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ABSTRACT 

 
This undergraduate thesis condenses an 8 month-long study on deep image restoration which 

is a fast-growing field with many real-world applications. It includes a discussion on traditional 

image restoration, a review of 26 datasets, and a survey comprising 5 different image restoration 

tasks, i.e., deblurring, super-resolution, non-blind restoration, face-restoration, and video 

restoration. For each task, 2 neural network-based methods are described and compared. 

Moreover, this thesis discusses 3 experimental image restoration techniques which we have 

developed, specifically: Gradient Descent Deconvolution (GDDec) for non-blind deblurring, 

Super-Resolution Residual U-Net (SRRUNet) for super-resolution, and Our Non-Blind which 

is a non-blind framework. Finally, this thesis provides various research directions which 

contemplate each method discussed.   

 
Keywords: Image Restoration. Deep Learning. Neural Networks. Survey.  



Restauração de Imagens utilizando Redes Neurais 

 

RESUMO 

 

Este trabalho de graduação condensa um estudo de 8 meses sobre o processo de restauração de 

imagens utilizando técnicas de aprendizagem profunda: um campo em rápido crescimento com 

muitas aplicações no mundo real. O trabalho inclui uma discussão sobre a área de restauração 

de imagens, uma revisão de 26 bases de dados utilizadas para teste e treinamento de modelos e 

um estudo compreendendo 5 tarefas de restauração de imagens: remoção de borramento, super-

resolução, restauração não cega, restauração de rostos e restauração de vídeos. Para cada tarefa, 

2 métodos que utilizam redes neurais são descritos e comparados. Além disso, esta teste discute 

3 técnicas experimentais de restauração de imagens que elaboramos, especificamente: Gradient 

Descent Deconvolution (GDDec) para remoção não cega de borramento, Super-Resolution 

Residual U-Net (SRRUNet) para super-resolução, e Our Non-Blind para restauração não cega. 

Finalmente, esta tese fornece várias direções de pesquisa que contemplam cada método 

discutido.  

 
Palavras-chave: Restauração de Imagens. Aprendizado Profundo. Rede Neurais. 
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1 INTRODUCTION 

 

Wrapping one's mind around the mechanics of neural networks is serious business. 

While their fast evaluation comes from efficient implementation of neural layers in machine 

learning libraries, their efficacy comes from having had their weights and biases optimized 

according to some loss function.  

With the aim of acquiring understanding and intuition on how, why, and when neural 

networks can be used for the purposes of image restoration, this work discusses existing 

methods that entail at least one neural component. Those include general modules such as 

residual blocks, transformers, U-Nets, and GANs. On top of that, it covers varying image 

restoration tasks with the additional goal of conceiving a broader picture of the field. To that 

end, five tasks ranging from deblurring to video restoration are addressed and, for each task, 

two selected methods are discussed at length. The selection is based on (i) which methods 

produced the best results at the time this text was written, and (ii) availability of both source 

code and pretrained models. 

The remainder of this thesis is organized as follows: Chapter 2 begins by contextualizing 

the actual field of image restoration. Next, metrics are discussed followed by a review of 26 

datasets commonly used in deep image restoration. Chapter 3 discusses kernel agnostic methods 

which are capable of both uniform and non-uniform deblurring. Next, Chapter 4 deals with 

single image super-resolution (SISR) methods whose aim is to recover a high-resolution (HR) 

image from a low-resolution (LR) image. Subsequently, Chapter 5 returns to the blur kernel 

paradigm within a unified degradation model comprising blur, downsampling and noise, and 

presents “Our Non-Blind” which is a framework composed of different methods including 

“GDDec” and “SRRUNet”. Then, Chapter 6 analyzes techniques which leverage implicit priors 

learned by generative networks to better recover images of specific domains, e.g., human faces. 

Lastly, Chapter 7 describes strategies adopted by state-of-the-art video-restoration methods. 

Finally, Chapter 8 summarizes key conclusions which can be drawn from this study. 
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2 BACKGROUND 

 

This chapter provides an overview on image restoration and introduces relevant 

concepts which are further discussed in subsequent chapters. 

 

2.1 Image Restoration  

 

Convolutions permeate image processing and neural networks. A convolution ⊗ is an 

operation that processes an input in a sliding window fashion, applying a kernel to a patch of 

the corresponding kernel size, at each window position. Mathematically, a blurry image 𝑦 can 

be modeled as the convolution output of its original sharp counterpart 𝑥 with a blur kernel 𝑘, 

that is,  

 𝑦 = (𝑥 ⊗ 𝑘). (2.1) 

This special type of kernel, also known as Point Spread Function (PSF), is characterized by (i) 

having non-negative values, and (ii) the sum of its elements being equal to one. If this kernel is 

known, the blurry image can be deconvolved in a so-called "non-blind" manner. 

Inverse filtering is the simplest form of non-blind deconvolution. It is based on the 

convolution theorem which states that  

 𝑦 = (𝑥 ⊗  𝑘) = ℱ (ℱ(𝑥) ∗ ℱ(𝑘)), (2.2) 

where ℱ and ℱ  are Fourier Transform and its inverse, ∗ is a pointwise multiplication operator, 

and ℱ(𝑘) is the Optical Transfer Function (OTF). Thus, inverse filtering computes  

 𝑥 = ℱ (ℱ(𝑦)/ℱ(𝑘)). (2.3) 

However, because blurring is often accompanied by other degradations such as random additive 

noise and/or compression which are difficult to accurately estimate, inverse filtering alone 

easily leads to unrecognizable outputs as it is prone to noise amplification, depending on the 

values of ℱ(𝑘). Wiener Filter (WIENER, 1964) also builds on the convolution theorem, but 

tries to minimize noise impact. Nevertheless, it requires the power spectra of both noise n and 

original image 𝑥. While spectrally white noise has constant power spectrum, the power 

spectrum can be approximated using the 1/𝑓 power law, from a set of natural images (POULI; 

REINHARD; CUNNINGHAM, 2013). The PSF, also typically unknown, can be estimated.  

Shan, Jia and Agarwala (2008) proposed a unified model of both blind and non-blind 

deconvolution which iteratively alternated between refining blur kernel and restoring image. 



Upon convergence, it would produce high quality deblurred results while avoiding 

deconvolution artifacts and was comparable to techniques which required additional input 

photographs or additional hardware. Afterwards, similar approaches were proposed. Pan et al. 

(2013) and Pan et al. (2016) developed faster algorithms which would converge even in larger 

blur settings achieving state-of-the-art results then.  

Additive noise 𝑛 can be parameterized by 𝑛 =  𝜎𝑁, where 𝜎 is the noise level (or 

standard deviation), and 𝑁 is a sampled distribution (e.g., Gaussian or Poissonian). The median 

filter is an elementary noise reduction approach. It is a nonlinear filter which produces, for each 

output pixel, the median of input pixel values under a sliding window centered at the reference 

input pixel. The result is a smoothed image with less visible noise, but the computation becomes 

inefficient as the patch size increases (due to the computation of the medians). In addition, it 

performs poorly when dealing with large amounts of Gaussian noise. Nonetheless, the median 

filter is a good choice when dealing with salt and pepper noise. 

Resolution refers to the amount of detail in an image. During downsampling for 

instance, photos inevitably loose detail. However, this detail cannot be recovered by simply 

upsampling the image using resizing algorithms such as bicubic, bilinear, or nearest-neighbor. 

Instead, the resulting low-resolution images are pixelated. Although simple geometric shapes 

such as lines and curves can be vectorized thus replacing jagged lines with smooth lines, real 

life photos require more sophisticated approaches to actually improve image quality. Finally, 

the resizing of both image height and width can be parameterized by a scale factor sf which can 

broken into horizontal and vertical components 𝑠𝑓 , 𝑠𝑓 . During upscaling, 𝑠𝑓 is a multiplier 

and during downscaling it is a divisor. 

Advances within the field of deep learning led to the development of new image 

restoration methods which are radically different from traditional ones. In deblurring, for 

instance, CNNs no longer assumed any restricted blur kernel model and, as such, could directly 

recover sharp images without kernel estimation (ZHANG et al., 2022) as well as better deal 

with non-uniform deblurring (NAH; KIM; LEE, 2017). Deep denoisers, for the first time, 

completely removed noise in extreme cases of noise level up to 200 (ZHANG et al., 2021). 

With specific training data, networks could be tailored for specific ends such as deblurring 

photos of human faces (YASARLA; PERAZZI; PATEL, 2020) and recreating historical photos 

as if they were taken by modern cameras (LUO et al., 2021). 

Notably, deep image restoration serves as an exciting field which contributes to the 

seemingly endless barrage of scientific papers. Moreover, the methods described in the 
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following chapters have several applications which include: removing blur caused by camera 

shake or motion blur from photos shot using conventional cameras and smartphones; aiding 

other computer vision tasks through a preprocessing step, such as in medical imaging, satellite 

imaging, face recognition in surveillance footage, and other forms of object recognition; and 

simply enhancing overall image and video quality.  

 

2.2 Metrics  

 

By convention, image restoration scientists resort to metrics for a quantitative evaluation 

of their own method(s) with regard to those of others. Likewise, Chapter 3 adopts the commonly 

used PSNR↑ (GONZALEZ; WOODS, 2006) along with SSIM↑ (WANG et al., 2004), and 

LPIPS↓ (ZHANG et al., 2018), where ↑/↓ arrow indicates whether a better performance 

correlates to having a higher/lower metric value. These metrics compare the original clean 

image unseen by the method, and the final estimated output. PSNR↑ and SSIM↑ have simple 

mathematical expressions:  

 𝑃𝑆𝑁𝑅 = 10 log , (2.4) 

where 𝐼  is the maximum signal extent, e.g., 𝐼 = 255 for eight-bit images, and MSE is 

the mean squared error measured between ground truth image and output image; and  

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  · , (2.5) 

where 𝑥 and 𝑦 are image patches of equal size with height=width, 𝜇  is the mean of 𝑥, 𝜎  is 

the variance of 𝑥, 𝜎  is the covariance of 𝑥 and 𝑦, and both 𝐶  and 𝐶  have default values and 

are used to stabilize the division. Finally, LPIPS↓ compares activations of the image pair using 

some pretrained network, e.g., VGG (SIMONYAN; ZISSERMAN, 2015).  

 

2.3 Datasets  

 

This section reviews the different datasets used by each model described in chapters 3, 

4, 5, 6, and 7. Following the description, the list of models which trains on these datasets is 

enclosed in brackets.  

AFHQ (CHOI et al., 2020): 16,130 images of animal faces. All images have size 

512×512. [SRRUNet] 



BSD68 (MARTIN et al., 2001): 68 images for image denoising benchmarks.  

BSD100 (MARTIN et al., 2001): 100 test images of natural scenes. 

BSD400 (CHEN; POCK, 2017): 400 images. [DRUNet] 

CelebA-HQ (KARRAS et al., 2017): 30,000 face images of size 1024×1024. 

DF2K (LIM et al., 2017): 3,450 images which are actually the result of merging DIV2K 

with Flickr2K. [HAT; SROOE] 

DIV2K (AGUSTSSON; TIMOFTE, 2017): 800 images. [DRUNet; HAT; SROOE; 

USRNet] 

DPDD (ABUOLAIM; BROWN, 2020): 2,000 images for deblurring tasks. [DeepRFT] 

FFHQ (KARRAS; LAINE; AILA, 2018): Similar to CelebA-HQ, FFHQ contains 

70,000 face images of size 1024×1024. [SRRUNet; GPEN] 

Flickr1024 (WANG et al., 2019): 1,024 image pairs of varying sizes. [SRRUNet] 

Flickr2K (TIMOFTE et al., 2017): 2,650 images from Flickr. [DRUNet; HAT; 

USRNet] 

General100 (DONG; LOY; TANG, 2016): 100 bmp-format images with no 

compression and of size ranging from 710×704 to 131×112. Proposed for SR training.  

GOPRO (NAH; KIM; LEE, 2017): 33 video clips with frames of size 1280×720. It 

contains a total of 3,214 pairs of blurry and sharp images. [DeepRFT; SRRUNet; Uformer; 

VRT] 

HIDE (SHEN et al., 2019): 8,422 blurry-sharp image pairs (6,397 for training and 2,025 

for testing).  

ImageNet (DENG et al., 2009): 14,197,122 annotated images organized by the semantic 

hierarchy of WordNet. Often used for pre-training. [HAT] 

Manga109 (MATSUI et al., 2017): 109 Japanese manga images of size 827×1170. 

[SRRUNet] 

RealBlur (RIM et al., 2020): 4,556 blurry-sharp image pairs from 232 low-light static 

scenes. It contains both JPEG and RAW format. [DeepRFT] 

REDS (NAH et al., 2019): 300 video clips (240 train, 30 validation, and 30 test) 

containing frames of size 1280×720. Proposed for both deblurring and super-resolution. 

[BasicVSR++; VRT] 

REDS4 (WANG et al., 2019): A subset of REDS containing 4 video clips, i.e., 000, 

011, 015 and 020. Contains a 4-tuple comprising blur, blur_bicubic (×4) and sharp_bicubic (×4) 

degradations along with ground truth. [SRRUNet] 
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Set14 (ZEYDE; ELAD; PROTTER, 2012): 14 classical computer vision images. 

Proposed for super-resolution. 

Set5 (BEVILACQUA et al., 2012): 5 images (baby, bird, butterfly, head, woman). Also 

proposed for super-resolution. 

UDM10 (YI et al., 2019): 10 video clips with frames at a resolution of 2K. 

Urban100 (HUANG; SINGH; AHUJA, 2015): 100 HR images collected from Flickr 

using keywords such as urban, city, architecture, and structure. [SRRUNet] 

Vid4 (LIU; SUN, 2014): 4 video clips. It contains two degradation types: 

Downsampling by bicubic interpolation (BIx4); and Gaussian blurring followed by 

downsampling (BDx4).  

Vimeo-90K (XUE et al., 2019): 89,800 video clips downloaded from vimeo.com. It 

proposes 4 video restoration tasks: frame interpolation, denoising, deblocking, and super-

resolution. [BasicVSR++; VRT] 

Waterloo Exploration Database (MA et al., 2017): 4744 images. [DRUNet] 

In the Wild: No specific dataset. Low-quality images are collected directly.  

 



3 DEBLURRING 

 

This chapter discusses both DeepRFT (MAO et al., 2021) which arms ResBlocks (NAH; 

KIM; LEE, 2017) with the Fourier Transform to better capture frequency discrepancies and 

Uformer (WANG et al., 2022) which combines a U-Net with Transformer blocks. 

 

3.1 DeepRFT  

 

DeepRFT (Deep Residual Fourier Transformation) shoots for the sharp image directly 

without relying on kernel estimation. In order to achieve that, it models the degradation process 

as 𝑦 = 𝑥 − 𝑧, where 𝑦 is the blurry image, 𝑥 is the sharp image and 𝑧 represents missing high-

frequency information (i.e., edges and contours). Thus, the goal is to recover 𝑧 and combine it 

with 𝑦 leading to 𝑥 = 𝑧 + 𝑦 which is shown in Figure 3.1. 𝑧 might contain negative values 

which, when added to 𝑦, nullify undesired portions of the image while positive values enhance 

desired areas. To display 𝑧 as shown below, these negative values are clamped to zero during 

save operation leading to mostly dark pixels. 

Figure 3.1 – Degradation modeling where 𝑥 = 𝑦 + 𝑧. 

𝑥 

 

𝑦 

 

𝑧 

 

 

Source: the Author. 

 

 

Since blurry and sharp image pairs are similar, it is more efficient to let the network 

learn the difference only, something that has been achieved with the ResBlock, a residual Conv-

ReLU-Conv architecture. Residual learning (HE et al., 2016) correlates network depth with 

gains in accuracy. Surprisingly, with "plain" networks, adding nonlinear layers saturates 
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accuracy and, eventually, leads to higher error rates. Residual connections skip or shortcut one 

or more layers with a mapping that allows all information to be passed through (i.e., identity 

mapping). Compared to the original residual building block, the ResBlock benefits from faster 

convergence speed at training time, but its receptive field size is limited to stacking more 

ResBlocks which can largely increase computation. To efficiently account for global context, 

DeepRFT arms ResBlocks with a second stream based on a channel-wise FFT (i.e Res FFT-

Conv Block) with 1×1 convolutions. Figure 3.2 shows the three different building blocks. 

Figure 3.2 – (a) Original residual network building block. (b) ResBlock. (c) Res FFT-Conv Block. 

CONV, BN and RELU stand for Convolutional, Batch Normalization, and ReLu layers, respectively. 

 

(a) 

 

(b) 

 

(c) 

 

Source: adapted from Mao et al. (2021), Nah, Kim and Lee (2017). 

 

 

DeepRFT itself is actually a combination of (i) Res FFT-Conv Blocks, (ii) the MIMO-

UNet (CHO et al., 2021) backbone, and (iii) DO-Convs (CAO et al., 2022). MIMO-Unet 

handles different blur levels with multi-scale inputs, in particular, three downsampled versions 

of the input with scale factors 1, 2, and 4. While Figure 3.3 provides a first glance of MIMO-

UNet, an in-depth look at the architecture can be found in the original work of Cho et al. (2021). 

DeepRFT has three variants: Small, Base, and Plus (+). DeepRFT+ is the most powerful one 

and is based on MIMO-UNet+ which encompasses 20 residual blocks for each Encoder Block 

(EB) and Decoder Block (DB). In contrast to MIMO-UNet, DeepRFT replaces all ResBlocks 

with Res FFT-Conv Blocks. Finally, 3×3 convolutional layers are replaced by DO-Conv. 



Figure 3.3 – MIMO-UNet backbone. Shallow Convolutional Module (SCM) extracts features and 

Asymmetric Feature Fusion (AFF) merges multi-scale features. 

 

Source: the Author. 

 

 

DO-Conv is a combination of conventional convolution (CC) and depthwise 

convolution (DC) that accelerates network training and slightly improves accuracy (e.g., 

PSNR). In a CC layer, the weight is composed of 𝐶  kernels with each kernel having 𝐶  

channels, where 𝐶  and 𝐶  are the numbers of output and input channels, respectively. The 

output patches of a CC layer are given by the dot-products of the different (kernel, patch) pairs. 

Thus, the input channels end up getting mixed. In a DC layer, input channels are processed 

separately as the output patches are given by the dot-products of the different (kernel, patch) 

pairs per channel. The weight of a DC layer is made of 𝐷  kernels with each kernel having 

𝐶  channels, where 𝐷  is the depth multiplier which controls spatial dimensions of output 

patches. Actually, a DC layer can be implemented as a CC layer by employing grouped 

convolutions with 𝐶  = 𝐶  = number of groups. Finally, the DO-Conv combines both layers 

to mimic the functionality of the CC layer, but the overparameterization (ARORA; COHEN; 

HAZAN, 2018) yields the aforementioned benefits. 

 

3.2 Uformer  

 

Uformer (U-Shaped Transformer) also has three variants, i.e., Tiny (T), Small (S), and 

Base (B), with the latter being the most powerful. Figure 3.4 shows Uformer-B's structure. 



 

 

18 

Furthermore, Uformer also follows the approach of learning the difference between LQ-HQ 

image pairs, but it relies on Locally-enhanced Window (LeWin) transformer blocks. Finally, 

its design allows it to deal with tasks beyond deblurring such as denoising and deraining. 

Figure 3.4 – Overview of Uformer-B. Both Input and Output Projections are 3×3 convolutional layers 

while the former adds a LeakyReLU activation. 

 

Source: the Author. 

 

 

The original Transformer (VASWANI et al., 2017) is a self-attention based natural 

language processing (NLP) network which surpassed CNNs and RNNs in translation tasks, e.g., 

English-to-German, since it could be trained faster and achieved better results. Henceforth, 

transformer based-models such as BERT (DEVLIN et al., 2018) achieved a new state-of-the-

art in NLP tasks. Later, Vision Transformer (ViT) (DOSOVITSKIY et al., 2020) successfully 

applied self-attention to images surpassing CNNs again with the condition that the training 

dataset was large enough, leading to interesting ramifications (RADFORD et al., 2021; 

PATASHNIK et al., 2021). However, ViT computes self-attention globally and is less capable 

of processing individual image patches. While the former is computationally prohibitive on 



high-resolution images, the latter hinders the use of pixel neighborhoods which are useful in 

image restoration. The LeWin block is designed to account for those issues since (i) it computes 

self-attention within non-overlapping windows, thus reducing computational complexity, and 

(ii) it contains a 3×3 depthwise convolutional layer, therefore leveraging local information. 

Figure 3.5 – LeWin Transformer block. LN is Layer Normalization and W-MSA is Window-based 

Multi-head Self-Attention. 

 

Source: adapted from Wang et al. (2022). 

 

 

Figure 3.5 illustrates the LeWin block. Uformer computes self-attention once for every 

LeWin block, e.g., a total of forty times in Uformer-B. In fact, it is computed in W-MSA. Self-

attention relates different positions of a sequence by mapping to an output, queries, keys, and 

values which are packed into three matrices: 𝑄, 𝐾, and 𝑉. Each 𝑄 matrix and each 𝐾 𝑉 pair are 

obtained by passing the input signal which is composed by a set of non-overlapping windows 

through different single layer feed forward networks. In addition, a bias term 𝐵 is added to all 

non-overlapping windows in order to calibrate features according to the degradation type, e.g., 

blur, noise, rain. Then, self-attention is computed as 

 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 𝐵 +  𝑄𝐾 / 𝑑 𝑉.  (3.1) 

Finally, Tensor2Img and Img2Tokens are tensor rearragenment operations (ROGOZHNIKOV, 

2022) which let depthwise convolution operate on actual feature maps. 

 

3.3 Uformer vs. DeepRFT  

 

In sections such as this one, visual results are shown along with metrics and a brief 

discussion for illustrative purposes only. For a through qualitative and quantitative evaluation 
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with specific datasets, readers are encouraged to refer to the original papers. Experiments have 

been conducted with the original source code provided by the authors and, unless when 

explicitly stated, no modifications have been made.  

In this section, experiments compare DeepRFT+ with Uformer-B. Figure 3.6 is a 

synthetic example which allows computing metrics due to the availability of a ground truth, 

i.e., clean image. In addition, the blur kernel is shown in the upper right-hand corner of the 

input picture. Although both methods achieved similar results, PSNR is quite low since it is a 

pixel-wise metric and, for this example, the synthetic blur kernel is off-centered which slightly 

shifts its convolution output, i.e., the blurry image. Also, both PSNR and SSIM do not correlate 

with human visual perception to image quality (YANG et al., 2021). Finally, LPIPS may be 

more reliable as it operates on extracted features. 

Figure 3.6 – Comparison of DeepRFT+ and Uformer-B applied to synthetic uniform blur removal. 

Input 

 

PSNR ↑ 

SSIM ↑ 

LPIPS ↓ 

DeepRFT+ 

 

23.22 

0.733 

0.322 

Uformer-B 

 

23.35 

0.734 

0.334 

Ground Truth 

 

 

Source: the Author. 

 

 

Figure 3.7 shows results which can only be assessed through visual inspection, i.e., 

qualitatively, because there is no ground truth image. Furthermore, it is a case of non-uniform 

blur which is not suited for kernel-based deblurring. Both methods achieve impressive results 

considering no kernel information is provided. However, even though Uformer has recovered 

more details, neither of them has recovered the lower right-hand corner of the image which 

appears to be part of a bicycle. Clearly, there are limitations to both DeepRFT+ and Uformer-

B. 

 

 



 

Figure 3.7 – Comparison of DeepRFT+ and Uformer-B applied to in the wild non-uniform blur 

removal. 

Input 

 

DeepRFT+ 

 

Uformer-B 

 

 

Source: the Author. 

 

 

On the whole, DeepRFT combines ResNet with a Multiple-Input Multiple-Output 

architecture, i.e., MIMO, whereas Uformer incorporates Transformers adapted for image 

restoration tasks into a U-shaped network. Moreover, Res FFT-Conv blocks are elegantly 

designed to account for global context using Fast Fourier Transform while depthwise 

convolution brings locality to LeWin blocks. Overall, both methods perform blind deblurring 

albeit with limitations. Finally, as already mentioned, Uformer also deals with other types of 

degradation which could mean squandered potential. If modulators were removed and Uformer 

was trained for deblurring only, better results might be achieved. Perhaps, the day will come 

when deep deblurring methods will be able to fully restore photos such as those from Street 

View. 
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4 SUPER-RESOLUTION 

 

Similar to Chapter 3 which deals with single image deblurring, this chapter focuses on 

single image super-resolution (SISR). Deep learning applied to SISR can be traced back to the 

pioneering work of Dong et al. (2014) which proposed SRCNN: a sequence of three 

convolutional layers which mapped a low-resolution (LR) image to a high-resolution (HR) 

image. Since then, a surge of deep SR methods have ecloded (ANWAR; KHAN; BARNES, 

2020). Notably, HAT (CHEN et al., 2022) and SROOE (PARK; MOON; CHO, 2022) can be 

considered representative SR methods because they are a perpetuation of previous successful 

SR architectures: SwinIR (LIANG et al., 2021) and ESRGAN (WANG et al., 2018b), 

respectively. 

 

4.1 HAT  

 

Upon contemplating strengths and weaknesses of SwinIR which comes from Shifted 

Window (Swin) Transformer (LIU et al., 2021), Chen et al. (2022) developed HAT (Hybrid 

Attention Transformer) which is a new Transformer architecture combining channel attention 

and self-attention to utilize more input information. Channel attention applies learnable weights 

to each feature channel, thus determining the importance of different channels according to a 

given task (YANG, 2020), e.g, super-resolution. 

Swin Transformer introduced a shifted windowing scheme which limited self-attention 

to non-overlapping local windows, thus bringing greater efficiency. Inspired by that, SwinIR 

transferred the shifted-window strategy to image restoration and, notably, so did Uformer 

(Section 3.2). However, Chen et al. (2022) observed SwinIR produced feature maps with 

blocking artifacts (e.g., Figure 4.1) which were caused by the window partition mechanism of 

Swin Transformer, suggesting that the shifted window mechanism was inneficient to build the 

cross-window connection. Thus, to better aggregate the cross-window information, HAT 

employed an Overlapping Cross-Attention Block (OCAB) which enlarged the receptive field 

of window-based self-attention. 

 

 

 

 



Figure 4.1 – Example of blocking artifacts in two different feature maps of SwinIR. 

 

Source: Chen et al. (2022). 

 

Figure 4.2 provides a glimpse at the architecture of HAT. Shallow Feature Extraction 

corresponds to an early 3×3 convolutional layer (with 𝐶 = 3 and 𝐶 = 180) which 

improves visual representation, i.e., it helps upcoming transformer blocks see better leading to 

stable optimization. Deep Feature Extraction is composed of multiple RHAG blocks. Each 

block contains a residual connection which also stabilizes optimization, and one 3×3 

convolutional layer at the end (with 𝐶 = 𝐶 = 180) which further combines the resulting 

deep features. Finally, Image Reconstruction upsamples the result of fusing shallow features 

with deep features by using 3×3 convolutional layers intermingled with pixel-shuffle (SHI et 

al., 2016) which is a sub-pixel convolutional layer designed for super-resolution. 

Figure 4.2 – HAT architecture. 

 

Source: Chen et al. (2022). 
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4.2 SROOE  

 

SROOE (Super-Resolution Optimal Objective Estimation) builds on ESRGAN 

(WANG et al., 2018b) which employs a generative adversarial network (GAN) 

(GOODFELLOW et al., 2014). GANs are trained under the minimax zero-sum game in which 

two players participate in an adversarial manner. Specifically, a model 𝐺 learns to generate fake 

imagery which looks real enough to deceive a discriminator model 𝐷. Meanwhile, 𝐷 learns to 

distinguish between real and fake samples. When adversarial training is complete, 𝐺 is able to 

generate photo-realistic imagery. ESRGAN applies GAN technology to image super-resolution 

and SROOE improves ESRGAN by (i) incorporating spatial feature transform layers (WANG 

et al., 2018a) and (ii) first passing the LR input through a set of network layers, i.e., a predictive 

model which infers a region based objective map, i.e., an Optimal Objective Estimation (OOE) 

map. An objective can be defined as a desired outcome which can be further expressed by the 

result of minimizing a loss function. Regarding SROOE, such loss function is  

 ℒ = (𝜆 ℒ ) + (𝜆 ℒ ) + ∑ 𝜆 ℒ   (4.1) 

which is composed of a reconstruction loss, e.g., L1, an adversarial loss, and a perceptual 

(VGG) loss with 𝑝𝑒𝑟 ∈ {𝑉12, 𝑉22, 𝑉34, 𝑉44, 𝑉54}, a set of VGG features. However, it is 

challenging to find optimal values for each lambda term (or regularizer). Besides, different 

regions of an image have different optimal values for these lambda terms, e.g., the nose region 

of a selfie photo has more high-frequency details than the forehead region and, thus, these 

regions ought to be treated differently. Therefore, the goal of using an OOE map is to find the 

optimal loss objective for each image pixel. 

OOE maps are inferred by a predictive model which is a combination of VGG and a U-

Net. VGG features 𝑉12, 𝑉22, 𝑉34, 𝑉44, and 𝑉54 are extracted from the LR input, 

concatenated and then passed to a U-Net. The U-Net is composed of eighteen 3×3 conv layers 

interspersed with batch normalizations and ReLUs, and one final 1×1 conv layer. As illustrated 

in Figure 4.3, the output OOE map is a single channel image which is then passed to ESRGAN 

along with the LR input. 

 

 

 

 

 



Figure 4.3 – LR input on the left side, some of its (normalized) VGG features in the middle, and 

corresponding OOE map on the right side. 

 

V12 V22 V34 V44 V54 

 

 

 

 

Source: the Author. 

 

SROOE's ESRGAN model is composed of 23 Residual-in-Residual Dense Blocks 

(RRDB) also refered to as Basic Blocks which, similar to ResBlocks, are devoid of batch 

normalization while still employing residual connections. Each RRDB is composed of 3 Dense 

Blocks and each Dense Block contains 4 Spatial Feature Transforms (SFTs), as illustrated by 

Figure 4.4. SFT learns a mapping function that outputs a modulation parameter allowing 

ESRGAN to optimize the changing objective during training and to generate SR results with 

spatially different objectives according to the map at inference time. Simply put, SFT allows 

changing the network behavior according to the objective map. 

Figure 4.4 – A single Dense Block. 

 

Source: the Author. 
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4.3 SROOE vs. HAT  

 

In the first experiment illustrated in Figure 4.5, the LR image is the bicubicly 

downsampled version of the ground truth with scale factor 𝑠𝑓 = 4. Interestingly, SROOE 

performs better perceptually (LPIPS) while HAT scores higher PSNR and SSIM. 

Figure 4.5 – Super-resolution comparison with scale factor 𝑠𝑓 = 4. 
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Source: the Author. 

 

Although the released models of both SROOE and HAT only support using scale factors 

of at most four, it is sometimes desirable to go beyond that. In fact, real LR images could have 

icon size, e.g., 64×64, which implies the use of larger scale factors. In order to see how SROOE 

and HAT would deal with that, Figure 4.6 shows a LR input image which has been bicubicly 

downsampled using 𝑠𝑓 = 16 along with the corresponding 1024×1024 ground truth image. 

While SROOE and HAT have generated better results when compared to simple bicubic 

upsampling, their output size for this example is 256×256 due to the aforementioned limitation.  

Figure 4.6 – Super-resolution comparison with scale factor 𝑠𝑓 = 16. Metrics cannot be computed for 

images of different sizes the reason why they are not shown. 
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Source: the Author. 

 



To sum up, SROOE is a perception-oriented model which yields better LPIPS and 

employs VGG features, an objective estimator, and a generator. Meanwhile, HAT seeks to 

activate more pixels through combined channel attention and self-attention leading to better 

PSNR and SSIM. Actually, even though PSNR is the most widely used metric in image 

restoration, it is also related to the MSE loss which favors over-smoothed predictions (ZHANG 

et al., 2022) and, therefore, does not reflect actual human visual response. Regardless of metrics, 

the current challenge of deep SISR methods is to scale to larger scale factors which, so far, only 

successfully go up to ×4. 
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5 NON-BLIND RESTORATION 

 

The two methods discussed in this chapter simultaneously deal with deconvolution, 

upsampling and denoising, and share a single degradation model: 

 𝑦 = (𝑥 ⊗ 𝑘) ↓ + 𝑛,  (5.1) 

where ⊗ 𝑘 is the convolution operation with blur kernel 𝑘, ↓  is the downsampling operation 

with scale factor 𝑠, and 𝑛 is additive noise with noise level 𝜎. Moreover, the concept "non-

blind" states that these methods require additional information to be provided as inputs beyond 

the low-quality image 𝑦, i.e., blur kernel 𝑘, scale factor 𝑠 and noise level 𝜎. This kind of inverse 

problem often has a data term which is meant to obtain the image 𝑥 that corresponds to the 

given degradation model, and a prior term which imposes natural image characteristics on 𝑥. 

Such data and prior term paradigm is accurately followed by USRNet (ZHANG; GOOL; 

TIMOFTE, 2020) which leverages frequency domain properties. In contrast, Our Non-Blind is 

more concerned with undoing each degradation operation by backtracking the degradation 

model. Finally, both methods use deep denoisers. 

 

5.1 Our Non-Blind  

 

Given Equation 5.1, it is intuitive to first deal with removing noise, then upsampling, 

and lastly deconvolution. Additive noise is handled by the pretrained model of DRUNet 

(ZHANG et al., 2021). Next, bicubic upsampling is used. We devise a method called GDDec 

where Gradient Descent is used directly on the image along with the smoothing filter of Gastal 

and Oliveira (2011) in order to surpress deconvolution artifacts. The last step is improving 

image resolution which is achieved by SRRUNet. Figure 5.1 provides a glimpse of Our Non-

Blind. 

Figure 5.1 – Main components of Our Non-Blind. 

 

Source: the Author 



 DRUNet (Denoising Residual U-Net) combines a U-Net backbone with 28 ResBlocks. 

While Chapter 3 has already described residual learning in detail, U-Nets are further discussed 

in Chapter 7. DRUNet takes as input a noisy image concatenated with its corresponding noise 

level map. This noise level map is simply the noise level 𝜎 repeated along the dimensions of 

the image, meaning this map becomes an extra channel (e.g., a fourth channel in the case of 

RGB images). This allows for a simple and efficient design as the noise level is never dealt with 

explicitly and, furthermore, it eventually disappears within the hidden nodes of the network. 

There are four scales to DRUNet: 64, 128, 256, and 512 channels. In U-Net architectures, the 

larger the scale, the smaller the feature map is in terms of width and height. DRUNet's blueprint 

can be visualized in Figure 5.2.  

Figure 5.2 – DRUNet's architecture. 

 

Source: adapted from Zhang et al. (2020). 

 

 

5.1.1 GDDec 

 

As of now, gradient descent is the predominant way of training neural networks. In 

addition, present day methods employ Adam (KINGMA; BA, 2014) which is a gradient descent 

scheme based on momentum and preconditioning that stabilizes and accelerates optimization. 

However, optimizing weights and biases during training is not as direct as optimizing the input 

image itself during evaluation. In some situations, one may skip the time-consuming task of 

training a network for a specific end, while preserving efficacy. Accordingly, GDDec is our 

proposed Gradient Descent Deconvolution approach which is applied to deblurring. GDDec 

removes blur in an iterative process by minimizing  
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 ℒ = 1 − 𝑆𝑆𝐼𝑀((𝑦′ ⊗ 𝑘) ↓ , 𝑦),  (5.2) 

where 𝑦 is the low-quality input image and 𝑦′ is the gradient descent parameter which, upon 

the end of optimization, approximates to the desired high-quality image 𝑥, e.g., 𝑦′ ≈ 𝑥. Besides 

being a metric, SSIM can also be used as a loss function (ZHAO et al., 2017). In most of our 

experiments, it has led to better results than when using L1 or L2 losses. The parameter 𝑦′ is 

initialized as an upsampled version of 𝑦 using bicubic interpolator with the given scale factor. 

Although that does not imply super-resolution, it allows handling the complete degradation 

model mentioned in the beginning of this chapter.  

Similar approaches have been tried in the past with RGDN (GONG et al., 2018) which 

incorporates neural networks into a fully parameterized gradient descent scheme to iteratively 

perform deconvolution, and Deep Image Prior (ULYANOV; VEDALDI; LEMPITSKY, 2017) 

which employs neural networks with randomly initialized weights and zero training. Different 

from RDGN which learns a specific optimizer, GDDec uses the off-the-shelf Adam optimizer 

which requires zero training since it has no learnable parameters. Also, unlike Deep Image 

Prior, no neural networks are used in GDDec. Inspired by the implementation of Menon et al. 

(2020), a learning rate schedule 𝑓(𝑡, 𝑇) is used, where 𝑡 denotes the current iteration and 𝑇 is 

the maximum number of iterations. Specifically, GDDec adopts linear1cycle which is defined 

as 

 
𝑓(𝑡, 𝑇) = 1 + 9 1 − 2 − 10.  (5.3) 

It allows a natural warm-up, peak activity, cooldown process which empirically gives the best 

results. Learning rate schedules work as follows: at any given time 𝑡, the current learning rate 

of the optimizer is given by the initial learning rate value 𝐿𝑅 multiplied by 𝑓(𝑡, 𝑇), where 𝐿𝑅 =

0.05 in all experiments, and 𝑇 varies according to the amount of blur. Also, for faster 

computation, Equation 2.2 can be used, i.e., the convolution theorem. Nonetheless, as shown in 

Figure 5.3, deconvolution of severely blurred images is subject to distracting artifacts such as 

ringing. In order to deal with that, Our Non-Blind relies on a real-time edge-aware smoothing 

filter.  

 

 

 

 



Figure 5.3 – Results of GDDec and results of removing ringing artifacts using the recursive filter (RF) 

with (𝜎 , 𝜎  )  =  (60, 0.5). 
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Source: the Author. 

 

The recursive filter of Gastal and Oliveira (2011) preserves strong edges and has been 

used in the past (FORTUNATO; OLIVEIRA, 2014) to remove deconvolution artifacts. 

Notably, as illustrated by Figure 5.3 the recursive filter can be used to eliminate ghosts 

associated with ringing. It contains parameters (𝜎 , 𝜎  ) which are inherited by Our Non-Blind 

and its number of iterations is fixed at 3. It is interesting, however, that metrics may not always 

be indicators of image quality. 

It is worth noting that available blur kernel and actual blur kernel may differ due to 

kernel estimation imprecisions which generally correlate with kernel size. Of course, this does 

have an effect on deconvolution algorithms and hampers the quality of result. In order to see 

how blur kernel imprecisions affect GDDec, we use the method of Pan et al. (2016) to estimate 

a blur kernel which is shown in Figure 5.4. Then, the estimated kernel is used by GDDec to 

deblur the corresponding leftmost image shown in Figure 5.5. Clearly, GDDec is sensitive to 

kernel imprecisions leading to more ringing. In such cases, it is useful to change the loss 

function to L1 loss which leads to less sharp images, but also leads to less ringing. 

Figure 5.4 – 69×69 Blur kernel estimated by the method of Pan et al. (2016). 

Pan et al. (2016) 

 

Ground Truth 

 

Source: the Author. 
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Figure 5.5 – Results of GDDec when using an estimated blur kernel. 
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Source: the Author. 

 

 

5.1.2 SRRUNet 

 

The final step is to super-resolve the output image which may still be at a lower-

resolution despite having being previously resized. To that end, a second DRUNet model is 

fine-tuned, i.e., retrained, for the specific task of super-resolution, thus arriving at SRRUnet 

(Super-Resolution Residual U-Net). Similar to DRUNet in which a noise level map is 

constructed from the noise level, a scale factor level map (or degradation map) can be obtained 

by repeating the scale factor level along the image height and width. The scale factor level is 

defined as 

 (𝑠𝑓 − 1) 𝑠𝑓⁄   (5.4) 

where 𝑠𝑓 is any value from [1, 16] and 𝑠𝑓  is set to 16. Thus, this degradation map is 

concatenated to the image and the network implicitly deals with it in order to restore the image. 

The fine-tuning dataset is composed of 8,856 HR images collected from seven datasets, 

i.e., AFHQ, FFHQ, Flickr1024, GOPRO, REDS4, Manga109, and Urban100. Such diverse 

dataset includes various images of animals, people, vegetation, buildings, cars, cartoons, 

complex architectures and more. During fine-tuning, patches of size 496×496 are used and the 

dataset is further augmented with random horizontal flips. Moreover, a batch size of 1 is used. 

LR-HR image pairs are synthesized using the following degradation model which 

preserves image size: 

 𝑦 = 𝑥 ↓ ↑   (5.5) 

where the ↓/↑ arrow indicates a resizing operation using scale factors 𝑠1 and 𝑠2. The value of 

𝑠1 is an integer randomly and uniformly chosen from [1, 16], whereas 𝑠2 is calculated at 

runtime to restore the original height and width of the image. Since Our Non-Blind has already 



resized the image, it stands to reason that SRRUNet ought to be a size preserving network which 

differs from the SR methods discussed in Chapter 4. Put it simple, SRRUNet is concerned with 

increasing resolution without affecting image size. The motivation for using larger scale factors 

comes from Yang et al. (2021) which successfully trains a network to deal with scale factors 

up to 200, albeit in a domain dependent manner. The downsampling algorithm used is bicubic 

and the upsampling algorithm is randomly chosen from [bicubic, nearest neighbor], thus 

imbuing some degree of robustness to the network, since bicubic and nearest produce visually 

different results. 

Fine-tuning lasts for 128 epochs. Learning rate schedule is adapted from Zhang et al. 

(2021), i.e., learning rate starts at 2e-4 and decreases by 5% every epoch. The loss function is 

ℒ = 𝜆 ǁ𝐻𝑅 − 𝐺𝑇ǁ + 𝜆 ǁ𝑉12(𝐻𝑅) − 𝑉12(𝐺𝑇)ǁ + 𝜆 ǁ𝑉22(𝐻𝑅) − 𝑉22(𝐺𝑇)ǁ , 

where 𝐻𝑅 and 𝐺𝑇 denote SRRUNet's output and the ground truth respectively, ǁ · ǁ  is the L1 

norm, and 𝑉12(·) and 𝑉22(·) compute different VGG19 features. Inspired by SROOE (PARK; 

MOON; CHO, 2022), the values of the regularizers are: 𝜆 = 0.01, 𝜆 = 0.5, 𝜆 =

0.5. For model updating, Adam algorithm is used once more. Finally, the model is trained on 

an NVIDIA GeForce GTX 1070 GPU.  

Figure 5.6 shows results before and after fine-tuning using an image from Set5. While 

PSNR and SSIM have lowered due to greater pixel distortion after fine-tuning, LPIPS has 

improved which better correlates with perceptual quality. While it would be interesting to 

compare the results of SRRUNet with those of SROOE and HAT, it would also be an unfair 

comparison since SRRUNet is trained to deal with various scale factors in a non-blind manner, 

whereas SROOE and HAT focus exclusively on a specific scale factor.  

Figure 5.6 – Before and after fine-tuning SRRUNet. 
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Source: the Author 
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5.2 USRNet  

 

USRNet (Unfolding Super-Resolution Network) rigorously separates data term and 

prior term. The data term is simply the solution of an equation (ZHAO et al., 2016) which 

leverages the Fast Fourier Transform. Meanwhile, a deep denoising/smoothing network, called 

ResUNet, functions as a prior. Like DRUNet, it also takes as input an image concatenated with 

a noise level map and outputs a cleaner image. In fact, USRNet, its ResUNet, and DRUNet are 

all creations of roughly the same authors. The only architectural difference is that ResUNet has 

half the number of ResBlocks. Furthermore, ResUNet has been trained to work in conjuntion 

with the whole USRNet as opposed to DRUNet which has been trained in isolation. The 

decoupling between data and prior terms is better depicted in Algorithm 1 which provides a 

glimpse at how USRNet combines its own modules. 

 

Algorithm 1: The core of USRNet. 

1 𝑦, 𝑘, 𝑠, 𝜎 ← (degraded image, blur kernel, scale factor, noise level) 

2 ℎ ← hypa(𝜎, 𝑠) 

3 for 𝑖 ← 1…8 do 

4  𝑦 ← data(𝑦, 𝑘, 𝑠, ℎ) 

5  𝑦 ← prior(𝑦, ℎ) 

6 end for 

7 return 𝑦 

 

USRNet also has a hypa module, i.e., a deep hyperparameter estimator which takes as 

input the concatenation of noise level and scale factor, and yields hyperparameters ℎ =

[𝛼 , … , 𝛼 , 𝛽 , … , 𝛽 ] where the index corresponds to the current iteration. The module itself 

consists of three 1×1 convolutional layers and three activations (two ReLUs and one Softplus) 

interleaved.  

 

5.3 USRNet vs. Our Non-Blind  

 

Figure 5.7 displays results of restoring a noise-free image with scale factor 16 and the 

blur kernel shown in the upper right-hand corner of the input. Clearly, PSNR and SSIM are not 



accurate measures of perceptual quality. While USRNet's data term struggles to deal with scale 

factors above 4, Our Non-Blind has fully eliminated jagged lines yielding a lower LPIPS.  

Figure 5.7 – Noise-free low resolution image. 
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Source: the Author. 

 

Figure 5.8 shows a different a scenario with an image corrupted by 60% gaussian noise, 

scale factor 1, and the blur kernel shown in the upper right-hand corner. Remarkably, both 

methods were able to reduce noise level significantly. This time, the metrics have favoured Our 

Non-Blind which inherits its denoising power from DRUNet. 

Figure 5.8 – Extremely noisy image. 
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Source: the Author. 

 

As an ablation study, Figure 5.9 illustrate the effects of using only USRNet's data 

module or only Our Non-Blind's gradient descent scheme. USRNet's hyperparameter generator 
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is still kept. Strikingly, Our Non-Blind's deconvolution output scores better in terms of metrics. 

The reason is deconvolution is sensitive the mathematical imprecisions. USRNet's hypa 

module, as well as neural networks in general, are actually approximations to desired functions 

or mappings (HORNIK, 1991). As a consequence, hyperparameters generated by the hypa 

module have limited accuracy which is reflected by the outputs of USRNet's data term. Often, 

however, these approximations can be neglected since they still yield very compelling results. 

Lastly, Figure 5.10 illustrates DRUNet's superiority in Gaussian denoising.  

Figure 5.9 – Gradient descent vs. USRNet's data module. Input is a noise-free image with large blur 

kernel and a scale factor of 1. 
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Source: the Author. 

 

Figure 5.10 – DRUNet vs. ResUNet. Input is blur-free image with 50% gaussian noise and a scale 

factor of 1. 
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Source: the Author. 



Since the GDDec part of Our Non-Blind is slow, it is difficult to report results for 

multiple images. Furthermore, USRNet’s test script also has a bottleneck when the HQ image 

is first convolved with a blur kernel (to generate the LQ image) which is implemented using 

NumPy and, therefore, cannot be parallelized. Since Our Non-Blind is still an experimental 

method, we have only show results for some images, mainly for illustrative purposes which is 

in agreement with the rest of this thesis.  

In conclusion, both methods share a single degradation model and employ neural 

networks. Our Non-Blind additionally uses a recursive filter as prior to handle ringing. As for 

the data term, USRNet's obtains the solution of a closed form expression while Our Non-Blind 

performs gradient descent on the image guided by the degradation model. Moreover, USRNet 

includes a hyperparameter generator which makes it very practical. Finally, combining the 

strengths of USRNet and Our Non-Blind could ultimately lead to a better model, but that is left 

for future work. 
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6 FACE RESTORATION 

 

This chapter discusses the use of GAN (GOODFELLOW et al., 2014) technology in the 

field of Blind Face Restoration (BFR). Because GANs learn to generate images from a specified 

domain (e.g., faces, cars, bedrooms), they can also function as priors in blind image restoration, 

thus helping to constrain the problem. Since BFR aims to obtain realistic and high-quality 

images, both methods discussed below use the powerful StyleGAN (KARRAS; LAINE; AILA, 

2018) image generator in some way, although neither benefits from the well known style mixing 

capabilities. GPEN (YANG et al., 2021) makes use of StyleGAN2's (KARRAS et al., 2020) 

architecture, while PULSE (MENON et al., 2020) leverages a pre-trained StyleGAN1 model. 

Figure 6.1 provides a glance at StyleGAN1's architecture. Noise inputs 𝑛  and intermediate 

latent code 𝑤  are broadcast across all resolution blocks. Feature maps flow out of each block, 

except for the last one which outputs a realistic high-quality 1024×1024 image. Actually, both 

StyleGANs are very similar. They receive as inputs latent code 𝑧 and noise 𝑛  sampled from 

the Gaussian distribution and generate an image. The relevant difference here is that images are 

more easily projected into StyleGAN2's latent space. 

Figure 6.1 – StyleGAN overview 

 

Source: the Author. 

 
 

6.1 GPEN  

 

GPEN (GAN Prior Embedded Network) is a U-Net (RONNEBERGER; FISCHER; 

BROX, 2015) which learns a one-to-one mapping between low-quality face images and high-

quality face images. It is a seamless combination of a CNN encoder and a GAN decoder that 

enjoys fast computation and often preserves face identity. As such, it is a suitable tool for face 

image restoration.  

The official implementation of GPEN adopts StyleGAN2 as its GAN decoder. Because 

StyleGANs are not fully convolutional (i.e., they also employ an MLP for latent space mapping) 



GPEN first resizes the input image to StyleGAN's resolution. Furthermore, all StyleGANs map 

Gaussian noise along with a latent code 𝑧 (i.e., one that follows a Gaussian distribution) to a 

realistic image. Likewise, GPEN starts with a CNN encoder which maps the low-quality resized 

input image to DNN features. Then, latent code 𝑧 and noise inputs to the trained StyleGAN2 

network are replaced by deeper and shallower DNN features, respectively. However, merely 

combining the two architectures does not ensure that the DNN will generate suitable inputs to 

the GAN. To allow both encoder and decoder to adapt to each other, the entire U-Net is fine-

tuned with a set of synthesized LQ-HQ face image pairs. 

The CNN encoder is composed of eight convolutional layers each with a Fused Leaky 

ReLU activation (i.e., scaled LReLU). Apart from the first layer which employs 1×1 

convolutions, remaining layers use 2×2 strided convolutions. Starting from a low-quality RGB 

image, the CNN encoder progressively shrinks the image while increasing its number of 

channels, eventually leading to features that can be used as latent code and noise. Then, the 

StyleGAN2 decoder progressively grows a small prototype multichannel image using latent 

code and noise obtained while decreasing the number of channels, eventually leading to a high-

quality RGB image. 

Figure 6.2 illustrates GPEN's U-Net behaviour with feature map channels generated 

during encoding (i.e., contracting) and decoding (i.e., expanding). Note that, unlike RGB 

images, these feature maps are composed of hundreds of channels and there are different 

methods of visualizing them. Here, they are displayed as a grid of individual channels which 

have been normalized by instance normalization (ULYANOV; VEDALDI; LEMPITSKY, 

2016). In addition, only a few channels are shown per layer. 

Figure 6.2 – Normalized feature maps for each layer of GPEN. The encoder fmap at layer 𝑘 is denoted 

by 𝐸𝑘. Likewise for the decoder. 
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Source: the Author. 

 

6.2 PULSE  

 

PULSE (Photo Upsampling via Latent Space Exploration) is an optimization 

framework that employs a given pre-trained generative model, originally StyleGAN1. PULSE 

relaxes the face identity constraint, but ensures that the output is an HR face image. It does so 

using a clever design: the goal is to find the HR image that correctly downscales to the LR 

image. This downscaling increases ill-posedness since, as illustrated by Figure 6.3, different 

HR images can be downscaled to approximately the same 16×16 image. However, since GANs 

are domain-based generators, the infinite solutions that may arise will always be of that domain 

(e.g., faces in StyleGAN1). So long as the chosen generative model generates high-quality, 

high-resolution imagery, so will PULSE. Thus, PULSE leverages ill-posedness to its own 

favour. Finally, downscaling a degraded image mitigates effects of blur and noise, which is 

what enables PULSE to operate as a blind method.  

Figure 6.3 – Downscaling images leads to loss of information. When the resulting face image is very 

small (e.g., 16×16) there is no way of telling whose face it is. 
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Source: the Author. 

 



In practice, PULSE achieves its goal by optimizing a latent code in 𝑍 latent space. 𝑍 

space is used because it is Gaussian and, therefore, shaped as a sphere or bubble (as opposed to 

intermediate 𝑊 space of StyleGAN, whose shape is not explicitly known). This property, when 

aligned with spherical optimization, ensures the optimizer stays on the natural image manifold 

(i.e., the one used to train the generative model), avoiding unrealistic face images. To actually 

find the desired latent code 𝑧, the optimizer minimizes 

 ǁ𝐷(𝐺(𝑧))  −  𝐼ǁ,  (6.1) 

where 𝐼 is the LR input, 𝐺 is the generator, and 𝐷 is the downscaling function. Once that 𝑧 code 

is found, the final output can be obtained from 𝐺(𝑧). 

 

6.3 PULSE vs. GPEN  

 

Figure 6.4 shows a synthetic example where the original (ground truth) photo was 

degraded using an 91×91 gaussian blur kernel and a scale factor of 64. Although both PULSE 

and GPEN have generated high-quality realistic outputs, neither preserved identity. Despite 

that, GPEN better recovered ethicity and hair color.  

Figure 6.4 – Computer simulated degradation leading to a 16×16 image. 
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Source: the Author. 

 

Figure 6.5 displays a practical example of a low-resolution photo directly retrieved from 

the Internet. While GPEN successfully restores the image, PULSE struggles with basic features. 

Due to lack of ground truth, no qualitative metrics are shown.  
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Figure 6.5 – In the wild BFR. 
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Source: the Author. 

 

In order to operate as a blind method that simultaneously deblurs, upsamples, and 

denoises face images, PULSE requires that its inputs be made very small (e.g., 32×32), leading 

to loss of relevant details. A way to circumvent that is to make PULSE non-blind, i.e., use a 

specific, known degradation operation 𝑌 and minimize ||𝑌(𝐺(𝑧))  −  𝐼||, where 𝑌(𝑥) computes 

(𝑥 ⊗  𝑘) ↓  +  𝑛, instead of using the downscaling function 𝐷. However, even with small 

degradations, it may not be possible to recover identity without major changes in the original 

implementation, since actual inversion techniques would then be required (ABDAL et al. 2019). 

Also, as pointed out by TOV et al. (2021), optimization-based inversion converges to arbitrary 

points in latent space whereas outputs of CNN-based inversion lie in a tight space located within 

the natural image manifold (i.e., more realistic). Thus, this section deals only with the original 

blind implementation of PULSE, allowing for a fair comparison with GPEN. 

Interestingly, GPEN can be used in image-to-image translation e.g., an anime face can 

be generated with the corresponding realistic cosplay like face as shown in Figure 6.6. To 

achieve that, simply simulate a degradation on the input face image (i.e., Gaussian blur) in such 

a way that the domain of the face image is no longer recognizable. GPEN will then be tricked 

into mapping that LR anime face image into any realistic face that shares the same set of colors, 

pose, and hairstyle.  

 

 

 

 

 

 



Figure 6.6 – Image-to-image translation using GPEN. 
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Source: the Author. 

 

In brief, GPEN and PULSE adopt very distinct GAN-based approaches. On the one 

hand, PULSE requires zero training time since it employs an off-the-shelf generative model, 

however during evaluation, it is much slower and the face identity is not preserved. On the other 

hand, GPEN requires assembling and fine-tuning a U-Net, nevertheless it is faster and often 

preserves identity. Finally, all these differences are further outlined by visual results. 
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7 VIDEO RESTORATION 

 

Unlike single-image restoration, video restoration can combine information from 

different frames, i.e., supporting frames, to better reconstruct any given frame, i.e., reference 

frame. Recently, VRT (LIANG et al., 2022) has obtained a new state-of-the-art in video-

restoration which was previously held by BasicVSR++ (CHAN et al., 2022). As such, this 

chapter focuses on these two methods: BasicVSR++ is a recurrent model which uses previously 

reconstructed frames for subsequent frame reconstruction; and VRT is a transformer which 

processes its input frames in parallel, generating all outputs simultaneously. 

 

7.1 BasicVSR++  

 

BasicVSR++ is a higher order RNN (HORNN) (SOLTANI; JIANG, 2016) which 

descends from BasicVSR (CHAN et al., 2021a): an RNN which adopts typical 1D bidirectional 

propagation along with feature alignment. Unlike its ancestral, BasicVSR++ can better restore 

finer details and is more robust to occluded regions both of which can be attributed to arranging 

propagation as a 2D grid structure with higher-order connections as shown in Figure 7.1 and 

incorporating deformable alignment. While expressiveness is enhanced through repeated 

feature refinement within the grid structure, training is facilitated by the higher order (or 

second-order) propagation which improves gradient flow. Meanwhile, information is aligned 

implicitly through deformable convolution (CHAN et al., 2021b; DAI et al., 2017) which can 

better model geometric transformations. SPyNet (RANJAN; BLACK, 2017) is employed to 

estimate optical flow which is the apparent motion of scene points from the sequence of frames. 

This optical flow is used to guide deformable alignment with the goal of easing training.  

Figure 7.1 – BasicVSR++ framework. 

 

Source: Chan et al., (2022). 



7.2 VRT  

 

Given a batch of input frames, VRT (Video Restoration Transformer) begins by 

applying a single convolution over the entire batch to extract shallow features. Then, as shown 

in Figure 7.2, VRT follows a U-Net design to extract deep features where it employs two types 

of attention: self-attention for feature extraction and mutual attention for frame alignment. 

Whereas self-attention considers a single input signal 𝑋 when computing 𝑄, 𝐾, and 𝑉, mutual-

attention relates two different input signals 𝑋 (for queries) and 𝑌 (for keys and values). Then, 

self/mutual-attention is computed as usual, i.e., 𝑄 queries 𝐾 to generate the attention map  

 𝑀 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄𝐾 /√𝐷)  (7.1) 

which is then used for a weighted sum of 𝑉, i.e., attention = 𝑀𝑉. In order to employ mutual 

attention effectively, VRT creates partitions of two frames each, i.e., a short clip, which are 

processed by TMSA as shown in Figure 7.2. Finally, a reconstruction model which depends on 

the image restoration task, e.g., deblurring or super-resolution, combines shallow and deep 

features to produce the output batch.  

Figure 7.2 – VRT framework. 

 

Source: Liang et al., (2022). 

  

 

7.3 VRT vs. BasicVSR++  

 

The quantitative comparison presented by Liang et al. (2022) shows that VRT scores 

higher PSNR/SSIM than BasicVSR++. Therefore, experiments below show visual results for 
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VRT only. However, Liang et al. (2022) also acknowledges that the 32-frame BasicVSR++ 

model is slightly faster than the VRT model trained on 16-frames.  

Figure 7.3 shows six input frames from Vid4/BIx4/foliage dataset (LIU; SUN, 2014) 

which contains bicubic degradation using scale factor 𝑠𝑓 = 4. In addition, VRT model 

001_VRT_videosr_bi_REDS_6frames is used. Since VRT processes each frame in parallel 

which is very demanding in terms of computer memory, only some frames are used, i.e, {0, 7, 

14, 21, 28, 35}. 

Figure 7.3 – Experiments on Vid4. 
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Source: the Author. 

 
 

Figure 7.4 shows input frames 75 and 76 from REDS4/sharp_bicubic/020 dataset 

(WANG et al., 2019) . 

Figure 7.4 – Experiments on REDS4. 
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As mentioned, there is a tradeoff between using these models: BasicVSR++ for speed 

and VRT for visual quality. In addition, VRT is memory intensive due to the parallel 

computation of feature maps. Despite that, such limitation could be overcome by redesigning 

VRT as a distributed application as discussed by Liang et al. (2022).  
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8 CONCLUSION 

 

To make the best out of a neural network requires understanding both the individual 

parts (e.g., a 3×3 convolutional layer) that make it as well as the interactions between these 

parts. Acquiring such understanding is facilitated by studying multiple different methods. 

However, another critical component is experimentation which entails designing a network, 

choosing appropriate datasets, and trying different training strategies. In spite of that, there are 

instances where not even the authors themselves fully understand their newly created 

architectures (e.g., the AdaIN operation in StyleGAN1 which was later replaced in StyleGAN2 

due to characteristic artifacts in the generated images). In such cases, one may begin to 

speculate about the mechanics of the network. 

While it can be very challenging to acquire a profound understanding of neural 

networks, several conclusions can be drawn when contemplating deep image restoration 

methods. Above all, there are design tendencies: (1) to aid training, models only learn the 

difference between (LQ, HQ) image pairs. Such difference is then added as a residual to the 

final output; (2) Although transformers require a large training corpus, incorporating them into 

a hybrid architecture often leads to the best results; and (3) domain-based image restoration is 

best achieved through generative models. In addition, existing limitations may hint at what is 

to come: (4) successfully deblurring arbitrary images requires taking both global and local 

dependencies into account. The results of DeepRFT and Uformer show there is still a large 

room for improvement; (5) SR methods usually operate on a small set of scale factors which 

does not capture real world degradations; (6) While deep non-blind methods have the potential 

to deal with a complete degradation model, the best way to do so remains disputable; (7) Priors 

help face restoration models, however recovering identity of highly degraded photos is still 

challenging; (8) Due the computational cost which rises with the height and width of frames, 

state-of-the-art video restoration methods are not ready for casual use yet.  

As evidenced by SRRUNet, one can successfully fine-tune a denoising model into a 

super-resolution model. Such experiment has only taken place because a broader picture on the 

field of image restoration had already been previously established. In fact, taking a broader 

perspective on artificial intelligence problems often leads to successful and inspiring methods. 

For instance, without the original work on Generative Adversarial Networks which integrated 

the distinct realms of game theory and deep learning, there would be no StyleGANs. As 

discussed in Chapter 6, StyleGANs are the key component of face restoration methods. As a 

second example, consider Diffusion Models which have record-breaking performance in 



generative modelling and are currently considered SOTA. Diffusion Models employ 

Nonequilibrium Thermodynamics which, at a first glance, seem to have little correlation with 

Deep Learning. A third example is the Vision Transformer which has been used in numerous 

works some of which have been discussed in this thesis. The Vision Transformer has emerged 

from the Transformer, an architecture originally meant for processing text. Whether one sees it 

or not, it is all connected. A broader view is what enables seeing these connections. 

 

8.1 Research Directions  

 

Upon studying multiple methods, several ideas which could lead to improvements come 

to mind. To start with, it worth questioning the design of Res FFT-Conv Blocks which employ 

1×1 convolutions in the FFT stream. A 1×1 convolution is the same as multiplying each channel 

of the feature map by a single learnable scalar. However, if the aim is to better leverage global 

context, then perhaps it would be more useful to employ an MLP instead, since MLPs apply a 

different scalar for each pixel. In this case, because MLPs require the size of the image to be 

previously specified, the only requirement would be resizing the feature maps before 

forwarding them to the MLP. In addition, the U-Net architecture of Uformer could be enhanced 

with more residual connections, thus mimicking DRUNet while also keeping the LeWin blocks. 

Moreover, since both SROOE and HAT successfully deal with scale factor 4, it would be 

interesting to train these models using larger scale factors (e.g., 16). Meanwhile, DRUNet which 

is non-blind, could be made blind by employing a second network which estimates the noise 

level for each pixel. As for PULSE and GPEN, in order to stand a chance at recovering identity 

of highly degraded photos, there could be an option to provide additional input photos of the 

same person in which case a face recognition network could be used to compute identity loss. 

Regarding VRT, its memory demands could be reduced by reducing the overall number of 

channels for each feature map while increasing the depth of the network in order to mantain 

efficacy. 

Even though it is interesting that gradient descent can be used for image deconvolution, 

there are much faster methods. As discussed in Chapter 5, USRNet uses an equation which 

employs frequency domain properties. However, since USRNet is iterative, it is relatively slow 

when compared to other neural networks. Furthermore, USRNet deals with multiple 

degradations all at once and, as such, the network is rather generic. Therefore, with the aim of 

conceiving a faster network which would also yield higher quality results, different modules 
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could be trained to work in conjunction with the equation employed by USRNet: a module 

which removes noise (e.g., DRUNet), a module which removes deconvolution artifacts, a 

module which increases resolution, and, optionally, a module which generates 

hyperparameters. Thus, the iterative approach would no longer be required and each module 

would also be more specific and, therefore, expected to lead to better results. Of course, the 

complete network could also be further fine-tuned so that each module learns to adapt to each 

other. 

In order to enable fair comparison with methods such as SROOE and HAT, SRRUNet 

could be trained using only a specific scale factor. In addition, instead of training with a single 

loss function, the OOE framework of SROOE could be used. Moreover, in order to facilitate 

reproducibility which is a major principle of the scientific method, training could start using 

randomly initialized weights using a specific seed for the pseudo-random number generator 

instead of fine-tuning DRUNet which requires downloading the original pretrained model. 

Finally, it would be interesting to also change the network architecture, perhaps switching from 

a Residual U-Net to a Residual Uformer as aforementioned. 
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