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Abstract How to generate shadow volumes efficiently for 
subdivision surfaces remains a challenging task for 
computer graphics community. We present a geometry 
image based algorithm that runs on GPUs (Graphics 
Process Units). By using GPU shaders, two geometry 
images containing position and normal vector information 
will be computed from the control meshes. By detecting 
silhouettes and extruding shadow volumes from the 
geometry images using shaders, all calculations of the 
shadow volume algorithm can be fully accelerated by 
commodity GPUs. A prototype system has been 
implemented on a Windows 2000 system with a NVIDIA 
GeForce 7950GX2 card. Experiments show that the 
algorithm can render subdivision surfaces and their 
shadows in real-time under dynamic lighting. Source code 
is available online. 

Keywords Subdivision surface · Geometry image · 
Silhouette detection · Shadow volume · GPU (Graphics 
Process Unit) 

1 Introduction 

As a powerful modeling tool, subdivision surfaces have, in 
recent years, replaced NURBS surfaces as the preferred 
method of modeling character and scene geometry in the 
film and television visual effects industries. Subdivision 
surfaces are easy to use and implement, they can model 
surfaces of arbitrary topological type, and control the 
continuity of the surface locally. 

Fast shadow rendering for subdivision surfaces is essential 
for using them in real-time applications. As far as known 
to the authors, there is little research on shadow rendering 
algorithm especially designed for subdivision surfaces. 
The conventional methods usually need to convert 
subdivision surfaces to facet models according to a 
prescribed resolution, then shadow algorithms for 
polyhedron models are used. 

For polyhedron models, there exist two classic shadow 
generation algorithms: shadow mapping algorithm [1] and 
shadow volume algorithm [2]. Both of them have been 
proved to be successful under real-time circumstances. 

As an object space algorithm, shadow volume algorithm 
can generate more accurate shadows, while shadow 
mapping algorithm is well scalable as an image space 
algorithm. 

For a complex model defined by many subdivision 
surfaces, tons of facets will be produced after a few 
subdivisions on CPU. And all the data will be transferred 
from CPU to GPU for model rendering and shadow 
rendering. This is a serious bottleneck for conventional 
methods, especially when the complex model is 
deforming. Also, the powerful computation ability of 
commodity GPUs is not fully exploited. 

Our discussion will focus on how to effectively adapt the 
shadow volume algorithm, initially designed for 
polyhedron modes, to subdivision surfaces. 

Our contribution: By packing the subdivision surfaces of 
a model into two geometry images, silhouette detection 
and shadow volume extrusion methods based on the 
geometry images is designed. A purely graphics hardware 
accelerated shadow volume algorithm for subdivision 
surfaces is designed. The methods can also be used for 
other geometry image related graphics applications. 

2 Related Work 

Subdivision Surface Evaluation on GPU: [3] presents a 
real-time kernel for subdivision surface evaluation by 
organizing the control mesh of subdivision in texture 
memory carefully. [4] uses a vertex shader to generate 
mesh refinement on GPUs. As an application, Curved PN-
Triangles have been implemented using a refinement 
pattern. [5] proposes a per-pixel evaluation method of 
parametric surfaces by using fragment shaders. [6] uses 
GPU for NURBS and T-Spline surfaces tessellation, and a 
trim-texture is used for trimming. 

Real-time Shadow Volume Algorithm: [7] enhances the 
robustness of the classic shadow volume algorithm by 
using a few useful techniques including z-fail stencil-
testing scheme. [8] presents a purely hardware-accelerated 
shadow volume algorithm by packing mesh data into 
textures and by processing on GPU. [9] and [10] extend 
classic algorithm to support soft shadow rendering by 
using penumbra wedges. [11] covers the details about how 
to implement a real-time shadow volume algorithm with 
the help of GPU. [12] is an early attempt at including free-
form surfaces into classic shadow volume algorithm by 
solving parametric equations, but its speed makes it 
unfeasible for real-time applications. 

Geometry Image: As first introduced by Gu et al. [13], 
geometry images have become a powerful tool for 
geometry processing. By storing geometry data as GPU-



  

friendly textures, many operations can be accelerated 
using graphics hardware, such as mesh simplification, 
mesh deformation, global illuminations [22], etc. 

Silhouette Detection is used to extract silhouettes, which 
will be extruded to form shadow volumes. All the papers 
on shadow volume algorithm will describe detection 
scheme [7-12]. Silhouette detection is also widely studied 
in NPR (Non-Photorealistic Rendering) field. [15] and 
[16] give out good surveys on related algorithms and 
implementations. Our geometry image based silhouette 
detection method will be presented in Section 5. 

Shadow Volume Algorithm for Subdivision Surfaces: 
In [17], a shadow volume algorithm based on SPs 
(Subdivision Patterns) is designed for subdivision 

surfaces. But there are some problems in it:  

� Each patch is handled for evaluation, silhouette 
detection and shadow volume extrusion respectively. 
The latency caused by frequent render-to-texture ops 
(num_of_patch*3 per model) dramatically reduces its 
efficiency. 

� The instability of its silhouette detection method 
occasionally causes cracks on shadow volumes. 

Our improvement: The work here is an extension of 
[17]. By using two geometry images to pack all the 
patches’ information, the efficiencies of silhouette 
detection and shadow volume generation are greatly 
improved (2 render-to-texture ops per model under 
dynamic lighting). And an enhanced silhouette detection 

 

 

Fig. 1 The work flow of the shadow volume algorithm for subdivision surfaces 



  

method is designed to improve accuracy and ensure 
robustness. 

3 Overview 

As illustrated by Figure 1, the shadow algorithm for 
subdivision surfaces is composed by following steps: 

1. Subdivision surfaces evaluation 

Control meshes of the model are used for evaluation by 
using a fragment shader. For every patch, two geometry 
images containing position and normal vector information 
are generated. The geometry images are placed 
sequentially into two global geometry images. 

The global geometry images will be used for rendering the 
model and for subsequent silhouette detection. 

2. Silhouette detection 

Another fragment shader is used for silhouette detection 
on the geometry images. Assuming the size of the 
geometry images are W*H, a silhouette image of size 
(2*W)*H, containing silhouettes detected for a given light 
source, will be generated. 

The silhouette image will be used for subsequent shadow 
volume extrusion. It can also be used for rendering the 
silhouettes. 

3. Shadow volume generation 

The shadow volume extrusion is also carried out in a 
fragment shader. A shadow volume image of size 
(4*W)*H will be computed. It will be used for rendering 
the shadow volumes. 

4. Rendering the shadowed scene 

With the rendering of the model and the shadow volume, 
the Z-pass method is used to render the shadowed scene.  

4 Subdivision Surface Evaluation 

For a Catmull-Clark subdivision surface, the analytic 
evaluation method in [14] is used to evaluate it at a given 
resolution. By projecting the control mesh into the 
eigenspace, the limit position can be calculated as the 
weighted combination of the projected control mesh: 
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where A  is the subdivision matrix, X is the matrix of 
eigenvector of A , and Λ is the diagonal matrix of 
eigenvalues. To accelerate the computation, the terms 
independent of the control mesh are packed into 
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All the ),( vuWeight  are pre-calculated according to the 

parameters (u, v). The evaluation is preformed by 
combining the input control mesh and the weights in a 

fragment shader. The evaluation results are two geometry 
images storing limit positions and normal vectors 
respectively. 

The control mesh in Figure 2(a), which consist of 288 
patches, has been evaluated on GPU. The evaluation 
information for each patch is stored in the 16x18 = 288 
lattices of two global geometry images (Figure 2(c) and 
Figure 2(d)). By using the positions and normal vectors in 
the two geometry images, the subdivision surfaces are 
displayed (Figure 2(b)). 

  

(a) Control meshes 
(b) Rendering using the 
two geometry images 

  
(c) The geometry image 
storing normal vectors 

(d) The geometry image 
storing limit positions 

Fig. 2 Subdivision surface evaluation on GPU 

5 Silhouette Detection 

Before give out our silhouette detection method, we make 
a brief review on existing techniques. 

[18] describes a graphics hardware accelerated method for 
silhouette extraction by using a vertex shader to enlarge 
the degenerate quads attached on edges to proper width 
when silhouettes are detected. By adding one degenerate 
quad to each edge, it aggravates the load of GPU. [19] 
uses the new features of DirectX 10 to detect silhouettes 
and extrude shadow volumes on a geometry shader.  

[8] determines contour edges on the fragment processor 
using vertices encoded as color values. For each edge, 
indices for two end points and two adjacent points are read 
from an edge texture. Then the indices are used to get 
vertices from a vertex texture. The multiple dependent 
texture reads compromise its efficiency. 

 [20] uses normal maps to find out pixels on geometry 
images, corresponding to vertices on silhouettes, and links 
them by searching nearest neighbors in image space. The 
method is feasible for NPR applications, but is inadequate 



  

for shadow volume algorithm, which need silhouettes to 
be neatly linked in geometry space. 

In [17], an edge is marked as a silhouette by using the 
visibilities of the two facets meeting at it. As an object-
space algorithm, silhouettes are properly linked. But the 
numerical instability occasionally causes jagged artifacts 
and gaps in silhouette chains. 

Here a new method for silhouette detection based on the 
two geometry images is designed: 

� The visibility of each vertex is calculated by using 
the position and normal vector information in the two 
geometry images; 

� For each quad, corresponding to a grid on the 
geometry images, by using a directed visibility 
interpolation method in Figure 4, a silhouette will be 
computed. The two end points of the silhouettes will 
be saved in a silhouettes image. If no silhouette on 
the quad, a degenerated silhouette with two 
coincidence end points is produced. So for the 
geometry images of size W*H, a silhouette image of 
(2*W)*H containing the end points of silhouettes 
will be produced (Figure 3(a)). 

� The silhouette image will be used for silhouettes 
rendering (Figure 3(b)), and subsequent shadow 
volume generation. 

Directed Visibility Interpolation:  

To enhance the robustness of our silhouette detection 
method, we used a directed visibility interpolation method, 
which is inspired by the method dealing with smooth 
surfaces in [21]. 

For a quad, we check the visibilities for its four vertices. 
If: 

� all vertices are visible/invisible, then a degenerated 
silhouette is generated; 

� if one is visible/invisible, other three are 
invisible/visible, a silhouette is linked as shown in 
Figure 4(a)/Figure 4(c); 

� if two are visible, and two are invisible, a silhouette 
is linked as shown in Figure 4(b). 

Note that the orientation of the silhouettes in Figure 4 is 
decided by the right-hand rule, i.e., the visible part of the 
model is on the right of a silhouette. The orientation rules 
guarantee that the silhouettes are linked into directed 
loops. 

Figure 5 illustrates a comparison between silhouettes 
obtained from [17] and from our method. It is clear that 
the silhouettes in Figure 5(b) are linked more smoothly, 
and are more adhere to the variation in visibility. 

Figure 6 shows some experiment results of [17] and our 
method. By comparing Figure 6(a) and Figure 6(b), the 
silhouettes detected by our method is more accurate, and 
the gap in Figure 6(a) is removed. The cracks in Figure 
6(c) caused by numerical instability are mended in Figure 
6(d), and more smooth silhouettes computed. 

With the smooth linked silhouettes, cracks on the shadow 
volume in Figure 6(e) are eliminated in Figure 6(f). 

The whole procedure of silhouette detection is done on 
GPU with the help of a fragment shader. As a natural 
continuation of previous evaluation process, data are 
efficiently transferred among GPU shaders as textures. 

Our method is good to manipulate geometry stored as 
textures. For using the methods in [18] and [19], another 
calculation for converting textures to vertex array is 
needed. Comparing to [8], multiple dependent texture 
reads is avoid by accessing data locally with the regular 
data layout in the geometry images. 

6 Shadow Volume Generation 

As shown in Figure 7, a fragment shader is used to 
generate a shadow volume image from the silhouette 
image. 

For a silhouette image of size (2*W)*H, it is scaled by a 

 
(a) a silhouette image (b) silhouettes 
Fig. 3 Silhouette detection on GPU 
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Fig. 4 Directed visibility interpolation for silhouette 
extraction (+ for visible, - for invisible) 
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(a) Silhouette detection using normal vector of 
adjacent facets in [17] 
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(b) Silhouette detection using the directed visibility 
interpolation method 
Fig. 5 Comparison of silhouettes getting from [17] and 
our method 



  

factor of 2 to generate a shadow volume image of size 
(4*W)*H, which can is composed by two parts of size 
(2*W)*H The left part is a copy of the silhouettes image, 
and the right part contains new vertices by extending the 
vertices in the silhouette image:  

∞−+= *)( OXXY  (3) 

where X are the vertices on silhouettes, O is the light 
source, and ∞ stands for infinite distance1. By connecting 
the vertices on the silhouettes and the vertices extended to 
infinite, shadow volumes are built. With the shadow 
volume image, the shadow volume can be displayed. 

7 Implementation and Results 

The shadow volume algorithm has been implemented on a 
Windows 2000 system with a NVIDIA GeForce 7950GX2 

                                                           
1  OpenGL provides support for extending vertices to infinite 

distance by setting the w component of homogeneous 

coordinates to 0. 

card. We use OpenGL as 3D API, and use Cg and GLSL 
to write GPU shaders. The FBO (Frame Buffer Object) 
extension is used for render to texture, and the PBO (Pixel 
Buffer Object) extension is used for construct vertex 
arrays from textures. An optimization is made by 
combining the silhouette detection and shadow volume 
extrusion in one fragment shader. All the source codes of 
our implementation are available online at the address 
listed at the end of this paper. 

GeForce 7950GX2 supports textures with maximum size 
of 4096x4096. So the maximum dimension of shadow 
volume textures can be 4096*4096. The dimension of 
silhouette textures can up to 2048*4096, and the geometry 
images can up to 1024*4096. If the patches are evaluated 
at resolution of 10*10, approximately 1024*4096/100 ≈ 
40K patches can be handled in one pass. If patch number 
is bigger than 40K or the maximum size is limited by the 
underlying graphics hardware, multi-pass rendering 
techniques can be used. 

Comparison with conventional methods: 

For conventional methods, the model is faceted on CPU 
according to a prescribed resolution. Massive data need to 
transfer from CPU to GPU. As shown in Table 1, for the 
model in Figure 1, if the subdivision level is 5, there are 
about 3.5M float data need to transfer to GPU. 

 

 

 

 

 
(a) Cracks caused by 
numeric instability [17] 

(b) Smooth linked 

silhouettes 

 
(c) Cracks caused by 

numeric instability 
[17]

 

(d) Smooth linked 

silhouettes 

     
(e) Shadow leaks caused 

by the cracks
 [17]

 

(f) Our result with the 

same light source 

Fig. 6 Experiment results of [17] and our method 

 

Fig.7 Shadow volume generation 



  

Table 1 Data transferred from CPU to GPU in 
conventional methods 

GLfloat Usage 

32*32 Resolution for each patch (25*25) 
*288 Totally 288 patches 
*2 Position and normal vector 
*3 x, y, z 

*2 
Silhouette detection/shadow volume extrusion 
using vertex shader 

~3.5M  

For our method, only the control mesh needs to transfer to 
GPU. As shown in Table 2, there are about 28K float data 
will be transferred. 

Table 2 Data transferred from CPU to GPU in our method 

GLfloat Usage 

288 Patches 
*16 Control mesh 
*2 Position and normal vector 
*3 x, y, z 
~28K  

Another benefit of our method is that the subdivision level 
of the model can be dynamic adjusted. This will be useful 
for LOD scheme. 

Comparison with the method of [17]: 

If the model is stationary, for a moving light source, we 
only need to update the shadow volume textures, i.e., 1 
render-to-texture ops per moving of the light. So 
comparing to the (3*num_of_patches) render-to-texture 
ops per frame in [17], the speed is greatly improved. 

Figure 8(a)-(c) demonstrate some of our results. For the 
models defined by Catmull-Clark subdivision surfaces, its 
silhouettes and shadows are displayed in real-time. For the 
model in Figure 8(a), result of [17] is about 15 fps, while 
our result is about 75 fps. 

 

8 Extensions 

The application of our algorithm is not limited to 
subdivision surfaces. It can also be used for other surfaces 
which have a parametric evaluator, e.g. Bézier surfaces, B-
spline surfaces, etc. 

Figure 9 shows the silhouettes and shadows of the bunny 
model, which is defined by a geometry image. 

Figure 10 shows the silhouettes extracted for cloth 
simulation. 

For other models which can be defined using geometry 
images, such as terrains, water surfaces, etc., our method 
can also easily adapted. 

     
(a) Shadows and silhouettes of the 
mode in Figure 1 (288 patches), 
~75fps 

(b) shadows and silhouettes of a 
face-shaped model (288 patches), 
~75fps 

(c) shadow and silhouettes of a 
complex model (480 patches), 
~37fps 

Fig. 8 Some experiment results 

 

 
Fig. 9 Silhouettes detection and shadow rendering for the 
bunny model defined by a geometry image. 
 



  

9 Conclusion and Future Work 

In this paper, two geometry images are used to store the 
evaluation information of subdivision surfaces. Geometry 
image based silhouette detection and shadow volume 
extrusion methods are designed. A directed visibility 
interpolation method is used to enhance the robustness of 
silhouettes detection method. 

Experiments show that the GPU accelerated algorithm can 
fulfill the demand for real-time rendering, and our 
methods can also be extended to other geometry images 
defined models. 

The efficiency bottleneck of our algorithm is the phase of 
“construct vertex array from texture”. In our 
implementation, we used PBO (Pixel Buffer Object) 
extension, which is superior to VTF (Vertex Texture 
Fetch) method. But as the size of a geometry image is 
growing, its efficiency is rapidly dropped down. We 
expect this limitation could be solved in future GPUs. 

Future works include geometry image-based capping on 
GPU. So Z-fail method could be implemented. Geometry 
image-based soft shadow rendering may be another 
interesting topic for further study. 
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Web Information 

Binaries, source files, and some AVI files are available 
from this link: 

http://www.cs.wichita.edu/~tang/SubShadow/subShadow.
htm. 
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