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Abstract In this paper, we present a Smoothed Parti-
cle Hydrodynamics (SPH) implementation algorithm on
GPUs. To compute a force on a particle, neighboring par-
ticles have to be searched. However, implementation of a
neighboring particle search on GPUs is not straightfor-
ward. We developed a method that can search for neigh-
boring particles on GPUs, which enabled us to imple-
ment the SPH simulation entirely on GPUs. Since all of
the computation is done on GPUs and no CPU process-
ing is needed, the proposed algorithm can exploit the
massive computational power of GPUs. Consequently,
the simulation speed is many times increased with the
proposed method.
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1 Introduction

At the present time, physically based simulation is widely
used in computer graphics to produce animations. Even
the complex motion of fluid can be generated by simu-
lation. There is a need for faster simulation in real-time
applications, such as computer games, virtual surgery
and so on. However, the computational burden of fluid
simulation is high, especially when we simulate free sur-
face flow, and so it is difficult to apply fluid simulation to
real-time applications. Thus real-time simulation of free
surface flow is an open research area.

In this paper, we accelerated Smoothed Particle Hy-
drodynamics (SPH), which is a simulation method of
free surface flow, by using of Graphics Processing Units
(GPUs). No study has so far accomplished acceleration
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of particle-based fluid simulation by implementing the
entire algorithm on GPUs. This is because a neighboring
particle search cannot be easily implemented on GPUs.
We developed a method that can search for neighboring
particles on GPUs by introducing a three-dimensional
grid. The proposed method can exploit the computa-
tional power of GPUs because all of the computation
is done on the GPU. As a result, SPH simulation is ac-
celerated drastically and tens of thousands of particles
are simulated in real-time.

2 Related Works

Foster et al. introduced the three-dimensional Navie-Stokes
equation to the computer graphics community[8] and
Stam et al. also introduced the semi-Lagrangian method[34].
For free surface flow, Foster et al. used the level set
method to track the interface[7]. Enright et al. devel-
oped the particle-level set method by coupling the level
set method with lagrangian particles[6]. Bargteil et al.
presented another surface tracking method that used ex-
plicit and implicit surface representation[2]. Coupling of
fluid and rigid bodies[3], viscoelastic fluid[9], interaction
with thin shells[10], surface tension, vortex particles, cou-
pling of two and three-dimensional computation[14], oc-
tree grids[25] and tetrahedron meshes[17] have been stud-
ied.

These studies used grids, but there are other meth-
ods that can solve the motion of a fluid. These are called
particle methods. Moving Particle Semi-implicit (MPS)
method[20] and Smoothed Particle Hydrodynamics (SPH)
[27] are particle methods that can compute fluid motion.
Premoze et al. introduced the MPS method, which real-
ized incompressibility by solving the Poisson equation on
particles and has been well studied in areas such as com-
putational mechanics, to the graphics community[32].
Miiller et al. applied SPH, which had been developed
in astronomy, for fluid simulation[28]. They showed that
SPH could be applied for interactive applications and
used a few thousand of particles. However, the number
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was not enough to obtain sufficient results. Viscoelastic
fluids[4], coupling with deformable bodies[29] and multi-
phase flow[30] were also studied. Kipfer et al. accelerated
SPH using a data structure suitable for sparse particle
systems[16].

The growth of the computational power of GPUs,
which are designed for three-dimensional graphics tasks,
has been tremendous. Thus there are a lot of studies
that use GPUs to accelerate non-graphic tasks, such as
cellular automata simulation[13], particle simulation[15]
[19], solving linear equations[21] and so on. We can find
an overview of these studies in a review paper[31]. Also,
there were studies on the acceleration of fluid simulation,
i.e., simplefied fluid simulation and crowd simulation[5],
two-dimensional fluid simulation[11], three-dimensional

3.2 Discretization

In SPH, a physical value at position x is calculated as a
weighted sum of physical values ¢; of neighboring parti-
cles j

P(x) = ijquW(X - x;)

; 3)

where mj, pj,x; are the mass, density and position of
particle j, respectively and W is a weight function.
The density of fluid is calculated with eqn.3 as

p(x) = Z m;W(x — x;). (4)

The pressure of fluid is calculated via the constitutive

fluid simulation[23], cloud simulation[12] and Lattice Boltz- equation

mann Method simulation[22]. Amada et al. used the GPU
for the acceleration of SPH. However, they could not
exploit the power of the GPU because the neighboring
particle search was done on CPUs and the data were
transferred to GPUs at each time step[l]. Kolb et al.
also implemented SPH on the GPUJ[18]. Although their
method could implement SPH entirely on the GPU, they
suffered from interpolation error because physical values
on the grid were computed and those at particles were
interpolated. A technique for neighboring particle search
on GPUs is also found in [33]. They developed a method
to generate a data structure for finding nearest neigh-
bors called stencil routing. A complicated texture foot-
print have to be prepared in advance and it needs a large
texture when it applied to a large computation domain
because a spatial grid is represented by a few texels.

There have been few studies on the acceleration of
free surface flow simulation using GPUs.

3 Smoothed Particle Hydrodynacimcs
3.1 Governing Equations

The governing equations for incompressible flow are the
mass conservation equation and the momentum conser-
vation equation

Dp

_r _ 1
D¢ =0 (1)
DU 1 ,

where p, U, P, v, g are density, velocity, pressure, dynamic
viscosity coefficient of the fluid and gravitational accel-
eration, respectively.

p=po+k(p—po) ()
where pg, po are the rest pressure and density, respec-
tively.

To compute the momentum conservation equation,
gradient and laplacian operators, which are used to solve
the pressure and viscosity forces on particles, have to
be modeled. The pressure force FP"¢*¢ and the viscosity
force F¥** are computed as

Ffress _ Z m; pl2—; p] VWp'ress (I‘”)
; J
J

(6)

; Vi —V;
F;”S = I/ij J ZVWM'S(I‘Z‘]‘) (7)
J

Pj
where r;; is the relative position vector and is calculated
as r;; = r; —r; where r;,r; are the positions of particles
1 and j, respectively.
The weight functions used by Miiller et al. are also
used in this study[28]. The weight functions for the pres-
sure, viscosity and other terms are designed as follows.

45 3T
VWhress(r) = TT‘S(TE |r[) m (8)
45
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_ 315 o 243
W) = s 2 = e (10)

This value is 0 outside of the effective radius 7. in these
functions.

3.3 Boundary Condition

3.3.1 Pressure term

Because the pressure force leads to the constant density
of fluid when we solve incompressible flow, it retains the

distance d between particles, which is the rest distance.
We assume that particle 4 is at the distance |r;,| to the
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Fig. 1 Distribution of wall particles.

wall boundary and |r;,,| < d. The pressure force pushes
particle ¢ back to the distance d in the direction of n(r;)
which is the normal vector of the wall boundary. Thus,

the pressure force F¥"“** is modeled as
Ax;
Fp?"ess — i 3
’ dt?
(@~ Irun(r,)
= m; . 11
" dr? 1D

3.3.2 Density

When a particle is within the effective radius r. to the
wall boundary, the contribution of the wall boundary
to the density has to be estimated. If wall particles are
generated within the wall boundary, their contribution
as well as those of fluid particles can be calculated.

Z ij(I'ij)+ Z ij(I'ij)

jEFluid

pi(ri) = (12)

jewall

The distribution of wall particles is determined uniquely
by assuming that they are distributed perpendicular to
the vertical line to the wall boundary and the mean cur-
vature of the boundary is 0 as shown in fig.1. Therefore,
the contribution of the wall boundary is a function of the
distance |r;,,| to the wall boundary.

> mW(riy) + Zpht(ril)
JE€ fluid

pi(r;) = (13)

We call Z{U’}L‘l’l as wall weight function. Since this wall
weigh function depends on the distance |r;,|, it can be
precomputed and referred in the fluid simulation. Pre-
computation of the wall weight function can be done by
placing wall particles and adding their weighted values.
This function is computed in advance at a few points
within the effective radius r. and the function at an ar-
bitrary position is calculated by linear interpolation of
them.

To obtain the distance to the wall boundary, we have
to compute the distance from each particle to all the
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Fig. 2 Flow char of one time step. Green ellipsoids represents
operations (shader programs) and orange rectangles repre-
sents data (textures).

polygons belonging to the wall boundary and select the
minimum distance. Since this operation is computation-
ally expensive, a distance function is introduced. The
distance to the wall boundary is computed in advance
and stored in a texture.

3.4 Neighbor Search

The computational cost of searching for neighboring par-
ticles is high when a large number of particles are used.
To reduce the computational cost, a three-dimensional
grid covering the computational region, called a bucket,
is introduced as described by Mishira et al.[26]. Each
voxel encoded as a pixel in the texture is assigned d°
computational space. Then, for each particle, we com-
pute a voxel to which the particle belongs and store the
particle index in the voxel. With the bucket, we do not
have to search for neighboring particles of particle ¢ from
all particles because neighboring particles of particle @
are in the voxels which surrounding the voxel to which
it belongs.

4 Smoothed Particle Hydrodynamics on GPUs
4.1 Data Structure
To compute SPH on GPUs, physical values are stored

as textures in video memories. Two position and ve-
locity textures are prepared and updated alternately.



Takahiro Harada et al.

A bucket texture and a density texture are also pre-
pared. Although a bucket is a three-dimensional array,
current GPUs cannot write to a three-dimensional buffer
directly. Therefore, we employed a flat 3D texture in
which a three-dimensional array is divided into a set of
two-dimensional arrays and is then placed in a large tex-
ture. The detailed description can be found in [12]. As
well as these values updated in every iteration, static
values are stored in textures. The wall weight function
is stored in a one-dimensional texture and a distance
function which is a three-dimensional array is stored in
a three-dimensional texture. The reason why a flat 3D
texture is not employed is that the distance function is
not updated during a simulation.

4.2 Algorithm Overview

One time step of SPH is performed in four steps.

1. Bucket Generation

2. Density Computation
3. Velocity Update

4. Position Update

The implementation detail is described in the following
subsections. The flowchart is shown in Figure 2.

4.3 Bucket Generation

Since the number of particle indices stored in a voxel is
not always one, a bucket cannot be generated correctly
by parallel processing of all particle indices. This is be-
cause we have to count the number of particle indices
stored in a voxel if there are multiple particle indices in
the voxel.

Assume that the maximum particle number stored in
a voxel is one. The bucket is correctly generated by ren-
dering vertices which are made correspondence to each
particles at the corresponding particle center position.
The particle indices are set to the color of the vertices.
This operation can be performed using vertex texture
fetch. However, the operation cannot generate a bucket
correctly in the case where there is more than one par-
ticle index in a voxel.

The proposed method can generate a bucket that can
store less than four particle indices in a voxel. We assume
that particle indices i, %1, i3, i3 are stored in a voxel and
they are arranged as ip < i1 < 2 < i3. The vertices
corresponding to these particles are drawn and processed
in ascending order of the indices[15]. We are going to
store the indices 4g, 71, %2, 73 in the red, green, blue and
alpha (RGBA) channels in a pixel, respectively by four
rendering passes. In each pass, the particle indices are
stored in ascending order. Color mask, depth buffer and
stencil buffer are used to generate a bucket correctly.

Distance Function Wall Weight Function

Fig. 3 Estimation of the contribution of wall boundary. The
distance to the wall d is read from the distance function tex-
ture with particle position x,y,z. Then the density of wall
boundary is read from the wall weight texture.

The vertex shader moves the position of a vertex to
the position of the corresponding particle. Then the frag-
ment shader outputs the particle index as the color and
depth value. These shaders are used in all of the following
rendering passes.

In the first pass, index i is written in the R channel.
By setting the depth test to pass the lower value and
masking the GBA channels, iy can be rendered in the
R channel at last. In the second pass, index i1 is writ-
ten in the G channel. The RBA channels are masked.
The depth buffer used in the first pass is also used in
this pass without clearing. Then the depth test is set
to pass a greater value. However, the value rendered at
last is ¢3 which is the maximum depth value. To pre-
vent writing i and i3 to this pixel, the stencil test is
introduced. This stencil test is set to pass if the stencil
value is greater than one. The stencil function is set to
increment the value. Because the stencil value is 0 before
rendering i1, the vertex corresponding to i; can pass the
stencil test and is rendered. However, the stencil value is
set to 1 after i; is rendered and vertices corresponding
to i9,43 cannot pass the stencil test. Index ¢; is stored
in the G channel at last. Indices is and i3 are written
in the B and A channels in the third and fourth passes,
respectively. The operations are the same as in the sec-
ond pass other than the color mask. The RGA channels
are masked in the third pass and the RGB channels are
masked in the fourth pass. Since the depth value of i3
is maximum among these vertices, the stencil test is not
required in the last pass.

4.4 Density Computation

To compute the density of each particle, Equation (3)
has to be calculated. The indices of neighboring parti-
cles of particle ¢ can be found with the generated bucket
texture. Using the index of the particle, the position can
be read from the position texture. Then the density of
particle ¢ is calculated by the weighted sum of mass of
the neighboring particles, which is then written in the
density texture. If the particle is within the effective ra-
dius to the wall boundary, the contribution of the wall to
the density have to be estimated in two steps. In the first
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step, the distance from particle 7 to the wall is looked up
from the distance function stored in a three-dimensional
texture. Then the wall weight function stored in a one-
dimensional texture is read with a texture coordinate cal-
culated by the distance to the wall. This procedure is il-
lustrated in Figure 3. The contribution of wall boundary
to the density is added to the density calculated among
particles.

4.5 Velocity Update

To compute the pressure and viscosity forces, neighbor-
ing particles have to be searched for again. The proce-
dure is the same as that for the density computation.
These forces are computed using Equations (6) and (7).
The pressure force from the wall boundary is computed
using the distance function. Then, the updated velocity
is written in another velocity texture.

4.6 Position Update

Using the updated velocity texture, the position is cal-
culated with an explicit Euler integration.

X, = x; + v;dt (14)

where x; and v; are the previous position and veloc-
ity of particle 4, respectively. The updated position x] is
written to another position texture. Although there are
higher order schemes, they were not introduced because
we did not encounter any stability problems.

5 Results and Discussion

The proposed method was implemented on a PC with a
Core 2 X6800 2.93GHz CPU, 2.0GB RAM and a GeForce
8800GTX GPU. The programs were written in C++ and
OpenGL and the shader programs were written in C for
Graphics.

In Figures 4 and 5 we show real-time simulation re-
sults. Approximately 60,000 particles were used in both
simulations and they ran at about 17 frames per second.
Previous studies used several thousand particles for real-
time simulation, However, the proposed method enabled
us to use 10 times as many particles as before in real-
time simulation. The simulation results were rendered
by using pointsprite and vertex texture fetch. The color
of particles indicates the particle number density. Par-
ticles with high density are rendered in blue color and
those with low density are rendered in white. The pro-
posed method can accelerate offline simulation as well as
real-time simulations. In Figures 6, 7 and 8, the simu-
lated particle positions are read back to the CPU and
rendered with a raytracer after the simulations. Surfaces
of fluid is extracted from particles by using Marching

Fig. 6 A ball of fluid is thrown into a tank.
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Fig. 5 An example of real-time simulation. A fluid is poured into a tank.

Cubes[24]. A ball of liquid is thrown into a tank in Fig-
ure 6 and balls are fallen into a tank in Figure 7. In
Figure 8, a liquid is poured into a tank. Approximately
1,000,000 particles were used in these simulations. They
took about 1 second per one time step.

The computation times are measured by varying the
total number of particles. Times (a) and (b) in Table
1 are the computation times for bucket generation and
for one simulation time step including rendering time.
These computation times were measured with rendering
algorithms as shown in Figures 4 and 5. We can see that
one time step is completed in 58.6 milliseconds for a sim-
ulation with 65,536 particles. We can also see that the
ratio of the bucket generation time is low and most of
the computation time is spent in density and force com-
putations. We need to search for neighboring particles in
the computation of the density and forces. In these com-
putations, particle indices in the buckets surrounding a
bucket in which particle 7 is stored are looked up and
then particle positions are also read from the texture us-
ing these particle indices. Since these computations are
accompanied by a lot of texture look up with texture
coordinates which are calculated with a value read from
a texture, the computational costs are higher than for
other operations.

We also implemented the method on the CPU and
measured the computation times. Table 2 shows the re-
sults and the speed increase of the proposed method in
comparison with the computation on the CPU. The com-
putational speed on the GPU is about 28 times faster
in the largest problem. When we used a small number

of particles, the speed increase of the method was not
so great. However, as the total number of particles in-
creased, the efficiency of the proposed method increased.

The proposed method for bucket generation can gen-
erate a bucket correctly when the maximum number of
particle stored in a voxel is less than four. Particles are
placed as the simple cube structure and this state is used
the rest state. This particle distribution is less dense than
body-centered structure in which two particles are be-
longs to a voxel whose length of a side is the particle di-
ameter. This indicates that there are less than two parti-
cles if the fluid keeps the rest density. When incompress-
ible flow is solved by a particle method, fluid particles
does not get much particle number density than the rest
state. Therefore, if we solve incompressible flow, there are
less than two particles in a voxel. However, since SPH
solves not incompressible flow but near incompressible
flow, a fluid can be compressed in varying degrees. So
there is a possibility of packing more particles than the
rest state. Overflow of particles in a voxel must causes
artifacts. We can deal with the problem by preparing an-
other bucket texture and storing fifth or later particles
in this bucket. Because we could obtain plausible results
with one bucket texture, another bucket texture was not
introduced.

To accelerate SPH simulation by using of the GPU,
all variables have to be stored in video memories. There-
fore there is a limitation of the proposed method with
respect to the total number of particles. Figure 9 shows
a dam break simulation with 4,194,304 particles. This
simulation needs approximately 600 MB memories. If
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Table 1 Times (a) and (b) are the computation times for
bucket generation and computation time for one time step

including the rendering time (in milliseconds).

Number of particles | Time (a) Time (b)
1,024 0.75 3.9

4,096 0.80 5.45

16,386 1.55 14.8
65,536 3.99 58.6
262,144 14.8 235.9
1,048,576 55.4 1096.8
4,194,304 192.9 3783.6

Table 2 Computation time on CPUs (in milliseconds) and

speed increase of the proposed method (times faster).

Number of particles Time Speed increase
1,024 15.6 4.0

4,096 43.6 8.0

16,386 206.2 13.9
65,536 1018.6 17.3
262,144 6725.6 28.5

Fig. 9 Dam break simulation with 4,194,304 particles.

10,000,000 particles are used, over 1.0 GB memories are
needed. As the video memories of the graphics card used
in this study is 768 MB, about 4,000,000 particles are
the maximum number of particles that can be computed
on the GPU.

There is room for improvement of the data structure
of the bucket which is a uniform grid in this study. Most
of the voxels at the upper part of the computation do-
main of simulations in Figures 6 and 7 are left unfilled.
This uniform grid prevent us from applying to simula-
tions in a larger computation domain. Generating sparse
grid structure efficiently on the GPU is an open problem.

6 Conclusion

We presented a SPH implementation algorithm in which
the entire computation is performed on the GPU. Ap-
proximately 60,000 of particles could be simulated in
real-time and the proposed method also accelerated of-
fline simulation. Then, the computation time was mea-
sured by varying the total number of particles and was
compared with the computation time using the CPU.

The comparison shows that the computational speed of
the proposed method on the GPU is up to 28 times faster
than that implemented on the CPU.
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Fig. 7 Balls of fluid is fallen into a tank.

Fig. 8 A fluid is poured into a tank.
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