”CGI 2007 - Conference Paper” manuscript No.
(will be inserted by the editor)

Shadow Generation for Objects

Represented by Catmull-Clark Subdivision Surfaces

Shuhua Lai', Fuhua (Frank) Cheng?®

! Virginia State University, Petersburg, VA 23806
2 University of Kentucky, Lexington, KY 40506

Received: 01/07/2007 / Revised version: 03/29/2007

Abstract A method for generating good quality shad-
ows for objects represented by Catmull-Clark subdivi-
sion surfaces (CCSSs) is presented. The new method is
based on combining a vexolization technique and a pro-
jection technique. Like the shadow mapping method, one
can easily tell that, after the projection, the voxels that
are closest to the light are not in shadow. But it is diffi-
cult to tell if the remaining voxels are in shadow without
other information. In this paper this problem is solved
by augmenting the projection phase with information
obtained during the voxelization phase. Two main ap-
proaches are presented: offset-based that uses position
and normal information, and topology-based which uses
voxel connectivity information. The shadow determina-
tion process is also facilitated by storing voxelization
results in a cubic framebuffer directly. Since our vox-
elization process is performed in the parameter spaces
of the CCSSs instead of the object space, the process is
very fast and efficient. As a result, the overall shadow
generation process is fast, efficient and robust. The new
method is presented for CCSSs only, but the concept
works for any subdivision schemes whose limit surfaces
are parametrizable.

1 Introduction

A shadow is an area of relative darkness in an illumi-
nated region caused by an object totally or partially oc-
cluding the light [23]. Shadows provide clues about the
shapes, relative positions and surface characteristics of
the objects. They can also indicate the approximate lo-
cation, intensity, shape and size of the light source(s).
Hence, the presence of shadows in a scene helps convey
realism and aids depth perception.

Shadow determination is intrinsically a visibility de-
termination process, except it is done with respect to the
light source instead of the view point. Shadow mapping
is a popular method in shadow generation. The concept

was first introduced by Lance Williams [18] in 1978. It
has since been used in many applications, including com-
mercial softwares such as Pixar’s RenderMan and high-
end PC games. This concept is also supported by some
commercial GPUs, like nVidia.

In shadow mapping, shadows are created by testing
if pixels visible from the view point are visible from the
light source. This is usually done as a two-phase pro-
cess: a z-buffering with respect to the light source and a
z-buffering with respect to the view point. Visible pix-
els identified in the second phase are compared with the
corresponding entries of the z-buffer (or, depth image)
obtained in the first phase to determine if they are in
shadow. The depth image is usually stored in the form
of a texture. A typical problem with this approach is,
because of numerical error, a pixel with larger z value
might actually be in light. Consider, for example, the
three points A, B and C of the plane P in Figure 1.
Since A, B and C are not blocked by anything when
viewed from the light source, they should all be in light.
However, because of the round-off error, when projected
onto the projection plane, they all fall onto the same
entry on the projection plane. Hence, according to the
algorithm, A and B should be in shadow. As a result,
most part of the plane P would be rendered in shadow.
Hence the rendering result in this case would convey an
incorrect perception of the scene. Solving this type of
problem has always been a challenging task for shadow
generation process involving discretization and projec-
tion.

In this paper, we study the problem of shadow gen-
eration for objects represented by Catmull-Clark subdi-
vision surfaces (CCSSs) [1]. Our approach also involves
discretization and projection. But the discretization pro-
cess is not done through the z-buffering process, but by
vozelizing the CCSSs. Unlike the scan conversion process
in z-buffering, the voxelization process is not part of the
rendering process [10-12], but a way to build a represen-
tation for an object (even though such a representation
can make the rendering of an object easier in some cases.

., Projection

QO,Plane
*
v

Viewer * Light

P A

Fig. 1 Scenario in which the result of shadow mapping is
not correct (Cross-Section View)

But a main reason of voxelization is for modeling pur-
pose). Therefore, separate rendering (and shadow gener-
ation) process has to be developed for the results of the
voxelization process. The shadow generation process in
this paper is done through a projection process, similar
to the shadow mapping method. Therefore, one would
face the same problem as the one depicted in Figure 1.
We solve this by augmenting the projection phase with
information obtained during the voxelization phase. Two
approaches are presented: an offset-based approach and
a topology-based approach. The first approach uses posi-
tion and normal information while the second approach
uses voxel connectivity information. Test results show
that both approaches work well.

The remaining part of the paper is arranged as fol-
lows. A brief review of background and previous works
in this area are given in Section 2. A description of our
voxelization technique is given in Section 3. Two ap-
proaches for shadow determination are presented in Sec-
tion 4. Rendering issues critical to the shadow genera-
tion process are discussed in Section 5. Implementation
details and test results are shown in Section 6. The con-
cluding remarks are given in Section 7.

2 Background & Related Work
2.1 Catmull-Clark Subdivision Surfaces

Given a control mesh, a subdivision surface is generated
by iteratively refining (subdividing) the control mesh to
form new and finer control meshes. The refined control
meshes converge to a limit surface called a subdivision
surface. So a subdivision surface is determined by the
given control mesh and the mesh refining (subdivision)
process. The control mesh of a subdivision surface can
contain vertices whose walences (numbers of adjacent
edges) are different from four. Those vertices are called
extra-ordinary vertices. Popular subdivision surfaces in-
clude Catmull-Clark subdivision surfaces (CCSSs) [1],

Shuhua Lai, Fuhua (Frank) Cheng

Doo-Sabin subdivision surfaces [2] and Loop subdivision
surfaces [3].

Subdivision surfaces can model/represent complex
shape of arbitrary topology because there is no limit on
the shape and topology of the control mesh of a subdi-
vision surface. Subdivision surfaces are intrinsically dis-
crete. Recently it was proved that subdivision surfaces
can also be parametrized [4-7]. Therefore, subdivision
surfaces cover both parametric forms and discrete forms.
Parametric forms are good for design and representa-
tion, discrete forms are good for machining and tessella-
tion (including FE mesh generation). Hence, we have a
representation scheme that is good for all graphics and
CAD/CAM applications. Subdivision surfaces by far are
the most general surface representation scheme. They
include non-uniform B-spline and NURBS surfaces as
special cases [9]. In this paper we only consider objects
represented by CCSSs. But our approach works for any
subdivision scheme whose limit surfaces are parametriz-

able.

2.2 Voxelization

Like pixelization of 2D items, voxelization of 3D sur-
faces [10,11] is a powerful technique for representing and
modeling complex 3D objects. This is proved by many
successful applications of volume graphics techniques re-
ported recently. For example, voxelization can be used
for visualization of complex objects or scenes [12,14,15]
and shadow determination [16,17,20,21]. It can also be
used for measuring integral properties of solids, such
as mass, volume and surface area. It can be used for
Boolean operations of free-form objects as well [13].

A good voxelization method should meet three crite-
ria: separability, accuracy, and minimality [10,11]. The
first criterion demands analogy between the continuous
space and the discrete space to be preserved and the re-
sulting voxelization not to be penetrable since the given
solid is closed and continuous. The second criterion en-
sures that the resulting voxelization is the most accu-
rate discrete representation of the given solid according
to some appropriate error metric. The third criterion re-
quires the voxelization does not contain any voxels that,
if removed, make no difference in separability and accu-
racy. The mathematical definitions of these criteria can
be found in [10,11].

The widely used approach in voxelizing free-form solids
is spatial enumeration algorithms which employ point or
cell classification methods in an exhaustive fashion or
by recursive subdivision. However, 3D space subdivision
techniques for models decomposed into cubic subspaces
are computationally expensive and thus are inappropri-
ate for medium or high resolution grids. Our voxelization
technique [12] also uses recursive subdivision. The differ-
ence is that our method performs recursive subdivision
in 2D parameter space, not in 3D object space. Hence

Shadow Generation for Objects Represented by Catmull-Clark Subdivision Surfaces 3

expensive distance computation between 3D points is
avoided. It has been proven in [12] that our voxelization
method satisfies the above three requirements. Hence,
the result of our voxelization method is leak-free.

2.3 Shadow Generation

Shadow generation is an important area of computer
graphics and has been extensively studied [23]. The most
popular methods are shadow mapping [18], shadow vol-
ume [19] and ray tracing [20]. The shadow volume method
is object space based. For complex scene, it takes longer
time to render and generate shadows. The ray tracing
method is very floating point intensive and, consequently,
is expensive and numerical error prone. The shadow map-
ping method is an image space based method. The ren-
dering of a shadowed scene in this case involves two
steps. The first step produces a shadow map (depth map)
by rendering the scene from the light source. The shadow
map is often stored as a texture in the graphics card
memory. The second step applies the shadow map to
the scene by drawing the scene from the usual camera
viewpoint. The tricky part of this step is the depth map
test.

A main advantage of the shadow mapping method is
that no knowledge or processing of the scene geometry
is required. The accuracy of a shadow map, however, is
limited by its resolution. Aliasing, especially when using
small shadow maps, is the major disadvantage of this
technique. For real-time shadows, shadow mapping is
less accurate than shadow volume, but the shadow map-
ping method is much faster than shadow volume and ray
tracing when dealing with complex scenes.

Shadow generation for objects represented by dis-
crete voxels has also been studied [16,17,20,21]. For ex-
ample, a shadow determination accelerator for ray trac-
ing, built on top of a uniform voxel traversal grid struc-
ture, is presented in [16]. An efficient shadow detection
algorithm for ray tracing is proposed in [17]. The algo-
rithm can be used for direct voxel rendering as well. A
hardware implementation of shadow generation for vox-
els is reported in [21], which presents a novel approach to
use graphics hardware to dynamically calculate a voxel-
based representation of a scene.

However, as far as we know, no method has been
proposed for upgrading shadow mapping method using
knowledge of the scene geometry. This is probably be-
cause it would slow down the shadow generation pro-
cess significantly. Voxelization based shadow generation
methods [16,17,20,21] do not use any information on
the scene geometry either. But this is because the geom-
etry information on voxels is unknown. In this paper, we
present a method which is similar to shadow mapping
but uses voxels in determining shadows. The major dif-
ference is that the scene geometry is utilized in the pro-
cess of shadow determination. As a result, better quality

@ (b)

Fig. 2 Basic idea of parameter space based recursive vox-
elization.

of shadows can be generated for an even low voxelization
resolution than shadow mapping. Because normal reso-
lution (256 x 256 x 256) would lead to acceptable quality
of shadows, our method can deal with complex scenes
interactively.

3 Voxelization based on Recursive Parameter
Space Subdivision

Given a free-form object represented by a CCSS and a
cubic frame buffer of resolution My x My x M3, the goal
is to convert the CCSS represented free-form object (a
continuous geometric representation) into a set of voxels
that best approximates the geometry of the object [12] .
We assume each face of the representation’s control mesh
is a quadrilateral and each face has at most one extra-
ordinary vertex. If this is not the case, simply perform
one Catmull-Clark subdivision on the control mesh of
the CCSS [1].

We first consider voxelization of a single patch of
the CCSS representation. Given a patch S(u,v) defined
on [uy,us] X [v1,vs], we voxelize it by recursively subdi-
viding its parameter space until each subpatch is small
enough (hence, flat enough) so that voxelization of that
subpatch can be done simply by voxelizing its four cor-
ners [7]. It is easy to see that if the voxels corresponding
to the four corners of a subpatch are not N-adjacent
(N € {6,18,26}) to each other, then there exist holes
between them [10-12]. In this case, the subpatch is con-
sidered not small enough yet. A midpoint subdivision is
performed on the parameter space to get four smaller
subpatches and repeat the testing process on each of the
subpatches. This process is recursively repeated until all
the subpatches are small enough and can be voxelized
using only their four corners.

The vertices of the resulting subpatches after the re-
cursive parameter space subdivision are then used to
form voxels in the voxelization process to approximate
S(u,v). For example, if the four rectangles in Figure 2(a)
are parameter spaces of S(u,v)’s subpatches and if the
rectangles shown in Figure 2(b) are parameter spaces
of resulting subpatches when the above recursive testing
process stops, then vertices of these subpatches (those
correspond to 2D parameter space points marked with

small solid circles) are used to form voxels to approxi-
mate S(u,v).

The above process guarantees a shared boundary (ver-
tex) of adjacent subpatches will be voxelized to the same
voxels (voxel). This is true for adjacent patches as well.
Hence, voxelization of the entire CCSS representation
can be performed on a patch based approach. To make
the process of writing voxels into the cubic frame buffer
simpler, the control mesh of the CCSS representation is
normalized to be of dimension [0, M; — 1] x [0, My — 1] X
[0, M3 — 1] first. Patches of the CCSS representation are
then voxelized one at a time, and the resulting voxels
are written into corresponding entries of the cubic frame
buffer. Result of this voxelization process satisfies the
criteria of separability, accuracy and minimality with re-
spect to the given N-adjacency connectivity requirement
(N €{6,18,26}) [10-12].

4 Shadow Determination

The process of determining if a voxel is in shadow is done
through a projection process. Different from the Z-buffer
based method, where the scene is first rendered with
respect to the light to obtain a shadow map and then
rendered with respect to the view point, our method
projects the voxels onto a projection plane only once.
Hence, it requires one traversal of the voxels only. Note
that after the projection, for each entry of the projection
plane, the voxel that is closest to the light source is in
light. But the voxels with bigger distance from the light
source are not necessarily in shadow. They could only be
partially in shadow or even not in shadow at all, such as
points A and B in Figure 1. So the main task here is to
do shadow testing for those voxels with bigger distance
from the light source. Voxels of this type will be called
uncertain vozels.

In the projection process, to ensure a relatively good
distribution of the projected voxels, the projection plane
should be as much perpendicular to the light beams shot
from the light to the scene as possible. The resolution of
the projection plane should be very close to the resolu-
tion of the voxelization process. This is because a lower
resolution of the projection plane would cause too many
voxels to be projected onto the same entries of the pro-
jection plane, while a higher resolution could lead to
unfilled entries between adjacent voxels. None of these
situations is desired: the first situation would leave too
many uncertain vozels to be tested and the second sit-
uation would generate illegal holes (gaps) in the final
shadows. In the following, two approaches are presented
for shadow testing of uncertain voxels. The testing pro-
cess uses geometric and topological information inher-
ited from the voxelization process [12].

Shuhua Lai, Fuhua (Frank) Cheng

Fig. 3 Offset based shadow determination

4.1 Offset-based Shadow Determination

In this approach, only those voxels that are closest to
the light are stored during the projection process. The
basic idea of this approach is to use coherence property
to determine if a voxel is in shadow. If a voxel is blocked
by another voxel, we move the voxel along its normal
direction outwards slightly and test if it is still blocked
or not in the new position. For example, in Figure 3,
voxel A is moved to a new location A’ and then repeat
the test. The new location of the voxel should be far
enough to ensure this movement creates a different voxel,
but not too far away to exceed the N-adjacency range
(N € {6,18,26}). A reasonable choice for the distance
is V2 - r, where r is the size of a voxel. If the voxel in
question is called A and the voxel at the new location is
called A’, then A is considered to be in shadow if A’ is
in shadow. Otherwise, A is considered to be in light. In
order to avoid A’ being projected onto the same entry as
A, a different type of projection has to be used. In our
implementation, we project voxel A’ alone the line which
starts from A’ and is parallel to the beam emitted from
the light to A (see Figure 3). In this way, voxel A’ and
A will be projected to different entries on the projection
plane. After the projection, clear decision can be made
if voxel A is in shadow according to our assumption. In
addition, it is easy to see that if N - (L — A) < 0, then
A is definitely in shadow, and the above process is not
needed at all.

4.2 Topology-based Shadow Determination

In this approach, when a voxel, say A, is projected, the
subpatch ID(s) that A belongs to in the surface is also
stored in the corresponding entry of the projection plane.
The subpatch ID of a voxel is explicitly known when we
perform the voxelization process. Hence the projection
process can be done simultaneously with the voxeliza-
tion process. Because there are possibly more than one
voxel falling onto the same entry of the projection plane,

Shadow Generation for Objects Represented by Catmull-Clark Subdivision Surfaces 5

a list is needed for each entry of the projection plane
so that IDs of the voxels that fall onto the same en-
try are linked and sorted by the distance from the voxel
to the light. Therefore, after the projection process, we
will know which voxel is possibly blocked by which sub-
patch(es). So it is straightforward to determine if a voxel
A is in shadow by simply testing if the ray from A to
the light intersects any subpatches linked to the same
entry of the projection plane. Because the subpatches
generated in the voxelization process are very small and
are replaced with quadrilaterals in the rendering process,
the intersection testing process becomes testing of a ray
with two triangles. There are many methods for this test-
ing process. The following approach is followed here [22]
which only uses dot products in the testing process.

Given a ray R emitted from Py to P;, and a triangle
T with vertices Vg, V7 and V5. Suppose the intersection
point of the ray R and the plane T is P;. Note that P;
could be inside of T" or outside of T. P; is very easy to
find and if P; does not exist, R does not intersect T’
either. Hence if P; exists and if s >= 0, ¢t >= 0, and
s+t <=1, then R intersects with T', where

— (wv)(wv)=(v-v)(wu)
§= (uv)?2—(u-u)(v-v)

The definitions of u, v and w are as follows.

u:‘/l—Vo
’UZVQ—VO
w:P]*V()

With 5 distinct dot products and no cross product at
all, the computation is very efficient.

For a given voxel, if the ray intersects any subpatch
in front of it, the voxel is in shadow. Therefore, even if
there is a long list of subpatch IDs that might block this
voxel, the computation actually is very fast for a voxel
in shadow. This is because the computation stops once
an intersection has been detected and this usually occurs
on the first subpatch in font of it. Hence for a voxel in
shadow, only one intersection computation is needed. If
there is no subpatch being in front of a voxel, this voxel
is obviously in light. For other voxels, if we go through all
the subpatches in its linked list of blocking subpatches,
and still are not able to find an intersection, then they
should be lit. Fortunately, such voxels are always not
many in an ordinary scene and usually linked lists of
blocking subpatches are not long either (in our tests,
they are less that 10). Hence, the overall testing does not
require a lot of computation and much better quality of
shadow can obtained.

5 Scene Rendering

Once shadow determination for each voxel is done, shadow
generation is simply a process of rendering all voxels such

that shadowed voxels are only lit with ambient light.
Different from previous volumetric rendering techniques
[14,15] which render the voxels directly, our rendering
process does not render the voxels, but the subpatches
whose vertices are the voxels to be rendered [12]. Note
that connectivity of voxels is known. Hence the resulting
rendering is smooth and seamless. The rendering process
is simply another process of voxelization of the surface.
But this time we do not write any values into the cubic
frame buffer. Instead, when we reach subpatches whose
four corners are mapped to adjacent voxels, the sub-
patches are tessellated and sent to the rendering pipeline.
However, before sending the tessellation result to the
rendering pipeline, each subpatch has to be checked to
see if the corresponding voxels of its four corners are in
shadow. If the voxels are all in shadow, the subpatch is
only lit with ambient light. If n (n < 4) voxels are in
shadow, then the subpatch will be lit with ambient light
and 2% reflection intensity, but no specular highlight.
This approach provides a smooth transition between the
shadowed area and the lit area.

The overall process seems simple. But the subpro-
cess of checking if a voxel is in shadow is actually quite
tricky. This particular subprocess affects the overall per-
formance significantly. In the following two subsections
we will discuss two methods to find out the lighting prop-
erty of each voxel in the process of rendering.

5.1 Shadow Generation without Cubic Frame Buffer

As we can see from the above description, a cubic frame
buffer is not a must in our shadow generation method.
This is because we can project voxels onto the projection
plane directly during the voxelization process, and con-
sequently avoid the process of writing voxels into the cu-
bic frame buffer. Although the projection of voxels only
needs to be done once, without a cubic frame buffer,
the result of shadow determination cannot be kept and
has to be re-calculated each time the scene needs to be
shown. Therefore this method is good only for static
scenes, such as some CAD applications and scientific
simulations, where one image is all that is needed. A
major advantage of using this method is that the resolu-
tion of the voxelization process can be very high because
we do not need a mass of memory to hold the voxels.
Consequently, very high quality rendering results, with
shadows, can be obtained. Of course, this is at this cost
of much longer rendering time.

5.2 Shadow Generation with Cubic Frame Buffer

Without a cubic frame buffer, shadow determination has
to be performed again each time the scene needs to be
shown. An alternative is to have the result of shadow
determination saved in a cubic frame buffer. One cubic
frame buffer is enough for the entire scene, no matter

how many subdivision surfaces are involved. With this
approach, each voxel is either with a 0 (empty) a 1 (lit)
or a 2 (shadowed) in the shadow determination process.
Now we have two sets of data about the scene. One is
a set of the continuous parameterized surfaces, and the
other one is a set of discrete and shadow marked vox-
els. We can use the discrete voxel information to ren-
der the scene with some volumetric rendering methods,
such as the splatting method [14]. We can use both of
them to generate better results by rendering continuous
quadrilaterals [12]. With this method, smooth and seam-
less rendering can be obtained. Note that connectivity
of voxels is known in the voxelization process. Hence the
rendering process is simply another process of voxeliza-
tion of the continuous surface. But shadow determina-
tion does not need to be re-done because it is saved in the
cubic frame buffer. When a subpatch is tessellated, the
shadow and light properties of each voxel corresponding
to each corner vertex of the quadrilateral are fetched and
sent to the rendering pipeline as well.

Note with a cubic frame buffer, there is no need to
re-generate the shadows when only the position of eye
changes (this is most the cases seen in game designs or
simulations where lights usually do not move). In ad-
dition, shadow generation with a cubic frame buffer is
much faster than without one, even though it requires
a lot of memory for the cubic frame buffer, especially
for high voxelization resolution. Fortunately, for most
of the interactive scenes, like some games, high qual-
ity shadows usually are not necessary, a relatively low
voxelization resolution is acceptable most of the time.
Nevertheless, with cheap and giga-byte memory chips
becoming available, storage requirement is no longer a
major issue in the design of an algorithm. People would
care more about the efficiency of the algorithm.

5.8 Crack Elimination

Another issue with the rendering process is crack elimi-
nation [8]. Due to the fact that adjacent patches might
be approximated by quadrilaterals corresponding to sub-
patches from different levels of the midpoint subdivision
process, cracks could occur between adjacent patches
or subpatches. For instance, in Figure 4, the left patch
A1A5A5Aq is approximated by one quadrilateral but
the right patch is approximated by 7 quadrilaterals. Con-
sider the boundary shared by the left patch and the right
patch. On the left side, that boundary is a line segment
defined by two vertices : Ao and As. But on the right
side, the boundary is a polyline defined by four vertices :
A,, C4, By, and As. They would not coincide unless Cy
and By lie on the line segment defined by Ay and As.
But that usually is not the case. Hence, cracks would
appear between the left patch and the right patch.
Fortunately cracks can be eliminated simply by re-
placing each boundary of a patch or a subpatch with the

Shuhua Lai, Fuhua (Frank) Cheng

As

A1

Fig. 4 Crack elimination.

one that contains all the evaluated points for that bound-
ary. For example, in Figure 4, all the dotted lines should
be replaced with the corresponding polylines. In partic-
ular, boundary AsAjs of patch A;AsAsAg should be
replaced with the polyline A;CsB4A5. As a result, the
polygon A1 AsA5A¢ in Figure 4, is replaced with poly-
gon A;A,C BsA5As in the tessellation process. For
rendering purpose this is fine because graphics systems
like OpenGL can handle polygons with non-co-planar
vertices and polygons with any number of sides. How-
ever, through a simple zigzag technique, triangulation of
those polygons is actually a simple and very fast process.
It should be pointed out that the above polyline replace-
ment strategy could cause small inaccuracy in the ren-
dering process. But, the error can be precisely estimated
[8]. Hence accurate rendering can still be obtained.

6 Test Results

The proposed approach has been implemented in C++
using OpenGL as the supporting graphics system on
the Windows platform. Quite a few examples have been
tested with the method described here. All the exam-
ples have extra-ordinary vertices. Some of the tested re-
sults are shown in Figures 5. Resolution of global vox-
elization is 512 x 512 x 512 for Figures 5(b), 5(c), 5(e),
5(f) and 5(h), and 1024 x 1024 x 1024 for Figure 5(i).
The rest cased in Figure 5 are voxelized with resolution
256 x 256 x 256. The ground of each scene, either planar
or curved, is also represented with a subdivision surface
and is involved in the voxelization and shadow determi-
nation process as well.

From Figure 5 one can easily see that the quality of
a result is determined by the resolution of the voxeliza-
tion process. For example, Figure 5(i) uses the highest
resolution, hence it has shadows of the highest quality.
This is demonstrated by the smooth boundary of the
lit and shadowed areas. However, with the same resolu-
tion, different approaches used for shadow determination
could lead to different quality in shadow generation, es-
pecially in the area of self shadow. For example, Figures
5(a), 5(d) and 5(g) use the same voxelization resolution.
But Figure 5(g) is generated using the topology-based

Shadow Generation for Objects Represented by Catmull-Clark Subdivision Surfaces

(a) Low resolution (256) (b) Medium resolution (512)

(d) Low resolution (256)) Medium resolution (512)
f) Medium resolution (512) Low resolution (256)
(
(h) Medium resolution (512) i) High resolution (1024)

Fig. 5 Shadow Generation for Scenes Represented by CCSSes.

shadow determination approach to determine shadow of
each voxel while Figures 5(a) and 5(d) are generated
using the offset-based shadow determination approach.
As one can obviously tell that Figure 5(g) has a better
quality than Figures 5(a) and 5(d).

The rendering technique used for shadow generation
in our experiment is cubic frame buffer based and ren-
dering of the voxels is based on tessellation of quadrilat-
erals. Figure 5(i) is the only case in which cubic frame
buffer is not involved in the rendering process. As we can
tell there is no obvious visual difference in the generated
results. However, the times used by the two approaches
are very different; cubic frame buffer based approach is
much faster. For example, all the test cases in Figure 5,
except Figure 5(i) can be visualized interactively.

7 Summary

A shadow generation method for objects represented by
CCSSs is presented. The objects are voxelized first and
the resulting voxels are then projected onto a projection
plane to determine which voxels are in shadow and which
voxels are in light, in a way similar to the shadow map-
ping method. The main difference between our method
and the shadow mapping method is, in our method, un-
certain cases can be resolved using geometric or topolog-
ical information obtained during the voxelization phase.
Therefore, better quality shadows can be generated with-
out the need of using a high resolution in the voxeliza-
tion process. A resolution of 256 x 256 x 256 for the
voxelization process is enough to generate shadows with
acceptable quality.

Another advantage of the new approach is, since our
voxelization process is performed in the parameter spaces
of the CCSSs instead of the object space, the process is
very fast and efficient. As a result, the overall shadow
generation process is fast, efficient and robust. There-
fore, our method has the capability of generating good
quality shadows for complex scenes in real time without
the need of using a high resolution in the voxelization
process. The new method is presented for CCSSs only,
but the concept works for any subdivision schemes whose
limit surfaces are parameterizable.

Acknowledgement. Research work reported in this pa-
per is supported by NSF under grants DMS-0310645 and
DMI-0422126. Data sets of Figures 5(d) and 5(f) are
downloaded from the web site:
graphics.cs.uiuc.edu/~garland /research/quadrics.html.
We also thank the anonymous reviewers for their many
helpful comments.

References

1. Catmull E, Clark J. Recursively generated B-spline sur-
faces on arbitrary topological meshes, Computer-Aided
Design, 1978, 10(6):350-355.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Shuhua Lai, Fuhua (Frank) Cheng

. Doo D, Sabin M, Behavior of recursive division sur-

faces near extraordinary points, Computer-Aided De-
sign, 1978, 10(6):356-360.

Loop CT, Smooth Subdivision Surfaces Based on Trian-
gles, MS thesis, Department of Mathematics, University
of Utah, August, 1987.

. Stam J, Exact Evaluation of Catmull-Clark Subdivision

Surfaces at Arbitrary Parameter Values, Proceedings of
SIGGRAPH 1998:395-404.

Stam J, Evaluation of Loop Subdivision Surfaces, SIG-
GRAPH’99 Course Notes, 1999.

Zorin D, Kristjansson D, Evaluation of Piecewise
Smooth Subdivision Surfaces, The Visual Computer,
2002, 18(5/6):299-315.

Shuhua Lai, Fuhua (Frank) Cheng, Parametrization of
General Catmull Clark Subdivision Surfaces and its Ap-
plication, Computer Aided Design € Applications, 3, 1-4,
2006, 513-522.

Shuhua Lai, Fuhua (Frank) Cheng, Inscribed Approxi-
mation based Adaptive Rendering of Catmull-Clark Sub-
division Surfaces, International Journal of CAD/CAM
6,1 (2006), 1-16.

Sederberg TW, Zheng J, Sewell D, Sabin M, Non-
uniform recursive subdivision surfaces, Proceedings of
SIGGRAPH, 1998:19-24.

Cohen Or, D., Kaufman, A., Fundamentals of Surface
Voxelization, Graphical Models and Image Processing,
57, 6 (November 1995), 453-461.

Jian Huang, Roni Yagel, V. Fillipov and Yair Kurzion,
An Accurate Method to Voxelize Polygonal Meshes,
IEEE Volume Visualization’98, October, 1998.

Shuhua Lai, Fuhua (Frank) Cheng, Voxelization of Free-
Form Solids using Catmull-Clark Subdivision Surfaces,
Lecture Notes in Computer Science (GMP2006), Vol.
4077, Springer, 2006, 595-601.

Shuhua Lai, Fuhua (Frank) Cheng, Robust and Error
Controllable Boolean Operations on Free-form Solids
Represented by Catmull-Clark Subdivision Surfaces,
Computer Aided Design & Applications, 4, 1-4 (2007).
Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar,
Markus Gross, Surface Splatting, SIGGRAPH 2001.
Grossman, J. P.; Dally, W. J. Point sample rendering.
FEurographics Rendering Workshop 1998, ppl181-192.
Andrew Woo and John Amanatides, Voxel occlusion test-
ing: a shadow determination accelerator for ray tracing,
in Proceedings on Graphics interface, pp213-220, 1990.
Mark W. Jones, An efficient shadow detection algorithm
and the direct surface rendering volume visualisation
model, in Proc. Furographics, UK, pages 237244, 1997.
Lance Williams, Casting Curved Shadows on Curved
Surfaces, in Computer Graphics (Proc. SIGGRAPH 78),
12(3), August 1978, pp. 270-274.

F. Crow, Shadow Algorithms for Computer Graphics,
Computer Graphics, 11(3), August 1977, pp.242-248.
Andrew Pearce, A recursive shadow voxel cache for ray
tracing, in Graphics Gems II, pages 273-274, San Diego,
1991.

Elmar Eisemann, Xavier Décoret, Fast scene voxelization
and applications, Proceedings of the 2006 symposium on
Interactive 3D graphics and games, Pages: 71 - 78, 2006.
Didier Badouel, An Efficient Ray-Polygon Intersection,
in Graphics Gems, 1990.

Shadow Generation for Objects Represented by Catmull-Clark Subdivision Surfaces

23. Andrew Woo, Pierre Poulin and Alain Fournier, A Sur-
vey of Shadow Algorithms, IEEE Computer Graphics
and Applications, Vol. 10(6), 1990, pp13-32.

SHUHUA LAI currently is
an assistant professor in the
Department of Computer Sci-
ence at the Virginia State Uni-
versity. He received his PhD
in Computer Science from the
University of Kentucky in 2006
and ME in Computer Sci-
ence and Engineering from the
Shanghai Jiaotong University
in 2001. His research interests
include computer graphics and
3D modelling.

FUHUA (FRANK)
CHENG is Professor of
Computer Science and Di-
rector of the Graphics &
Geometric Modeling Lab at
the University of Kentucky.
He holds a PhD from the
Ohio State University, 1982.
His research interests include
computer aided geometric
modeling, computer graph-
ics, parallel computing in
geometric modeling and com-
puter graphics, approximation

theory, and collaborative
CAD.

