas como o processamento de
sinais unidimensionais.

Este trabalho apresenta um método para processar sinais de áudio digital usando a
GPU. Esta abordagem explora o paralelismo de processadores de fragmento para alcan-
çar maior desempenho do que implementações anteriores baseadas na CPU. O método
permite geração e transformação de sinais de áudio multicanal em tempo real de forma
flexível, permitindo o desenvolvimento de extensões de forma simplificada, inspirada nos
atuais sintetizadores modulares virtuais. Dessa forma, ele deve ser interessante tanto para
profissionais de áudio quanto para músicos. O modelo de processamento computado na
GPU é personalizável e controlável pelo usuário. A efetividade dessa abordagem é de-
monstrada usando versões adaptadas de algoritmos clássicos tais como geração de formas
de onda primitivas e um efeito de atraso realimentado, os quais são implementados como
programas de fragmento e combinados dinamicamente para produzir música e efeitos de
áudio ao vivo. Este trabalho também apresenta uma discussão sobre problemas de projeto,
tais como a representação do sinal e a latência total do sistema, e compara os resultados
obtidos de alguns processos com versões similares programadas para a CPU.

Palavras-chave: Música computacional, música eletrônica, processamento de sinais, sín-
tese de som, efeitos sonoros, GPU, GPGPU, sistemas de tempo real, sistemas modulares..

13

1 INTRODUCTION

In recent years, music producers have experienced a transition from hardware to soft-
ware synthesizers and effects processors. This is mostly because software versions of
hardware synthesizers present significant advantages, such as greater time accuracy and
greater flexibility for interconnection of independent processor modules. Software com-
ponents are also generally cheaper than hardware equipment. At last, a computer with
multiple software components is much more portable than a set of hardware equipments.
An ideal production machine for a professional musician would be small and powerful,
such that the machine itself would suffice for all his needs.

However, software synthesizers, as any piece of software, are all limited by the CPU’s
computational capacity, while hardware solutions can be designed to meet performance
goals. Even though current CPUs are able to handle most common sound processing
tasks, they lack the power for combining many computation-intensive digital signal pro-
cessing tasks and producing the net result in real-time. This is often a limiting factor when
using a simple setup—e.g., one MIDI controller, such as a keyboard, and one computer—
for real-time performances.

There have been speculations about a technological singularity for processor compu-
tational capacity unlimited growth (WIKIPEDIA, 2006a; ZHIRNOV et al., 2003). Even
if there are other points of view (KURO5HIN, 2006), it seems Moore’s law doubling
time has been assigned increasing values along history, being initially 1 year (MOORE,
1965) and currently around 3 years. Meanwhile, graphics processors have been offering
more power at a much faster rate (doubling the density of transistors every six months,
according to nVidia). For most streaming applications, current GPUs outperform CPUs
considerably (BUCK et al., 2004).

Limited by the CPU power, the user would naturally look for specialized audio hard-
ware. However, most sound cards are either directed to professionals and work only with
specific software or support only a basic set of algorithms in a fixed-function pipeline
(GALLO; TSINGOS, 2004). This way, the user cannot freely associate different audio
processes as he would otherwise be able to using modular software synthesizers.

So, in order to provide access to the computational power of the GPU, we have de-
signed a prototype of a modular audio system, which can be extended by programming
new processor modules. This adds new possibilities to the average and professional mu-
sician, by making more complex audio computations realizable in real-time. This work
describes the design and implementation details of our system prototype and provides
information on how to extend the system.

In the context of this work, Figure 1.1 presents an abstract representation of data flow
in a real-time audio application according to a particular arrangement. Sound waves are
captured from the environment along time (step 1 on the right) and converted to a string

14

Audio
Device

Mainboard

Main
Memory

Data
Registers

Graphics
Device

Video
Memory

GPU CPU

1

5234

010100
011011
100011
...

Figure 1.1: Overview of the proposed desktop-based audio processing system.

of numbers, which is stored on the audio device (step 2). Periodically, new audio data is
passed to the CPU (step 3) which may process it directly or send it for processing on the
GPU (step 4). On the next step, the audio device collects the data from the main memory
and converts it to continuous electrical signals, which are ultimately converted into air
pressure waves (step 5). Up to the moment, the paths between CPU and GPU remain
quite unexplored for audio processing.

In this work, we have not devised a new DSP algorithm, neither have we designed an
application for offline audio processing1. We present a platform for audio processing on
the GPU with the following characteristics:

• Real-time results;

• Ease of extension and development of new modules;

• Advantage in terms of capabilities (e.g., polyphony, effect realism) when compared
to current CPU-based systems and possibly even hardware systems specifically de-
signed for music;

• Flexible support for audio formats (i.e., any sampling rate, any number of channels);
and

• Ease of integration with other pieces of software (e.g., GUIs).

We analyze some project decisions and their impact on system performance. Low-
quality algorithms (i.e., those subject to noise or aliasing) have been avoided. Addition-
ally, several algorithms considered basic for audio processing are implemented. We show
that the GPU performs well for certain algorithms, achieving speedups of as much as 50×
or more, depending on the GPU used for comparison. The implementation is playable by
a musician, which can confirm the real-time properties of the system and the quality of
the signal, as we also discuss.

1.1 Text Structure

Chapter 2 discusses other works implementing audio algorithms on graphics hard-
ware. In each case, the differences to this work are carefully addressed.
1 See the difference between online and offline processing in Section 3.2.

15

Chapter 3 presents several concepts of physical sound that are relevant when process-
ing audio. The basic aspects of an audio system running on a computer are presented.
Topics in this chapter were chosen carefully because the digital audio processing subject
is too vast to be covered in this work. Therefore, only some methods of synthesis and
effects are explained in detail.

Next, on Chapter 4, the processes presented on the previous chapter are adapted to
the GPU and presented in full detail. We first discuss details of the operation of graphics
systems which are necessary to compute audio on them. The relationship between entities
in the contexts of graphics and audio processing is established, and part of the source code
is presented as well.

Finally, performance comparison tests are presented and discussed on Chapter 5. Sim-
ilar CPU implementations are used to establish the speedup obtained by using the GPU.
The quality of the signal is also discussed, with regard to particular differences between
arithmetic computation on CPU and GPU. Finally, the limitations of the system are ex-
posed.

16

2 RELATED WORK

This chapter presents a description of some related works on using the power of the
GPU for audio processing purposes. It constitutes a detailed critical review of current
work on the subject, attempting to distinctively characterize our project from others. We
review each work with the same concerns with which we evaluate the results of our own
work on Chapter 5. The first section will cover 5 works more directly related to the
project. Each of them is carefully inspected under the goals established in Chapter 1. At
the end, a short revision of the chapter is presented.

2.1 Audio Processing Using the GPU

On the short paper entitled Efficient 3D Audio Processing with the GPU, Gallo and
Tsingos (2004) presented a feasibility study for audio-rendering acceleration on the GPU.
They focused on audio rendering for virtual environments, which requires considering
sound propagation through the medium, blocking by occluders, binaurality and Doppler
effect. In their study, they processed sound at 44.1 kHz in blocks of 1,024 samples (almost
23.22 ms of audio per block) in 4 channels (each a sub-band of a mono signal) using
32-bit floating-point format. Block slicing suggests that they processed audio in real-
time, but the block size is large enough to cause audible delays1. They compared the
performance of implementations of their algorithm running on a 3.0 GHz Pentium 4 CPU
and on an nVidia GeForce FX 5950 on AGP 8x bus. For their application, the GPU
implementation was 17% slower than the CPU implementation, but they suggested that,
if texture resampling were supported by the hardware, the GPU implementation could
have been 50% faster.

Gallo and Tsingos concluded that GPUs are adequate for audio processing and that
probably future GPUs would present greater advantage over CPU for audio processing.
They highlighted one important problem which we faced regarding IIR filters: they cannot
be implemented efficiently due to data dependency2. Unfortunately, the authors did not
provide enough implementation detail that could allow us to repeat their experiments.

Whalen (2005) discussed the use of GPU for offline audio processing of several DSP
algorithms: chorus, compression3, delay, low and highpass filters, noise gate and volume
normalization. Working with a 16-bit mono sample format, he compared the performance
of processing an audio block of 105,000 samples on a 3.0 GHz Pentium 4 CPU against
an nVidia GeForce FX 5200 through AGP.

1 See Section 3.2 for more information about latency perception. 2 See Section 4.4.5 for more infor-
mation on filter implementation using the GPU. 3 In audio processing, compression refers to mapping
sample amplitude values according to a shape function. Do not confuse with data compression such as in
the gzip algorithm or audio compression such as in MP3 encoding.

17

Even with such a limited setup, Whalen found up to 4 times speedups for a few al-
gorithms such as delay and filtering. He also found reduced performance for other algo-
rithms, and pointed out that this is due to inefficient access to textures. Since the block
size was much bigger than the maximum size a texture may have on a single dimension,
the block needed to be mapped to a 2D texture, and a slightly complicated index trans-
lation scheme was necessary. Another performance factor pointed out by Whalen is that
texels were RGBA values and only the red channel was being used. This not only wastes
computation but also uses caches more inefficiently due to reduced locality of reference.

Whalen did not implement any synthesis algorithms, such as additive synthesis or
frequency modulation. Performance was evaluated for individual algorithms in a single
pass, which does not consider the impact of having multiple render passes, or changing
the active program frequently. It is not clear from the text, but probably Whalen timed
each execution including data transfer times between the CPU and the GPU. As explained
in Chapter 4, transfer times should not be counted, because transferring can occur while
the GPU processes. Finally, Whalen’s study performs only offline processing.

Jędrzejewski and Marasek (2004) used a ray-tracing algorithm to compute an impulse
response pattern from one sound source on highly occluded virtual environments. Each
wall of a room is assigned an absorption coefficient. Rays are propagated from the point
of the sound source up to the 10th reflection. This computation resulted in a speedup of
almost 16 times over the CPU version. At the end, ray data was transferred to main mem-
ory, leaving to the CPU the task of computing the impulse response and the reverberation
effect.

Jędrzejewski and Marasek’s work is probably very useful in some contexts—e.g., game
programming—, but compared to the goals of this work, it has some relevant drawbacks.
First, the authors themselves declared that the CPU version of the tracing process was
not highly optimized. Second, there was no reference to the constitution of the machine
used for performance comparison. Third, and most importantly, all processing besides
raytracing is implemented on the CPU. Finally, calculation of an impulse response is a
specific detail of spatialization sound effects’ implementation.

BionicFX (2005) is the first and currently only commercial organization to announce
GPU-based audio components. BionicFX is developing a DSP engine named RAVEX
and a reverb processor named BionicReverb, which should run on the RAVEX engine.
Although in the official home page it is claimed that those components will be released as
soon as possible, the website has not been updated since at least September, 2005 (when
we first reached it). We have tried to contact the company but received no reply. As such,
we cannot evaluate any progress BionicFX has achieved up to date.

Following a more distant line, several authors have described implementations of
the FFT algorithm on GPUs (ANSARI, 2003; SPITZER, 2003; MORELAND; ANGEL,
2003; SUMANAWEERA; LIU, 2005). 1D FFT is required in some more elaborated audio
algorithms. Recently, GPUFFTW (2006), a high performance FFT library using the GPU,
was released. Its developers claim that it provides a speedup factor of 4 when compared
to single-precision optimized FFT implementations on current high-end CPUs.

The reader shall note that most of the aforementioned works were released at a time
when GPUs presented more limited capacity. That may partially justify some of the low
performance results.

There has been unpublished scientific development on audio processing, oriented ex-
clusively toward implementation on commercial systems. Since those products are an
important part of what constitutes the state of the art, you may refer to Appendix A for an

18

overview of some important commercial products and the technology they apply.
In contrast to the described techniques, our method solves a different problem: the

mapping from a network model of virtually interconnected software modules to the graph-
ics pipeline processing model. Our primary concern is how the data is passed from one
module to another using only GPU operations and the management of each module’s in-
ternal data4. This allows much greater flexibility to program new modules and effectively
turns GPUs into general music production machines.

2.2 Summary

This chapter discussed the related work on the domain of GPU-based audio process-
ing. None of the mentioned works is explicitly a real-time application, and the ones per-
forming primitive audio algorithms report little advantage of the GPU over the CPU. Most
of them constitute test applications to examine GPU’s performance for audio processing,
and the most recent one dates from more than one year ago. Therefore, the subject needs
an up-to-date in-depth study.

The next chapter discusses fundamental concepts of audio and graphics systems. The
parts of the graphics processing pipeline that can be customized and rendering settings
which must be considered to perform general purpose processing on the GPU are pre-
sented. Concepts of sound and the structure of audio systems also are covered. At last,
we present the algorithms we implemented in this application.

4 See Section 3.2.2 for information on architecture of audio applications.

19

3 AUDIO PROCESSES

This chapter presents basic concepts that will be necessary for understanding the de-
scription of our method for processing sound on graphics hardware. The first section
presents definitions related with the physical and perceptual concepts of sound. The next
sections discusses audio processes from a computational perspective. These sections re-
ceive more attention, since an understanding of audio processing is fundamental to under-
stand what we have built on top of the graphics system and why.

3.1 Concepts of Sound, Acoustics and Music

Sound is a mechanical perturbation that propagates on a medium (typically, air) along
time. The study of sound and its behavior is called acoustics. A physical sound field is
characterized by the pressure level on each point of space at each instant in time. Sound
generally propagates as waves, causing local regions of compression and rarefaction. Air
particles are, then, displaced and oscillate. This way, sound manifests as continuous
waves. Once reaching the human ear, sound waves induce movement and subsequent
nervous stimulation on a very complex biological apparatus called cochlea. Stimuli are
brought by nerves to brain, which is responsible for the subjective interpretation given to
sound (GUMMER, 2002). Moore (1990, p. 18) defines the basic elements of hearing as

sound waves → auditory perception → cognition

It is known since ancient human history that objects in our surroundings can produce
sound when they interact (normally by collision, but often also by attrition). By trans-
ferring any amount of mechanical energy to an object, molecules on its surface move to
a different position and, as soon as the source of energy is removed, accumulated elastic
tension induces the object into movement. Until the system reaches stability, it oscillates
in harmonic motion, disturbing air in its surroundings, thereby transforming the accumu-
lated energy into sound waves. Properties of the object such as size and material alter the
nature of elastic tension forces, causing the object’s oscillation pattern to change, leading
to different kinds of sound.

Because of that, humans have experimented with many object shapes and materials to
produce sound. Every culture developed a set of instruments with which it produces music
according to its standards. Before we begin defining characteristics of sound which hu-
mans consider interesting, we need to understand more about the nature of sound waves.

20

3.1.1 Sound Waves

When working with sound, normally, we are interested on the pressure state at one
single point in space along time1. This disregards the remaining dimensions, thus, sound
at a point is a function only of time. Let w : R → R be a function representing a wave.
w (t) represents the amplitude of the wave at time t. Being oscillatory phenomena, waves
can be divided in cycles, which are time intervals that contain exactly one oscillation. A
cycle is often defined over a time range where w (t), as t increases, starts at zero, increases
into a positive value, then changes direction, assumes negative values, and finally returns
to zero2. The period of a cycle is the difference in time between the beginning and the
end of a single cycle, i.e., if the cycle starts at t0 and ends at t1, its period T is simply
defined as T = t1 − t0. The frequency of a wave is the number of cycles it presents per
time unit. The frequency f of a wave whose period is T is defined as f = N

t
= 1

T
, where

N represents the number of cycles during time t. The amplitude of a cycle A is defined as
the highest deviation from the average level that w achieves during the cycle. The average
level is mapped to amplitude zero, so the amplitude can be defined as the maximum value
for |w (t)| with t0 ≤ t ≤ t1. Power is a useful measure of perceived intensity of the wave.
Power P and amplitude A are related by A2 ∝ P . The root-mean-square (RMS) power
of wave is an useful measure in determining the wave’s perceived intensity. The RMS
power PRMS of wave f with T0 ≤ t ≤ T1 is defined as

PRMS =

√
1

T1 − T0

∫ T1

T0

w (t)2 dt (3.1)

To compare the relative power of two waves, the decibel scale is often used. Given two
waves with powers P0 and P1 respectively, the ratio P1

P0
can be expressed in decibels (dB)

as

PdB = 10 log10

(
P1

P0

)
(3.2)

Remark When the time unit is the second (s), frequency (cycles per second) is measured
in Hertz (Hz). Hertz and seconds are reciprocals, such that Hz = 1

s
.

A periodic wave w is such that a single oscillation pattern repeats infinitely in the
image of w throughout its domain, i.e., there is T ∈ R such that w (t) = w (t + T) for
any t ∈ R. The minimum value of T for which this equation holds defines precisely to the
period of the wave. No real world waves are periodic, but some can achieve a seemingly
periodic behavior during limited time intervals. In such cases, they are called quasi-
periodic. Notice, then, that amplitude, period and frequency of a wave are characteristics
that can change along time, except for the theoretical abstraction of periodic waves3.

As all waves, sound exhibits reflection when hitting a surface, interference when
multiple waves “crossing” the same point in space overlap, and rectilinear propagation.

1 This is a simplification that derives from the fact that microphones, loudspeakers and even the human ear
interact with sound at a very limited region in space. The sound phenomenon requires a three-dimensional
function to be represented exactly. 2 This definition works for periodic waves, but it is very inaccurate
for most wave signals and cannot be applied in practical applications. 3 One should note that, differently
from quasi-periodic signals, periodic signals present well-defined characteristics such as period, frequency
and amplitude. In this case, these characteristics are constants through all the domain.

21

Sound also experiences refraction, diffraction and dispersion, but those effects are gener-
ally not interesting to audio processing because they mainly affect only sound spatializa-
tion, which can be innacurately approximated considering only reflections.

The most fundamental periodic waveform is the sinusoidal wave, defined by

w (t) = A sin (ωt + φ) (3.3a)

in which A is the amplitude, ω = 2πf where f is the frequency, and φ is the phase offset
of w. This equation can be rewritten as

w (t) = a cos ωt + b sin ωt (3.3b)

where
A =

√
a2 + b2 and φ = tan−1 b

a
or, equivalently,

a = A cos φ and b = A sin φ

An example of a sinusoid with A = 1, T = 1 and φ = 0.25 is illustrated on Figure 3.1(a).
The solid segment represents one complete cycle of the wave.

Due to interference, waves can come in many different wave shapes. The amplitude
of a wave wr (t) resulting from interference of other two sound waves w1 (t) and w2 (t)
at the same point in space at the instant x is simply the sum of them, i.e., wr (t) =
w1 (t) + w2 (t). When both w1 (t) and w2 (t) have the same sign, wr (t) assumes an
absolute value greater than that of its components; therefore, the interference of w1 and
w1 at t is called constructive interference. If w1 (t) and w2 (t) have different signals, the
resulting absolute amplitude value is lower than that of one of its components, and this
interaction is called destructive interference.

Interference suggests that more elaborated periodic waveforms can be obtained by
summing simple sinusoids. If defined by coefficients 〈ak, bk〉 as in Equation (3.3b), a
composite waveform formed by N components can be defined as

w (t) =
N−1∑
k=0

[ak cos ωkt + bk sin ωkt] (3.4)

For example, one can define a composite wave by setting

ωk = 2πfk ak = 0

fk = 2k + 1 bk =
1

2k + 1

yielding

w (t) = sin 2πt +
1

3
sin 6πt +

1

5
sin 10πt + . . . +

1

2N − 1
sin (2N − 1) πt

By taking N = 3, we obtain the waveform depicted on Figure 3.1(b). Again, the solid trace
represents one complete cycle of the wave.

Equation (3.4) is called the Fourier series of wave w. A more general instance of this
arrangement, defined for the complex domain, is the Inverse Discrete Fourier Transform
(IDFT), which is given by

ws (n) =
N−1∑
k=0

Ws (k) eıωkn (3.5a)

22

t

w (t)

(a) A simple sinusoidal wave
with φ = 0.25.

t

w (t)

(b) A wave composed by three
sinusoids with φ = 0.

f

W (f)

1 3 5

1

3
1

5

(c) Real amplitude spectrum of
waveform on item (b).

Figure 3.1: Examples of waveform composition.

where ws, Ws : Z→ C. To finally obtain values for W (k) from any periodic wave w, we
can apply the Discrete Fourier Transform (DFT), given by

Ws (k) =
N−1∑
n=0

ws (n) e−ıωkn (3.5b)

Ws is called the spectrum of waveform ws. Ws (k) is a vector on the complex plane
representing the k-th component of ws. Similarly to Equation (3.3b), if Ws (k) = ak +bkı,
where ı =

√
−1, we can obtain the amplitude A (k) and phase φ (k) of this component

by

A (k) =
√

a2
k + b2

k and φ (k) = tan−1 bk

ak

(3.5c)

Given the amplitude values and the fact that A2 ∝ P , one can calculate the power spec-
trum of ws, which consists of power assigned to each frequency component.

Notice that n represents the discrete time (corresponding to the continuous variable t),
and k, the discrete frequency (corresponding to f). Both DFT and IDFT can be general-
ized to a continuous (real or complex) frequency domain, but this is not necessary for this
work. Furthermore, both the DFT and the IDFT have an optimized implementation called
the Fast Fourier Transform (FFT), for when N is a power of 2. The discrete transforms can
be extended into time-varying versions to support the concept of quasi-periodicity. This
is done by applying the DFT to small portions of the signal instead of the full domain.

3.1.2 Sound Generation and Propagation

Recall from the beginning of this section that sound can be generated when two ob-
jects touch each other. This is a particular case of resonance, in which the harmonic
movement of molecules of the object is induced when the object receives external energy,
more often in the form of waves. An object can, thus, produce sound when hit, rubbed,
bowed, and also when it receives sound waves. All objects, when excited, have the natu-
ral tendency to oscillate more at certain frequencies, producing sound with more energy
at them. Some objects produce sound where the energy distribution has clearly distinct
modes. Another way of looking at resonance is that, actually, the object absorbs energy
from certain frequencies.

As sound propagates, it interacts with many objects in space. Air, for example, ab-
sorbs some energy from it. Sound waves also interact with obstacles, suffering reflection,
refraction, diffraction and dispersion. In each of those phenomena, energy from certain
frequencies is absorbed, and the phase of each component can be changed. The result

23

of this is a complex cascade effect. It is by analyzing the characteristics of the resulting
sound that animals are able to locate the position of sound sources in space.

The speed at which sound propagates is sometimes important to describe certain sound
phenomena. This speed determines how much delay exists between generation and per-
ception of the sound. It affects, for example, the time that each reflection of the sound
on the surrounding environment takes to arrive at the ear. If listener and source are mov-
ing with respect to each other, the sound wave received by the listener is compressed or
dilated in time domain, causing the frequency of all components to be changed. This is
called Doppler effect and is important in the simulation of virtual environments.

3.1.3 Sound in Music

Recall from Equation (3.5c) that amplitude and phase offset can be calculated from
the output values of the DFT for each frequency in the domain. Recall from the begin-
ning of this section that the cochlea is the component of the human ear responsible for
converting sound vibration into nervous impulses. Inside the cochlea, we find the inner
hair cells, which transform vibrations in the fluid (caused by sound arriving at the ear)
into electric potential. Each hair cell has an appropriate shape to resonate at a specific
frequency. The potential generated by a hair cell represents the amount of energy on a
specific frequency component. However not mathematically equivalent, the information
about energy distribution produced by the hair cells is akin to that obtained by extracting
the amplitude component from the result of a time-varying Fourier transform of the sound
signal4. Once at the brain, the electric signals are processed by a complex neural network.
It is believed that this network extracts information by calculating correlationships involv-
ing present and past inputs of each frequency band. Exactly how this network operates
is still not well understood. It is, though, probably organized in layers of abstraction, in
which each layer identifies some specific characteristics of the sound being heard, being
what we call “attractiveness” processed at the most abstract levels—thus, the difficulty of
defining objectively what music is.

The ear uses the spectrum information to classify sounds as harmonic or inharmonic.
A harmonic sound presents high-energy components whose frequencies fk are all integer
multiples of a certain number f1, which is called the fundamental frequency. In this case,
components are called harmonics. The component with frequency f1 is simply referred to
as the fundamental. Normally, the fundamental is the highest energy component, though
this is not necessary. An inharmonic sound can either present high-energy components
at different frequencies, called partials or, in the case of noise, present no modes in the
energy distribution on the sound’s spectrum. In nature, no sound is purely harmonic,
since noise is always present. When classifying sounds, then, the brain often abstracts
from some details of the sound. For example, the sound of a flute is often characterized as
harmonic, but flutes produce a considerably noisy spectrum, simply with a few stronger
harmonic components. Another common example is the sound of a piano, which contains
partials and is still regarded as a harmonic sound.

In music, a note denotes an articulation of an instrument to produce sound. Each note
has three basic qualities:

• Pitch, which is the cognitive perception of the fundamental frequency;

• Loudness, which is the cognitive perception of acoustic power; and
4 There is still debate on the effective impact of phase offset to human sound perception. For now, we
assume that the ear cannot sense phase information.

24

• Timbre or tone quality, which is the relative energy distribution of the components.
Timbre is what actually distinguishes an instrument from another. Instruments
can also be played in different expressive ways (e.g., piano, fortissimo, pizzicatto),
which affects the resulting timbre as well.

The term tone may be used to refer to the pitch of the fundamental. Any component
with higher pitch than the fundamental is named an overtone. The current more com-
monly used definition for music is that “it is a form of expression through structuring of
tones and silence over time” (WIKIPEDIA, 2006b). All music is constructed by placing
sound events (denoted as notes) in time. Notes can be played individually or together, and
there are cultural rules to determining if a combination of pitches sound well when played
together or not.

Two notes are said to be consonant if they sound stable and harmonized when played
together. Pitch is the most important factor in determining the level of consonance. Be-
cause of that, most cultures have chosen a select set of pitches to use in music. A set of
predefined pitches is called a scale.

Suppose two notes with no components besides the fundamental frequency being
played together. If those tones have the same frequency, they achieve maximum con-
sonance. If they have very close frequencies, but not equal, the result is a wave whose
amplitude varies in an oscillatory pattern; this effect is called beating and is often undesir-
able. If one of the tones has exactly the double of the frequency of the other, this generates
the second most consonant combination. This fact is so important that it affects all current
scale systems. In this case, the highest tone is perceived simply as a “higher version” of
the lowest tone; they are perceived as essentially the same tone. If now the higher tone
has its frequency doubled (four times that of the lower tone), we obtain another highly
consonant combination. Therefore, a scale is built by selecting a set of frequencies in a
range [f, 2f) and then by duplicating them to lower and higher ranges, i.e., by multiply-
ing them by powers of two. In other words, if S is the set of frequencies that belong to
the scale, p ∈ S and f ≤ p < 2f , then

{
p× 2k | k ∈ Z

}
⊂ S.

In the western musical system, the scale is built from 12 tones. To refer to those tones,
we need to define a notation. An interval is a relationship, on the numbering of the scale,
between two tones. Most of the time, the musician uses only 7 of these 12 tones, and
intervals are measured with respect to those 7 tones. The most basic set of tones if formed
by several notes (named do, re, mi, fa, sol, la, si), which are assigned short names (C, D, E,
F, G, A, B, respectively). Because generally only 7 notes are used together, a tone repeats
at the 8th note in the sequence; thus, the interval between a tone and its next occurrence
is called an octave. Notes are, then, identified by both their name and a number for their
octave. It is defined that A4 is the note whose fundamental frequency is 440 Hz. The 12th
tone above A4—i.e., an octave above—is A5, whose frequency is 880 Hz. Similarly, the
12th tone below A4 is A3, whose frequency is 220 Hz.

In music terminology, the interval of two adjacent tones is called a semitone. If the
tones have a difference of two semitones, the interval is called a whole tone5. The other 5
tones missing in this scale are named using the symbols] (sharp) and [(flat).] indicates
a positive shift of one semitone, and [indicates a negative shift of one semitone. For
example, C]4 is the successor of C4. The established order of tones is: C, C], D, D], E, F,
F], G, G], A, A], and B. C], for example, is considered equivalent to D[. Other equivalents
include D] and E[, G] and A[, E] and F, C[and B. One can assign frequencies to these

5 A whole tone is referred to in common music practice by the term “tone”, but we avoid this for clearness.

25

Table 3.1: The western musical scale. Note that frequency values have been rounded.
Note Names

C4 C]4 D4 D]4 E4 F4 F]4 G4 G]4 A4 A]4 B4 C5
262 277 294 311 330 349 370 392 415 440 466 494 523

Note Frequencies (in Hz)

notes, as suggested in Table 3.1. Notice that the frequency for C5 is the double of that
of C4 (except for the rouding error), and that the ratio between the frequency of a note
and the frequency of its predecessor is 12

√
2 ≈ 1.059463. In fact, the rest of the scale is

built considering that the tone sequence repeats and that the ratio between adjacent tones
is exactly 12

√
26.

To avoid dealing with a complicated naming scheme and to simplify implementation,
we can assign an index to each note on the scale. The MIDI standard, for example, defines
the index of C4 as 60, C]4 as 61, D as 62, etc. A translation between a note’s MIDI index
p and its corresponding frequency f is given by

f = 440× 2
1
12

(p−69) and p = 69 + 12 log2

(
f

440

)
(3.6)

The scale system just described is called equal tempered tuning. Historically, tuning
refers to manually adjusting the tune of each note of an instrument, i.e., its perceived
frequency. There are other tunings which are not discussed here. A conventional music
theory course would now proceed to the study the consonance of combinations of notes
of different pitches on the scale and placed on time, but this is not a part of this work’s
discussion and should be left for the performer only.

3.2 Introduction to Audio Systems

The term audio may refer to audible sound, i.e., to the components of sound signals
within the approximate range of 20 Hz to 20 kHz, which are perceivable to the human. It
has been used also to refer to sound transmission and to high-fidelity sound reproduction.
In this text, this term is used when referring to digitally manipulated sound information
for the purpose of listening.

To work with digital audio, one needs a representation for sound. The most usual
way of representing a sound signal in a computer is by storing amplitude values on an
unidimensional array. This is called a digital signal, since it represents discrete ampli-
tude values assigned to a discrete time domain. These values can be computed using a
formula, such as Equation (3.4) or one of the formulas on Table 3.2. They can also be
obtained by sampling the voltage level generated by an external transducer, such as a mi-
crophone. Another transducer can be used to convert back digital signals into continuous
signals. Figure 1.1 illustrates both kinds of conversion. Alternatively, samples can also
be recorded on digital media and loaded when needed.

Sounds can be sampled and played back from one or more points in space at the
same time. Therefore, a digital signal has three main attributes: sampling rate, sample
format and number of channels. The samples can be organized in the array in different
arrangements. Normally, samples from the same channel are kept in consecutive posi-
tions. Sometimes, each channel can be represented by an individual array. However, it is
6 This scale is called equal tempered scale, and it attempts to approximate the classical Ptolemaeus scale
built using fractional ratios between tones.

26

t

(a) Sinusoidal wave.

t

(b) Sawtooth wave.

t

(c) Square wave.

t

(d) Triangle wave.

Figure 3.2: Primitive waveforms for digital audio synthesis.

Table 3.2: Formulas for primitive waveforms. The simplified formula of each wave can
be evaluated with less operations, which may be useful in some situations.

Waveform General Formula Simplified Formula

Sinusoidal SIN (t) = sin 2πt

Sawtooth SAW (t) = 2
(
t−

⌊
t + 1

2

⌋)
1
2

SAW
(
t + 1

2

)
= t− btc − 1

2

Square SQR (t) = 2
(
btc −

⌊
t− 1

2

⌋)
− 1 1

2
SQR (t) = btc −

⌊
t− 1

2

⌋
− 1

2

Triangle TRI (t) = 4
∣∣t− ⌊

t− 1
4

⌋
− 3

4

∣∣− 1 1
4

TRI
(
t + 1

4

)
=

∣∣t− btc − 1
2

∣∣− 1
4

27

possible to merge samples from all channels in a single array by interleaving the samples
of each channel.

Any arithmetic operation can be performed on a signal stored on an array. More
elaborate operations are generally devised to work with the data without any feedback
to the user until completion. This is called offline audio processing, and it is easy to
work with. In online processing, the results of computation are supposed to be heard
immediately. But in real applications, there is a slight time delay, since any computation
takes time and the data need to be routed through components of the system until they are
finally transduced into sound waves. A more adequate term to characterize such a system
is real time, which means that the results of computation have a limited amount of time
to be completed.

To perform audio processing in real time, though, instead of working with the full
array of samples, we need to work with parts of it. Ideally, a sample value should be
transduced as soon as it becomes available, but this leads to high manufacturing costs of
audio devices and imposes some restrictions to software implementation (since computa-
tion time may vary depending on the program being executed, it may require executing a
high amount of instructions). This is, though, a problem that affects any real-time audio
system. If the required sample value is not available at the time it should be transduced,
another value will need to be used instead of it, producing a sound different from what
was originally intended. The value used for filling gaps is usually zero. What happens
when a smooth waveform abruptly changes to a constant zero level is the insertion of
many high-frequency components into the signal. The resulting sound has generally a
noisy and undesired “click”7. This occurrence is referred to as an audio glitch. In order
to prevent glitches from happening, samples are stored on a temporary buffer before be-
ing played. Normally, buffers are divided in blocks, and a scheme of buffer swapping is
implemented. While one block is being played, one or more blocks are being computed
and queued to be played later.

The latency of a system is the time interval between an event in the inputs of the
system and the corresponding event in the outputs. For some systems (such as an audio
system), latency is a constant determined by the sum of latencies of each system com-
ponent through which data is processed. From the point of view of the listener, latency
is the time between a controller change (such as key being touched by the performer)
and the corresponding perceived change (such as the wave of a piano string reaching the
performer’s ears). Perceived latency also includes the time of sound propagation from
the speaker to the listener and the time for a control signal to propagate through the cir-
cuitry to the inputs of the audio system. On a multi-threaded system, latency is variably
affected by race conditions and thread scheduling delays, which are unpredictable but can
be minimized by changing thread and process priorities.

It is widely accepted that real-time audio systems should present latencies of around
10 ms or less. The latency L introduced by a buffered audio application is given by

L = number of buffers × samples per buffer block
samples per time unit

(3.7)

Many physical devices, named controllers, have been developed to “play” an elec-
tronic instrument. The most common device is a musical keyboard, in which keys trig-
ger the generation of events. On a software application, events are normally processed
7 Note, however, that the square wave on Figure 3.2(c) is formed basically of abrupt changes and still is
harmonic—this is formally explained because the abrupt changes occur in a periodic manner. Its spectrum,
though, presents very intense high-frequency components.

28

through a message-driven mechanism. The attributes given to each type of event are
also application-dependent and vary across different controllers and audio processing sys-
tems. The maximum number of simultaneous notes that a real-time audio system can pro-
cess without generating audio glitches (or without any other design limitation) is called
polyphony. In software applications, polyphony can be logically unrestricted, limited only
by the the processor’s computational capacity. Vintage analog instruments8 often had a
polyphony of a single note (also called monophony), although some of them, such as the
Hammond organ, have full polyphony.

3.2.1 Signal Processing

3.2.1.1 Sampling and Aliasing

In a digital signal, samples represent amplitude values of an underlying continuous
wave. Let n ∈ N be the index of a sample of amplitude ws (n). The time difference
between samples n + 1 and n is a constant and is called sample period. The number of
samples per time unit is the sample frequency or sampling rate.

The sampling theorem states that a digital signal sampled at a rate of R can only
contain components whose frequencies are at most R

2
. This comes from the fact that a

component of frequency exactly R
2

requires two samples per cycle to represent both the
positive and the negative oscillation. An attempt of representing a component of higher
frequencies results in a reflected component of frequency below R

2
. The theorem is also

known as the Nyquist theorem and R
2

is called the Nyquist rate. The substitution of a
component by another at lower frequency is called aliasing. Aliasing may be generated
by any sampling process, regardless of the kind of source audio data (analog or digital).
Substituted components constitute what is called artifacts, i.e., audible and undesired
effects (insertion or removal of components) resulting from processing audio digitally.

Therefore, any sampled sound must be first processed to remove energy from com-
ponents above the Nyquist rate. This is performed using an analog low-pass filter. This
theorem also determines the sampling rate at which real sound signals must be sampled.
Given that humans can hear up to about 20 kHz, the sampling rate must be of at least
40 kHz to represent the highest perceivable frequency. However, frequencies close to
20 kHz are not represented well enough. It is observed that those frequencies present an
undesired beating pattern. For that reason, most sampling is performed with sampling
rates slightly above 40 kHz. The sampling rate of audio stored on a CD, for example,
is 44.1 kHz. Professional audio devices usually employ a sampling rate of 48 kHz. It
is possible, though, to use any sampling rate, and some professionals have worked with
sampling rates as high as 192 kHz or more, because, with that, some of the computation
performed on audio signals is more accurate.

When the value of a sample ws (n) is obtained for an underlying continuous wave
w at time t, it is rounded to the nearest digital representation of w (t). The difference
between ws (n) and w (t) is called the quantization error, since the values of w (t) are
actually quantized to the nearest values. Therefore, ws (n) = w (t (n)) + ξ (n), where
ξ is the error signal. This error signal is characterized by many abrupt transitions and
thus, as we have seen, is rich in high-frequency components, which are easy to perceive.
When designing an audio system, it is important to choose an adequate sample format
to reduce the quantization error to an imperceptible level. The RMS of ξ is calculated
using Equation (3.1). The ratio between the power of the loudest representable signal and
8 An analog instrument is an electric device that processes sound using components that transform contin-
uous electric current instead of digital microprocessors.

29

the power of ξ, expressed in decibels according to Equation (3.2), is called the signal-
to-quantization-error-noise ratio (SQNR). Usual sampling rates with a high SQNR are
16, 24 or 32-bit integer, 32 or 64-bit floating point. The sample format of audio stored
on a CD, for example, is 16-bit integer. There are alternative quantization schemes, such
as logarithmic quantization (the sample values are actually the logarithm of their original
values), but the floating point representation usually presents the same set of features.

Analog-to-Digital Converters (ADC) and Digital-to-Analog Converters (DAC) are
transducers9 used to convert between continuous and discrete sound signals. These com-
ponents actually convert between electric representations, and the final transduction into
sound is performed by another device, such as a loudspeaker. Both DACs and ADCs must
implement analog filters to prevent the aliasing effects caused by sampling.

3.2.1.2 Signal Format

Common possible representations of a signal are classified as:

• Pulse coded modulation (PCM), which corresponds to the definition of audio we
have presented. The sample values of a PCM signal can represent

– linear amplitude;

– non-linear amplitude, in which amplitude values are mapped to a different
scale (e.g., in logarithmic quantization); and

– differential of amplitude, in which, instead of the actual amplitude, the differ-
ence between two consecutive sample’s amplitude is stored.

• Pulse density modulation (PDM), in which the local density of a train of pulses
(values of 0 and 1 only) determines the actual amplitude of the wave, which is
obtained after the signal is passed through an analog low-pass filter;

• Lossy compression, in which part of the sound information (generally components
which are believed not to be perceptible) is removed before data compression; and

• Lossless compression, in which all the original information is preserved after data
compression.

Most audio applications use the PCM linear format because digital signal processing
theory—which is based on continuous wave representations in time—generally can be
applied directly without needing to adapt formulas from the theory. To work with other
representations, one would often need, while processing, to convert sample values to a
PCM linear format, perform the operation, and then convert the values back to the working
format.

Common PCM formats used to store a single sound are:

• CD audio: 44.1 kHz, 16-bit integer, 2 channels (stereo);

• DVD audio: 48–96 kHz, 24-bit integer, 6 channels (5.1 surround); and

• High-end studios: 192–768 kHz, 32–64-bit floating point, 2–8 channels.

9 A transducer is a device used to convert between different energy types.

30

The bandwidth (the number of bytes per time unit) expresses the computational trans-
fer speed requirements for audio processing according to the sample format. A signal
being processed continuously or transferred is a type of data stream. Considering uncom-
pressed formats only, the bandwidth B of a sound stream of sampling rate R, sample size
S and number of channels C is obtained by B = RSC. For example, streaming CD au-
dio takes a bandwidth of 176.4 kBps, and a sound stream with sampling rate of 192 kHz,
sample format of 64-bit and 8 channels has a bandwidth of 12,288 kBps (12 MBps).

3.2.2 Audio Applications

The structure of major audio applications varies widely, depending on their purpose.
Among others, the main categories include:

• Media players, used simply to route audio data from its source (a hard disk, for
example) to the audio device. Most media players also offer basic DSPs (digital
signal processors), such as equalizers, presented to the user on a simplified graphi-
cal interface that does not permit customizing the processing model (e.g., the order
in which DSPs are applied to the audio);

• Scorewriters, used to typeset song scores on a computer. Most scorewriters can
convert a score to MIDI and play the MIDI events. Done this way, the final MIDI
file generally does not include much expressivity (though there has been work to
generate expressivity automatically (ISHIKAWA et al., 2000)) and is normally not
suitable for professional results;

• Trackers and sequencers, used to store and organize events and samples that com-
pose a song. This class of application is more flexible than scorewriters, since they
allow full control over the generation of sound; and

• Plug-in-based applications, in which computation is divided in software pieces,
named modules or units, that can be integrated on the main application, responsible
for routing signals between modules.

Some audio applications present characteristics belonging to more than one category
(e.g., digital audio workstations include a tracker and/or a sequencer and are based on
a plug-in architecture). Plug-in based applications are usually the most interesting for a
professional music producer, since it can be extended with modules from any external
source.

3.2.2.1 Modular Architecture

The idea behind a modular architecture is to model in software the interconnection of
processing units, similar to the interconnection of audio equipment with physical cables.
A module is composed of inputs, outputs and a processing routine. The main advantages
of a modular architecture are that computation is encapsulated by modules and that their
results can be easily combined simply by defining the interconnection between modules,
which can be done graphically by the user.

The processing model is a directed acyclic graph which models an unidirectional net-
work of communication between modules. Figure 3.3 presents an example of a processing
model on a modular architecture that a user can generate graphically. Each module has
a set of input and output slots, depicted as small numbered boxes. Modules A and B are
named generators, since they only generate audio signals, having no audio inputs. C, D

31

A

B

C

D

E

F

1

1
2

1

1
2
3

1

1
2

1
2 1

1

Figure 3.3: Graphical representation of a processing model on a modular architecture.
A, B, C, D, E and F are modules. Numbered small boxes represent the input and output
slots of each module. The arrows represent how inputs and outputs of each module are
connected, indicating how sound samples are passed among module programs.

and E are named effects, since they operate on inputs and produce output signals with
the intent of changing some characteristic of the input sound—e.g., energy distribution of
components, in the case of an equalizer effect. F is a representation of the audio device
used to play the resulting sound wave. Each module can receive controller events, which
are used to change the value of parameters used for computation. A generator also uses
events to determine when a note begins and stops playing.

On Figure 3.3, the signals arriving at module F are actually implicitly mixed before
being assigned to the single input slot. Recall from Section 3.1.1 that the interference of
multiple waves at time t produces a wave resulting from the sum of the amplitudes of all
interacting waves at time t at the same point. For that reason, mixing consists of summing
corresponding samples from each signal. Other operations could be made implicit as
well, such as, for example, signal format conversion. Another important operation (not
present on the figure) is gain which scales the amplitude of the signal by a constant,
thus altering its perceived loudness. One may define that each input implicitly adds a
gain parameter to the module parameter set. Together, gain and mixing are the most
fundamental operations in multi-track recording, in which individual tracks of a piece are
recorded and then mixed, each with a different amount of gain applied to. This allows
balancing the volume across all tracks.

Remark On a more general case, the processing model shown in Figure 3.3 could also
include other kinds of streams and modules, such as video and subtitle processors. How-
ever, the implementation of the modular system becomes significantly more complex with
the addition of certain features.

3.2.3 Digital Audio Processes

In this section, several simple but frequently used audio processes are presented.
These algorithms were selected to discuss how they can be implemented on the GPU10.
More information about audio processes can be found at TOLONEN; VÄLIMÄKI; KAR-
JALAINEN (1998). In the following subsections, n represents the index of the “current”
sample being evaluated, x is the input vector and y is the output vector. x (n) refers to the
sample at position n in x and is equivalently denoted as xn on the following figures, for
clarity.
10 See Section 4.4.

32

OutputsInputs

IIRFIR

xn
xn-1xn-2xn-3

a0a1a2a3 b1 b2

yn-1 yn-2yn

××××
∑

××

Figure 3.4: Processing model of a filter in time domain.

3.2.3.1 Filtering

A filter on time domain can be expressed as

y (n) = a0 x (n) + a1 x (n− 1) + a2 x (n− 2) + . . . + ak x (n− k)

+ b1 y (n− 1) + b2 y (n− 2) + . . . + bj y (n− l) (3.8)

If bi = 0 for any i, the filter is called a finite impulse response (FIR) filter. Otherwise,
it is called a infinite impulse response (IIR) filter. Figure 3.4 illustrates how a filter is
calculated.

The theory of digital filters (ANTONIOU, 1980; HAMMING, 1989) studies how the
components of x are mapped into components of y according to the values assigned for
each coefficient ai, bj . Here, we only discuss how a filter can be implemented given its
coefficients. We also do not discuss time-varying filters, due to the complexity of the
theory.

When processed on the CPU, a digital filter is obtained simply by evaluating Equa-
tion (3.8) for each output sample. The program, though, needs to save the past k +1 input
and l + 1 output samples. This can be done using auxiliary arrays.

3.2.3.2 Resampling

Resampling refers to the act of sampling an already sampled signal. Resampling is
necessary when one needs to place a sampled signal over a time range whose length is
different from the original length, or, equivalently, if one wants to convert the sampling
rate of that signal. Therefore, to resample a wave, one needs to generate sample values
for an arbitrary intermediary position t that may not fall exactly on a sample. The most
usual methods to do this, in ascending order of quality, are:

• Rouding t to the nearest integer and returning the corresponding sample value;

• Linear interpolation, in which the two adjacent samples are interpolated using the
fractional part of t. This is illustrated on Figure 3.6;

• Cubic interpolation, which works similarly to linear interpolation, taking 4 adjacent
samples and fitting a cubic polynomial to these values before obtaining the value
for the sample; and

• Filtering, in which a FIR filter with coefficients from a windowed sinc function is
used to approximate a band-limited representation of the signal11.

11 A simple explanation on how resampling can be performed using filters can be found at AUDIO DSP
TEAM (2006). For more information, see TURKOWSKI (1990).

33

Table 3.3: Fourier series of primitive waveforms w (t), where w corresponds to the func-
tions SAW, SQU and TRI presented in Table 3.2. The simplified version of TRI generates
a wave that approximates TRI

(
t + 1

4

)
.

Waveform Fourier Series Simplified Series

Sawtooth
2

π

∞∑
k=1

sin 2πkt

k

Square
4

π

∞∑
k=1

sin 2π (2k − 1) t

(2k − 1)

Triangle
8

π2

∞∑
k=1

(−1)k+1 sin 2π (2k − 1) t

(2k − 1)2

8

π2

∞∑
k=1

cos 2π (2k − 1) t

(2k − 1)2

Resampling causes noise to be added to the original sampled wave. Among the cited
methods, filtering achieves the highest SNR ratio and is, therefore, the most desirable.
Rouding is generally avoided, since it introduces significant amounts of noise12. A last
method, calculating the sample values through an IFFT from the FFT of the input signal,
is generally not applied, since computing those transformations is expensive.

3.2.3.3 Synthesis

Synthesis refers to the generation of sound samples. Normally, synthesis is responsible
for generating the signal for note events. You should recall from Section 3.1.3 that a note
has three main attributes: pitch, intensity and timbre. On a method of digital synthesis,
pitch and intensity generally are parameters, and timbre depends on the method being
implemented and eventually additional parameter values.

The most basic type of synthesis is based on the aforementioned primitive waveforms.
It consists simply of evaluating the formulas on Table 3.2 for the parameter u = ft
(i.e., replacing t by u in these formulas), where f is the frequency assigned to the note’s
pitch according to Equation (3.6) and t represents the time. On the digital domain, t = n

R
,

where n is the sample’s index on the array used to store the signal and R is the sampling
rate.

Since all primitives, except for the sinusoidal wave, have many high-frequency com-
ponents, direct sampling, due to the Nyquist theorem, causes aliasing, and thus are subject
to the introduction of artifacts. Several methods have been suggested to generate band-
limited versions of those waveforms (STILSON; SMITH, 1996). One of the simplest
ways is to evaluate the respective summation on Table 3.3 for a finite number of terms.
This method, however, has high computational requirements and is often used only for
offline processing.

All notes have a beginning and an end. On real instruments, notes are characterized
by stages in which the local intensity varies smoothly. If, for example, we stopped pro-
cessing a sinusoidal wave when the amplitude value was close to one of its peaks, the
result would be an abrupt change to zero that, as mentioned on Section 3.2, results in an
12 However, some effects, such as sample and hold, intentionally apply the rouding method for musical
aesthetics.

34

A D S R

0 1 3 9.5 12.5

0.4

+1

-1

Figure 3.5: An ADSR envelope (thick line) with a = 1, d = 2, s = 0.4, e = 9.5 and
r = 3 applied to a sinusoidal wave with f = 3.25.

undesirable click sound. We would like the sinusoid to gradually fade to zero amplitude
along time, just as the sound of a natural instrument would do. One way to do this is to
apply an envelope to the signal. The most famous envelope is comprised of four stages:
attack, decay, sustain and release (ADSR). More complex envelopes could be designed
as well, but the ADSR is widely used due to its simple implementation and easy user
parametrization. Given the attack time a, the decay time d, the sustain level s, the end of
the note time e and the release time r, an ADSR envelope can be defined by the stepwise
function

f (t) =

0 for t < 0

map (t, 〈0, a〉 , 〈0, 1〉) for 0 ≤ t < a

map (t, 〈a, a + d〉 , 〈1, s〉) for a ≤ t < a + d

s for a + d ≤ t < e

map (t, 〈e, e + r〉 , 〈s, 0〉) for e ≤ t < e + r

0 for e + r ≤ t

(3.9)

where map (t, 〈t0, t1〉 , 〈a0, a1〉) maps values in the range [t0, t1] into values in the range
[a0, a1] ensuring that map (a0, 〈t0, t1〉 , 〈a0, a1〉) = t0 and map (a1, 〈t0, t1〉 , 〈a0, a1〉) =
t1. A linear interpolation can be defined as

maplin (t, 〈t0, t1〉 , 〈a0, a1〉) = a0 + (a1 − a0)
t− t0
t1 − t0

(3.10)

The resulting signal h (t) after an envelope f (t) to an input signal g (t) is simply
h (t) = f (t) g (t). An illustration of the ADSR envelope defined with the function maplin

are discussed by Figure 3.5.
Another synthesis technique is wavetable synthesis, which consists of storing a sample

of one or more cycles of a waveform on a table and then resampling that table at specific
positions. This is depicted on Figure 3.6. One can also have multiple tables and sample
and combine them in many different ways. Wavetable synthesis is similar to the most
widely used technique, sample playback, in which a table containing more than a few
cycles is used and a loop range is defined. Along time, the beginning of the table is
sampled first and then only the loop range is repetitively used. Both techniques (which
are essentially the same) require a translation from the parameter t into the corresponding
“index” on the table, which now can be a non-integer number (thus requiring resampling
techniques). Given a sample with a loop region containing n cycles defined from l0 to l1
with a number of samples N = l1 − l0, the sampling index I (t) corresponding to time t
is

I (t) =
t

nN

35

Outputs

Wave

Table

yn
yn-1 yn-2

× ×

+

1 - α α

α

Figure 3.6: Illustration of linear interpolation on wavetable synthesis. f represents the
fractional part of the access coordinate.

Before accessing a sample, an integer index i must be mapped to fall within a valid range
into the sample, according to the access function

S (i) =

{
i for i < l1

l0 + [(i− l1) mod N] for i ≥ l1

which, in the case of wavetable synthesis, simplifies to S (i) = i mod N . Performing
wavetable synthesis, then, requires the following steps:

• Calculate the sampling index I (u) for the input parameter u. If f is a constant, then
u = ft and f can be obtained from Equation (3.6);

• For each sample i adjacent to I (u), calculate the access index S (i); and

• Interpolate using the values from positions in the neighborhood of S (i) in the array.

After resampling, an envelope may be applied to the sample values in the same way
it was applied to the primitive waveforms, as previously discussed. Advanced wavetable
techniques can be found in BRISTOW-JOHNSON (1996).

The most general synthesis technique is additive synthesis, which consists of sum-
ming sinusoidal components, similar to computing the Fourier series of a signal. Most
of the time, chosen components are harmonics of the frequency of the playing note, but
this is not required. In the simplest case, when the amplitude of components is not modu-
lated by any envelope, additive synthesis is equivalent to wavetable synthesis (BRISTOW-
JOHNSON, 1996, p. 4). In practice, though, an individual envelope is applied to each
component. Since many components may be present, it is usual to extract parameters for
each individual envelope using data reduction techniques.

The idea of producing complex sounds from an array of simpler sounds applies not
only to sinusoidal waves. Components can be generated with any synthesis method and
summed together by applying different gains to each signal. For example, additive synthe-
sis is often imitated with wavetable synthesis by summing the output of several waveta-
bles and applying individual envelopes. When dealing with a set of components, one can
form groups and control each group individually—for example, instead of applying one
envelope to each component, one may apply an envelope to groups of components.

Instead of summing components, one can also start with a complex waveform—i.e., a
sawtooth wave—and remove components from it, usually by filtering. This is called

36

(a) I = 2 (b) I = 4 (c) I = 8

Figure 3.7: Examples of FM waveforms with fm = fc = 1.

subtractive synthesis and it is the main method used for physical modelling, the simulation
of sound produced by real-world sound sources and its interaction with nearby objects.

The previously mentioned parameter u can be understood as a variable that is incre-
mented from sample to sample. Though the time parameter t varies, by definition, as a
constant between any two adjacent samples, the frequency parameter may change. This
way, u can be redefined as u (t) =

∫
f (t) dt, where f (t) is the frequency at time t.

This is called frequency modulation (FM). FM synthesis is usually applied to synthesize
bell and brass-like sounds. f (t) is the modulator, which is usually a sinusoidal function
multiplied by an amplitude parameter. The function to which u is applied is the carrier,
which is also usually a sinusoid. In the case where sinusoids are used for both carrier and
modulator, an FM wave can defined as

w (t) = A sin (2πfct + I sin (2πfmt)) (3.11)

The index of modulation I is defined as I = ∆f
fm

, where ∆f is the amount of frequency
deviation. Higher values of I cause the distribution of energy on high-frequency compo-
nents to increase. The index of harmonicity H is defined as H = fm

fc
. Whenever H = 1

N

or H = N for any N ∈ N and N ≥ 1, the resulting waveform is harmonic with its fun-
damental at min {fc, fm}. If I and H are both small but non-null, the result is a vibratto
effect. However, as N grows close to 1, the harmonic content of the sinusoid starts to
change noticeably, as well as its waveform. Figure 3.7 presents several waveforms gen-
erated by frequency modulation. This technique can be expanded by defining f (t) as an
FM function itself. This way, one may recursively generate any level of modulation. The
harmonic content of an FM wave is the subject of a complicated theory whose discussion
is beyond the scope of this work.

Sometimes it is necessary to synthesize noise too. There are many kinds of noises, but
most can be obtained from white noise, which is characterized by an uniform distribution
of energy along the spectrum. For example, pink noise (energy distributed uniformly
on a logarithmic domain) can be approximated using well designed low-pass filters over
a white noise input or, as done by the Csound language, using sample and hold. An
ideal pseudo-random number generator, such as those implemented in most programming
libraries provided with compilers, generates white noise.

At last, granular synthesis consists of mixing along time many small sound units
named granule. A granule is simply a signal which often, but not necessarily, has small
length (around 50 ms) and smooth amplitude variation, fading to zero at the edges of the
granule. The number of different granules, size, frequency of resampling and the density
of placement along time are variable parameters. Given that the number of granules is
normally too large to be handled by a human, the study of granular synthesis focuses on

37

methods of controlling the choice of granules and their parameters more automatically.
There are numerous variations and combinations of the methods described on this

subsection, and other methods, such as formant synthesis, phase distortion, etc. There are
also specific usages of the described methods for generating percussive sounds.

3.2.3.4 Effects

In this section, two simple and similar effects used frequently for music production
are described. A tap delay or simply a delay is such that of a repetition (tap) of some
input sound is produced on the output after its first occurrence. A delay effect may have
multiple taps, such that several repetitions of an input sound will be produced on future
outputs. It can be defined as

y (n) = gw x (n) + g0 x (n− k0) + g1 x (n− k1) + . . . + gN x (n− kN)

where gw represents the wet gain—the amount of current input signal that will be imme-
diately present on the output—, g0, g1 . . . , gn are the gains respective to each tap, and
k0, k1 . . . , kN are the sample-positional delays of each tap. In general, the delays are of
more than 100 ms for the delayed repetition to be perceived as a repetition instead of part
of the original sound.

A similar effect is an echo, which consists of an infinite repetition of any sound that
comes into the input. An echo can be defined as

y (n) = gw x (n) + gf y (n− k)

where gf represents the feedback gain—the change applied to the volume of a past output
signal at its next repetition—and k is the time delay between two successive echoes.
Generally, successive repetitions fade out as they repeat. This behavior can be obtained
by enforcing |f | < 1. Setting either of the constants gw or gf to a negative value causes
an inversion of the signal being multiplied with the respective constant, which generally
does not produce any audible difference13. Notice that a delay and an echo effect are
actually a FIR and an IIR filter, respectively. A 1-tap delay and an echo are depicted
on Figure 3.8. More complicated delay schemes can be designed, such as cross-delays
(between channels) and multi-tap feedback delays. On a more general case, the delay
times k may be substituted by non-integer values, thus requiring resampling of the signal
to generate taps.

There are many other effects that are not described in this work. For instance, an
important effect is reverberation, in which multiple echoes with varying delay are applied;
filtering is also often applied to simulate energy absorption by objects of an environment.
Chorus, flanging, sample and hold, ring modulation, resynthesis, gapping, noise gating,
etc. are other interesting audio processes.

3.3 Audio Streaming and Audio Device Setup

As discussed in Section 3.2, processing audio in real time requires the audio data
to be divided in blocks. Generally, for simplicity, all blocks have a fixed amount of
samples. After properly loaded, the driver periodically requests a block of audio from the
13 An inversion of amplitude corresponds to a shift of π on each component. When two components of
same frequency but phases with a distance of π are summed, they cancel each other (this is a destructive
interference). Thus, in some cases, inverting the signal may produce audible effects.

38

xn-k

yn-k

gf
×gf

×gw×

+

yn
yn-1yn-2

xn...

...

Delay?
Echo?

Figure 3.8: Combined illustration of a 1-delay and an echo effect. The input for the sum
changes according to the effect one wants to implement: for the delay, it is gf xn−k; for
the echo effect, it is gf yn−k.

application, providing or not an input block with samples that have been recorded from
the device’s input channels in the previous step. For a continuous output, the application
is given a certain amount of time to compute samples and provide the requested block to
the audio device.

If this computation takes longer than the given time, the behavior of the audio device is
unspecified14, but if one wishes to define what is played by the sound card if this happens,
a possible solution is by doing the following:

• Create an intermediary buffer containing at least two blocks of samples;

• Create a thread to fill this buffer;

• Create a semaphore for the CPU to determine when the thread should write a block
with the data being generated, i.e., after being copied into an output block during
one execution of the callback procedure; and

• Access this buffer from the callback procedure to retrieve one completely computed
block, if necessary.

If more than two blocks are stored in the intermediary buffer, this procedure will
buffer data ahead and increase the tolerance of the system against the occurrence of audio
glitches due to heavy computation. This is a typical producer-consumer problem, where
the created thread produces blocks of audio data, which are consumed by the audio driver
through the callback procedure. In our implementation, if a block is not ready, the audio
driver receives a block filled with silence.

As explained in Section 3.2, the format of audio contained in a block is defined by
its sampling rate, sample format, number of channels and whether the data is interlieved
or not. The available combinations of those characteristics vary depending on the audio
device, driver and the API used to access the driver. A problem arises when one tries
to run an application using an unsupported audio format. One may implement a pro-
gram using many different formats and then choose the one supported by the device, or
he/she may also convert the audio format prior to playback. Though not all, several li-
braries provide automatic audio format conversion to a certain extent. We have chosen to
14 It seems acceptable that sound cards will play again the last completely computed block or simply
silence. In both cases, though, there is a high chance that an abrupt change in amplitude will happen at the
transition following the last sample of that block, causing an undesired glitch.

39

CPU Sound
CardGPU primitives

1122

Figure 3.9: Illustration of the audio “pipeline”. Audio streaming is performed on step 1,
and processing on the GPU is performed on step 2.

work with RtAudio (SCAVONE, 2005), which offers interesting programming options—
e.g., providing audio through blocking calls instead of a callback procedure—, is portable
and supports, on Microsoft Windows, the ASIO (STEINBERG, 2006) and DirectSound
(MICROSOFT, 2006a) interfaces. RtAudio can convert the sample format and the in-
terlieving of data as necessary, but sampling rate and number of channels still must be
determined properly by the application.

Figure 3.9 the whole process of real-time audio processing. Audio streaming takes
place on step 1, while processing on the CPU or the GPU takes place on step 2. The
square blocks between each device represent the exchanged sample buffers. As we discuss
in Section 4.3, the CPU must also handle input from control devices such as keyboards,
which are used by the musician to play a music piece.

Before we define the internal operations performed by the producer thread, we need to
explain how graphics systems work and define how to prepare them for audio processing.

3.4 Summary

This chapter presented many concepts involved in audio processing. It discussed the
underlying physical concepts of sound, mentioned how sound behaves in environments
which humans are used to, and presented how sound is organized in music and how a
computer system can be used to produce music. At last, we presented some of the most
fundamental sound processing algorithms.

Now all the theoretical tools necessary to start building computer systems for music
production have been provided. The reader should be able to visualize (at least abstractly)
how to implement those algorithms. The next chapter discusses the implementation of a
modular system that facilitates the development of new modules that take advantage of
the graphics hardware.

40

4 AUDIO PROCESSING ON THE GPU

In the previous chapter, we discussed the basic concepts of physical sound and of
audio processing on a computer. The definition of several audio processing algorithms
were given, and guidelines for the interaction with an audio device driver were given. In
this chapter, a study of how graphics processing systems can be used to implement the
given algorithms is presented. We present a real-time application in which sample values
are obtained using fragment programs.

The first section of this chapter presents an “audio pipeline”, describing which com-
putation needs to be executed at each step of audio processing. Then, graphics processing
is described as it is usually performed today with high-end graphics hardware. The rela-
tionship between entities in the contexts of graphics and audio processing is established.
The state configuration required by the graphics and audio subsystems to support this
application is presented. Finally, the implemented system is discussed in detail.

4.1 Introduction to Graphics Systems

An image is an artifact that reproduces some characteristic of a subject. Images may
have a multidimensional source and target. A digital image refers to a finite discrete
two-dimensional function, represented as a 2D array. In the case of a color image, the
codomain of such a function usually has 3 dimensions, one for each of the red, green and
blue color channels.

When the color values are generated by computation, the process is called rendering.
Generally, “rendering” means generating an image from 3D models made of smaller ge-
ometric primitives such as points, lines and triangles, each of these represented as one,
two or three vertices, respectively. A vertex is the representation of a point in 2D or 3D
space corresponding to a corner of a flat polygonal shape. Models can be based on more
complex geometrical representations, which need to be decomposed into these simple
primitives for rendering.

Graphics accelerator cards are designed to speed up the rendering of these primitives,
offering support to simulate many characteristics present in real-world images, such as
highlights and shadows, translucency and texturing. To facilitate programming and al-
low optimizations and portability, several graphics libraries have been written. Currently,
OpenGL (SEGAL; AKELEY, 2004) is the standard free specification that has the most ex-
tensive support. Microsoft Direct3D (THORN, 2005) is a commercial competitor, though
it can only be used under Microsoft Windows. OpenGL and Direct3D have a similar de-
sign pattern and offer almost the same funcionality. Our choice is for OpenGL, because it
is supported in multiple platforms, because it provides better hardware abstraction and be-
cause its performance is, in practice the same as that of Direct3D (WIKIPEDIA, 2006c).

41

Main
Memory

Vertex
Shader

Fragment
Shader

Raster-
ization

Frame-
buffer

Vertices Vertices Fragments Texels

Display

Figure 4.1: Data produced by each stage of the graphics pipeline.

4.1.1 Rendering and the Graphics Pipeline

It is important to know every component involved in the rendering process, so that
we can set the rendering mode properly. A flow diagram summarizing the most used
rendering process is presented in Figure 4.1 (ROST, 2005). As depicted, components of
this process are:

• Main memory, which contains vertex information provided by an application. While
the program is informing vertices (which usually are many), they are kept in mem-
ory buffers before being transferred to the graphics card.

• Vertex shader, in which vertices are processed by running a vertex program, pro-
ducing transformed vertex coordinates.

• Primitive assembly, in which vertices are grouped according to primitive type;

• Rasterization, in which fragments (temporary pixels with associated data) are gen-
erated for a set of vertices; and

• Fragment shader, in which fragment colors are obtained by running a fragment
program on each fragment produced by the previous step.

Once customized, the vertex program should (if desired) take care of modeling trans-
formation, normal transformation, lighting, texture coordinate generation and coloring.
Similarly, when replacing a fragment program, one should handle texture access and ap-
plication, fog, etc. Shader programs can be written using GLSL with OpenGL
(KESSENICH; BALDWIN; ROST, 2004), Cg with either OpenGL or DirectX (NVIDIA,
2006) or HLSL with DirectX (MICROSOFT, 2005). The three languages are almost iden-
tical, therefore choosing one is almost always more a matter of commodity than of pre-
requisites.

4.1.2 GPGPU Techniques

The programmable vertex and fragment processors available in modern graphics pro-
cessing units possess important abilities that allow them to perform general computa-
tions. First, the ability to perform conditional branching and, consequently, looping. This
has been well explored both for graphical (POLICARPO; NETO; COMBA, 2005) and

42

Other
Objects

Step 1

Ping-Pong
Process

Step 2 Step 3 Step 4 Step 5

AB CA D

Figure 4.2: Illustration of a ping-ponging computation. A, B, C and D are shader pro-
grams. Rectangular dashed regions inside squares are source and target locations within
textures used on processing. Notice the change of arrow direction, indicating the alternat-
ing reading and writing roles of each texture on each step. At each step, there is only one
target location, but there may be more than one source. This is observed on steps 3, 4 and
5, where additional source textures are used by the shader.

general-purpose (GOVINDARAJU et al., 2006) applications. Second, the ability to read
and write from memory locations, which allows processing data in multiple steps. And
third, a set of highly efficient vector and trigonometric operations, which are suitable for
many applications.

An important technique in general purpose computation on the GPU (GPGPU) is
ping-pong rendering. Data is first uploaded as texture data. Textures are read by fragment
programs and the intermediate results of the computation are then written to another tex-
ture. To perform rendering in multiple passes, it is possible to use just two textures and
alternate source and target textures between each step. The fragment program can be
changed for each polygon submitted for rendering. By structuring a process as a set of
fragment programs and using ping-ponging, it is possible to perform computation on the
GPU. The efficiency of such process has to be studied for each particular case. For ex-
emplification an illustration of the process using additional textures and only rectangular
primitives can be found on Figure 4.2.

To simplify programming using this process, several GPGPU-specific systems have
been developed. The most widely used are BrookGPU (BUCK et al., 2006), Sh (RAPID-
MIND, 2006) and Shallows (SHALLOWS, 2006). BrookGPU is a programming language
for stream processing, while the other two are C++ libraries. None of them is an estab-
lished standard, and all of them are still under development. In any case, using any of
those systems is limiting to some extent and generally more inefficient than direct pro-
gramming of the graphics system.

43

Table 4.1: Mapping audio concepts to graphic concepts.
Audio Concept Graphics Concept

Sample Fragment
Amplitude Color (Luminance)
Processor Shader

Computation Shading
Block Texture Row

Pointers Texture Coordinates

4.2 Using the GPU for Audio Processing

Before using the GPU, one needs to define a mapping between audio and graphics
concepts. This is given explicitly on Table 4.1 and illustrated on Figure 4.3. First, texels
and samples are just memory variables containing values, so samples can be transformed
into texels. Second, a texel is built of several color components (for instance, red, green,
blue and transparency levels), which actually makes a texel a small sequence of values;
similarly, audio is encoded in channels, and one common representation of audio is by
cyclically interleaving one sample from each channel on each position of an array. There-
fore, a group of samples referring to the same instant and different audio channels can
be trivially mapped into the color components of a single texel. In an audio application,
blocks of n samples are processed in each step. Treating a texture as a bidimensional
matrix, the contents of blocks can be stored in many different ways. One could see a bidi-
mensional matrix as an array of same-sized arrays, which can be either lines or columns
of the matrix. Then, an audio block can be mapped into one of these arrays, and, at each
step, the CPU can issue the drawing of a line primitive providing the coordinates of the
leftmost and rightmost texels of the line where the block was stored. Processing of the
block, then, is performed by the fragment shader. From the rasterization stage, fragments
are generated for each texel holding a sample. The parameters specified for the line prim-
itive’s vertices are interpolated according to the position of the fragment in the line and
are used in the computation of the output color (a new sample value), which is stored in
the corresponding position on another texture. The graphics hardware can be instructed
to change the textures it reads and writes from at each step, so that other shaders can run
taking as input the output of a preceding step. At last, when processing a single audio
block, the computation may require many steps on the GPU.

Specifying vertices of a primitive can be viewed as posting a task for computation
on the GPU. In the case of this work, tasks are always horizontal lines or, eventually,
quadrilaterals, if more than 4 channels are needed—then, a single signal block takes more
than a single line, and each line (except for the last one) holds 4 blocks of audio, one for
each audio channel.

GPUs are able to perform many arithmetic operations that are useful when processing
audio. Besides addition and multiplication, shading languages provide operations such
as linear interpolation (which may be used for resampling or to interpolate variable in-
put parameters), trigonometric functions (which are often used for synthesis), clamping
(which may be a post-processing in cases where the sound card requires values within
a specific range), step functions (which could be used to implement stepwise functions,
such as envelopes), swizzling (which could be used to route signals between channels)
and a random functions (which can be used to implement noise).

44

Texture Audio
Samples

0 1 ...
0
1

...

y

x x0 1 ...
Texels

R
G
B
A

Color

Samples

C
ha
nn
el
s

Channels

(a) The mapping between a block of 4 samples and a line of texels at vertical position y. The samples at
position x in the block are mapped into coordinate 〈x, y〉 in the texture. Audio channels (1, 2, 3, 4) are
mapped into color components (R, G, B, A, respectively).

Source
Texture

Target
Texture

Shader
Program

a b

(b) Application of a shader to one block at position a on the source texture, producing a new block of samples
at position b on the target texture. In this case, the fragment processor has 4 individual pipelines (solid lines),
so 4 samples, each with 4 channels, are processed simultaneously.

1 2 3 4 5

...

(c) A representation of ping-ponging using shaders 1, 2, 3, 4 and 5, in this order. Notice that the results of
one step are used in the subsequent step.

Figure 4.3: Full illustration of audio processing on the GPU.

45

Before using the graphics hardware for effective computation of audio, the OpenGL
state must be defined. For more information on this, see Appendix C.

Remark The reason for using the ping-pong technique is that hardware implementation
of texture access considers them read-only or write-only but not read-write. We cannot
set a texture as source and target at the same time because doing this will produce race
conditions in most cases. GPUs implement separate read and write caches, and writing to
a texture does not cause the read caches to be updated.

At this point, we have several tools to process signals on the GPU already. To render
a sinusoidal wave, for example, one would write a shader to evaluate the sinusoidal wave,
load it, set the target texture, post a line as suggested in Figure 4.3, and then read the
results back to the main memory. Clearly, this data can be then passed to the audio
callback procedure for playing. Therefore, the next section describes how a modular
architecture can be implemented based on the GPU and how control information can be
managed on a modular system.

4.3 Module System

Recall from Section 3.2.2.1 that an useful way to program audio systems is by defining
a processing model graphically, interconnecting inputs and outputs of modules. Besides
inputs and outputs, modules also have parameters that define their actual effect on the
input data, and they also receive events, which are used to trigger the generation of notes
and to change the module parameters.

Each module may have fixed or variable polyphony. In the second case, a list of play-
ing notes can be created to represent a set of notes being played together. Every time a
certain event occurs (e.g., a MIDI “note on” or a keyboard “key down”), an instance of
an object representing the internal state of the note is added to this list. The implemen-
tation of such object varies according to the needs of the module. For example, a simple
drum machine needs only a pointer to a percussion instrument. A wavetable synthesizer,
though, needs the pitch and a pointer to a wavetable. Generally, since notes may extend
for more than one block, one needs to represent the elapsed time since the note started to
play. Thus, elapsed time is normally a member of a note’s internal state.

In our implementation, we actually replace time by a phase offset. Assuming that
periodic waveforms have a period of T and given the periodicity of the primitive waves
and of those obtained by wavetable synthesis, the time parameter can be mapped into the
range [0, 1) −kT , resulting in a value into the range [0, 1). This value is called the phase
offset.

In our implementation, event processing is performed at the block generation cycle
inside the producer thread. How a module behaves when it receives a control event is
implementation-dependent: one may prefer, for example, to implement smooth changes
of a module’s parameters to ensure that the wave is kept smooth along time.

The next step is to post the necessary geometric primitives to achieve the desired
processing on the GPU. The order of operations is also customizable. One could devise
an algorithm to position blocks of audio generated by each module in the textures along
the steps of ping-ponging1.

1 See Section 6.1.

46

Listing 4.1: Sinusoidal wave shader.
1 f loa t4 main (
2 f loa t2 Params : TEXCOORD0) : COLOR
3 {
4 f l o a t t = Params . x ;
5 f l o a t a = Params . y ;
6 f l o a t w = a∗ (0 .5∗ s in (6.28318530717958∗ t)) ;
7 return f loa t4 (w, w, w, w) ;
8 } ;

Listing 4.2: Sinusoidal wave generator using the CPU.
1 void SinusoidalWave (
2 f l o a t nPhase1 , f l o a t nPhase2 ,
3 f l o a t ∗pBuf fer , long nSamples)
4 {
5 f l o a t nPhaseStart = 2.0 ∗ M_PI ∗ nPhase1 ;
6 f l o a t nRate = 2.0 ∗ M_PI ∗ (nPhase2 − nPhase1) / nSamples ;
7 for (i n t i = 0 ; i < nSamples ; i ++)
8 {
9 f l o a t u = nPhaseStart + nIndex ∗ nRate ;

10 pBuf fe r [i] = s in (u) ;
11 }
12 }

4.4 Implementation

Our application was written in the C++ language using OpenGL and Cg for graphics
processing and RtAudio for audio streaming. Source code was compiled with optimiza-
tions using Microsoft Visual Studio .NET 2003 (MICROSOFT, 2006b).

The following sections present the implementation of several audio processing tasks
using shaders. We have written the shaders to point out clearly how the formulas we
presented are applied.

4.4.1 Primitive Waveforms

Rendering primitive waveforms consists of evaluating an equation, given the param-
eter to the formula. Listing 4.1, Listing 4.3, Listing 4.4 and Listing 4.5 implement the
rendering of primitive waveforms according to the equations presented on Table 3.2, and
Listing 4.2 shows how a sinusoidal wave can be rendered using the CPU. The shaders
include an amplitude parameter that is used to perform envelope shaping.

4.4.2 Mixing

A mixing shader consists simply of summing selected lines in textures. The position
of these lines is determined by the module. When a signal has more than 4 channels, it
is represented as a set of consecutive lines, each holding up to 4 channels. Therefore, the
mixing shader needs to support this format and sum corresponding channels. Figure 4.4
illustrates this, and Listing 4.6 presents the implementation of the shader.

47

Listing 4.3: Sawtooth wave shader.
1 f loa t4 main (
2 f loa t2 Params : TEXCOORD0) : COLOR
3 {
4 f l o a t t = Params . x ;
5 f l o a t a = Params . y ;
6 f l o a t w = a ∗ (0 .5 + f l o o r (t) − t) ;
7 return f loa t4 (w, w, w, w) ;
8 } ;

Listing 4.4: Square wave shader.
1 f loa t4 main (
2 f loa t2 Params : TEXCOORD0) : COLOR
3 {
4 f l o a t t = Params . x ;
5 f l o a t a = Params . y ;
6 f l o a t w = a∗ (f l o o r (t) − 0.5 − f l o o r (t −0 .5)) ;
7 return f loa t4 (w, w, w, w) ;
8 } ;

Listing 4.5: Triangle wave shader.
1 f loa t4 main (
2 f loa t2 Params : TEXCOORD0) : COLOR
3 {
4 f l o a t t = Params . x ;
5 f l o a t a = Params . y ;
6 f l o a t w = a∗ (2 .0∗ abs (f l o o r (t)+0.5− t) −0.5) ;
7 return f loa t4 (w, w, w, w) ;
8 } ;

Listing 4.6: Signal mixing shader.
1 f loa t4 main (
2 f loa t2 P : TEXCOORD0,
3 uniform f l o a t Lines ,
4 uniform f l o a t LinesPerSignal ,
5 uniform samplerRECT Texture) : COLOR
6 {
7 f loa t4 sum = (0 , 0 , 0 , 0) ;
8 for (i n t i = 0 ; i < Lines ; i ++)
9 {

10 f loa t2 T ;
11 T . x = P. x ;
12 T . y = P. y + (i ∗ LinesPerSignal) ;
13 sum += texRECT (Texture , T) ;
14 }
15 return sum;
16 } ;

48

Texture A Texture B

Channels 1–4
Channels 5–8
Channels 9

Channels 1–4
Channels 5–8

Channel 9

Channels 1–4
Channels 5–8

Channel 9

Channels 1–4
Channels 5–8

Channel 9
∑

Figure 4.4: Illustration of usage of mixing shaders with 10-channel signals. Each smaller
rectangle represents a line in the respective texture.

4.4.3 Wavetable Resampling

Our implementation of wavetable resampling extends the definition given on Sec-
tion 3.2.3.3 by supporting a crossfade between two wavetables. Crossfading consists of
fading from one into another. In this case, that means reducing gradually the amplitude
of one wave while the amplitude of the other one is increased. The shader receives the
name of the two textures holding the tables, the size of those textures, and an interpolated
value for the amplitude and for the crossfading. Listing 4.7 presents the source code for
the shader. Listing 4.8 shows the parameters assigned to vertices when the line is posted
for rendering. Listing 4.9 presents an abstract algorithm for managing a note’s state using
an ADSR envelope and the wavetable shader. In this case, 5 wave tables are used and
crossfaded in each of the A, D, S and R steps.

4.4.4 Echo Effect

As discussed on Section 3.2.3.4, an echo effect requires the value of the current input
sample and a past output sample, offset by k samples from the current sample. This value
must be accessible, so a set of past input blocks must be saved using some mechanism.
For that, we can create an extra texture with the same dimensions as those of the primary
textures used for ping-ponging. On that texture, blocks are stored and updated as in a
circular buffer: when the pointer to the back of the buffer reaches the highest possible
index, it is wrapped down to the first index instead of being incremented. Usually, echoes
present more than 100 ms of delay, so we can restrict an echo’s delay time to the time
duration of the block size. The value of input and output samples are both scaled by
constants. To simplify this operation, we create an useful shader to perform addition
and multiplication by a constant in a single step: the MADD shader (Listing 4.11 and
Listing 4.12). At last, a copy shader (Listing 4.10) is required because we cannot read
and write from the extra texture at the same time. The operation of the echo module using
MADD shaders and the copy shader is given textually on Listing 4.13 and is illustrated
on Figure 4.5.

49

Listing 4.7: Wavetable shader with crossfading between two tables.
1 f loa t4 main (
2 f loa t4 Params : TEXCOORD0,
3 uniform f loa t2 S,
4 uniform samplerRECT Texture1 ,
5 uniform samplerRECT Texture2) : COLOR
6 {
7 / / Table o f f s e t s
8 f l o a t o1 = Params . x ;
9 f l o a t o2 = Params . y ;

10
11 / / I n t e r p o l a t o r s
12 f l o a t i = Params . z ;
13 f l o a t a = Params .w;
14
15 / / L inear sampling
16 f l o a t s11 = texRECT (Texture1 ,
17 f loa t2 (f l o o r (fmod (o1 , S . x)) , 0 . 0)) ;
18 f l o a t s12 = texRECT (Texture1 ,
19 f loa t2 (f l o o r (fmod (o1+1 , S . x)) , 0 . 0)) ;
20 f l o a t s1 = l e r p (s11 , s12 , f r a c (o1)) ;
21 f l o a t s21 = texRECT (Texture2 ,
22 f loa t2 (f l o o r (fmod (o2 , S . y)) , 0 . 0)) ;
23 f l o a t s22 = texRECT (Texture2 ,
24 f loa t2 (f l o o r (fmod (o2+1 , S . y)) , 0 . 0)) ;
25 f l o a t s2 = l e r p (s21 , s22 , f r a c (o2)) ;
26
27 / / Mix ing
28 f l o a t w = a ∗ l e r p (s1 , s2 , i) ;
29 return f loa t4 (w, w, w, w) ;
30 } ;

Listing 4.8: Primitive posting for the wavetable shader.
1 cgGLSetTextureParameter (ParamTexture1 , Texture1) ;
2 cgGLSetTextureParameter (ParamTexture2 , Texture2) ;
3 cgGLEnableTextureParameter (ParamTexture1) ;
4 cgGLEnableTextureParameter (ParamTexture2) ;
5 cgGLSetParameter2f (ParamS , Texture1_Size , Texture2_Size) ;
6
7 glBegin (GL_LINES) ;
8 g lMul t iTexCoord4f (GL_TEXTURE0,
9 O f f s e t _ S t a r t ∗ Texture1_Size , O f f s e t _ S t a r t ∗ Texture2_Size ,

10 I n t e r p o l a t o r _ S t a r t , Ampl i tude_Star t) ;
11 g l V e r t e x 2 i (First_Sample , Target_Row) ;
12 g lMul t iTexCoord4f (GL_TEXTURE0,
13 Offset_End ∗ Texture1_Size , Offset_End ∗ Texture2_Size ,
14 In te rpo la to r_End , Amplitude_End) ;
15 g l V e r t e x 2 i (Last_Sample , Target_Row) ;
16 glEnd () ;

50

Listing 4.9: Note state update and primitive posting.
1 do
2 c a l c u l a t e t ime to next stage change
3 i f stage i s e i t h e r A, D or R
4 i f next stage change occurs i n cu r ren t b lock
5 update s ta te v a r i a b l e s to next stage change
6 else
7 update s ta te v a r i a b l e s to cu r ren t b l o c k ’ s end
8 else
9 update s ta te v a r i a b l e s to cu r ren t b l o c k ’ s end

10
11 evaluate ampl i tude and i n t e r p o l a t o r values
12 evaluate cu r ren t phase
13
14 post l i n e p r i m i t i v e using the wavetable shader
15 {
16 set o1 and o2 to the cu r ren t sample o f f s e t s w i t h i n each tab le
17 set i to the i n t e r p o l a t o r value
18 set a to the ampl i tude value
19 set Texture1 and Texture2 to cu r ren t s tage ’s wavetables
20 }
21 update stage c o n t r o l va r i a b l e s
22 repeat u n t i l a l l b lock i s processed

Listing 4.10: Copy shader.
1 f loa t4 main (
2 f loa t2 P : TEXCOORD0,
3 uniform samplerRECT Texture) : COLOR
4 {
5 return texRECT (Texture , P) ;
6 } ;

Listing 4.11: Multiply and add shader.
1 f loa t4 main (
2 f loa t2 Pos i t ionX : TEXCOORD0,
3 f loa t2 Pos i t ionY : TEXCOORD1,
4 uniform f l o a t Alpha ,
5 uniform samplerRECT TextureX ,
6 uniform samplerRECT TextureY) : COLOR
7 {
8 f loa t4 X = texRECT (TextureX , Pos i t ionX) ;
9 f loa t4 Y = texRECT (TextureY , Pos i t ionY) ;

10 return Alpha ∗ X + Y;
11 } ;

51

Listing 4.12: Primitive posting for the multiply and add shader.
1 cgGLSetParameter1f (ParamAlpha , Alpha) ;
2 cgGLSetTextureParameter (ParamTextureX , TextureX) ;
3 cgGLSetTextureParameter (ParamTextureY , TextureY) ;
4 cgGLEnableTextureParameter (ParamTextureX) ;
5 cgGLEnableTextureParameter (ParamTextureY) ;
6
7 glBegin (GL_LINES) ;
8 g lMul t iTexCoord2 i (GL_TEXTURE0, 0 , Row_in_TextureX) ;
9 g lMul t iTexCoord2 i (GL_TEXTURE1, 0 , Row_in_TextureY) ;

10 g l V e r t e x 2 i (0 , Draw_Row) ;
11 g lMul t iTexCoord2 i (GL_TEXTURE0, n , Row_in_TextureX) ;
12 g lMul t iTexCoord2 i (GL_TEXTURE1, n , Row_in_TextureY) ;
13 g l V e r t e x 2 i (n , Draw_Row) ;
14 glEnd () ;

Listing 4.13: Echo processor shader call sequence.
1 post l i n e p r i m i t i v e using the m u l t i p l y and add shader
2 {
3 set a to feedback gain value
4 set TextureX to Texture 4
5 set Pos i t ionX to the delay l i n e ’ s read p o s i t i o n
6 set TextureY to Texture 1
7 set Pos i t ionY to row 0
8 render to Texture 3
9 }

10 post l i n e p r i m i t i v e using the m u l t i p l y and add shader
11 {
12 set a to wet mix gain value
13 set TextureX to Texture 4
14 set Pos i t ionX to the delay l i n e ’ s read p o s i t i o n
15 set TextureY to Texture 1
16 set Pos i t ionY to row 0
17 render to Texture 2
18 }
19 copy generated block from t e x t u r e 3 to t e x t u r e 4 at the delay l i n e ’ s w r i t e p o s i t i o n
20 update delay l i n e read and w r i t e p o s i t i o n s

52

Step 2

Step 3

Step 1 Front
BackMADD Shader

Front
BackMADD Shader

Front
Back

Copy Shader

Texture 1 Texture 2 Texture 3 Texture 4

Figure 4.5: Illustration of steps to compute an echo effect on the GPU using MADD
shaders and one copy operation. Notice that texture 3 is used to store a temporary result
that ends up copied into texture 4 at the “front” position of a circular buffer. The actual
output of the module is written on texture 2.

4.4.5 Filters

The implementation of a FIR filter follows the same idea of the past shaders: directly
translate the formula into a shader and use it by rendering a line primitive. For filters, sev-
eral samples of the past input block will be necessary; they can be saved on the auxiliary
texture following the idea presented for the echo effect.

An IIR filter presents an implementation problem: it requires the value of output
samples that are being generated in the same step. As a result, the part of Equation (3.8)
using output values cannot be implemented trivially. IIR filters are still implementable,
but the speed up obtained by a GPU implementation will not be as significant as the
remaining shaders. For this reason, we have not implemented IIR filters.

4.5 Summary

This chapter described the structure of an audio application. We discussed how audio
is passed on to the audio device and the reasons to implement an intermediary buffer
between the application and the audio interface. We presented details about graphics
rendering and how graphics APIs such as OpenGL can be used to instruct the GPU about
how to process audio data. At last, we discussed the implementation of modular systems
and presented shaders to perform audio processing on the graphics device.

In the following chapter, the performance of this system is measured. We discuss
the quality of the generated signal and the limitations imposed by the GPU for audio
processing.

53

5 RESULTS

In this chapter, we discuss the results obtained with the implementation described on
the last chapter. In the first section, we present a comparison of total polyphony achieved
with both a CPU and a GPU version of algorithms for primitive waveform generation. The
next section evaluates the quality of audio data produced by the GPU. Then, we present
the limitations posed by the graphics hardware on audio processing.

5.1 Performance Measurements

The following measurements were obtained by running the application on an AMD
Athlon64 3000+ (1.81 GHz) with 1 GB of memory with an ASUS A8N-SLI Deluxe
motherboard, a PCI Express nVidia GeForce 6600 with 256 MB, and a Cretive Audigy
Platinum eX sound card. These devices allowed a texture size of 4096 texels in each
dimension and audio blocks of 96 to 2400 samples. Although we have used a 64-bit
processor, we were running the application on Windows XP, which does not support 64-
bit instructions and, therefore, the system was running in 32-bit emulation mode.

We used blocks of 256 samples and set the ASIO audio device to play at a sampling
rate of 48 kHz using 2 channels. At this rate, 256 samples represents a little more than
5 ms. The intermediary buffer between the callback and the producer thread was able to
hold 2 blocks. Holding the block on the buffer causes a total delay of about 11 ms, which
is acceptable for real-time output.

To compare the performance of the GPU with similar CPU implementations, we ren-
dered the basic waveforms many times on subsequent rows of a texture. We wrote similar
rendering algorithms on the CPU. For example, we present the sine wave generator on
Listing 4.2 with code that runs on the CPU. Implementations for other shaders have been
developed similarly. One may argue that there are more efficient implementations of a
sine wave oscillator, but we note that other methods have drawbacks (sometimes accept-
able), such as introducing noise (by sampling a wavetable) or becoming innacurate along
time (by using only addition and multiplication to resolve a differential equation). Addi-
tionally, the implementation by directly evaluating a formula constitutes a more precise
overall performance comparison, since both machines would be performing essentially
the same computation.

We approximated the maximum number of times the rendering programs for the GPU
and CPU could be invoked in real time without causing audio glitches. To do that, we
gradually increased the number of line primitives being posted and programmed the code
in the callback to update a counter whenever no block was present for output. By doing
this rather than simply calculating the time that the GPU takes to process a certain amount
of lines, one gets results that express how the application behaves on practical usage by

54

Table 5.1: Performance comparison on rendering primitive waveforms. The columns
CPU and GPU indicate the number of times a primitive was rendered on a block in one
second.

Waveform CPU GPU Speedup
triangle 210 5,896 28×
sinusoid 400 11,892 30×
sawtooth 220 7,896 36×
square 100 5,996 59×

taking in account the overhead introduced by thread synchronization.

Table 5.1 presents the performance test results. Note that the results are significantly
better than those reported by other studies (WHALEN, 2005; GALLO; TSINGOS, 2004),
even though we were using a GeForce 6600, a medium-range GPU with only 8 fragment
processors. Higher speedups should be obtained with the use of faster GPUs, such as the
nVidia GeForce 7900 GTX (with 24 fragment processors) and the ATI Radeon X1900
XTX (with 48 fragment processors).

We have not designed comparison tests for other kinds of audio effects, such as feed-
back delay. We expect, though, that other effects will achieve similar speedups, since they
are often based on simple shaders and execute entirely on the GPU.

5.2 Quality Evaluation

Sound is traditionally processed using 16-bit or 24-bit integer. On the GPU, sound
is represented as 32-bit floating point values. This presents more accuracy than 16-bit
integer values, presenting an increased SQNR level. A representation in floating-point
also presents the advantage to remain precise regardless of the dynamic level of the sound,
i.e., its amplitude. Integer values suffer from the problem that very silent sounds are
represented using fewer amplitude levels, which greatly increases the quantization noise.
However, the 32-bit floating point implementation on the GPU includes a mantissa of
23-bits (not including the hidden bit), ensuring that 32-bit floating points have at least as
much accuracy as 24-bit integers.

However, the floating-point implementation on the GPU is not exactly the same as
that on the CPU. It has been shown that the rounding error is about two times greater
(HILLESLAND; LASTRA, 2004) than that of operations on the GPU—except for the
division, where the rouding error is almost four times greater. One would obtain simi-
lar results by removing 2 bits from the mantissa, for example. But even with a 22-bit
precision, the SQNR level is much higher than that with the traditional 16-bit integer
representation, which is sufficient for most needs.

The methods we implemented are musically questionable, though. With the exception
of the sinusoidal wave shader, the other primitives are known to cause aliasing if rendered
using formulas on Table 3.2. A better implementation could be obtained by evaluating a
limited number of terms from formulas on Table 3.3 (which is actually a case of additive
synthesis) or by using other methods such as proposed by STILSON; SMITH (1996).

55

5.3 Limitations

Several processes that do not present local data independence do not map well to the
GPU. In our work, the most prominent example of that is the IIR filter. To implement
an IIR filter efficiently, one would need to access the values computed for fragments to
the left of the current fragment. Given that a texture cannot be read and written in the
same step, this would require evaluating fragment by fragment and exchanging source
and target textures between the evaluation of every fragment. Naturally, this represents a
bottleneck, since one needs to submit many geometric primitives and force cache updates
for each fragment. Even with the latest GPUs, the CPU implementation should probably
present better performance. This problem is still under study, but it seems there are at least
a few special cases for which a performance gain can be achieved. Note that this problem
would be solved if the ability to access the values computed for adjacent fragments in a
single step were available at the graphics hardware.

5.4 Summary

This chapter presented the results we obtained by inspecting the application. We have
shown that a GPU-based implementation of several algorithms may present a speedup of
59×. We have explained that the quality of signals generated on the GPU is adequate
and very closely related to professional 24-bit quality, except that the usage of floating-
point introduces less quantization error on low-amplitude samples. The problem of data
dependency, which directly affects the implementation of IIR filters, was also discussed.

56

6 FINAL REMARKS

This work has presented the implementation of an audio processing system using
the GPU that produces results in real-time, achieves higher performance and is easily
extensible. The fundamental concepts of sound processing were presented, prior to a
discussion of the structure of an audio processing system and the implication of every
design choice. We have presented how to use fragment shaders to perform computation
of audio samples, and we also designed performance benchmarks for comparison and
discussed the current limitations of the system. This work ultimately demonstrates that
the GPU can be used for efficient audio processing, achieving speedups of almost 60×
in some cases, enabling users to take advantage of more computational power with the
flexibility of software implementations at costs lower than professional audio equipments.

6.1 Future Work

This system is a prototype including several modules for demonstration. For profes-
sional music, many other modules need to be implemented, including an IIR filter, which,
as discussed, could not be mapped efficiently using a direct approach.

We also presented the concept of modular processing, yet we have not developed a
complete module system that would allow user customization of a processing model. To
achieve this, one needs to implement an auxiliary system to distribute the usage of texture
lines in each step of ping-ponging to each of the modules, as necessary according to
the processing model. This is a required abstraction for efficient development, since the
actual implementation of a module does not depend on which line of a texture it is reading
from, but requires that this line matches the line where the results of another module were
written. This auxiliary system would also be required to insert implicit operations, such as
mixing two output signals that are connected to the input of a module before performing
that module’s computation. We have planned an algorithm to do that, but we do not
present it here due to lack of time for testing.

An interesting addition would be Sony DSD, a recent sound format commonly used in
processing high quality audio. This format uses delta-sigma modulation to represent the
signal, and there are algorithms for several audio processes already (REISS; SANDLER,
2004). Whether this format can be efficiently processed by the GPU is the most important
question. If it can, implementing DSD support could be useful, since the amount of data
to be processed is relatively close to that necessary to process PCM audio1. Another

1 A common DSD format is 1-bit samples at 2822,4 kHz (64 ∗ 44.1 kHz), which results in approximately 2
to 4 times as much as the usual CD PCM format. A proposed alternative format would be to represent each
1 bit sample by 1 byte words, taking 64 times more storage space. Advantages of each alternative remain
to be studied.

57

interesting addition would be the support to time-varying frequency-domain signals, in
order to evaluate the efficiency of the GPU for this kind of computation. This would
introduce more implicit operations to be handled.

A commercial solution would also require the addition of a graphics interface, a se-
quencer and the inclusion of sample banks that can be used by the musician to create
music.

58

REFERENCES

ANSARI, M. Y. Video Image Processing Using Shaders. Game Developers Conference,
Presentation.

DIRECTOR, S. W. (Ed.). Digital Filters: analysis and design. TMH ed. New Delhi,
India: Tata McGraw-Hill, 1980.

AUDIO DSP TEAM. Resampling. Available at: <http://www.dspteam.com/resample.
html>. Visited in: June 2006.

BIONICFX. 2005. Available at: <http://www.bionicfx.com>. Visited in: June 2006.

BRISTOW-JOHNSON, R. Wavetable Synthesis 101, A Fundamental Perspective. In:
AES CONVENTION, 101., 1996, Los Angeles, California. Proceedings. . . [S.l.: s.n.],
1996. Available at: <http://www.musicdsp.org/files/Wavetable-101.pdf>.

BUCK, I.; FOLEY, T.; HORN, D.; SUGERMAN, J.; FATAHALIAN, K.; HOUSTON,
M.; HANRAHAN, P. Brook for GPUs: stream computing on graphics hardware. ACM
Transactions on Graphics, [S.l.], v.23, n.3, p.777–786, August 2004. Available at: <http:
//graphics.stanford.edu/papers/brookgpu/brookgpu.pdf>. Visited in: June 2006.

BUCK, I.; FOLEY, T.; HORN, D.; SUGERMAN, J.; HANRAHAN, P.; HOUSTON,
M.; FATAHALIAN, K. BrookGPU. 2006. Available at: <http://graphics.stanford.edu/
projects/brookgpu>. Visited in: June 2006.

GALLO, E.; TSINGOS, N. Efficient 3D Audio Processing with the GPU. Proceedings
of GP2: Workshop on General Purpose Computing on Graphics Processors, Los
Angeles, California, August 2004. Poster. Available at: <http://www-sop.inria.fr/reves/
Nicolas.Tsingos/publis/posterfinal.pdf>. Visited in: June 2006.

GOVINDARAJU, N. K.; GRAY, J.; KUMAR, R.; MANOCHA, D. GPUTeraSort: high
performance graphics coprocessor sorting for large database management. In: ACM
SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2003.,
2006, Chicago, IL. Proceedings. . . [S.l.: s.n.], 2006. Available at: <http://gamma.cs.unc.
edu/GPUTERASORT/gputerasort_sigmod06.pdf>.

GPUFFTW Library. Sponsored by Army Modeling and Simulation Office, Army Re-
search Office, Defense Advanced Research Projects Agency, RDECOM and NVIDIA
Corporation. Available at: <http://gamma.cs.unc.edu/GPUFFTW>.

GUMMER, A. W. (Ed.). Biophysics of the Cochlea. Titisee, Germany: [s.n.], 2002.
Proceedings of the International Symposium.

http://www.dspteam.com/resample.html
http://www.dspteam.com/resample.html
http://www.bionicfx.com
http://www.musicdsp.org/files/Wavetable-101.pdf
http://graphics.stanford.edu/papers/brookgpu/brookgpu.pdf
http://graphics.stanford.edu/papers/brookgpu/brookgpu.pdf
http://graphics.stanford.edu/projects/brookgpu
http://graphics.stanford.edu/projects/brookgpu
http://www-sop.inria.fr/reves/Nicolas.Tsingos/publis/posterfinal.pdf
http://www-sop.inria.fr/reves/Nicolas.Tsingos/publis/posterfinal.pdf
http://gamma.cs.unc.edu/GPUTERASORT/gputerasort_sigmod06.pdf
http://gamma.cs.unc.edu/GPUTERASORT/gputerasort_sigmod06.pdf
http://gamma.cs.unc.edu/GPUFFTW

59

OPPENHEIM, A. V. (Ed.). Digital Filters. 3rd ed. Englewood Cliffs, NJ, USA: Prentice-
Hall, 1989. (Signal Processing Series).

HILLESLAND, K. E.; LASTRA, A. GPU Floating-Point Paranoia. In: GP2: WORK-
SHOP ON GENERAL PURPOSE COMPUTING ON GRAPHICS PROCESSORS,
2004, Chapel Hill, NC, USA. Proceedings. . . ACM SIGGRAPH, 2004. Available at:
<http://www.cs.unc.edu/~ibr/projects/paranoia/gpu_paranoia.pdf>. Visited in: June 2006.

ISHIKAWA, O.; AONO, Y.; KATAYOSE, H.; INOKUCHI, S. Extraction of Musical Per-
formance Rules Using a Modified Algorithm of Multiple Regression Analysis. In: IN-
TERNATIONAL COMPUTER MUSIC CONFERENCE, 2000, Berlin, Germany, August
2000. Proceedings. . . [S.l.: s.n.], 2000. p.348–351. Available at: <http://www-inolab.sys.
es.osaka-u.ac.jp/users/ishikawa/kenkyu/study/ICMC2000.pdf>. Visited in: June 2006.

JĘDRZEJEWSKI, M.; MARASEK, K. Computation of Room Acoustics Using Pro-
grammable Video Hardware. In: INTERNATIONAL CONFERENCE ON COMPUTER
VISION AND GRAPHICS, 2004, Warsaw, Poland. Anais. . . [S.l.: s.n.], 2004. Available
at: <http://www.pjwstk.edu.pl/~s1525/prg/mgr/gpuarticle.pdf>. Visited in: June 2006.

JULIANO, J.; SANDMEL, J.; AKELEY, K.; ALLEN, J.; BERETTA, B.; BROWN,
P.; CRAIGHEAD, M.; EDDY, A.; EVERITT, C.; GALVAN, M.; GOLD, M.; HART,
E.; KILGARD, M.; KIRKLAND, D.; LEECH, J.; LICEA-KANE, B.; LICHTENBELT,
B.; LIN, K.; MACE, R.; MORRISON, T.; NIEDERAUER, C.; PAUL, B.; PUEY,
P.; ROMANICK, I.; ROSASCO, J.; SAMS, R. J.; SEGAL, M.; SEETHARAMAIAH,
A.; SCHAMEL, F.; VOGEL, D.; WERNESS, E.; WOOLLEY, C. Framebuffer Ob-
ject. Revision 118. Available at: <http://oss.sgi.com/projects/ogl-sample/registry/EXT/
framebuffer_object.txt>. Visited in: June 2006.

KESSENICH, J.; BALDWIN, D.; ROST, R. The OpenGL Shading Language. 1.10,
Revision 59 ed. Madison, AL, USA: 3Dlabs, Inc. Ltd., 2004. Available at: <http://oss.
sgi.com/projects/ogl-sample/registry/ARB/GLSLangSpec.Full.1.10.59.pdf>. Visited in:
June 2006.

KURO5HIN. The End of Moore’s Law. Available at: <http://www.kuro5hin.org/story/
2005/4/19/202244/053>. Visited in: June 2006.

MICROSOFT CORPORATION. HLSL Shaders. 2005. Available at: <http://msdn.
microsoft.com/library/en-us/directx9_c/Writing_HLSL_Shaders.asp>. Visited in: June
2006.

MICROSOFT CORPORATION. DirectSound C/C++ Reference. Available at: <http:
//msdn.microsoft.com/library/en-us/directx9_c/dx9_directsound_reference.asp>. Visited
in: June 2006.

MICROSOFT CORPORATION. Visual Studio .NET 2003. Available at: <http://msdn.
microsoft.com/vstudio/previous/2003>. Visited in: May 2006.

ROTTINO, M. P. (Ed.). Elements of Computer Music. Upper Saddle River, NJ, USA:
PTR Prentice Hall, 1990.

MOORE, G. E. Cramming More Components onto Integrated Circuits. Electronics,
[S.l.], v.38, n.8, p.114–117, April 1965. Available at: <ftp://download.intel.com/research/
silicon/moorespaper.pdf>.

http://www.cs.unc.edu/~ibr/projects/paranoia/gpu_paranoia.pdf
http://www-inolab.sys.es.osaka-u.ac.jp/users/ishikawa/kenkyu/study/ICMC2000.pdf
http://www-inolab.sys.es.osaka-u.ac.jp/users/ishikawa/kenkyu/study/ICMC2000.pdf
http://www.pjwstk.edu.pl/~s1525/prg/mgr/gpuarticle.pdf
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/GLSLangSpec.Full.1.10.59.pdf
http://oss.sgi.com/projects/ogl-sample/registry/ARB/GLSLangSpec.Full.1.10.59.pdf
http://www.kuro5hin.org/story/2005/4/19/202244/053
http://www.kuro5hin.org/story/2005/4/19/202244/053
http://msdn.microsoft.com/library/en-us/directx9_c/Writing_HLSL_Shaders.asp
http://msdn.microsoft.com/library/en-us/directx9_c/Writing_HLSL_Shaders.asp
http://msdn.microsoft.com/library/en-us/directx9_c/dx9_directsound_reference.asp
http://msdn.microsoft.com/library/en-us/directx9_c/dx9_directsound_reference.asp
http://msdn.microsoft.com/vstudio/previous/2003
http://msdn.microsoft.com/vstudio/previous/2003
ftp://download.intel.com/research/silicon/moorespaper.pdf
ftp://download.intel.com/research/silicon/moorespaper.pdf

60

MORELAND, K.; ANGEL, E. The FFT on a GPU. In: SIGGRAPH/EUROGRAPH-
ICS WORKSHOP ON GRAPHICS HARDWARE, 2003, San Diego, CA. Anais. . . Eu-
rographics Association, 2003. p.112–119. Available at: <http://www.eg.org/EG/DL/WS/
EGGH03/112-119-moreland.pdf>. Visited in: June 2006.

NVIDIA CORPORATION. Cg Toolkit User’s Manual. 1.4.1 ed. Santa Clara, CA, USA:
NVIDIA Corporation, 2006. Available at: <http://download.nvidia.com/developer/cg/
Cg_1.4/1.4.1/Cg-1.4.1_UsersManual.pdf>. Visited in: June 2006.

POLICARPO, F.; NETO, M. M. D. O.; COMBA, J. L. D. Real-Time Relief Mapping
on Arbitrary Polygonal Surfaces. In: SYMPOSIUM ON INTERACTIVE 3D GRAPH-
ICS AND GAMES, 2005., 2005, New York, NY, USA. Proceedings. . . ACM Press,
2005. v.24, n.3, p.155–162. Available at: <http://www.inf.ufrgs.br/%7Eoliveira/pubs_
files/RTM.pdf>. Visited in: June 2006.

RAPIDMIND. Sh: a high-level metaprogramming language for modern GPUs. Available
at: <http://www.libsh.org>. Visited in: June 2006.

REISS, J.; SANDLER, M. Digital Audio Effects Applied Directly on a DSD Bitstream.
In: INTERNATIONAL CONFERENCE ON DIGITAL AUDIO EFFECTS, 7., 2004,
Naples, Italy. Proceedings. . . [S.l.: s.n.], 2004. p.1–6. Available at: <http://dafx04.na.
infn.it/WebProc/Proc/P_372.pdf>. Visited in: May 2006.

ROST, R. Introduction to the OpenGL Shading Language. OpenGL Master-
Class, Presentation. Available at: <http://developer.3dlabs.com/documents/presentations/
GLSLOverview2005.zip>. Visited in: June 2006.

SCAVONE, G. P. The RtAudio Tutorial. 2005. Available at: <http://www.music.mcgill.
ca/~gary/rtaudio>. Visited in: June 2006.

SEGAL, M.; AKELEY, K. The OpenGL Graphics System: A specification. 2.0 ed.
Mountain View, CA, USA: Silicon Graphics, Inc., 2004. Available at: <http://www.
opengl.org/documentation/specs/version2.0/glspec20.pdf>. Visited in: June 2006.

SHALLOWS. Making GPGPU Programming Fast and Easy. Available at: <http://
shallows.sourceforge.net>. Visited in: June 2006.

SPITZER, J. Implementing a GPU-Efficient FFT. SIGGRAPH, Presentation. Avail-
able at: <http://gamma.cs.unc.edu/SIG03_COURSE/2003ImplementingFFTonGPU.
pdf>. Visited in: June 2006.

STEINBERG MEDIA TECHNOLOGIES GMBH. 3rd Party Developers Page. Avail-
able at: <http://www.steinberg.net/324_1_.html>. Visited in: May 2006.

STILSON, T.; SMITH, J. Alias-Free Digital Synthesis of Classic Analog Waveforms. In:
INTERNATIONAL COMPUTER MUSIC CONFERENCE, 1996, Hong Kong, China.
Proceedings. . . [S.l.: s.n.], 1996. Available at: <http://ccrma.stanford.edu/~stilti/papers/
blit.pdf>. Visited in: June 2006.

SUMANAWEERA, T.; LIU, D. Medical Image Reconstruction with the FFT. In:
PHARR, M. (Ed.). GPU Gems 2. [S.l.]: Addison Wesley, 2005. p.765–784. Available
at: <http://download.nvidia.com/developer/SDK/Individual_Samples/DEMOS/OpenGL/
src/gpgpu_fft/docs/Gems2_ch48_SDK.pdf>. Visited in: June 2006.

http://www.eg.org/EG/DL/WS/EGGH03/112-119-moreland.pdf
http://www.eg.org/EG/DL/WS/EGGH03/112-119-moreland.pdf
http://download.nvidia.com/developer/cg/Cg_1.4/1.4.1/Cg-1.4.1_UsersManual.pdf
http://download.nvidia.com/developer/cg/Cg_1.4/1.4.1/Cg-1.4.1_UsersManual.pdf
http://www.inf.ufrgs.br/%7Eoliveira/pubs_files/RTM.pdf
http://www.inf.ufrgs.br/%7Eoliveira/pubs_files/RTM.pdf
http://www.libsh.org
http://dafx04.na.infn.it/WebProc/Proc/P_372.pdf
http://dafx04.na.infn.it/WebProc/Proc/P_372.pdf
http://developer.3dlabs.com/documents/presentations/GLSLOverview2005.zip
http://developer.3dlabs.com/documents/presentations/GLSLOverview2005.zip
http://www.music.mcgill.ca/~gary/rtaudio
http://www.music.mcgill.ca/~gary/rtaudio
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://shallows.sourceforge.net
http://shallows.sourceforge.net
http://gamma.cs.unc.edu/SIG03_COURSE/2003ImplementingFFTonGPU.pdf
http://gamma.cs.unc.edu/SIG03_COURSE/2003ImplementingFFTonGPU.pdf
http://www.steinberg.net/324_1_.html
http://ccrma.stanford.edu/~stilti/papers/blit.pdf
http://ccrma.stanford.edu/~stilti/papers/blit.pdf
http://download.nvidia.com/developer/SDK/Individual_Samples/DEMOS/OpenGL/src/gpgpu_fft/docs/Gems2_ch48_SDK.pdf
http://download.nvidia.com/developer/SDK/Individual_Samples/DEMOS/OpenGL/src/gpgpu_fft/docs/Gems2_ch48_SDK.pdf

61

THORN, A. DirectX 9 Graphics: the definitive guide to Direct 3D. USA: Wordware
Publishing, Inc., 2005. (Worldware Applications Library).

TOLONEN, T.; VÄLIMÄKI, V.; KARJALAINEN, M. Evaluation of Modern Sound
Synthesis Methods. [S.l.]: Helsinki University of Technology, Department of Electrical
and Communications Engineering, Laboratory of Acoustics and Audio Signal Process-
ing, 1998. Report. (48). Available at: <http://www.acoustics.hut.fi/publications/reports/
sound_synth_report.pdf>. Visited in: June 2006.

TURKOWSKI, K. Filters for Common Resampling Tasks. [S.l.]: Apple Com-
puter, 1990. Available at: <http://www.worldserver.com/turk/computergraphics/
ResamplingFilters.pdf>.

WHALEN, S. Audio and the Graphics Processing Unit. IEEE Visualization 2004
GPGPU Course, [S.l.], March 2005. Tutorial. Available at: <http://www.node99.org/
projects/gpuaudio/gpuaudio.pdf>. Visited in: June 2006.

WIKIPEDIA, THE FREE ENCYCLOPEDIA. Moore’s law. Available at: <http://en.
wikipedia.org/w/index.php?title=Moore%27s_law&oldid=58194474>. Visited in: June
2006.

WIKIPEDIA, THE FREE ENCYCLOPEDIA. Definition of music. Available at: <http:
//en.wikipedia.org/wiki/Definition_of_music>. Visited in: June 2006.

WIKIPEDIA, THE FREE ENCYCLOPEDIA. Comparison of Direct3D and OpenGL.
Available at: <http://en.wikipedia.org/wiki/Direct3D_vs._OpenGL>. Visited in: June
2006.

ZHIRNOV, V. V.; III, R. K. C.; HUTCHBY, J. A.; BOURIANOFF, G. I. Limits to Binary
Logic Switch Scaling—A Gedanken Model. In: IEEE, 2003, Research Triangle Park, NC,
USA 27709-2053. Proceedings. . . [S.l.: s.n.], 2003. v.91, n.11, p.1934–1939. Available
at: <http://www.intel.com/research/documents/Bourianoff-Proc-IEEE-Limits.pdf>.

http://www.acoustics.hut.fi/publications/reports/sound_synth_report.pdf
http://www.acoustics.hut.fi/publications/reports/sound_synth_report.pdf
http://www.worldserver.com/turk/computergraphics/ResamplingFilters.pdf
http://www.worldserver.com/turk/computergraphics/ResamplingFilters.pdf
http://www.node99.org/projects/gpuaudio/gpuaudio.pdf
http://www.node99.org/projects/gpuaudio/gpuaudio.pdf
http://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=58194474
http://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=58194474
http://en.wikipedia.org/wiki/Definition_of_music
http://en.wikipedia.org/wiki/Definition_of_music
http://en.wikipedia.org/wiki/Direct3D_vs._OpenGL
http://www.intel.com/research/documents/Bourianoff-Proc-IEEE-Limits.pdf

62

APPENDIX A COMMERCIAL AUDIO SYSTEMS

There is a vast set of commercial music production systems. There are also many
kinds of products to perform all sorts of sound processing tasks. The multiplicity of
products may imply that there are no universally “correct” and well-known guidelines for
building sound modules in general. A detail in the design of an audio system can enable
musical possibilities that another system cannot achieve. For that reason, one may need
to purchase many products in order to satisfy all music production needs.

Here, I mention some of the most popular products. I cite many featured music work-
stations and software audio and some of the most relevant of their features. Note that it
is impossible to cover the full range of music equipment, and that I have chosen prod-
ucts that seemed compatible with this work’s goals. For example, I do not mention drum
machines or studio equipment such as amplifiers.

A.1 Audio Equipment

Popular audio equipment companies include:

• Alesis

The company produces many kinds of audio equipment and also software synthe-
sizers. Its top product is Fusion 8HD, an 88-key keyboard synthesizer supporting
sample playback (272 voices), FM synthesis (240 voices), analog synthesis simu-
lations (140 voices) and physical modelling (48 or 60 voices), along with reverbs,
choruses, equalizers and others sound effects. The company also produces effects
modules such as reverbs and equalizers and many recording accessories.

• Creative Technology Limited

Creative is the most important company producing sound cards for desktop com-
puter, though the company works with many multimedia-related product types. The
current top of line sound card is Sound Blaster X-Fi Elite Pro, which can record at
96 kHz and playback at 96 kHz (for surround sound) or 192 kHz for stereo, present-
ing very little distortion (SNR around 116 dB and THD around 0.0008%). The X-Fi
card processes audio using an EMU20K1 processor, which is able to achieve 10,000
MIPS, supporting up to 128 3D voices with 4 effects applied to each. The chip is
also known to be programmable, though information necessary for implementation
is not provided by manufacturers.

• Korg

Korg is famous by its music workstations, but they also manufacture many kinds
of audio accessories and equipment. The main product of the company is Triton

63

Extreme, a 88-key keyboard supporting a polyphony of 120 voices produced using
Korg’s Hyper Integrated synthesis engine, a complex synthesis scheme that includes
filtering and envelope shaping to the output of each oscillator. Triton Extreme also
comes with 102 effect types running up to 8 simultaneously, 2,072 instrument def-
initions (programs and combinations) and a set of sequencer patterns preloaded
which can be used in live performances.

• Kurzweil Music Systems

The company works with 3 kinds of audio equipment: keyboards, digital pianos
and signal processors. Top products in these categories are:

– PC2X, an 88-key keyboard supporting up to 128 voices, 660 instrument defi-
nitions and 163 different effects running on two processors; and

– Mark 152i, a digital piano that mimics a real piano by placing seven speak-
ers inside a wooden piano-shaped cabinet and using surround techniques to
add realism to the sound. It supports a 32 voice polyphony and includes 325
instrument definitions and 880 effects.

• Moog Music Inc.

The firm is mostly know for the production of Minimoog Voyager, an extension
of the original and popular Model D Minimoog. Voyager is a completely analog
synthesizer, using digital circuitry only to store instrument definitions and quickly
restore the instrument’s parameters.

• New England Digital Corp.

Though the company was closed early in the 1990’s, its most famous product, the
Synclavier, released late in the 1970’s, is still used in the recording industry in
the sound design process for major movies and in music composition and perfor-
mance. The Synclavier supports a sampling rate of 100 kHz and includes facilities
for FM synthesis, digital sampling, hard-disk recording and sophisticated digital
sound editing. It is generally regarded for its depth of sound, versatility at sound
creation and production, and speed of use. In 1998, employees of the company
developed an emulator to run Synclavier software on Apple Macintosh systems.

• Peavey Electronics

Peavey produces a wide range of audio electronic equipment, but almost none in-
volving synthesis and effects processing. They provide subharmonic and stereo en-
hancement, compressor/expander/limiter, crossover and equalizer modules of vary-
ing feature level.

• Roland Corporation

Roland’s top workstation is Fantom-X8, an 88-key keyboard with a polyphony of
128 voices, including 1,408 predefined instruments and 78 types of effects. The
product, though, works only with 16-bit samples ate 44 kHz. Roland also provides
drum machines and digital piano simulations, among other audio equipment.

• Yamaha Corporation

The company is famous for its audio products, providing a wide range of audio
accessories. Top workstations are:

64

– MO6 / MO8, an 88-key keyboard 64 voices of polyphony, 705 instrument
definitions (plus memory for additional ones) and 222 effects; and

– Tyros2, a home-oriented 61-key keyboard with a wide collection of instru-
ments and effects, together with accompaniment functionality.

Yamaha also produces several kinds of digital pianos, also called “clavinovas”.

A.2 Software Solutions

Popular companies working with audio software solutions include:

• Arturia

This company develops and markets the Moog Modular V, a software emulator of
the Moog modular synthesizer, the CS-80 V, an emulation of Yamaha CS-80, the
Arp 2600 V, and emulation of the ARP 2600 synthesizer, among others.

• Cycling’74

This company is known mainly for maintaining Max, a highly modular graphical
development environment for music and multimedia. A well-known open-source
successor to Max is Miller Puckette’s Pure Data, which is very similar in design
and functionality.

• Digidesign

This firm is very well know by its flagship software Pro Tools, known as the de facto
industry standard professional recording application.

• Emagic

This company is know for Logic Pro, a an application for the Mac OS X platform
that provides software instruments, synthesizers, audio effects and recording tools
for music synthesis.

• Image-Line Software

The company is the producer of FL Studio, a pattern-based music sequencer widely
used for electronic music.

• Mark of the Unicorn (MOTU)

MOTU produces Digital Performer for Mac OS X, a recording and editing software
designed for composers of large works such as film scores. The latest version bun-
dles with a sampler, software synthesizers a drum module. It includes productivity
enhancements and special features for film scoring.

• Native Instruments

The firm sells a wide collection of software synthesizers and audio mastering soft-
ware. Among them, the most relevant ones are:

– Absynth, a software synthesizer combining subtractive synthesis with granular
and sample-based techniques, which can be used as stand-alone or as a plug-
in;

65

– FM7, an Yamaha DX7 software simulator; and

– Reaktor, a graphical modular software music studio.

• Novation Electronic Music Systems

This company develops virtual analog synthesizers, digital simulators of analog
synthesizers. Its main product is V-Station, a VSTi module that uses simulations of
analog primitive waveforms combined with filters, effects and other functionality.

• Propellerhead Software

The company is a competitor of other studio software and is known for defining the
ReWire protocol. The most significant applications produced by the company are:

– Reason, a recording studio package that emulates a rack of hardware modules;

– ReBirth, an emulator of the classic Roland modules TB-303, TR-808 and TR-
909; and

– ReCycle, a sound loop editor.

• Steinberg Media Technologies GmbH

Steinberg is a german firm that produces audio applications and plug-ins. The firm
is also famous for the creation of ASIO and VST standards. Their main products
are:

– Cubase, a music sequencer with MIDI support and audio editing capabilities;
and

– Nuendo, similar to Cubase, but offering more functionality for video produc-
tion and audio mastering and being significantly more expensive.

A.3 Plug-in Architectures

Many software solutions provide extension support to new modules through plug-ins.
The most widespread plug-in interfaces are:

• Virtual Studio Technology (VST)

Created by Steinberg, VST is a cross-platform protocol in which modules are classi-
fied as instruments (VSTi) or effects processors, and are implemented as a function
callback, whose responsibility is to fill a fixed-size array with sample values.

• ReWire

Jointly defined by Propellerhead and Steinberg, ReWire is a protocol that allows
remote control and data transfer among audio software. The protocol allows trans-
ferring up to 256 audio tracks at any sample rate and 4080 MIDI data channels.
Such flexibility has allowed it to become an industry standard.

• DirectSound

Microsoft’s DirectSound is part of DirectX, which runs only on Windows. Di-
rectSound processor modules are also called filters, and they are primarily effects
processors only.

66

• DSSI Soft Synth Instrument

Based on LADSPA, DSSI runs on Linux and is comparable to the VSTi specifica-
tion. It can also wrap VSTi modules for Linux hosts.

Finally, there have been numerous sound programming languages, such as Csound,
Cmusic, Nyquist, SuperCollider and ChucK. Programming languages, though, are unus-
able by the musician, who is generally not literate on computer science.

67

APPENDIX B REPORT ON ASIO ISSUES

This appendix briefly discusses problems faced when programming with the ASIO
interface. Its primary intention is to document the problems we have encountered during
development. Hopefully, it will help other researchers to avoid some of the difficulties I
faced. I will focus on the Windows implementation of ASIO, since that is the platform
used for developing this project. In the following sections, ASIO is characterized from
a developer’s point of view. A serious flaw is described, followed by a discussion of
bypassing attempts.

B.1 An Overview of ASIO

ASIO1 is a widely used protocol for real-time (low-latency) audio streaming between a
central computer system (e.g., CPU and memory) and an audio device (e.g., a sound card).
It was defined by Steinberg and implemented by sound card manufacturers. On Windows,
competitor interfaces with similar functionality are GSIF (which is mostly used by old
applications) and Kernel Streaming (a low-level, counterintuitive streaming system). On
other systems, popular interfaces include Core Audio on Mac OS X and ALSA on Linux.
Several free and open audio libraries use ASIO. For instance, widely used libraries in-
clude:

• PortAudio, which is cross-platform and supports other audio interfaces as well;

• RtAudio, similar to PortAudio; and

• JUCE, which is a general library supporting many other features besides audio.

An application using ASIO is called an ASIO host, while an implementation of ASIO
is called an ASIO driver. ASIO is multi-platform and supports a wide range of formats,
including the recent Sony DSD format. ASIO is, therefore, a very general means of
interaction with modern sound cards and other audio devices, making it suitable for pro-
fessional audio applications.

Figure B.1 presents an abstract view of ASIO’s operation. The four boxes identify
the four ASIO states. Arrows indicate state changes caused by API calls. The load and
remove calls are depicted in gray to indicate that they are not formally described in the
documentation.

An application can use an ASIO-enabled sound card using the ASIO SDK provided
by Steinberg. I have worked with SDK version 2.1, obtained by request at http://www.
steinberg.net/324_1.html.
1 One should not confuse Steinberg’s ASIO protocol with the Boost Library’s asio C++ library, a library
for network programming.

http://www.steinberg.net/324_1.html
http://www.steinberg.net/324_1.html

68

Initialized
driver allocated

Prepared
buffers allocated

Running
audio streaming

init start

stopexit

load

remove

create buffers

dispose buffers

Loaded
driver selected

Figure B.1: ASIO operation summary.

An initial analysis of the SDK’s contents clearly points out that:

• There is no guide on how to build an ASIO host. However, there is a reference
manual presenting and describing the API. This reference, though, lacks some de-
tails of implementation—e.g., it does not describe the loadAsioDriver call, which
is fundamental to use ASIO; and

• The source code is not clearly organized. Maybe due to lack of description on how
ASIO host systems are structured, finding out the actual intent of each module was
not trivial. Subjectively judging, the code also does not seem very readable in some
sections, which increases maintenance difficulty.

Since the code is not self-descriptive enough to cover up drawbacks in the documen-
tation, the reliability of ASIO hosts is somehow reduced, increasing the chance of unex-
pected bugs. Since ASIO is generally only used by corporations, there is also very little
informal support available on the Internet. In the following section, I report a flaw with
which I had to deal while working with ASIO.

B.2 The Process Crash and Lock Problem

This problem arose whenever the ASIO host process was terminated for some reason.
It could be terminated by Visual Studio (when stopping debugging), by the operating
system (through the Task Manager) or by either of those if it crashed for any reason
(an unexpected exception, an invalid pointer access, etc.), which is normal and expected
during a development process. In Windows, an ASIO host communicates with an ASIO
driver using a COM interface2. When the host process crashed, it was terminated without
releasing certain resources, probably the COM object instance used by ASIO. For a reason
I and others have not discovered (but I believe it is related to COM), Windows did not
eliminate the process from the process pool; the process remained apparently inactive.
As a result, the executable file was in use and could not be modified and, consequently,
the code could not be recompiled. Forceful termination such as by the Task Manager had
no effect. To continue development and modify the code, the machine would need to be
rebooted each time this problem appeared. If one just wished to run another copy of the
process, the ASIO driver would still be in use by the last process instance, therefore also
making ASIO unavailable until rebooting.
2 One should not confuse an interface for a Microsoft COM object with the COM port interface.

69

The reader may feel tempted to argue that it is the programmer’s responsibility to
ensure that the host does not crash, which is quite valid. Keep in mind, though, that
several errors are not directly identifiable, specially when designing new algorithms, and
that correction must hold only after the test stage.

To avoid this problem, I considered temporarily using the Windows MME audio inter-
face and only used ASIO when most programming errors were already corrected. Then, I
installed the ASIO4ALL driver, which can be obtained at http://www.asio4all.com. After
installation, I noticed that this problem would no longer occur, either using Creative’s
ASIO driver or the ASIO4ALL driver. I thoroughly tested all situations that previously
led to this problem and found both drivers now worked properly. At this point, I stopped
looking for an explanation, as this is probably a local problem that does not appear on
other systems, and it is not my goal to determine exact causes for such failures, though a
more formal examination should be performed in the future.

B.3 Summary

I have invested a considerable amount of time trying to fix the described issues, mainly
because ASIO is the widespread default system for real-time audio streaming, and be-
cause my most fundamental motivation is real-time audio output.

ASIO is much more difficult to use than the readily available MME interface. The
SDK is not “developer-friendly” as well. I invested a long time trying to resolve issues I
just discussed, since my application depends entirely on the stability of the audio subsys-
tem. In any case, it is not my responsibility, according to the goals of this work, to enter
systems’ internals to fix their errors. I could only develop my code as stable as possible
such that situations that cause such instabilities in ASIO do not occur.

At last, after the “crash and lock” problem was resolved, I decided to use RtAudio
3.0.33, since is is more likely to be stable, due to testing, than my own code accessing the
ASIO calls directly.

3 Any of the libraries listed on Section B.1 could have been used.

http://www.asio4all.com

70

APPENDIX C IMPLEMENTATION REFERENCE

C.1 OpenGL State Configuration

OpenGL needs to be configured as follows to allow general purpose computation on
the GPU:

• Create an OpenGL rendering context. On Windows, this is performed by calling
wglCreateContext() and wglMakeCurrent(), generally right after having created a
window where graphics would be presented. In our application, window creation is
not completed, since it is not necessary—the framebuffer is not used, only textures;

• Check hardware support for extensions. Before we proceed, we need to know: the
maximum texture size, whether the framebuffer object extension (JULIANO et al.,
2006) is supported and how many attachments are supported per framebuffer object
(FBO);

• Generate one FBO and two or more same-sized textures and attach them to the
FBO;

• Load the shaders used for audio processing; and

• Ensure that the following features are disabled: LIGHTING, COLOR_
MATERIAL, MULTISAMPLE, POINT_SMOOTH, LINE_SMOOTH,
POLYGON_SMOOTH, CULL_FACE, POLYGON_STIPPLE, POLYGON_
OFFSET_POINT, POLYGON_OFFSET_LINE, POLYGON_OFFSET_FILL,
POST_CONVOLUTION_COLOR_TABLE, POST_COLOR_MATRIX_COLOR
_TABLE, HISTOGRAM, MINMAX, COLOR_SUM, FOG, SCISSOR_TEST,
ALPHA_TEST, STENCIL_TEST, DEPTH_TEST, BLEND, DITHER, LOGIC_
OP, COLOR_LOGIC_OP, AUTO_NORMAL;

• Ensure that the following features are enabled: TEXTURE_1D, TEXTURE_2D;

• Set the shading model to SMOOTH and set the polygon mode to FILL for faces
FRONT_AND_BACK;

• If clearing is desired, set the clearing color to 〈0, 0, 0, 0〉; and

• Provide identity mapping, such that texture coordinates indicate exactly the matrix
positions on texture bitmaps. This is achieved by doing the following:

71

– Set up a two-dimensional orthographic viewing region from 〈0, 0〉 to 〈Tw, Th〉,
where Tw and Th refer to the width and height of the textures assigned to the
FBO;

– Set up an identity modelling transformation and an identity texture transfor-
mation and apply on both a translation on each axis (except by z) of 0.5—this
is done because memory positions are assigned, by definition, to the center of
pixel cells; and

– Set up the viewport transformation with the position parameters referring to
〈0, 0〉 and the size parameters referring to 〈texture width, texture height〉.

Blending is disabled because OpenGL clamps luminance values into the [0.0,1.0]
range if it is enabled. At this point, the application has at least 2 texture names and 1 FBO
with those textures attached to it. OpenGL provides a call to change the target texture,
glDrawBuffer(), that takes as arguments not the texture names, but identifiers representing
textures bound to an FBO. Source textures can be defined passing uniform parameters—
i.e., not subject to interpolation—to fragment shaders. Performing these operations many
times is error-prone due to the different mechanisms of reference to textures. One can
write a procedure to perform swapping of source and target textures automatically.

	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	List of Listings
	Abstract
	Resumo
	Introduction
	Text Structure

	Related Work
	Audio Processing Using the GPU
	Summary

	Audio Processes
	Concepts of Sound, Acoustics and Music
	Sound Waves
	Sound Generation and Propagation
	Sound in Music

	Introduction to Audio Systems
	Signal Processing
	Audio Applications
	Digital Audio Processes

	Audio Streaming and Audio Device Setup
	Summary

	Audio Processing on the GPU
	Introduction to Graphics Systems
	Rendering and the Graphics Pipeline
	GPGPU Techniques

	Using the GPU for Audio Processing
	Module System
	Implementation
	Primitive Waveforms
	Mixing
	Wavetable Resampling
	Echo Effect
	Filters

	Summary

	Results
	Performance Measurements
	Quality Evaluation
	Limitations
	Summary

	Final Remarks
	Future Work

	References
	Commercial Audio Systems
	Report on ASIO Issues
	Implementation Reference

