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Abstract We present a formulation for achieving “as
rigid as possible” deformations of 3D models using a
Moving Least Squares (MLS) approach. This research
was inspired by the work of Schaefer et al.[25] which
describes an approach solving a 2D version of the same
problem. Our main contribution is showing how the prob-
lem may be efficiently handled in 3D for both point and
line segment constraints. Our prototype implementation
is capable of performing close to real-time deformations
of models with a few thousand vertices.
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1 Introduction

The problem of deforming 3D models has undergone
close scrutiny in recent years. Operations of this kind
find application in modeling, animation, shape interpo-
lation, illustrative visualization, surgical simulation and
many others. In general, the problem consists of alter-
ing the shape of a given model in a smooth way using
some deformation paradigm. This modification should
yield predictable results and, in many cases, conform
to certain restrictions such as maintaining the overall
volume of the model, preserving details or avoiding self-
intersections. Additionally, it is generally required that
the deformation process is performed at interactive rates.

In this work, we investigate the use of deformation for
shape posing, that is, trying to obtain several variations
of the same model without overly affecting its recogniz-
able features. Among the many approaches proposed in
the last few years, those which try to obtain so-called
as rigid as possible deformations are of special interest,
since they tend to produce more physically plausible re-
sults by avoiding unnatural shearing and non-uniform
scaling of the model. In particular, by making use of a
Moving Least Squares approach, Schaefer et al. [25] have
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Fig. 1 Deformations using MLS. (a) Original model' and
control points. Deformation given by (a) general affine trans-
formations, (c) similarity transformations, and (d) rigid
transformations.

recently presented a way of computing such deformations
for 2D images. The deformation is split into two com-
ponents: a translation and a rotation transformation for
which the authors derive closed-form equations. These
depend only on a set of point to point or line segment
to line segment constraints which are used to model the
overall deformation.

The extension of this technique to 3D is fairly simple
for the translation component, but solving the rotation
transformation leads to an eigenvector problem. Actu-
ally, the deformation problem can be seen as the reg-
istration problem between two corresponding 3D point
sets, for which several solutions have been proposed, ei-
ther iterative [24] and closed-form [10]. We are inter-
ested, however, in a simple closed-form solution that can
be easily adapted for use in interactive deformations of
medium size models. In this paper we show how this
can be achieved by deriving a closed-form solution for
the problem. The problem is studied as an optimiza-
tion problem, that minimizes a sum of weighted squared
errors, with solutions defined by a rotation axis and an-
gular parameters. These are found by computing the
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largest real root of a depressed quartic equation. Our
approach has been implemented and we show a few ex-
amples of deformations obtained with our prototype.

2 Related work

Since the 80s, many researchers have investigated algo-
rithms and techniques for applying meaningful geomet-
ric deformations to 3D models [4,6]. A recent survey [1]
classifies deformation techniques into freeform methods,
which are mostly aimed at producing global smooth de-
formations, and detail-preserving methods. The former
class is further divided into surface-based and space-
based methods, while the latter class includes, among
others, multiresolution techniques and methods based
on differential coordinates.

Freeform surface-based techniques try to obtain a
displacement function of the form f : & +— 3, which
maps surface S into a deformed version &' = {p +
f(p) | p € S} Usually, f is modelled by means of
some energy minimization process defined on the sur-
face subject to a set of conditions on its border. The
deformation is controlled by deformation handles, most
commonly a set of points p, such that f(p,;) = q;, where
q, refer to the new positions of p; [7,17,23,29].

While surface-based methods are quite flexible and
support different smoothness criteria, their computational
complexity and numerical stability are strongly related
to the size and quality of the input mesh. In contrast,
space-based techniques deform the 3D space as a whole,
thus affecting the shape of models contained therein in-
directly [8,14,26]. Such methods employ a deformation
function of the form f : 12— N3 to transform all points
of the original surface S to a new, deformed surface
S'={fp) | pesSh

Differential methods are characterized by applying
modifications to differential rather than spatial coordi-
nates of the models. Once the new values for handle po-
sitions or normals are specified, a deformed model is re-
constructed by considering the desired differential prop-
erties and minimizing the model distortion. Commonly
used differential representations are: gradient fields [30,
31], Laplacian coordinates [19,27,30-32], and first /second
fundamental forms of a surface [18,20].

Another important category of deformation techniques
are the so-called multiresolution methods [17,21,22]. Here,
the key idea is to use mesh-based signal processing tech-

niques in order to apply the deformation to a low-frequency

version of the model and later reconstructing the high-
frequency details.

Many of the deformation techniques proposed in the
past rely on some kind of energy minimization process,
where the energy function is defined in such a way as to
measure the distortion introduced by the deformation.
A related concept characterizes the so-called as rigid as
possible approaches, in which the deformation function
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is defined as a smoothly varying affine transformation
applied on the model in such a way as to minimize local
scaling and shearing. This idea has recently been applied
to the problem of deforming images and meshes in 2D
(2,15,25].

In this paper, we focus on obtaining an interactive
solution for producing as-rigid-as-possible deformations
in 3D by adapting the Moving Least Squares approach
of Schaefer et al. [25]. Thus, the main problem is that
of obtaining a rigid transformation which best approx-
imates a mapping in R3 for a given set of points. This
problem is also known as point registration, or, more
specifically, the Absolute Orientation Problem. Analyt-
ical solutions have been proposed, for instance, based
on SVD (Singular Value Decomposition) [3], quaternions
[12,16], orthonormal matrices [13] and dual quaternions
[28]. Another related group of techniques includes those
based on iterative schemes such as the ICP (Iterative
Closest Point) algorithm [5] and its variants. Differently
from these approaches, however, the solution described
below directly obtains the axis and angular parameters
of the rotation. Our method requires a smaller number of
computations than matricial and even quaternion-based
approaches. Notice that, in our application, a new rigid
transformation must be computed for every vertex of the
mesh, and thus it must be as efficient as possible.

3 Moving least squares deformation

The Moving Least Squares (MLS) formulation can be
thought of as an extension of the traditional Least Squares
minimization technique. Rather than finding a global op-
timum solution for the problem, MLS tries to find con-
tinuously varying solutions for all points of the domain.
Let us define the deformation operation as a transfor-
mation which maps a set of points {p;} of the domain
onto new positions {q;}. Thus, solving the problem for
a given point v = [zy z] of the domain can be reduced
to finding the best transformation I, (x) that minimizes

sz“V(pz) _qi|27 (1)

where w; are weights of the form w; = |p; — v|™ for
some integer constant u > 0.

Let us define the deformation function f as f(v) =
lv(v). We observe that when v is close to some constraint
p;, then w; tends to infinity, which means that f is in-
terpolating with respect to the constraint points, i.e.,
f(p;) = q;. Further, if q, = p,;, then f(v) = v, for all
v, meaning that, in this case, f is the identity function.
Finally, it can be shown that f is smooth everywhere for
u > 2. This defines the Moving Least Squares minimiza-
tion in which the sought transformation l,, depends on
the point of evaluation v.
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4 As rigid as possible MLS

By imposing different additional requirements on the
form of [, we may obtain different results. We may
require, for instance, that [, is a general affine trans-
formation, in which case the classical normal equations
solution can be applied directly [25]. For obtaining de-
formations which are as rigid as possible, I, must be
constrained to be a rigid transformation, i.e., [, must be
of the form: I, (x) = xR + T, where R is a rotation ma-
trix and T is a translation vector. Solving for T yields
T = q* — p*R, where q* and p* are the weighted cen-
troids of {q,} and {p,} respectively:

p*ziwipi’ q*ziwiqi' (2)

This permits us to factor out the translation from (1) by
rewriting it as

> wilpiR - &, (3)

where q; = q; — g* and p; = p; — p*. Expanding (3)
then yields

—2) wi@RP; + Y willal® + > wil|pil*.
i i i

Since the last 2 terms are constant, we infer that R min-
imizes (3) if and only if it maximizes

Z w;@;RP; - (4)

4.1 3D rigid transformations

In 3D space, R may be defined as a rotation of an angle
« around an axis e. Applying such a rotation on a vector
v yields:

Reo(v') =eTev'+

cos(a)(I—eTe)v +

0 —e. g
sin(a) | e, 0 —e, | V' (5)
—-e, e; 0

By replacing this definition of R in (4) we obtain

Z w;q;Rp; =eMe' +cos(a)(E—eMe')+sin(a)Ve',

K2

where
M=>"w;Q] Pi =| > 0iQiyPiz Y AWiQiyPiy 2 WikliyDi-
Do WiliPiz ) WiQizPiy Y Widi-Diz
E =), w;q; - p;= Trace(M),
V=) wipixq; = (Maz—Msy Mz =Mz Mo —Moyy).
(6)

4.2 Optimization problem

Thus, the optimization problem can be written as

max F(e,a) =eMe' +cos(a)(E —eMe') +sin(a)Ve'
s.t. lell =1,
cos(a)? + sin(a)? = 1. (7)

By considering the optimality conditions (Kuhn-Tucker)
for this problem, the solutions must satisfy

(1 —cos())e(M 4+ M") +sin(a)V = k; e, (8)
E—eMe™) _ cos(w)

( Vel ) =k (sin(a) ) 9)

If these conditions are satisfied with o = 0 or ko = 0

then F(e,a) = E. While searching for (e, a) such that

F(e,a) > E, we can, therefore, assume that both these

conditions do not hold. If that search does not succeed,
the null rotation is a solution of (7).

From equation (9), we have sin(a) = Ve /ky, and,
defining N = M + M, we may rewrite equation (8) as

(N+aVTV)e" = \e', (10)

where

B 1 d - k1
T b —cos(@) ™ ~ 1= cos()).
(11)
In summary, the optimal rotation axis will corre-
spond to the eigenvector of matrix (N + aV'V) asso-
ciated with eigenvalue A. We notice, however, that the
values of ¢ and A depend on ki and ko, making this a
non-standard eigenvalue problem. To reduce the inde-
termination of the problem, it is possible to show that a
and A are related by

= o (12)

4.3 Eigenvalue determination

An analysis of equation (10) reveals that since A is an
eigenvalue of (N 4 aV'V), it must also be a root of the
characteristic polynomial

P(X\) = X3 — (Trace(N) + a||V||?) A2
+ [(3(Trace(N)? = |IN|12) + a(|[V[[*Trace(N) — VNVT)]| A
—det(N)(1 4+ VN~V Ta).

By substituting equation (12) and noting that Trace(N) =

2Trace(M) = 2E and that 2|[M||? = 1|IN|[2+[[V||?, then
equation P(\) = 0 becomes

M —4E X3 + (6E? — 2||M]|?) \2

+(4(IMJ2 — E)E — 2VMVT — det(N)) A
+det(N)(2E — VN7IVT) = 0.



The third degree term may be eliminated by effecting
a variable change of the form y = A—E. Thus, we obtain
the following equation in y which allows for a closed-form
solution:

y* = 2|IM|J? y* — 8det(M) y — E' +2||M||°E?

—8det(M)E+det(N)(2E — VN!'VT) = 0. (13)

The independent term in (13) is more easily obtained
by the expression

M =4 0D 1M < Myl 12,

i j<i

where M, is the k" column of M.

It can be shown that if we use the optimality condi-
tions (8) and (9) in the objective function (7), the latter
becomes A — E = y, meaning that a value of e which
satisfies the optimality conditions is given by the value
of y itself. Since our ultimate goal is to satisfy the ob-
jective function, we must look for a value for y which is
the largest real solution of the polynomial (13).

4.4 Solving the depressed quartic equation

If a depressed quartic polynomial y* + ay? + by + c is
factored as (y? +py+q)(y? —py +s), then p must satisfy
P +2ap* + (a® — 4c)p? —b* = 0 which is a cubic equation
in p? = 2. If the depressed polinomial is (13), this cubic
polinomial becomes

Q(z) = 2° — 4[[M|]?2*+
162,30 < (I | I 1) (MiM])?) — 64det (M)*.

Now, let Q* be the characteristic polynomial of (M"M).

Since Q(z) = 64Q*(z/4), then a root r of () must be re-
lated to some eigenvalue p of (M'M) by 7 = 4. This
implies that r > 0, since all eigenvalues of the positive
semi-definite matrix (M'M) must be non-negative.

Let p = /r. Having p, y can then be obtained as the
largest value between

—p/2+ /—p%/4 + [[M||2 — 4det(M)/p and
p/2+ /—p*/4+ M| + 4det(M) /p.
Observe that Q(z) is essencially the same polynomial

solved by a matricial method like Horn’s in order to find
the eigenvalues of M'M. Moreover, if det(M) > 0, then

the value of i obtained by that process is Trace((M"M)!/2).

Otherwise, it is Trace((MTM)l/z) —2+/Hmin, Where fiyin
is the smallest eigenvalue of M'M.

From the reasoning above, we can realize that finding
A demands no more effort than obtaining all the eigenval-
ues of MM, as required by matricial approaches. From
this point on, the method described here is advanta-
geous. While Horn’s approach determines a basis of unit
eigenvectors of M'M using it to compute M(MTM)!/2,
we need to solve a single linear 3 x 3 system and, from the
solution of that system, easily obtain {e, cos(«), sin(a)}
as explained below.
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4.5 Determining the rotation azis e

Assume, initially that VeT # 0. Then, ¢ = —a(Ve')
is well defined and Equation (10) can be rewritten as
(N — M)(e"/¢) = V. Thus, considering that =+ (e, )
represent the same rotation, we can infer that e can be
found by solving

(N=X)u"=V" (14)

and taking the unit vector of u. For small deformations,
in special, this approach is more appropriate than di-
rectly finding an unit eigenvector of (N+aVV') since a
may assume very large values.

It remains to consider the case where Ve' = 0. Since
we assume that ks # 0 and a # 0, then the three condi-
tions below are equivalent:

(i) Vel =0;
(ii) (14) is a non-determined system;
(iii) A is an eigenvalue of N. In this case e is an unitary
vector associated to it.

Thus, if VeT = 0, condition (b) holds and having
identified it we can find e as an unitary eigenvector of N
associated to the eigenvalue .

4.6 Determining sin(«) and cos(«)

From equations (11) and (12) we infer that A — 2E =
ka(1 — cos(a)). Additionally, equation (9) asserts that
E — eMe' = kycos(a). Adding these two equations, we
obtain ks = A—E—eMe". This allows the use of equation
(9) to obtain expressions for cos(«) and sin(«) which do
not contain any squared terms:

cos(a) E—eMe' sin(a) Ve
() = ——————, sin(a) = ——————.
YT ATE—eMem MY T NTE —eMeT
The optimality conditions of (7), and the fact that
lul| = —(1/a)VeT allow us to rewrite these two expres-
sions as
T2 (A-2B)? 1 - |ul?
osfa) = (VD= (A= 2B)* 1= [u]?,
(VeT)2+ (A —2E)2 1+ |ul? (15)
. 2(Ve') —2]u]|
sin(a) =

(Ve )2+ (A—2E)2 1+ |u?’

which require very little computation considering that
[ul|? and ||u|| have already been determined while ob-
taining e. The equations (15) also indicate that the ob-
tained values are in the range [-1,1].

Notice that up to the point where vector u is found

our approach is computationally equivalent to the quaternion-

based technique of Kanatani [16], except that, in that
case, an eigenvector of a 4 x 4 matrix would be deter-
mined. However, all it remains now is to find the values
{e,cos(a),sin()} from u and directly substitute them
in equation (5), whereas to effect a quaternion-based



3D As-Rigid-As-Possible Deformations Using MLS

transformation, a more lengthy computation is required
for every vertex.

Finally, we must observe that the obtained rotation
is exactly M(MTM)'/2 if det(M) >= 0. Otherwise it is
M(MTM)I/2 (I—emine ;) where e, is an eigenvector
of M™M associated to the eigenvalue (i, . These expres-
sions indicate that the rotation is a continuous function
of M while det(M) > 0. A discontinuity can only occur
if M is singular or det(M) < 0 and i, is a multiple
eigenvalue of MTM. At discontinuity points, we might
notice a “twisting” effect while interactively applying a
large deformation to a model. It is important to stress,
however, that any method for solving (7) will exhibit
this behavior.

5 Algorithm

A deformation session uses as input a 3D model in the
form of a polygonal mesh with n vertices and a set of
control points {p;}, ¢ = 0...k — 1, not necessarily on
the mesh. The user then establishes new positions for
the control points which are stored in {q;}. Finally, Al-
gorithm 1 is invoked to obtain new positions for each
vertex v of the mesh.

Algorithm 1: Compute deformed vertex position

Input: Vertex position v

Input: Original and deformed positions of control
points {p;} and {q;}

Output: Deformed vertex position v/

1 p* < WeightedCentroid(v, {p:});

2 g* < WeightedCentroid(v, {q;});

3 M « CorrelationMatrix(p*, q*);

4 mroot «— MaximumRootOfP (M);

5 X\ «— mroot + Trace(M) ; // eigenvalue
6 e < RotationAxis(M, M) ;

7 [sin(a), cos(a)] < SinCos (M, e) ;

8 V«V — px;

9 d«— (VeT) e + cos(a) (v — (f/eT) e) +sin(a)(V x e);
10 v/ «— gx +d;
11 return v’

The auxiliary routines used in Algorithm 1 merely
compute the values of the various equations presented
in this Section, as summarized in the Table 1.

Our implementation of this algorithm includes sev-
eral tweaks to improve the performance. For instance,
all values of v, px, w and p; are precomputed during a
deformation session where the values of q; are changed
interactively. Figures 2 and 3 show sample results of the
deformation algorithm as applied to two different mod-
els. Table 2 shows frame rates for deformations applied
on several polygonal meshes. We notice, as expected,
that the performance is directly proportional to the num-

Table 1 Routines and their equations

Routine Equation
WeightedCentroid  (2)
CorrelationMatrix (6)
MaximumRootOfP (13)
RotationAxis (14)
SinCos (15)

<A

Fig. 2 Deformation of a dolphin using 4 control points.

Fig. 3 Twisting deformation of a parallelepiped. The effect
is obtained by applying several small-angle torsions in suc-
cession.

Table 2 Frame rates for the deformation of several models.

Model Vertices Constraints FPS
Dolphin 2811 4 40
Homer 5103 6 22
Plane 1089 132 19.5
Dino 14050 5 6.5
Bar 6146 256 2
Cylinder 1058 322 9.5

ber of vertices of the model and to the number of con-
straints controlling the deformation.

The prototype has been implemented in C++ under
Linux. We used the OpenGL API for rendering and all

the experiments have been performed setting the OpenGL’s

canvas resolution to 600 x 600 pixels. Times have been
taken on a PC equipped with a Pentium-IV processor
running at 3.2 GHz with 1GB of main memory and a
GeForce 7300LE NVidia graphics card.



6 Extensions
6.1 Similarity deformation

If a more general similarity — rather than rigid — trans-
formation is required, then an uniform scaling factor
s € R must be introduced in the optimization prob-
lem. In this case, equation 3 becomes

> wilnspiR — &l
i
and to optimize it we must solve
max js y_wiqRP; — p2 > wil|pill*.
i i

This problem generates the same optimality conditions
with respect to {e,cos(a),sin(a)} as (7). In addition,
there is an optimality condition with respect to us given

by
D wi@Rp] — s Y wilps]|* =
i ;

Since the optimality conditions of (7) determine that an
optimal solution satisfies ), w;q;RP] = y, we finally

obtain
Y

fhs = =73
T willbil?

Thus, step 10 of Algorithm 1 would read: v/ «+ g+ usd.

6.2 Deformations using line segments

In many situations, the deformation induced solely by
moving control points may produce undesirable distor-
tion or counter-intuitive results, as shown in Figure 4(a).
This may be alleviated by increasing the number of con-
trol points (Figure 4(b)), but only at a cost in terms of
performance and interactivity. One possible solution is
to use other geometric primitives such as line segments
to control the deformation (Figure 4(c)).

The generalization of MLS-based deformations con-
trolled by line segments may be stated as the minimiza-
tion of

Z fo w;|pi(t)

where p;(t) is the i‘" original line segment and q;(t) the
corresponding deformed line segment. In much the same
way as what was done with control points, this can be
reduced the maximization of

2 fo w;d; (t)RP; (1),

where §;(t) = q;(t) —q* and P;(t) = pi(t) — p*. Thus,
the optimization problem is also stated by Equation (7),
where M is defined as

M Z fo wlqz

JR+T —aq; (1),

)Pi(t)dt.

A. Cuno, C. Esperanga, A. Oliveira, P. Cavalcanti

R
oy

Fig. 4 Deforming a model using: (a) and (b) control points,
and (c) line segments.

(a)

Line segments p;(¢) and q;(¢) may be represented by
the products

b=t 0 (§) md a=a-1 0(§).

where a;, b; are the endpoints of p;(t) and ¢;, d; are the
endpoints of q;(¢). Thus, M may be rewritten as

where

W — fo w; (t)t2dt fo w;(t)E(1 — t)dt
O\ w1l = )t [y wi(6)(1 )%t )

Depending on the choice of w;(t), the integrals in
W; may have very complicated explicit formulations, as
mentioned by Schaefer, or even require an iterative nu-
merical method to be computed. A simple formulation
for W, may be obtained if we consider that w;(¢) has
a constant value given by d;“ where d; is the distance
between the vertex v being evaluated and the segment

aibi, that iS,
. (1/3 1/6
Wi =d, (1/6 1/3)'

Finally, the values of p* and g+ are determined by

> d;(a; +by)/2 *:Zid;u(ci+di)/2
s A

p* =

In our experiments, we did not notice significant dis-
tortions caused by this simplification.
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Fig. 5 Large deformation of cylinder: (a) Initial model
and control points. Deformation induced by rotating the
top group of vertices using different weight functions: (b)
w(d) =d?, (c) w(d) =d™® and (d) w(d) = d~*. The
lower row of pictures show the positions of the weighted cen-
troids q;

(a) (b)

Fig. 6 Deformation caused by translation. (a) Initial model
and control points. (b) Deformed model.

7 Discussion

As noted by Botsch et al. [9], deformation techniques
may lead to non-intuitive results when control handles
are subject to large displacements. In our case, large
translations and/or rotations may indeed produce non-
smooth results as illustrated in Figures 5, and 8.

The key observation that provides an explanation to
this behavior is that the weighted centroids p*; and qx;
are, in fact, computed as convex combinations of control
points {p,} and {q;}. One might be tempted to obtain a
smoother distribution of the centroids by modifying the
weighing function but this does not lead, in general, to
satisfactory results, as illustrated in Figure 5.

Another interesting effect may be observed when the
handles are subject only to translations as shown in Fig-
ure 6. Notice, in particular, that lines which are parallel
to the handle movement are not distorted.

It must be stressed, however, that in many cases, an
unexpected result is caused merely by insufficient data
input. Consider, for instance, the deformation depicted
in Figure 1 where the intended result was clearly to make
the character bend at the waist. For this to occur natu-
rally, the placement of a control point near the navel is
crucial.

Fig. 7 Deformations with large displacements. (a) Initial
model and control points. (b) Deformed model.

On the other hand, it is worth mentioning that MLS-
rigid deformations behave nicely in the sense that it
tends to preserve details and global characteristics of
the model better than, say, RBF-based or differential
coordinate-based techniques. Figure 7 supports this claim
when we compare it with a similar figure shown in [11]
(Figure 7, to be precise).

8 Conclusions and future work

We have presented a practical approach for computing
as-rigid-as-possible deformations of 3D models using a
Moving Least Squares (MLS) minimization scheme. The
rotation solution is defined by a rotation axis and an-
gular parameters {e, cos(a), sin(a)}. These are found by
computing the largest real root of a depressed quartic
equation and solving a 3 x 3 system. Our preliminary
experiments show that this approach is slightly more
efficient than the classical formulation which computes
the rotation matrix R as M (MM")~1/2 [13]. It also uses
fewer operations than the quaternion-based representa-
tion of R as suggested in [16].

A more efficient approach to the problem may be de-
vised in the future in the form of an incremental method
which approximates the best rotation without the need
of computing eigenvalues for every vertex at every frame
of the interaction. In fact, we consider our approach a
good starting point for deriving such a method.

The expressive power of as-rigid-as-possible deforma-
tions is hindered by some non-smooth results for some
control point configurations, specially if the handles are
subjected to large translations or rotations. Some ideas
for reducing these problems are being investigated, such
as interpolating the centroids q* using radial basis func-
tions (RBFs). Some preliminar results are shown in Fig-
ure 8.
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