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ABSTRACT

Physically-based rendering systems use proprietary scene description formats. Thus, by

selecting a given renderer for the development of a new technique, one is often constrained

to test and demonstrate it on the limited set of test scenes available for that particular ren-

derer. This makes it difficult to compare techniques implemented on different rendering

systems. We present a system for automatic conversion among scene description formats

used by physically-based rendering systems. It enables algorithms implemented on dif-

ferent renderers to be tested on the same scene, providing better means of assessing their

strengths and limitations. Our system can be integrated with existing development and

benchmarking APIs, lending to full orthogonality among algorithms, rendering systems,

and scene files.

Keywords: Physically-based Rendering. Scene Conversion. Meta-research. Monte Carlo

Ray Tracing. PBRT. Mitsuba. LuxRender.



Conversão de cenas para renderizadores fisicamente realísticos

RESUMO

Renderizadores fisicamente realísticos usam formatos proprietários para descrever cenas.

Assim sendo, utilizar um renderizador para desenvolver uma nova técnica de filtragem

restringe o pesquisador a testá-la e demonstrá-la em um conjunto limitado de cenas dis-

ponível apenas para aquele renderizador. Este fato torna difícil a comparação de técnicas

implementadas em diferentes renderizadores. Nosso trabalho introduz um sistema para

conversão automática para cenas entre diferentes renderizadores. Esse sistema permite

que algoritmos implementados em diferentes renderizadores possam ser testados utili-

zando as mesmas cenas, possibilitando uma melhor avaliação de seus pontos fortes e de

suas limitações. Nosso sistema é facilmente integrável com outros sistemas de benchmar-

king, possibilitando ortogonalidade total entre algoritmos, renderizadores e arquivos de

cena.

Palavras-chave: renderizadores fisicamente realísticos, conversão de cenas, metapes-

quisa, monte carlo ray tracing, PBRT, mitsuba, luxrender.
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1 INTRODUCTION

In Computer Graphics, researchers have long pursued the goal of synthesizing im-

ages indistinguishable from real photographs. In order to produce physically accurate

images, the process of image synthesis - also called rendering - has to simulate the in-

teraction of light with the representation of a three-dimensional scene. Physically-based

rendering (PBR) is a complex process that requires thorough knowledge of optics, mate-

rial properties, geometry and light propagation.

1.1 Physically-based Rendering

Physically-based rendering is often implemented using Monte Carlo (MC) Ray

Tracing (LAFORTUNE, 1996), which uses MC integration to estimate the environment il-

lumination function (KELLER; HEINRICH; NIEDERREITER, 2007). This is performed

by tracing (or sampling) the path of several light rays starting from the camera position,

simulating the effects obtained from its encounters with virtual objects. While able to

produce a high degree of realism, this technique also has a very high computational cost.

This method will be further discussed in Chapter 3.

Over the years, PBR became quite popular and was widely incorporated by the en-

tertainment industry. From movies to videogames, from advertisement to interior design,

PBR made it possible for artists to bring their vision one step closer to reality.

As PBR popularity grew, several new renderers were developed. Following the

creation of PBRT and the publishing of the book "Physically Based Rendering: From The-

ory to Implementation" (PHARR; HUMPHREYS, 2015), several other research-oriented

renderers were created. Among them is Mitsuba (JAKOB, 2014), one of the renderers

chosen for this research.

Following the lead of Pixar’s Renderman (UPSTILL, 1989), many commercial

and performance-oriented renderers appeared on the market. Focused on animation tech-

niques and visual effects for movies, these renderers provide well-established, stable ren-

dering techniques. These renderers, such as LuxRender (GRIMALDI; VERGAUWEN,

2008) and Octane (OTOY, 2017), have been extensively used by the animation and gam-

ing industries.

Even with different applications, the vast majority of modern physically-based

renderers follows the same general guidelines for defining scene directives and world de-
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scriptions. Scene directives establish parameters such as which integration and sampling

techniques the renderer must use, the view matrix and other camera properties. World

descriptions describe the objects and materials used to render them. This ensemble of

descriptions is called a scene.

1.2 Rendering a Scene

3D scenes are usually created by artists using some modeling software (such as

Blender (Blender Online Community, 2018), 3ds Max (O’CONNOR, 2015) or Maya

(PALAMAR, 2015)). But even with an artist’s expertise, creating scenes is still a complex

process. For instance, scenes created for building overviews and interior design often

compile hundreds of 3D models and dozens of customized materials and textures, as one

can see in Figure 1.1. Each material and texture has to be carefully defined, taking into

account the renderer’s limitations and particularities. Most physically-based renderers

describe scenes using a similar structure.

Figure 1.1: An example of a complex scene created by Laubwerk Plants Kits.

Source: Extracted from (LAUBWERK. . . , 2018).

After a scene is created, all the hard work invested by the artist has been, unfortu-

nately, tailored for a specific render. Should the artist choose to renderer the scene using a

different rendering system, the scene file so diligently created would have to be rewritten

or heavily modified.
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Converting a scene file from one renderer format to another is a hard and time-

consuming task. Unfortunately, the various rendering systems available use proprietary

scene description formats. Aside from adapting material and light properties, which can

be hard since sometimes renderers do not provide the same features, the 3D object formats

supported may not be the same. Manually converting a scene from one format to the other

can be extremely time consuming, taking up to several days per scene (BITTERLI, 2014).

1.3 The Need for Automatic Scene Conversion

Currently, PBR and MC Ray Tracing are the only practical solution for simulating

global illumination effects in complex environments. Due to its high computational cost,

an image can take a long time to render — sometimes up to a few days, depending on the

complexity of the scene or the technique used. This means that it is practically impossible

to use these images in real-time applications.

There are some techniques that aim to improve the time spent rendering PBR

images, like improved sampling (HECK; SCHLöMER; DEUSSEN, 2013; PILLEBOUE

et al., 2015) and reconstruction strategies (SEN; DARABI, 2012; ROUSSELLE; MANZI;

ZWICKER, 2013; KALANTARI; BAKO; SEN, 2015; BITTERLI et al., 2016). These

techniques are implemented on top of an existing PBR system as a way of using aspects

of the MC Ray Tracing algorithm (such as ray-object intersection calculations) that are

orthogonal to the proposed methods.

Since converting scenes between renderers is a very time-consuming task, these

new techniques are often constrained to demonstrate their results on a limited set of scenes

available for the chosen renderer. This apparently simple limitation has profound impli-

cations, as it constrains a direct comparison between MC rendering techniques that have

been implemented using different rendering systems.

We present a system for automatic conversion among scene file formats used by

PBR systems. Our solution intends to expand the repertoire of scenes available for testing,

validation, and benchmarking of PBR algorithms. Currently, our system handles conver-

sions among PBRT v3, Mitsuba, and LuxRender, which are three of the most popular

physically-based renderers.

Extending it to support additional renderers is straightforward. Our solution (dis-

cussed in Section 4) consists of importing any source scene description into a canonical

representation, which can then be exported to other scene formats.
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Figure 1.2: Example of automatic scene conversion obtained with our system. Cof-
fee Maker rendered with PBRT v3 (left). Rendering produced by Mitsuba (center) and
LuxRender (right), using converted scenes (from PBRT v3) for these rendering systems.

(a) PBRT v3 (b) Mitsuba (c) LuxRender

Source: Generated by the author.

Figure 1.2 illustrates the use of our system to perform automatic conversion of

a scene represented in the PBRT v3 format. The images at the center and on the right

show, respectively, the renderings produced by Mitsuba and by LuxRender, from con-

verted scenes files. Note the correct representation of the various materials (glass, plastic,

and metal).

Our work does not introduce a new physically-based rendering technique per se.

Instead, it falls in the area of meta-research systems, which are systems designed to fa-

cilitate and improve the research process. Meta-research systems are quite common in

computer graphics and computer vision (SCHARSTEIN; SZELISKI; HIRSCHMüLLER,

2002; BAKER et al., 2011; RHEMANN et al., 2009; EROFEEV et al., 2014), where they

have led to significant progress in these fields.

Recently, Santos et al. (SANTOS; SEN; OLIVEIRA, 2018) introduced a frame-

work for developing and benchmarking MC sampling and denoising algorithms. This

is achieved by providing an API that decouples the developed techniques from the used

rendering system. While it allows a technique to be tested on any rendering system that

supports the proposed API, each rendering system is still constrained to a limited set of

test scenes. Our system is orthogonal to and complements this API, aspiring to reach full

orthogonality among algorithms, rendering systems and scene files.

The contributions of our work include:

• A system for automatic conversion among scene file formats used by Monte Carlo



12

physically-based rendering systems (Chapter 4). It enables algorithms implemented

on different rendering systems to be tested on similar scene descriptions, giving

developers and end user a better assessment of the strengths and limitations of MC

rendering techniques;

• The proposal of a mechanism intending to achieving orthogonality among MC ren-

dering algorithms, rendering systems and scene files (Chapter 4). This could be

achieved when integrated with the API provided in (SANTOS; SEN; OLIVEIRA,

2018).

1.4 Thesis Structure

This work includes a detailed description of how our solution for converting scenes

between renderers was implemented, from system architecture to result images and anal-

ysis. Chapter 2 discusses previous scene-conversion efforts, and reviews similar meta-

reseach systems introduced to improve research in computer graphics. Following the cur-

rent state-of-the-art, we delve a little into the history of rendering in Chapter 3, starting

with the first algorithms and then moving on to currently used physically-based render-

ers. Our system is described in Chapter 4, where we explain how our pipeline works and

how we converted some renderer-specific directives. Chapter 5 discusses some results ob-

tained with our system, and Chapter 6 presents our conclusions and directions for future

exploration.
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2 RELATED WORK

In this chapter we discuss relevant, similar systems developed as meta-reseach,

such as other attempts to convert scenes and exporting a generic scene format into dif-

ferent renderer-specific outputs. This chapter is meant to contextualize the reader in the

state-of-the-art in converting PBR scene files.

2.1 Scene Conversion

With the addition of new physically-based renderers to the market, the number of

incompatible file formats began to grow. There were a few initiatives to solve this prob-

lem, the greatest one being the proposal of a common file format. Arnaud and Barnes cre-

ated COLLADA (ARNAUD; BARNES, 2006), a XML schema file format that intended

to unify representation of digital assets among various graphics software applications.

Ever since it became property of the Khronos Group, several companies included a COL-

LADA module on their 3D modeling software or game engines. However, there were few

physically-based renderers that adhered to this file format, one of the few being Mitsuba.

That might have happened because COLLADA files only include information about the

geometry present in the scene - they do not store any information about other rendering

options, such as camera positioning or integration techniques.

To the best of our knowledge, no previous system has performed automatic scene

conversion among the major MC rendering systems. Bitterli has converted 32 scenes of

various complexities and origins from Tungsten to PBRT v3 and Mitsuba using some

scripts (BITTERLI, 2014). These scripts, however, are specific for conversions from

Tungsten to these two renderers and are not publicly available.

RenderToolbox3 is a MATLAB tool developed for assisting vision research (HEASLY

et al., 2014). It imports a scene containing geometric objects described as COLLADA

XML files, and allows one to associate to them reflectance measurements from a MAT-

LAB Psycophysics Toolbox (BRAINARD, 1997). Such reflectance measurements are

converted to multispectral reflectance representations compatible to PBRT and Mitsuba.

A script then renders the objects with the associated multispectral representations using

PBRT or Mitsuba. RenderToolbox3 is a visualization tool for exploring the impact of

different reflectance and illuminating properties on human perception.

The work of (HEASLY et al., 2014) is a system that imports COLLADA XML
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files into a MATLAB system and uses different rendering techniques in order images as

close to reality as possible. Their system uses integrated PBRT and Mitsuba rendering is

capable of storing their data structure into their respective scene file formats. The system

does not convert scene files among rendering systems.

2.2 Meta-Research Systems in Computer Graphics

Several systems have been developed to support research in computer graphics.

Some well-known examples include Cg (MARK et al., 2003), Brook (BUCK et al., 2004),

and Halide (RAGAN-KELLEY et al., 2012).

Cg is a general-purpose programming language designed to support the develop-

ment of efficient GPU applications, and has stimulated a lot of research efforts in shader-

based rendering techniques (POLICARPO; OLIVEIRA; COMBA, 2005; POLICARPO;

OLIVEIRA, 2006; WYMAN, 2005; OLIVEIRA; BRAUWERS, 2007).

Brook (BUCK et al., 2004) is system for general-purpose computation that allows

one to exploit the inherent parallelism of modern GPUs without having to deal with GPU

architecture details. These kinds of systems were an inspiration that led to the develop-

ment of CUDA (NICKOLLS et al., 2008).

Halide (RAGAN-KELLEY et al., 2012) is a system designed to optimize image-

processing applications on multiple hardware platforms by separating the algorithm de-

scription from its schedule. The system has been recently extended to support differen-

tiable programming for image processing and deep learning (LI et al., 2018).

All these systems focus on generating efficient code while freeing the user from

GPU architectural details. All goal, in turn, is to make high-quality scenes availability

independent of one’s choice of rendering system.

Santos et al. (SANTOS; SEN; OLIVEIRA, 2018) have recently presented a frame-

work for developing and benchmarking MC sampling and denoising algorithms. They use

an API to decouple algorithms from rendering systems, allowing for the same algorithm

to be tested on multiple rendering systems. By doing so, they also increase the set of

scenes an algorithm can be tested with. However, in order to use a given test scene, the

rendering system for which the scene was created would have to be used as well.
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3 REVIEW OF GLOBAL ILLUMINATION AND MC RAY TRACING

This chapter reviews important concepts about global illumination techniques such

as Ray Tracing, followed by a description of the techniques implemented by the renderers

used in our work (MC Ray Tracing). We do not delve too deep in the implementations

of the techniques discussed in this chapter — we provide a general understanding of the

process in order to better situate the reader.

3.1 Global Illumination Algorithms

Global illumination algorithms try to synthesize realistic pictures by taking into

account both direct and indirect illumination, at the expense of a higher computational

cost when compared to local illumination techniques.

Light transport models the interaction between light and the surface in the scene,

where some fraction of the light incident to a surface is reflected back to the environment.

Modeling this reflection requires its spectral and directional distributions, which differ

depending on the material properties of the surface. Earlier algorithms modeled these

materials as ideal diffuse (Lambertian surfaces) and ideal specular (mirrors) for simplicity.

Starting at a light source (L), a light ray may bounce several times at specular (S)

and diffuse (D) surfaces before reaching the eye (E). These interactions can be represented

using regular expressions such as L(S|D)*E. Rendering algorithms can be caracterized by

the kinds of paths they support.

Local illumination models, such as the Phong lighting model, have the light hit

the scene once before reaching the eye (LDE or LSE). Algorithms that have a good rep-

resentation of specular reflection, such as Ray Tracing (WHITTED, 1980), perform at

most one bounce on diffuse surfaces and can perform any number of bounces on specular

surfaces (LDS*E or LS*E).

3.2 Ray Tracing

Ray Tracing (WHITTED, 1980) is a global illumination algorithm that handles

multiple inter-reflections among shiny surfaces, producing high-quality results for shiny

surfaces. In Ray Tracing, we trace rays from the eye through each pixel of the image,
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searching for the closest intersected object along each ray. When an intersecting surface

is found, the algorithm shoots a shadow ray to determine whether this surface is hidden

from the light source and locally evaluates an illumination function. The incoming ray

is then either reflected or refracted (in other words, bounced), repeating the process until

a certain amount of bounces is achieved, the contributions of subsequent hits become

negligible, or the ray does not intersect any other object in the scene. This process is

illustrated in Figure 3.1.

Figure 3.1: Visual illustration of the Ray Tracing algorithm (left) and an example of a
scene rendered with the algorithm (right).

Source: Extracted from (WIKIPEDIA, 2018).

Because a Lambertian surface reflects rays in all directions, there is a very-high

computational cost associated with calculating reflections in diffuse surfaces. In order

to reduce this cost, Ray Tracing algorithm approximates the actual diffuse reflection (the

same diffuse term found in the Phong illumination model, for instance), thus not repre-

senting it with as much realism as a specular surface.

True realism can only be achieved when an algorithm approximates the Rendering

Equation (KAJIYA, 1986) - which describes the full light transport. This method will be

further discussed in our next section.

3.3 The Rendering Equation

An important concept for global illumination algorithms is that of radiance, which

describes how much power arrives at (or leaves from) a certain point on a surface per unit

solid angle and per unit projected area. Radiance can be thought of as the number of
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photons arriving per time at a small area from a given direction, and it describes the

intensity of light at a given point in space in a given direction. Radiance remains constant

along the light rays passing through empty space, and when computed, it captures the

appearance of objects in the scene.

Another important concept is that of the Bidirectional Reflectance Distribution

Function (BRDF), a function that describes the local illumination model of a given ma-

terial. The BRDF can be perceived as a constant of proportionality between the amount

of incident light coming from a direction ωi and the reflected light along a direction ωo.

Using the BRDF, we are able calculate the total amount of light reflected by a surface

with a given material in a specific direction as an hemispherical integral over all possible

incident directions, as seen in Figure 3.2.

Figure 3.2: Example of how BRDF describes a local illumination model for a surface.

Source: Extracted from (MATSAPEY et al., 2013).

These concepts and properties were used in the Rendering Equation (KAJIYA,

1986), which models the global light transport in a scene. Modeling global illumination

means that one would need to consider the light path across the entire scene, not only

one interaction - which was the main problem with techniques such as Ray Tracing. The

Rendering Equation is described as:

Lo(x, ωo) = Le(x, ωo) +
∫

Ω
fr(x, ωi, ωo)Li(x, ωi)(ωi · n)dωi.

We can interpret this equation as: the total radiance Lo directed outward from

point x along direction ωo is composed of the radiance emitted (Le) from point x along

direction ωo and the sum of the radiance Li directed inward toward x coming from every

possible direction ωi in hemisphere Ω scaled by the surface’s BRDF (fr) considering the

incoming directions ωi and the outgoing direction ωo and by the weakening factor ωi · n

caused by ωi’s incident angle.
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The Rendering Equation cannot be directly evaluated, as radiance (L) is present in

both sides of the equation; it is impractical to solve with traditional quadrature methods.

However, this equation can be evaluated by Monte Carlo Integration, the technique used

in Monte Carlo Ray Tracing.

3.3.1 Monte Carlo Ray Tracing

Monte Carlo Integration (MCI) is a technique that uses statistical principles to

estimate complicated integrals. It assumes that if a x is a random variable, then f(x)

is also a random variable that can be characterized by its probability distribution p(x),

showing which values the random variable is more likely to take. We define a continuous

probability distribution p(x) as a Probability Density Function (PDF), whose value at any

given sample can be interpreted as providing a relative likelihood that the value of the

random variable would equal that sample. The PDF is defined as:

P (x ∈ [a, b]) =
∫ b

a
p(x)dx.

The MC estimator of an arbitrary function f(x) can be expressed as:

∫ b

a
f(x)dx ≈ 1

n

n∑
i=1

f(Xi)

p(Xi)
,

with p(x) as the PDF for function f(x) and Xi being the sampled value in a total of n

samples.

The convergence rate for MCI is O( 1√
n
) regardless of the smoothness of the inte-

grand at any dimension. The technique requires only sampling and point evaluation and

can be used to solve a vast array of problems. It does, however, have a high variance

that can, in the case of MC rendering, appear as noise. In order to reduce the variance

naturally produce by this method, one must greatly increase the number of samples.

The concept of Importance Sampling was created to reduce this high variance,

exploiting the fact that the MC estimator converges faster if we sample the points where

f(x) has high variability. This process is illustrated in Figure 3.3

MC Ray Tracing, commonly called Path Tracing, uses MCI to approximate the

Rendering Equation, estimating the radiance for each point and produce photorealistic

images. It is able to naturally reproduce very complicated effects such as motion blur

(sampling over time) and depth-of-field (sampling through a lens). However, MC Ray
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Figure 3.3: Illustration of how uniform sampling (top) and how importance sampling
(bottom) sample f(x).

Source: Generated by the author.

Tracing has a very high computational cost - even using Importance Sampling, the num-

ber of samples required to render a large scene is in the order of thousands per pixel.

Generating these images can take up to hours depending on the complexity of the scene.

Notwithstanding, MC Ray Tracing is currently the only practical solution for sim-

ulating global illumination effects in complex environments. It is implemented in vir-

tually every modern physically-based renderer, featuring several other algorithms using

MCI, such as Photon Mapping and Metropolis Light Transport.
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4 AUTOMATIC SCENE CONVERSION

This chapter introduces our system and the scene conversion pipeline. We de-

tail the scene import process, the intermediate state of the data and how we convert this

information into the desired output renderer.

4.1 System Architecture

Our system consists of two main components: an import module that reads an

arbitrary scene file format and generates an equivalent description in a canonical scene

representation; and an export module that takes our canonical representation and exports

it to a target rendering system file format. The complete process is illustrated in Figure

4.1. Currently, our system supports PBRT v3 (PHARR; JAKOB; HUMPHREYS, 2016),

Mitsuba (JAKOB, 2014), and LuxRender (GRIMALDI; VERGAUWEN, 2008), as these

are three of the most popular rendering systems. This architecture, however, is quite

flexible. Supporting additional rendering systems only requires specializing the import

and export methods to handle the new formats. Next, we describe the main components

of our system.

4.2 The Import Module

Most physically-based renderers subdivide the scene description in two main sec-

tions: scene-wide rendering options and world block. The former defines the rendering

settings, while the latter describes the scene geometry and materials. The import module

parses the input scene files and translates each directive into a canonical representation.

Since rendering systems use proprietary file format, both the import and export modules

have to be specialized for each renderer.

PBRT and LuxRender scene descriptions consist of structured text statements. We

generated parsers for these systems using PLY (BEAZLEY, 2001), a Python implemen-

tation of Lex and Yacc. Mitsuba, meanwhile, is a heavily optimized, plugin-oriented

renderer. Its file format is, essentialy, an XML description of which plugins should be

instantiated with the specified parameters. Since there are several XML-parsing libraries

for Python, we chose to use ElementTree (LUNDH; LUNDH, 2001), a XML parsing tool.
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Figure 4.1: Our scene conversion pipeline. An input scene description is imported into
a canonical representation, which, in turn, can be exported to a target rendering system
format.

Source: Generated by the author.

4.3 Canonical Scene Representation

While most renderers have a similar structure, they differ in a few supported fea-

tures and in the parameters used to configure the rendering process. Thus, we need

a canonical representation that covers the features supported by all renderers. COL-

LADA (ARNAUD; BARNES, 2006) is an XML schema intended as a representation

for exchanging digital content among graphics applications. However, COLLADA files

only include information about the scene geometry. No information about other render-

ing options, such as camera positioning or integration techniques, is available. In order to

establish a common ground for conversion, we defined a canonical scene representation.

It is illustrated in Figure 4.2 and can easily extended to incorporate any directives not

covered in our current implementation.

Our canonical representation mirrors the general structure of scene files and di-

vides the scene data into scene-wide rendering options and world block. This is illus-
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trated in Figure 4.2, where the attributes stored for each scene component are shown on

the rectangles on the right.

Figure 4.2: Structure of our canonical scene representation, consisting of rendering op-
tions and scene data. The attributes stored for each component are shown on the rectangles
on the right.

Source: Generated by the author.

The Rendering Options specify the integration and sampling techniques used for

rendering, as well as camera and film properties. These include, for instance, camera posi-

tion, camera matrix, image resolution, field of view, etc. Table 4.1 summarizes all types,

parameters, and additional attributes associated with each component of our canonical

scene representation.

The World Block describes the materials, global emitters, and shapes present in the

scene. A material (e.g., glass, plastic, metal, etc.) may have one or more associated tex-

tures. Global emitters represent all kinds of light sources, except area light sources, which

are represented as shapes. These include conventional environment, spot, directional, and

point light sources, as well more specific ones such as sun and sky. A shape can be a

polygonal mesh or a geometric primitive such as a rectangle, disk, cube, or sphere, for

instance.
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Table 4.1: Types, parameters and additional attributes of the components in our canonical
scene representation (Figure 4.2).

Component Type Parameters Others

camera
environment,
orthographic,
perspective, realistic

focal distance, fov, lens
aperture, near/far clip,
shutter open/close

view matrix

sampler halton, random, sobol,
stratified

samples per pixel,
scramble

-

film hdr, ldr
file extension (png, ...),
filter, image height,
image width

-

integrator

bidirectional path
tracer, direct lighting,
metropolis light
transport, path tracer,
photon mapping

max depth, number of
iterations, number of
Markov chains, photon
count, photon mapping
lookup radius, russian
roulette depth

-

materials
glass, matte/diffuse,
metal, substrate/glossy,
translucent, uber

η, id, IOR, k, kd, ks,
reflectance, roughness,
transmittance, ...

texture (id,
type, params)

emitters
directional, distant,
environment mapping,
sky, spot, sun

filename, from (origin),
intensity, radiance, to
(direction)

model matrix

shapes mesh (ply/obj) filename
model matrix,
area emitter,

rectangle, disk, triangle
mesh, cube, sphere

center, normals, points,
radius, uv mapping, ...

unnamed
material

Source: Generated by the author.
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4.4 The Export Module

The export module is at the core of our system. While the import module deals

with a single proprietary scene representation at a time, the export module has to map be-

tween materials and scene properties from two proprietary representations. In this case,

there are several delicate cases to consider. Matrix transformations, native shapes, en-

vironment mapping coordinates and, mostly, materials are some of the components that

vary greatly between renderers. In several situations, there is no direct mapping between

them. Still, our system should provide an output representation that, once rendered with

the target system, best approximates the results obtained by the source rendering system

with the input scene description. Achieving such results required extensive experimenta-

tion with parameters of the various systems. Next, we discuss a few relevant aspects one

should consider.

4.4.1 Matrix Conversion

There are several issues to consider when converting matrices between render-

ers. Do the two renderers use different coordinate systems (either left-handed or right-

handed)? Do they represent matrices in the scene file using a direct representation or its

inverse-transpose? How is the object-world transformation represented for shapes?

Mitsuba uses a right-hand coordinate system, while PBRT and LuxRender use a

left-hand one. This means that, when converting between Mitsuba and the other two,

one has to mirror the x-axis of all camera matrix transformations. This is also the case

for environment map positioning and object-world transformations. Moreover, Mitsuba’s

scene files contain a world-to-camera transformation matrix (i.e., view matrix), while

PBRT and LuxRender scene files use the view matrix inverse transpose.

4.4.2 Material Conversion

Materials are the most delicate aspect of scene conversion. Materials have spec-

tral and roughness properties that absolutely must be correctly mapped. However, most

renderers have very different implementations for common subsurface scattering mod-

els (BSDFs), making it hard to predict the mapping between the parameters of two such
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implementations.

Mitsuba uses a more physics-oriented approach: a material can be diffuse, conduc-

tor, dielectric, plastic, translucent, or a bumpmap. It also has other types of materials, but

those are not supported in the current implementation of our system. The material type

in Mitsuba changes as the material contains any form of surface roughness, becoming a

“rough” version of itself (for instance, a rough metal becomes a roughconductor). PBRT

and LuxRender materials have roughness parameters, making it unnecessary to change

the material’s name.

To represent the material’s reflectance, PBRT and Mitsuba use one index of refrac-

tion (η) and one absorption coefficient (k) per color channel. LuxRender, however, uses a

so-called “Fresnel texture”, specifying a single value of η and k for all channels. Alterna-

tively, LuxRender allows the specification of a single RGB color value for the material’s

reflectance. Therefore, correctly converting metal colors between LuxRender and PBRT

or Mitsuba is not well defined, and is not supported in the current implementation of our

system.

4.4.3 Shape Conversion

Shape directives can be split into two categories: primitive shapes, which can be

used to specify primitives such as rectangles, disks, cubes, and spheres; and 3D meshes,

which are stored in external files. Converting primitive shapes requires more attention

than converting external 3D meshes. Mitsuba has directives for rectangle, disk, cube and

sphere, while PBRT and LuxRender do not. Mitsuba’s primitives are defined by some

parameters (e.g., vertex positions, radius) which can be modified by a transformation

(model) matrix. To reproduce these primitives in PBRT and LuxRender, an internal tri-

angle mesh must be used. This is done by specifying the position, normal, and texture

coordinates for each vertex in the mesh representing a given primitive. One should note

that these internal meshes do not use the same representation as the 3D meshes stored in

files.

Converting PBRT and LuxRender internal triangle meshes into Mitsuba primitive

shapes is a more involving process. Since Mitsuba’s primitives have predefined coor-

dinates, converting vertices from PBRT or LuxRender internal meshes into these coordi-

nates requires obtaining the transformation matrix that maps PBRT or LuxRender vertices

to Mitsuba’s predefined points. Our system takes care of this automatically.
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Converting external 3D meshes is simple, as all rendering systems have directives

for this purpose. PBRT, however, does not support Object File Wavefront 3D (.obj) files.

In this case, our system issues a warning, making the user aware of the need to convert

.obj files off-line.

4.4.4 Global Emitter Conversion

Global emitters can be used to emulate environment lighting, such as the sun, the

sky, or an environment map. Converting global emitters can be tricky, mainly because

different rendering systems do not implement the same algorithms and directives. For

instance, Mitsuba and LuxRender implement sun and sky directives, while PBRT does

not. A sun directive can be simulated in PBRT using a distant light. A sky directive

can be simulated using an environment map of a clear sky. While PBRT and LuxRender

access environment maps using spherical coordinates, Mitsuba uses a latitude-longitude

format. Thus, a conversion between the two representations is required.

Converting a PBRT distant light into a sun directive for Mitsuba or LuxRender is

straightforward. However, converting a PBRT environment map into a sky directive lends

to an ambiguous situation, as the converter would require additional information to decide

whether the environment map should be treated as a regular environment map, or as a sky

directive. Our system solves this ambiguity by asking the user if the environment map

should be converted to a sky emitter.
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5 RESULTS

This chapter will showcase tests rendered with scenes converted by our system.

We will also discuss problems faced, as well as current limitations of our system.

5.1 Tests

Our system is available on-line (PBR. . . , ). We have tested it on a large number of

scenes, including the 32 scenes available at Bitterli’s rendering resources website (BIT-

TERLI, 2016). Here, we include a few examples to illustrate its results on scenes that

explore different types of materials, 3D meshes and primitive shapes, image and proce-

dural textures, and various lighting styles. They include most elements typically found in

scenes used by physically-based rendering systems. The time required to convert a scene

is about 0.5 seconds on a typical PC (Intel i5 3.8 GHz). The scenes were rendered using

Mitsuba 0.5.0, PBRT v3, and LuxRender v1.6 on Ubuntu 14.04 LTS. All scenes were

rendered using between 5,000 and 8,000 samples per pixel (spp). For any given scene,

the same number of samples per pixel was used with all rendering systems.

Figure 5.1: The Wooden Staircase scene. Input scene description for LuxRender (a).
Renderings produced by PBRT v3 (b) and Mitsuba (c), from scene descriptions converted
by our system.

(a) LuxRender (b) PBRT v3 (c) Mitsuba

Source: Generated by the author.
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Figure 5.2: Teapot scene. Input scene description for LuxRender (a). Renderings pro-
duced by PBRT v3 (b) and Mitsuba (c), from scene descriptions converted by our system.

(a) LuxRender (b) PBRT v3 (c) Mitsuba

Source: Generated by the author.

Figure 1.2 shows a coffee maker containing various materials, including glass,

plastic, and metal, as well as textures. The input scene description was provided in the

format for PBRT v3, whose rendering is shown on the left. The images at the center

and on the right were produced by Mitusuba and LuxRender, respectively, from scene

representations automatically converted by our system. Note how the object details have

been faithfully preserved in these renderings.

The Wooden Staircase scene (Figure 5.1) contains many geometric objects and tex-

tures. A LuxRender scene description was provided as input and its rendering is shown

in (a). The images shown in (b) and (c) were produced by PBRT v3 and Mitsuba, respec-

tively, from scene representations automatically converted by our system.

The Teapot scene (Figure 5.2) contains a shiny object, environment lighting, and

a procedural texture. The input scene description was also provided in the LuxRender

format. Figures 5.1b and 5.1c show the renderings produced by PBRT v3 and Mitsuba,

respectively, from scene descriptions converted by our system.

Figure 5.3 shows two scenes, Veach Bidir Room and Cornell Box. The first in-

cludes caustics, while the second only contains diffuse surfaces. A Mitsuba scene de-

scription was provided as input for each of these scenes, whose renderings are shown on

the first column of Figure 5.3. Columns (b) and (c) show, respectively, the renderings

produced by PBRT v3 and LuxRender using scene descriptions converted by our system.

5.2 Discussion

The renderings produced by different rendering systems may exhibit significant

differences in color or shading due to features unsupported by some renderers. For in-

stance, consider the use of a light source to emulate the sun. In PBRT and LuxRender,

this directive is implemented as a distant white light. Mitsuba, in turn, emulates the
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Figure 5.3: Veach, Bidir Room (top) and Cornell Box (bottom). Input scene descriptions
for Mitsuba (a). Renderings produced by PBRT v3 (b) and LuxRender (c), from scene
descriptions converted by our system.

(a) Mitsuba (b) PBRT v3 (c) LuxRender

Source: Generated by the author.

sun using a distant environment light implemented according to a technique described in

(PREETHAM; SHIRLEY; SMITS, 1999), which produces a warm-colored, distant light

source. Thus, when the sun directive is used, Mitsuba renderings present a different color

compared to the other two. This situation is illustrated in Figure 5.4.

LuxRender does not properly handles a combination of sun directive and local

light sources. This is illustrated in Figure 5.4c, where hard shadows have turned soft. The

difference in colors are due to the sun directive, as discussed above.

5.3 Limitations

Scene-description directives found in one rendering system but without correspon-

dence in the other two renderers are not handled by our system. That is the case, for

instance, of Mitsuba-only materials like phong and blendbsdf.

The current version of our system does not support the conversion of hair or par-

ticipating media. As discussed in Section 4, LuxRender treats material reflectance dif-
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ferently from PBRT and Mitsuba. Thus, properly converting metal colors to LuxRender

is a challenging task, not currently supported by our system. This is illustrated in Fig-

ure 5.6, where the rendering of metal obtained from a scene converted to and rendered

with LuxRender looks darker.

Figure 5.4: The Breakfast Room scene. Input scene description for LuxRender (a). Ren-
derings produced by PBRT v3 (b) and Mitsuba (c), from scene descriptions converted by
our system. Mitsuba’s sun directive produces a warm-colored lighting.

(a) LuxRender

(b) PBRT v3

(c) Mitsuba

Source: Generated by the author.
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Figure 5.5: Little Lamp scene. Input scene description for Mitsuba (a). Renderings pro-
duced by PBRT v3 (b) and LuxRender (c), from scene descriptions converted by our
system.

(a) Mitsuba (b) PBRT v3 (c) LuxRender

Source: Generated by the author.

Figure 5.6: Veach, MIS. Renderings by PBRT v3 (a), Mitsuba (b), and LuxRender (c).
Converting metal colors to LuxRender is a challenging task, not currently supported by
our system.

(a) PBRT v3

(b) Mitsuba

(c) LuxRender

Source: Generated by the author.
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6 CONCLUSION

We presented a system for automatic conversion among scene file formats used by

Monte Carlo physically-based rendering systems. It enables algorithms implemented us-

ing different renderers to be tested on similar scene descriptions, providing better means

of assessing the strengths and limitations of MC rendering techniques. Our system can

be easily integrated with the API recently introduced by (SANTOS; SEN; OLIVEIRA,

2018), allowing researchers and developers to exploit full orthogonality among MC algo-

rithms, rendering systems, and scene files.

We have demonstrated the effectiveness of our system by converting scene de-

scription among three of the most popular MC rendering systems: PBRT v3, Mitsuba,

and LuxRender. Providing support to additional renderers only requires specializing the

import and export modules described in Section 4 for the given renderers. Our system is

freely available and we encourage developers to provide support for other renderers.

In the future, we would like to add support for the conversion of hair and partic-

ipating media, as well as for other rendering systems. By documenting limitations and

incompatibilities found among different renderers, our work might stimulate efforts to

reduce these differences.
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