
Geometry Image-based Shadow Volume Algorithm for Subdivision

Surfaces

Min Tang, Jin-xiang Dong

College of Computer Science, Zhejiang University, P.R. China, 310027

{tang_m, djx}@zju.edu.cn

Abstract How to generate shadow volumes efficiently for
subdivision surfaces remains a challenging task for
computer graphics community. We present a geometry
image based algorithm that runs on GPUs (Graphics
Process Units). By using GPU shaders, two geometry
images containing position and normal vector information
will be computed from the control meshes. By detecting
silhouettes and extruding shadow volumes from the
geometry images using shaders, all calculations of the
shadow volume algorithm can be fully accelerated by
commodity GPUs. A prototype system has been
implemented on a Windows 2000 system with a NVIDIA
GeForce 7950GX2 card. Experiments show that the
algorithm can render subdivision surfaces and their
shadows in real-time under dynamic lighting. Source code
is available online.

Keywords Subdivision surface · Geometry image ·
Silhouette detection · Shadow volume · GPU (Graphics
Process Unit)

1 Introduction

As a powerful modeling tool, subdivision surfaces have, in
recent years, replaced NURBS surfaces as the preferred
method of modeling character and scene geometry in the
film and television visual effects industries. Subdivision
surfaces are easy to use and implement, they can model
surfaces of arbitrary topological type, and control the
continuity of the surface locally.

Fast shadow rendering for subdivision surfaces is essential
for using them in real-time applications. As far as known
to the authors, there is little research on shadow rendering
algorithm especially designed for subdivision surfaces.
The conventional methods usually need to convert
subdivision surfaces to facet models according to a
prescribed resolution, then shadow algorithms for
polyhedron models are used.

For polyhedron models, there exist two classic shadow
generation algorithms: shadow mapping algorithm [1] and
shadow volume algorithm [2]. Both of them have been
proved to be successful under real-time circumstances.

As an object space algorithm, shadow volume algorithm
can generate more accurate shadows, while shadow
mapping algorithm is well scalable as an image space
algorithm.

For a complex model defined by many subdivision
surfaces, tons of facets will be produced after a few
subdivisions on CPU. And all the data will be transferred
from CPU to GPU for model rendering and shadow
rendering. This is a serious bottleneck for conventional
methods, especially when the complex model is
deforming. Also, the powerful computation ability of
commodity GPUs is not fully exploited.

Our discussion will focus on how to effectively adapt the
shadow volume algorithm, initially designed for
polyhedron modes, to subdivision surfaces.

Our contribution: By packing the subdivision surfaces of
a model into two geometry images, silhouette detection
and shadow volume extrusion methods based on the
geometry images is designed. A purely graphics hardware
accelerated shadow volume algorithm for subdivision
surfaces is designed. The methods can also be used for
other geometry image related graphics applications.

2 Related Work

Subdivision Surface Evaluation on GPU: [3] presents a
real-time kernel for subdivision surface evaluation by
organizing the control mesh of subdivision in texture
memory carefully. [4] uses a vertex shader to generate
mesh refinement on GPUs. As an application, Curved PN-
Triangles have been implemented using a refinement
pattern. [5] proposes a per-pixel evaluation method of
parametric surfaces by using fragment shaders. [6] uses
GPU for NURBS and T-Spline surfaces tessellation, and a
trim-texture is used for trimming.

Real-time Shadow Volume Algorithm: [7] enhances the
robustness of the classic shadow volume algorithm by
using a few useful techniques including z-fail stencil-
testing scheme. [8] presents a purely hardware-accelerated
shadow volume algorithm by packing mesh data into
textures and by processing on GPU. [9] and [10] extend
classic algorithm to support soft shadow rendering by
using penumbra wedges. [11] covers the details about how
to implement a real-time shadow volume algorithm with
the help of GPU. [12] is an early attempt at including free-
form surfaces into classic shadow volume algorithm by
solving parametric equations, but its speed makes it
unfeasible for real-time applications.

Geometry Image: As first introduced by Gu et al. [13],
geometry images have become a powerful tool for
geometry processing. By storing geometry data as GPU-

friendly textures, many operations can be accelerated
using graphics hardware, such as mesh simplification,
mesh deformation, global illuminations [22], etc.

Silhouette Detection is used to extract silhouettes, which
will be extruded to form shadow volumes. All the papers
on shadow volume algorithm will describe detection
scheme [7-12]. Silhouette detection is also widely studied
in NPR (Non-Photorealistic Rendering) field. [15] and
[16] give out good surveys on related algorithms and
implementations. Our geometry image based silhouette
detection method will be presented in Section 5.

Shadow Volume Algorithm for Subdivision Surfaces:
In [17], a shadow volume algorithm based on SPs
(Subdivision Patterns) is designed for subdivision

surfaces. But there are some problems in it:

� Each patch is handled for evaluation, silhouette
detection and shadow volume extrusion respectively.
The latency caused by frequent render-to-texture ops
(num_of_patch*3 per model) dramatically reduces its
efficiency.

� The instability of its silhouette detection method
occasionally causes cracks on shadow volumes.

Our improvement: The work here is an extension of
[17]. By using two geometry images to pack all the
patches’ information, the efficiencies of silhouette
detection and shadow volume generation are greatly
improved (2 render-to-texture ops per model under
dynamic lighting). And an enhanced silhouette detection

Fig. 1 The work flow of the shadow volume algorithm for subdivision surfaces

method is designed to improve accuracy and ensure
robustness.

3 Overview

As illustrated by Figure 1, the shadow algorithm for
subdivision surfaces is composed by following steps:

1. Subdivision surfaces evaluation

Control meshes of the model are used for evaluation by
using a fragment shader. For every patch, two geometry
images containing position and normal vector information
are generated. The geometry images are placed
sequentially into two global geometry images.

The global geometry images will be used for rendering the
model and for subsequent silhouette detection.

2. Silhouette detection

Another fragment shader is used for silhouette detection
on the geometry images. Assuming the size of the
geometry images are W*H, a silhouette image of size
(2*W)*H, containing silhouettes detected for a given light
source, will be generated.

The silhouette image will be used for subsequent shadow
volume extrusion. It can also be used for rendering the
silhouettes.

3. Shadow volume generation

The shadow volume extrusion is also carried out in a
fragment shader. A shadow volume image of size
(4*W)*H will be computed. It will be used for rendering
the shadow volumes.

4. Rendering the shadowed scene

With the rendering of the model and the shadow volume,
the Z-pass method is used to render the shadowed scene.

4 Subdivision Surface Evaluation

For a Catmull-Clark subdivision surface, the analytic
evaluation method in [14] is used to evaluate it at a given
resolution. By projecting the control mesh into the
eigenspace, the limit position can be calculated as the
weighted combination of the projected control mesh:

),()()(),(1
0

1
, vubXAPCXvuS

T

k

nT

nk

−−
Λ= (1)

where A is the subdivision matrix, X is the matrix of
eigenvector of A , and Λ is the diagonal matrix of
eigenvalues. To accelerate the computation, the terms
independent of the control mesh are packed into

),(vuWeight . We have [5]:

),(),(

),()()(),(

0,

11

vuWeightCvuS

vubXAPXvuWeight

T

nk

T

k

nT

=

Λ=
−−

 (2)

All the),(vuWeight are pre-calculated according to the

parameters (u, v). The evaluation is preformed by
combining the input control mesh and the weights in a

fragment shader. The evaluation results are two geometry
images storing limit positions and normal vectors
respectively.

The control mesh in Figure 2(a), which consist of 288
patches, has been evaluated on GPU. The evaluation
information for each patch is stored in the 16x18 = 288
lattices of two global geometry images (Figure 2(c) and
Figure 2(d)). By using the positions and normal vectors in
the two geometry images, the subdivision surfaces are
displayed (Figure 2(b)).

(a) Control meshes
(b) Rendering using the
two geometry images

(c) The geometry image
storing normal vectors

(d) The geometry image
storing limit positions

Fig. 2 Subdivision surface evaluation on GPU

5 Silhouette Detection

Before give out our silhouette detection method, we make
a brief review on existing techniques.

[18] describes a graphics hardware accelerated method for
silhouette extraction by using a vertex shader to enlarge
the degenerate quads attached on edges to proper width
when silhouettes are detected. By adding one degenerate
quad to each edge, it aggravates the load of GPU. [19]
uses the new features of DirectX 10 to detect silhouettes
and extrude shadow volumes on a geometry shader.

[8] determines contour edges on the fragment processor
using vertices encoded as color values. For each edge,
indices for two end points and two adjacent points are read
from an edge texture. Then the indices are used to get
vertices from a vertex texture. The multiple dependent
texture reads compromise its efficiency.

 [20] uses normal maps to find out pixels on geometry
images, corresponding to vertices on silhouettes, and links
them by searching nearest neighbors in image space. The
method is feasible for NPR applications, but is inadequate

for shadow volume algorithm, which need silhouettes to
be neatly linked in geometry space.

In [17], an edge is marked as a silhouette by using the
visibilities of the two facets meeting at it. As an object-
space algorithm, silhouettes are properly linked. But the
numerical instability occasionally causes jagged artifacts
and gaps in silhouette chains.

Here a new method for silhouette detection based on the
two geometry images is designed:

� The visibility of each vertex is calculated by using
the position and normal vector information in the two
geometry images;

� For each quad, corresponding to a grid on the
geometry images, by using a directed visibility
interpolation method in Figure 4, a silhouette will be
computed. The two end points of the silhouettes will
be saved in a silhouettes image. If no silhouette on
the quad, a degenerated silhouette with two
coincidence end points is produced. So for the
geometry images of size W*H, a silhouette image of
(2*W)*H containing the end points of silhouettes
will be produced (Figure 3(a)).

� The silhouette image will be used for silhouettes
rendering (Figure 3(b)), and subsequent shadow
volume generation.

Directed Visibility Interpolation:

To enhance the robustness of our silhouette detection
method, we used a directed visibility interpolation method,
which is inspired by the method dealing with smooth
surfaces in [21].

For a quad, we check the visibilities for its four vertices.
If:

� all vertices are visible/invisible, then a degenerated
silhouette is generated;

� if one is visible/invisible, other three are
invisible/visible, a silhouette is linked as shown in
Figure 4(a)/Figure 4(c);

� if two are visible, and two are invisible, a silhouette
is linked as shown in Figure 4(b).

Note that the orientation of the silhouettes in Figure 4 is
decided by the right-hand rule, i.e., the visible part of the
model is on the right of a silhouette. The orientation rules
guarantee that the silhouettes are linked into directed
loops.

Figure 5 illustrates a comparison between silhouettes
obtained from [17] and from our method. It is clear that
the silhouettes in Figure 5(b) are linked more smoothly,
and are more adhere to the variation in visibility.

Figure 6 shows some experiment results of [17] and our
method. By comparing Figure 6(a) and Figure 6(b), the
silhouettes detected by our method is more accurate, and
the gap in Figure 6(a) is removed. The cracks in Figure
6(c) caused by numerical instability are mended in Figure
6(d), and more smooth silhouettes computed.

With the smooth linked silhouettes, cracks on the shadow
volume in Figure 6(e) are eliminated in Figure 6(f).

The whole procedure of silhouette detection is done on
GPU with the help of a fragment shader. As a natural
continuation of previous evaluation process, data are
efficiently transferred among GPU shaders as textures.

Our method is good to manipulate geometry stored as
textures. For using the methods in [18] and [19], another
calculation for converting textures to vertex array is
needed. Comparing to [8], multiple dependent texture
reads is avoid by accessing data locally with the regular
data layout in the geometry images.

6 Shadow Volume Generation

As shown in Figure 7, a fragment shader is used to
generate a shadow volume image from the silhouette
image.

For a silhouette image of size (2*W)*H, it is scaled by a

(a) a silhouette image (b) silhouettes
Fig. 3 Silhouette detection on GPU

+1v +2v

+3v −4v

+1v +2v +1v −2v

−3v −4v −3v −4v

a

a

b

b

b

2/)(

2/)(

43

42

vvb

vva

+=

+=

2/)(

2/)(

31

42

vvb

vva

+=

+=

2/)(

2/)(

31

21

vvb

vva

+=

+=

a

Fig. 4 Directed visibility interpolation for silhouette
extraction (+ for visible, - for invisible)

+

+ + +

++
+ +

+

-

-

- - - - - -

-

-

-

-

-
-

--

-
-

-

(a) Silhouette detection using normal vector of
adjacent facets in [17]

+

+ + +

++
+ +

+

-

-

- - - - - -

-

-

-

-

-
-

--

-
-

-

(b) Silhouette detection using the directed visibility
interpolation method
Fig. 5 Comparison of silhouettes getting from [17] and
our method

factor of 2 to generate a shadow volume image of size
(4*W)*H, which can is composed by two parts of size
(2*W)*H The left part is a copy of the silhouettes image,
and the right part contains new vertices by extending the
vertices in the silhouette image:

∞−+= *)(OXXY (3)

where X are the vertices on silhouettes, O is the light
source, and ∞ stands for infinite distance1. By connecting
the vertices on the silhouettes and the vertices extended to
infinite, shadow volumes are built. With the shadow
volume image, the shadow volume can be displayed.

7 Implementation and Results

The shadow volume algorithm has been implemented on a
Windows 2000 system with a NVIDIA GeForce 7950GX2

1 OpenGL provides support for extending vertices to infinite

distance by setting the w component of homogeneous

coordinates to 0.

card. We use OpenGL as 3D API, and use Cg and GLSL
to write GPU shaders. The FBO (Frame Buffer Object)
extension is used for render to texture, and the PBO (Pixel
Buffer Object) extension is used for construct vertex
arrays from textures. An optimization is made by
combining the silhouette detection and shadow volume
extrusion in one fragment shader. All the source codes of
our implementation are available online at the address
listed at the end of this paper.

GeForce 7950GX2 supports textures with maximum size
of 4096x4096. So the maximum dimension of shadow
volume textures can be 4096*4096. The dimension of
silhouette textures can up to 2048*4096, and the geometry
images can up to 1024*4096. If the patches are evaluated
at resolution of 10*10, approximately 1024*4096/100 ≈
40K patches can be handled in one pass. If patch number
is bigger than 40K or the maximum size is limited by the
underlying graphics hardware, multi-pass rendering
techniques can be used.

Comparison with conventional methods:

For conventional methods, the model is faceted on CPU
according to a prescribed resolution. Massive data need to
transfer from CPU to GPU. As shown in Table 1, for the
model in Figure 1, if the subdivision level is 5, there are
about 3.5M float data need to transfer to GPU.

(a) Cracks caused by
numeric instability [17]

(b) Smooth linked

silhouettes

(c) Cracks caused by

numeric instability
[17]

(d) Smooth linked

silhouettes

(e) Shadow leaks caused

by the cracks
 [17]

(f) Our result with the

same light source

Fig. 6 Experiment results of [17] and our method

Fig.7 Shadow volume generation

Table 1 Data transferred from CPU to GPU in
conventional methods

GLfloat Usage

32*32 Resolution for each patch (25*25)
*288 Totally 288 patches
*2 Position and normal vector
*3 x, y, z

*2
Silhouette detection/shadow volume extrusion
using vertex shader

~3.5M

For our method, only the control mesh needs to transfer to
GPU. As shown in Table 2, there are about 28K float data
will be transferred.

Table 2 Data transferred from CPU to GPU in our method

GLfloat Usage

288 Patches
*16 Control mesh
*2 Position and normal vector
*3 x, y, z
~28K

Another benefit of our method is that the subdivision level
of the model can be dynamic adjusted. This will be useful
for LOD scheme.

Comparison with the method of [17]:

If the model is stationary, for a moving light source, we
only need to update the shadow volume textures, i.e., 1
render-to-texture ops per moving of the light. So
comparing to the (3*num_of_patches) render-to-texture
ops per frame in [17], the speed is greatly improved.

Figure 8(a)-(c) demonstrate some of our results. For the
models defined by Catmull-Clark subdivision surfaces, its
silhouettes and shadows are displayed in real-time. For the
model in Figure 8(a), result of [17] is about 15 fps, while
our result is about 75 fps.

8 Extensions

The application of our algorithm is not limited to
subdivision surfaces. It can also be used for other surfaces
which have a parametric evaluator, e.g. Bézier surfaces, B-
spline surfaces, etc.

Figure 9 shows the silhouettes and shadows of the bunny
model, which is defined by a geometry image.

Figure 10 shows the silhouettes extracted for cloth
simulation.

For other models which can be defined using geometry
images, such as terrains, water surfaces, etc., our method
can also easily adapted.

(a) Shadows and silhouettes of the
mode in Figure 1 (288 patches),
~75fps

(b) shadows and silhouettes of a
face-shaped model (288 patches),
~75fps

(c) shadow and silhouettes of a
complex model (480 patches),
~37fps

Fig. 8 Some experiment results

Fig. 9 Silhouettes detection and shadow rendering for the
bunny model defined by a geometry image.

9 Conclusion and Future Work

In this paper, two geometry images are used to store the
evaluation information of subdivision surfaces. Geometry
image based silhouette detection and shadow volume
extrusion methods are designed. A directed visibility
interpolation method is used to enhance the robustness of
silhouettes detection method.

Experiments show that the GPU accelerated algorithm can
fulfill the demand for real-time rendering, and our
methods can also be extended to other geometry images
defined models.

The efficiency bottleneck of our algorithm is the phase of
“construct vertex array from texture”. In our
implementation, we used PBO (Pixel Buffer Object)
extension, which is superior to VTF (Vertex Texture
Fetch) method. But as the size of a geometry image is
growing, its efficiency is rapidly dropped down. We
expect this limitation could be solved in future GPUs.

Future works include geometry image-based capping on
GPU. So Z-fail method could be implemented. Geometry
image-based soft shadow rendering may be another
interesting topic for further study.

Acknowledgements

This work was supported in part by Science Supporting
Project of Hangzhou (20062422B05), and Chinese
National Key Basic Research and Development
Program (2006CB303106).

Web Information

Binaries, source files, and some AVI files are available
from this link:

http://www.cs.wichita.edu/~tang/SubShadow/subShadow.
htm.

References

1. Williams, L. 1978. Casting curved shadows on curved
surfaces. In Computer Graphics (SIGGRAPH ’78

Proceedings), 270-274.
2. Crow, F.C. 1977. Shadow algorithms for computer

graphics. In Computer Graphics (SIGGRAPH ’77

Proceedings), 242-248.
3. Shiue, L-J., Jones, I., and Peters, J. 2005. A Realtime

GPU Subdivision Kernel. In Proceedings of

SIGGRAPH Computer Graphics Proceedings, 1010–
1015.

4. Boubekeur, T. and Schlick, C. 2005. Generic Mesh
Refinement On GPU, In Proceedings of ACM

SIGGRAPH/Eurographics Graphics Hardware.
5. Kanai, T., and Yasui, Y. 2004. Per-pixel evaluation of

parametric. surfaces on gpu. In Proceeding of ACM

Workshop on General Purpose Computing on Graphics

Processors.

6. Guthe, M., Balázs, Á., and Klein, R. 2005. GPU-based
trimming and tessellation of NURBS and T-Spline
surfaces. ACM Trans. Graph. 24(3): 1016-1023.

7. Everitt, C. and Kilgard, M. J. 2002. Practical and
Robust Stencil Shadow Volumes for Hardware
Accelerated Rendering. Austin, Texas. NVIDIA.
Referenced: 5.4.2002.
http://developer.nvidia.com/object/robust_shadow_volu
mes.html

8. Brabec, S. and Seidel, H. 2003. Shadow Volumes on
Programmable Graphics Hardware. In Proceedings of

Eurographics (2003), vol. 22, pp. 433-440.
9. Assarsson, U., and Akenine-Möller, T. 2003. A

geometry-based soft shadow volume algorithm using
graphics hardware. ACM Transactions on Graphics
(SIGGRAPH 2003), 22(3), 2003.

10. Laine, S., Aila, T. Assarsson, U., etc. 2005. An
Improved Physically-Based Soft Shadow Volume
Algorithm. Computer Graphics Forum 25(3)

(EUROGRAPHICS 2006), pp. 303-312.
11. MGuire, M. 2004. Effective Shadow Volume

Rendering, GPU Gems, Chap. 9, Addison Welsey,
2004, pp. 137-166.

12. Hefline, G. and Elber, G. 1993. Shadow Volume
Generation from Free Form Surfaces. In Proceedings of

CGI’93.
13. Gu, X., Gortler, S.J., Hoppe H., 2002. Geometry

Images, in SIGGRAPH(2002), pp. 355-361.
14. Stam, J. 1998. Exact Evaluation of Catmull-Clark

Subdivision Surfaces at Arbitrary Parameter Values. In
Computer Graphics Proceedings, Annual Conference
Series, 395-404.

15. Isenberg, T., Freudenberg, B., Halper, N., et al. 2003.
A developer's guide to silhouette algorithms for
polygonal models. Computer Graphics and

applications, IEEE, 2003,23(4): 28-37
16. Wang, A-Y., Tang, M., and Dong, J-X. 2004. A

survey of silhouette detection techniques for non-
photorealistic rendering, Proceedings of Third

International Conference on Image and Graphics, Dec
18-20 2004, Hong Kong, 434-437.

17. Tang, M., Dong, J-X., and Chou, S-C. 2006. Real-time
Shadow Volumes for Subdivision Surface Based
Models, Proceedings of Computer Graphics

International 2006, pp. 538-545, June 26-28, 2006
18. McGuire, M. and Hughes, J.F. 2004. Hardware

Feature Edges, In Proceedings of the 3rd international

symposium on Non-photorealistic animation and

rendering, 35-147.
19. Tariq, S. 2006. DirectX10 Effects,

http://developer.download.nvidia.com/presentations/20
06/siggraph/dx10-effects-siggraph-06.pdf, NVIDIA
Crop. 2006.

20. Yuan, X., Nguyen, M.X., Zhang, N., Chen, B. 2005.
Stippling Silhouettes Rendering in Geometry-Image
Space, in Proceedings of Eurographics Symposium on

Rendering, 193-200. Konstanz, Germany June 29- July
1, 2005.

21. Hertzmann, A. 1999. Introduction to 3D Non-
Photorealistic Rendering: Silhouettes and Outlines,
Non-Photorealistic Rendering (Siggraph 99 Course

Notes), S. Green, ed., ACM Press, 1999.
22. Carr, N.A., Hoberock, J. Crane, K., and Hart J.C.

2006. Fast GPU ray tracing of dynamic meshes using

geometry images. In Proceedings of Graphics Interface.
A.K. Peters, 2006.

