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Abstract The description of 3D shapes with features thatsuch as pose invariance for matching articulated shapes [7,
are invariant under similarity transformations is one o th 23].

challenging issues in content-based 3D model retrieval. In In this paper, we demonstrate that shape sampling meth-
this paper we show that shape sampling affects significantlyds, we calparameterizationaffect significantly both the ro-
the rotation invariance of existing shape descriptors.nThe tation invariance and the retrieval performance. We inioed

we propose a hew parameterization method that samples urénew parameterization method that is fully rotation iraat;j
formly the shape which is then fed to a spherical wavelet anand therefore the rotation invariance of the descriptaraei
alyzer to extract discriminative features. We introduces ne pend only on the sampling resolution. Then we propose new
shape descriptors based on higher order statistical m@menshape descriptors that are based on spherical wavelet coef-
of the spherical wavelet sub-bands of the spherical shape fu ficients, and higher order statistical moments of the wavele
tion. The proposed descriptors are compact and invariant ursub-bands.

der similarity transformations. We demonstrate their efficy, This paper is organized as follows. In the next section we
using the Princeton Shape Benchmark, regarding the compueview the related work and outline our contributions. Sec-
tational aspects and retrieval performance. tion 3 discusses the limitation of existing shape parameter

zation methods and describes our method that is invariant to
Key words 3D retrieval spherical wavelets moments shaperotation. Section 4 reviews the general concepts of spdieric
parameterization rotation invariance. wavelet analysis of functions defined on the sphere, and de-
scribes how we use them for 3D shape analysis. Section 5
describes in detail the proposed shape descriptors. &egtio
presents some experimental results. Finally, we discuess th
obtained results and point further directions of this resea

1 Introduction

Recent advances in 3D acquisition and modeling technique2 Related work
have stimulated the use of 3D data in various fields, regultin
in the accumulation of 3D models in large data sets. As 3DMost of three-dimensional shape retrieval techniquesgseg
data are becoming widely spread and ubiquitous, the need fdn the literature aim to extract from the 3D model meaningful
tools for their efficient storage and retrieval is signifitgim- descriptors based on the geometric and topological charac-
creasing. In contrast to text and text-based retrievaltezdan  teristics of the object. Survey papers to the related liteea
based retrieval of 3D models (CB3DR) from large database$ave been provided by Tangelder et al. [24] and lyer et al.
implies the use of geometric shape features for indexing th¢9]. In the following, we review the most efficient shape de-
data. A challenging issue is the description of shapes witrscriptors as well as existing methods for extracting rotati
suitable numerical representations calibdpe descriptors ~ invariant features.

In general a shape descriptor should be discriminative by
capturing only the salient features, robust to noise, catpa ]
easy to compute, and invariant under similarity transferma 2-1 Shape descriptors
tions such as translation, scale and rotation [16, 12, 26O

invariant properties may be required for some applicationsDeSC”ptorS are used to compare 3D models. Existing tech-

nigues can be classified into three broad categories; featur
* Present addressi2-12-1,56-9, Ookayama, Meguro-ku, Tokyo based including global and local features, graph-based and
152-8552 view-based similarity.
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View-based techniques compare 3D objects by compar-

ing their two dimensional projections. They are suitable fo \"‘f"‘-
implementing query interfaces using sketches [9, 6]. Tlyét-i LY

fields (LFD) [2] are reported to be the most effective descrip 7
tor [22]. LFD are shape features computed from 2D Views  sape Function
taken from view points uniformly distributed on the geodesi

sphere. This allows to account equally for all shape feature

and are rotation invariant. However, they are very expensiv

!
n-
|

in terms of computation power (descriptor.cqmputgtion and Spherical amonkc mage Wavews Spherical Wevele:

comparison) and storage. We overcome this limitation by us- ) i ¢

ing spherical wavelet descriptors. SHT Desciptors W Descriptors ST Descriprors
Graph-based techniques compare 3D shapes by compar- @ ® ©

ing their two dimensional descriptors. Reeb graphes [, an Fig. 1 lllustration of different parameterization methods; (ajpt
skeletons [23] are among the most popular. Cornea et al. [33ingularities; one at each pole. (b) The singularities &reirated
used the skeletal representation of 3D volumetric objemts f but the sampling is not uniform near the six vertices of thialoe-
many-to-many and part matching. dron. (c) Uniform sampling.

Feature-based methods aim to extract compact descrip-
tors from the 3D object. Johnson et al. [10] introduced spin
images as local features for matching 3D shapes. They hay@D) as a natural extension of SH. Representing 3D shapes
been used for shape retrieval as well as for the matching ands functions on concentric spheres has been extensivaly use
registration of 3D scans. Other techniques are based on th@ur developed descriptors fall into this category and are a
distribution of features, such as shape distributions.[$6]-  natural extension of SH and ZD.

lane et al. [22] provided a comparison of these techniqués an Laga et al. [13] uses flat octahedron parameterization and
reported that histogram-based methods are the less efiitien 5 e|et descriptors. This eliminates the singularities tp-
terms of discriminative power. _ pear in the two poles when using latitude-longitude parame-
Recently, Reuter et al. [18] introduced the notion of shap&erization but it introduces singularities near the sixtices
DNA. They proposed fingerprints for shape matching. Theyt the octahedron. Moreover, image wavelets respond to hor-
fingerprints are computed from the spectra of the Laplacejzontal and vertical features, and therefore, they areisens
Beltrami operators. These descriptors are invariant Usider e to rotations of the spherical function. We overcoms thi
ilarity transformations, and are very efficientin match#iy  |imjtation by using the second generation wavelets and aug-
and 3D manifold shapes. However, it is not clear how theyment the energy descriptors with higher order statistioa! m

can be extended to polygon soup models. Our proposed teClyzents of the wavelet sub-bands to capture more features of
nique applies on polygon soup models without any restrictio ¢ shape.

on the topology of the shape.

2.2 Invariant features L _ L
3 Rotation invariant parameterization

The issue of extracting invariant shape features is an impor
tant problem in content-based 3D model retrieval. Whilagra
lation and scale invariance can be easily achieved [20]6,12Unlike 2D images, 3D models lack proper parameterization.
rotation invariance is still a challenging issue. Varioustm  When dealing with watertight meshes with low genus, geom-
ods have been proposed to cope with the problem. Some d@dtry images and spherical parameterization have beer intro
them require pose normalization, where each shape is placatliced in the context of texture mapping and geometry com-
into a canonical coordinate frame. These methods are basgutession [19,8]. The parameterization in this case is one-t
on the Principal Component Analysis (PCA) [11], and con-one. In the context of 3D model retrieval, however, most of
tinuous PCA [26], with extensions for solving for axial am- the data are polygon soup models with arbitrary genus and
biguity. However, PCA-based alignment is known to misbe-without restriction on the topology. Luckily 3D retrievabes
have and therefore, it hampers significantly the retrieeal p not require a one-to-one mapping but rather a parameteri-
formance [12]. zation that preserves the salient features of the shape. As

To avoid explicit alignment, the shapes are representedlustrated in Figure 1, we consider three parameteriratio
using functions defined on the unit sphere. Funckhouser et aimethods: (1) latitude-longitude parameterization, (2abe-
[6] uses spherical harmonics (SH) to analyze the shape funddron parameterization and (3) uniform parameterizatien us
tion. Spherical harmonics can achieve rotation invaridnce ing geodesic sphere. The first one has been extensively used
taking only the power spectrum of the harmonic representain the literature and, as shown in Figure 1-a affects the rota
tion, and therefore, discarding the rotation dependemwtrinf tion invariance since it has singularities near the two gole
mation [12]. Novotni et al. [14] uses 3D Zernike moments We discuss the two others in the following subsections.
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3.1 Octahedron parameterization

Hoppe et al. [8,17] maps the sphere onto a rectangular do-
main using spherical parameterization diattened octahe-
dron. The interesting property is that the flattened octahedron R L R l
unfolds isometrically onto a rectangular lattice. Therefo
image processing tools can be used with simple boundary ex-
tension rules. This has been used in [13] for shape retrieval .
as shown in Figure 1-b, and demonstrated that it can be used
to reduce the singularities and therefore the sensitivityot
tations. However, this sampling is not uniform since the dis
tance between neighbor points is smaller near the six esrtic
of the octahedron.

\
d
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=

Image to use
for transformation

Original image,

Fig. 2 Implementation of the boundary extension for image wavelet
transform (IWT). The orientation of the letters indicatles tvay the
image halves are flipped.

3.2 Uniform parameterization using geodesic dome

The image wavelet transform (IWT) uses separable fil-
The key idea of our approach is that rotation invariant sam+ers, so at each step it produces an approximation image A
pling can be achieved using an opera@othat samples the and three detail images HL, LH, and HH. The forward trans-
shape uniformly, in the Euclidean distance sense, in atdir - formation algorithm performs as follows:
tions.
To achieve this in practice, we sample the shape function byl. Initialization:
casting rays from the shape’s center of mass to the verticeso (&) Generate the geometry imaggherefore the function
a geodesic dome. Figure 1-c illustrates this principle. dhe f) of sizew x h = 2™ x 2" using octahedron param-
vantages of this representation are two fold; first the vesti eterization as explained in Section 3.1.
of the geodesic dome are equidistant, all its faces are aflequ ~ (0) A™ «— f, | —n.
area, and is free of any singularity. Therefore, it guarasmite 2. Forward transform: repeat the following steps until=
a uniform sampling of the shape. Second, it allows a multi-  O:
resolution analysis of the shape function where the coarses (a) Apply the forward spherical wavelet transformas,

(level-0) representation is obtained using a basic octaimed we get the approximatioA( Y, and the detail coef-
of 20 vertices, and finer levels are derived by recursive subd ficientsC!'~Y = {LH(-Y HLI-D HH(-D} of size
visions. 2l x 2-1,
() | —1-1.
3. Collect the coefficients:the approximatio®\© and the
4 Wavelet analysis for 3D shape description coefficientsC®,...,C("1 are collected into a vectet.

Discriminative feature extraction is much easier if it imdo we experlmer_ned \.N't.h Haar_and Daubechies bases.but found
that they provide similar retrieval performance. In thipea

via transformation of the shape function, we computed in the . .
we use the Haar wavelets which are easy to implement. In

previous section, into a suitable space where simple mOdelﬁaar wavelets, the scaling function is designed to take the
with small number of parameters can describe the data. Since ' 9 9

at this stage our shape function is defined as an image on thré)llmgdaverakge Ef tgif data, agd the wavelet function "Ql’ de_—
spherical domain, we import some ideas from texture anal-sr']gne. tol take the difference between every two samples in
ysis. Particularly, we first apply a wavelet transform to thet € signat.
spherical shape signal, using either image wavelets orsphe
ical wavelets. The resulting sub-bands are then run thraugh The boundary extension rules During the wavelet transform,
statistical analyzer module to build discriminative shdpe  when processing a point that is closer to the image bound-
scriptors. ary than the wavelet kernel width, points outside the image
For the wavelet analysis stage, we present two alternativelsoundary are invoked. The boundary extension rules come
following the work of Hoppe et al. [8] on shape compression,into play in such situations. For image wavelet transform, w
that we adapt to our purpose. apply very simple tricks. We first extend the image size by
flipping the left and right halves of the image as shown in
Figure 2. In this figure, the original image is delimited wéth
4.1 Image wavelets with spherical boundary extension (IWTYed boundary. The boundary is extended to the blue borders.
We then analyze the entire extended image with an ordinary
Similar to [8], all what we need is to set the boundary ex-image wavelets. Finally we collect only the wavelet coeffi-
tension rules then use standard image wavelet packages fatents which are inside the green boundary. This procedure i
analyzing the shape function. very simple to implement, but it requires more memory stor-
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expensive. Instead, we have chosen to keep the coefficients
up to leveld. This is reasonable since many of the high fre-
quency coefficients are either noise components or null in
case of smooth geometry images. We call the obtained de-
scriptors IWT.COEFFS and SWICOEFFS for, respectively,
image wavelet transform and spherical wavelet transforme ey

d € {0,...,n—1}. In our implementation we used = 3,
therefore, the IWICOEFFS descriptor is of sidé = 292 x

20+1 — 32 x 16, and the SWICOEFFS is of sizél = 258.

Analysis Comparing directly wavelet coefficients requires efficient
vkeK(j):  Ajx=Ajt1k alignment of the 3D model prior to wavelet transform. We
YmeM(j):  Cim=Ajsim— Y SjkmAjk perform a PCA-based pose normalization [16] and compute
&, =5, —1/2 kK the Euclidean distance as a dissimilarity measure.between
gfl _ gfz _1 /8’ two feature vectorB; andF,. Note that, the vectd¥ provides
5«11 _ §e2: —1/i6. an embedded multi-resolution representation of the 3Deshap

features. This approach performs as a filtering by removing
Fig. 3 Spherical wavelet stencil (top) and the analysis algorithm gytliers. A major difference with spherical harmonics iatth
HereK(j +1) = K(j)UM(j). IWT and SWT preserve the localization and orientation of
local features.

age and processing time. Nevertheless, we found thattstill i
provides a processing time that is acceptable for retrieval
5.2 Wavelet moments

4.2 Second generation wavelets (SWT) Traditional approaches computed energies of the wavdbet su

bands as features. They have been used in texture deseriptio
for image retrieval [27,4,5], and later for 3D model retekv
[13]. Commonly,L! andL? norms are used as measures.

A natural extension of the energy method is to treat the
wavelet sub-band analysis as a probability inference prabl
We model the shape function by the marginal probability dis-
Yribution of its wavelet sub-band coefficients. In this work

This is based on spherical wavelets introduced by &t~
and Sweldens [21]; the unit sphere is sampled at differeat re
olutions. The base (coarsest) sampling level is an octahedr
and finer levels are obtained progressively by applying subd
vision rules such as Loop or Butterfly. In our implementation
we used FSW (Fast Spherical Wavelet) package provided b

Gabriel Peyre [1]. L ; . .
I yre [1] considering complexity as a major concern in 3D model re-

Figure 3illustrates the forward analysis at each l¢ygk trieval imolv ch terize th let sub-bands with
0,...,n—1}. Similar to IWT, we collect the approximation reval, we simply characterize the wavelet sub-bands wi
their statistical moments.

coefficientsA® and the details coefficients at each sub-band i o . )

Cl into a vectorF, of length 2+ 4™, which we will use Th_e maximum likelihood (ML) estimator of the first mo-

for descriptor extraction. Note that, we are only interéste Mentis given by the sample mean:

in the analysis step. For more mathematical details, we refe

the reader to the original paper [21]. This scheme is very in- o 1 K

teresting to consider. In fact the analysis is not restii¢te R = K Z ‘XLJ" 1)

horizontal and vertical directions, as in image wavelet, bu =1

consider the one-ring neighborhood. Therefore, the aisalys

is less sensitive to rotations. Where{le ,i=1...k} are the wavelet coefficients of thé
wavelet sub-band, ang is the number of coefficients in the
| —th wavelet sub-band. The first moment provides a sum-

5 Wavelet-based descriptors mary of the information contained in each wavelet subband,
and thus, it is a potential candidate for shape description.

For the two parameterization methods we build two types ofHowever, similar to the power spectrum [12], information

descriptors: one using a subset of the wavelet coefficiertts a such as feature localization are lost. To include more iawr

the other based on wavelet moments. properties in the shape descriptor we use higher ordes-stati
tical moments. For instance, the second and third moments
about the mean (standard deviation and skewness) are given

5.1 Wavelet coefficients as shape descriptor by the following unbiased estimators:

Once the spherical wavelet transform is performed, one may K 1/2
use the absolute value of the wavelet coefficients as a shape F@ _ 1 Z (|X| | *W)Z )
descriptor. Using the entire coefficients is computatitynal ! kg *1J:1 .
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k
Y (g% !
F(3) _ k| k| -1 =1 3 091 N — & IWT_COEFFS
[ _ 3/2 (3 08l \\\\;Q ————— SWT_COEFFS
k| 2 k| / {\ —A—— IWT_MOMENTS
Z (|X| j | - W)Z o7 Wk = SWT_MOMENTS
=1 ’ -g 0.6 %R
Qos
wherex; = Fl(l> is given by Equation 1. To build the shape & |

descriptor we first compute the three moments of the approxi
mationAM) and the moments of each detail sub-band yielding
into a one-dimensional shape descrigtoe {F},1 =0...N

of sizeN = (3x (n—1)+1) x 3 for IWT descriptors, and

3 x nfor SWT descriptors. In our case we use- 7, there- % o1 ez o1 o KON 06 07 o8 o5 1
fore N = 19 x 3 for the IWT descriptor, antN = 7 x 3 for —
SWT descriptor.

Observe that rotating a spherical function does not changgig. 4 Precision-recall graph for the four descriptors when utiieg
its moments. Therefore, spherical wavelet moment-based ddase test classification of the Princeton Shape Benchmark.
scriptors are invariant under any rotation. Since the sagpl

tsr:Z?er iE\I/S:rierl(r)]iitcl)onelr?c\elzllarlg::a':,i\(l)en:bl\tﬂagr]e?)r\]/?r)ihdeexrgf shown in Figure 4. We refer the reader to the Princeton Shape
9 ' ' Benchmark paper [22] for comparison with other descriptors

descriptor is very compact. Thus, the storage and computaén the precision-recall measure.

tion time required for comparison are reduced. Table 1 sum- We also evaluated the performance of our descriptors us-
6}hg the nearest neighbor, first and second-tier, E-measute a
Discount Cumulative Gain measures [22]. The results are sum
marized in Table 1. We made all the experiments on the base
test classification of the PSB. Table 1 shows that the spdieric
wavelet coefficients perform better, while the moments come
6 Experimental results in the second. Note that the wavelet coefficients requireemor
storage and comparison time.
We have implemented the algorithms described in this pa- Shilane et al. [22] summarized the performance on the
per and evaluated their performance on the Princeton Shapg@SB of several shape descriptors and we use their results to
Benchmark (PSB)[22]. SWTOEFFS and IWTCOEFFSre- compare with our descriptors. In this paper, we show the per-
quire pose normalization while the moment descriptors ardormance of six descriptors, but we refer the reader to the
rotation invariant. To evaluate the efficiency of the pragbs original paper for a complete evaluation. More precisely, w
descriptors for shape retrieval we use ®herical Extent ~consider the:

Function(EXT) [20]; this is a measure of the extent of the ; Lightfields descriptors (LFD) [2]: they are computed
shape in the radial direction. Note that our framework ap-  £5m 100 images, which are rendered from cameras po-
pIies. for any other spherical function such as the Gaussian giiioned on the vertices of a regular dodecahedron. Each
Euclidean Distance Transform (GEDT) [12]. We chose to use  jaqe is encoded with 35 Zernike moments, and 10 Fourier

the spherical extent function for its simplicity. coefficients. The dimension of the feature space is 4500.

Comparing shape descriptors requires the definition of a5 55,,ssian Euclidean Distance Transform (GEDT)[12]
distance metric in the feature space. We have experimented 5. spherical shell of the GEDT is represented by its
with the City block distance, the Euclidean distance and the spherical harmonic coefficients up to order 16 [12,22]. It

Canberra metric and found that the Canberra metric achieves | ¢ the latitude-longitude parameterization.
slightly better performance compared to the other two mea-3 Spherical Harmonic Descriptor (SHD) [12]; a rotation

sures. Therefore, all the results we show in the following invariant representation of the GEDT obtained by com-
subsections are based on this metric. Recall that the Can- puting the restriction of the function to concentric splsere

berra metric between two vectoXs= (xy,...,%,) andY = and storing the norm of each harmonic [12, 22].

rameterization method. Their discrimination efficiencydan
retrieval performance will be discussed in the experimenta
results section.

(Y1,---,Yn) is defined as follows: 4. Spherical Extent Function (EXT) [20]: It was com-
10 % -y puted on 64 64 spherical grid using the latitude-longitude
Z(X,Y) = - Zi PETE (4) parameterization and then represented by its harmonic co-
i=

efficients up to order 16. We obtain feature vectors of 153
floating point numbers.

6.1 Retrieval performance 5. Harmonics of the Spherical Extent Function (H-EXT)
[12]: a rotation invariant representation of the EXT ob-
The precision-recall curves on the base test classificatibn tained by computing the norm of each harmonic. In our

the PSB of the spherical wavelet-based shape descrip®rs ar  implementation, we consider the harmonic coefficients up
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Table 1 Retrieval performance of the wavelet-based descriptoisoraveraged over all the models. We use the base testfidaden of
the Princeton Shape Benchmark.

Size | Nearest Neighbor Firsttier Second tier E-measure DCG
IWT_COEFFS 512 44.98% 3200% 4060% 2122% 6558%
SWT_COEFS 258 45.75% 3361% 4182% 2265% 6600%
IWT_MOMENTS 57 3318% 286% 401% 2141% 6254%
SWT_MOMENTS | 21 152% 197% 280% 1434% 5439%
LFD 4500 65.7% 380% 487% 280% 643%
SHD 544 55.6% 309% 411% 241% 584%
GEDT 4896 60.3% 313% 4Q7% 237% 584%
EXT 153 54.9% 286% 379% 219% 562%
H-EXT 33 281% 245% 313% 163% 586%
D2 64 311% 158% 235% 139% 434%

to order 32 obtaining feature vectors of 33 floating point Shape Retrieval Contest (SHREC3D). Recall that the queries

numbers. We used geometry images of size:1228. are not part of the PSB. In all our experiments, we consider a
6. Osada’'sD2 shape distribution (D2) [15]: a one dimen-  retrieved model as relevant if it belongs to the same class as

sional histogram that measures the distribution of the pairthe query model.

wise distance between pairs of random points on the shape Figure 5 shows the retrieval results for each of the four de-

surface. We used histograms of 64 bins. scriptors. By visually inspecting these results, we cartlsae

In the literature, the LFD is considered as the best desript 1€ descriptors that use directly the wavelet coefficiests p
Table 1 shows the results according to the quantitative meal®'™ Petter. This is predictable since the wavelet momenets a
sures computed on these descriptors (the results of LFD, EXYETY compact. An important point to outline is that the per-

and D2 are the one reported in the original paper [22], while'©rmance of SWIMOMENTS is very poor compared to the
the results of H-EXT are from our implementation). other descriptors. This observation is further confirmed us

These results indicate that, spherical wavelet desceptor'Nd Performance measures (Table 1). This is because the size
perform better than the LFD, shape distributions and spher®’ the SWILMOMENTS is very small compared to image
ical harmonic descriptors on DCG measure. An interestind”avelet moments since the number of decomposition levels is
observation is that the lightfield descriptor, which is ddas ey Small. Using more decomposition levels is computation
ered a very good signature [2], performs better than spdieric ally impractical when using the second generation wavelets
wavelet descriptors for the—nearest neighbors related mea-
sures (nearest neighbor, first and second tier), while thersp
ical wavelet descriptors perform better than the lightBeld-
scriptor for the precision/recall measures (DCG), which ar
considered more indicative.

An interesting result is that the performance on the DCG

7 Conclusions and future work

We proposed in this paper the use of the second generation
wavelet analysis for 3D model retrieval. We showed that our

measure of the IWIMOMENTS, a very compact descrip- new parameterization is more suitable for shape analysis as
tor. is almost similar to the LF,D A comparison with the it is uniform and takes into account uniformly all the shape
pe}formance of the EXT and H-EXT descriptors shows thatfeatures. Then we proposed new shape descriptors based on
moment-based wavelet descriptors (\WIOMENTS) have the higher order statistical moments of the spherical vevel

several benefits: (1) compactness, (2) rotation invaridttt-w sup-b ands. These deSCI’IptO.I’S are compact and rotation in-
out pose normalization, and (3) easy to compute. variant. Our results on the Princeton Shape Benchmark show

Finally, note that our descriptors exhibit poor performanc that the new framework outperforms the spherical harmonic

on the Nearest Neighbor measure compared to the LFD, GE 'sgd_descriptors in terms of Qiscounfc Cumulative_Gain and
SHD and EXT, but outperforms H-EXT and D2. This may be premsmn-reca” measures. An interesting property 'Sm. .
justified by the fact that our parameterization takes ondy th Imolmenthdes.crr;ptc.)rf, Whlch_are veryhcompact, perform Sk']m'_
extent of the shape in the radial direction, discardingriate ary_tot € LightField descriptor on the DCG measure when
details. We plan in the future to experiment with a combina—app“e.d to EXT. . .
tion of GEDT and wavelet descriptors. .Th|s yvork opens a numbgr of issues that we would Ilk_e
to investigate in the future. First we found from our experi-
ments that the developed descriptors behave poorly on stick
6.2 Retrieval results like shapes. We believe that this is the drawback of the sam-
pling procedure. Another issue is to experiment with differ
Finally, we executed series of shape matching experimentent spherical wavelet basis and compare their performamce o
on the base test classification of the Princeton Shape Benchilifferent classes of shapes. Finally, none of the develdped
mark (PSB) [22]. We use the query set provided in the 3Dscriptors perform equally in all situations and on all césssf
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es using random queries from the 3D ShapéeRRa Contest (SHREC3D). Recall that the queries are al



shapes. A challenging issue is to investigate on how to comi5.

bine and select features in order to achieve best perforeanc

16.
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