
2nd Latin-American School on
Software Engineering
30/Jun - 03/Jul
Vale Campus, UFRGS, Porto Alegre, BR

Proceedings

ELA-­‐ES	
 2015	

II	
 Latin-­‐American	
 School	
 on	
 Software	
 Engineering	

	

Ingrid	
 Nunes	
 and	
 Francisco	
 Dantas	
 de	
 Medeiros	
 Neto	

	

	

June	
 30th	
 to	
 July	
 3rd,	
 2015	

Porto	
 Alegre/RS	
 –	
 Brazil	

	

	

PROCEEDINGS	
 Volume	
 01	

1st	
 Edition	

ISBN:	
 978-­‐85-­‐88425-­‐14-­‐9	

	

	

	

	

General 	
 Chairs	

Ingrid	
 Nunes	

Francisco	
 Dantas	
 de	
 Medeiros	
 Neto	

	

	

Realization	

Instituto	
 de	
 Informática,	
 Universidade	
 Federal	
 do	
 Rio	
 Grande	
 do	
 Sul	
 (UFRGS)	

	

	

Promoted	
 by	

Sociedade	
 Brasileira	
 de	
 Computação	
 (SBC)	

	

	

Sponsors	

Diamond	
 sponsor:	
 HP	
 	

Gold	
 sponsors:	
 ADP	
 Labs,	
 Dell,	
 GE	
 Research	
 and	
 Google	

	

	

Support	

CAPES,	
 GE	
 Research,	
 UERN,	
 PPGC-­‐UFRGS,	
 PROREXT-­‐UFRGS,	
 PROPG-­‐UFRGS,	
 PROPESQ-­‐UFRGS	

	

	

	

Publisher	

UFRGS	
 –	
 Instituto	
 de	
 Informática	
 	

	
 	

	

	
 ii	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

DADOS INTERNACIONAIS DE CATALOGAÇÃO-NA-PUBLICAÇÃO
(Porto Alegre, Brasil)	

ELA-ES 2015 : II Latin-American School on Software Engineering (1. : 2015 :
Porto Alegre, Rio Grande do Sul).
ELA-ES 2015 : [anais da] II Escola Latino Americana de Engenharia de
Software [de] Ingrid Nunes e Francisco Dantas de Medeiros Neto – Porto
Alegre: UFRGS – Instituto de Informática, 2015.
180 p. ; 21 cm.

Instituto de Informática, Universidade Federal do Rio Grande do Sul,
Sociedade Brasileira de Computação.
Publicação composta por 1 volume, sendo este o volume 1.
ISBN : 978-85-88425-14-9.

1. Engenharia de software. I. coord. Ingrid Nunes. II. Francisco Dantas de
Medeiros Neto. III. Anais.

CDD 620	

	

	
 	

	
 	

	

	
 iii	

Foreword	

	
 	

This	
 proceedings	
 records	
 the	
 contributions	
 presented	
 at	
 the	
 Second	
 Latin	
 American	
 School	
 on	
 Software	
 Engineering	
 –	

ELA-­‐ES,	
 which	
 took	
 place	
 in	
 Porto	
 Alegre,	
 Rio	
 Grande	
 do	
 Sul,	
 from	
 June	
 30th	
 to	
 July	
 3rd,	
 2015.	
 	

	

This	
 second	
 edition	
 of	
 the	
 ELA-­‐ES	
 builds	
 on	
 the	
 success	
 of	
 the	
 previous	
 event	
 in	
 this	
 series,	
 which	
 took	
 place	
 in	
 Rio	
 de	

Janeiro	
 (2013).	
 ELA-­‐ES	
 provides	
 intensive	
 and	
 exciting	
 four-­‐days	
 of	
 lectures	
 on	
 both	
 basic	
 and	
 state-­‐of-­‐the-­‐art	
 themes	

of	
 software	
 engineering	
 covering	
 a	
 wide	
 range	
 of	
 topics,	
 including	
 software	
 architecture,	
 modularity,	
 software	
 testing,	

experimental	
 software	
 engineering.	
 The	
 school	
 brings	
 together	
 undergraduate	
 students,	
 Master	
 and	
 PhD	
 students	
 and	

lecturers	
 as	
 well	
 as	
 other	
 researchers	
 and	
 practitioners	
 who	
 are	
 interested	
 in	
 software	
 engineering	
 and	
 specifically	
 the	

topics	
 named	
 above.	
 The	
 tutorials	
 are	
 given	
 by	
 renowned	
 representatives	
 of	
 each	
 domain	
 of	
 expertise.	
 Each	
 tutorial	

combines	
 foundations,	
 examples	
 and	
 advanced	
 topics	
 and	
 some	
 of	
 them	
 will	
 present	
 hands-­‐on	
 sessions	
 when	

appropriate.	
 Moreover,	
 the	
 event	
 includes	
 an	
 industry	
 panel,	
 with	
 discussions	
 on	
 applied	
 research	
 and	
 the	

opportunities	
 that	
 are	
 emerging	
 in	
 Latin	
 America,	
 with	
 the	
 creation	
 of	
 the	
 Parque	
 Científico	
 e	
 Tecnológico	
 of	
 UFRGS.	
 	

	

The	
 program	
 of	
 the	
 Latin	
 American	
 school	
 also	
 features	
 lectures	
 and	
 activities	
 that	
 will	
 address	
 complementary	
 issues	

that	
 are	
 relevant	
 to	
 young	
 researchers:	
 How	
 to	
 plan	
 my	
 research	
 agenda	
 in	
 Software	
 Engineering?	
 What	
 has	
 been	
 the	

evolution	
 of	
 Software	
 Engineering	
 in	
 Latin	
 America?	
 What	
 are	
 the	
 possible	
 academic	
 and	
 industry	
 careers	
 after	
 my	

studies?	
 	

	

The	
 current	
 edition	
 of	
 the	
 workshop	
 received	
 a	
 range	
 of	
 contributions.	
 We	
 received	
 10	
 technical	
 paper	
 submissions,	

from	
 which	
 we	
 accepted	
 5	
 papers	
 (50%).	
 In	
 addition,	
 3	
 of	
 these	
 papers	
 were	
 accepted	
 as	
 position	
 papers	
 (30%).	
 We	

also	
 received	
 28	
 position	
 paper	
 submissions,	
 from	
 which	
 we	
 accepted	
 22	
 papers	
 (78.5%).	
 	
 	

The	
 success	
 of	
 ELA-­‐ES	
 2015	
 was	
 only	
 possible	
 because	
 of	
 the	
 dedication	
 and	
 enthusiasm	
 of	
 many	
 people.	
 First,	
 we	

would	
 like	
 to	
 thank	
 the	
 authors	
 for	
 submitting	
 their	
 papers.	
 We	
 would	
 also	
 like	
 to	
 express	
 our	
 gratitude	
 to	
 the	

following	
 people:	
 the	
 TPC	
 members,	
 for	
 their	
 dedication	
 and	
 great	
 work	
 when	
 reviewing	
 the	
 submitted	
 papers;	
 the	

Organizing	
 Committee,	
 for	
 their	
 great	
 help	
 in	
 giving	
 shape	
 to	
 the	
 event.	
 In	
 particular,	
 we	
 would	
 like	
 to	
 thank	
 the	
 staff	
 at	

Sociedade	
 Brasileira	
 de	
 Computação	
 (SBC),	
 for	
 their	
 support.	

We	
 would	
 also	
 like	
 to	
 thank	
 the	
 invited	
 speakers	
 –	
 Prof.	
 Dr.	
 Cláudia	
 Werner	
 (UFRJ,	
 BR),	
 Prof.	
 Dr.	
 Simone	
 Barbosa	
 (PUC-­‐
Rio,	
 BR),	
 Prof.	
 Dr.	
 Antónia	
 Lopes	
 (Universidade	
 de	
 Lisboa,	
 PT),	
 Prof.	
 Dr.	
 David	
 Garlan	
 (Carnegie	
 Mellon	
 University,	
 USA),	

Prof.	
 Dr.	
 Don	
 Batory	
 (University	
 of	
 Texas,	
 USA),	
 Prof.	
 Dr.	
 Gail	
 Murphy	
 (University	
 of	
 British	
 Columbia,	
 CA),	
 Prof.	
 Dr.	

Gregor	
 Engels	
 (Universität	
 Paderborn,	
 DE),	
 Prof.	
 Dr.	
 Guenther	
 Ruhe	
 (University	
 of	
 Calgary,	
 CA)	
 and	
 Prof.	
 Dr.	
 Sebastián	

Uchitel	
 (Universidad	
 de	
 Buenos	
 Aires,	
 AR	
 and	
 Imperial	
 College	
 London,	
 UK)	
 –	
 and	
 panelists	
 for	
 their	
 valuable	

contribution	
 to	
 the	
 event.	
 Finally,	
 we	
 acknowledge	
 CAPES	
 and	
 UFRGS	
 for	
 the	
 financial	
 support.	
 	

We	
 hope	
 ELA-­‐ES	
 goes	
 ahead	
 as	
 a	
 long-­‐lasting	
 school,	
 thereby	
 allowing	
 a	
 growing	
 and	
 inspiring	
 sense	
 of	
 community	
 and	

collaboration	
 amongst	
 researchers	
 from	
 Software	
 Engineering	
 community.	

	

	

Porto	
 Alegre,	
 July	
 2015.	
 	

Ingrid	
 Nunes	

Francisco	
 Dantas	
 de	
 Medeiros	
 Neto	

ELA-­‐ES	
 2015	
 General	
 Chairs	
 	

	

	

	

	

	
 	

	

	
 iv	

ELA-­‐ES	
 2015	
 Chairs	
 Short	
 Biographies	
 	

	
 	

	

Ingrid	
 Nunes	
 is	
 a	
 Professor	
 Adjunto	
 (Associate	
 Professor)	
 of	
 the	
 Instituto	
 de	
 Informática	
 at	
 the	
 Federal	
 University	
 of	
 Rio	

Grande	
 do	
 Sul	
 (UFRGS),	
 Porto	
 Alegre,	
 Brazil,	
 and	
 the	
 head	
 of	
 the	
 Prosoft	
 research	
 group.	
 She	
 completed	
 her	

undergraduate	
 studies	
 in	
 Computer	
 Science	
 at	
 UFRGS	
 (2006),	
 obtained	
 her	
 Master's	
 degree	
 in	
 Informatics	
 at	
 the	

Pontifical	
 Catholic	
 University	
 of	
 Rio	
 de	
 Janeiro	
 (2009),	
 and	
 obtained	
 her	
 Doctor's	
 degree	
 in	
 Informatics	
 at	
 the	
 Pontifical	

Catholic	
 University	
 of	
 Rio	
 de	
 Janeiro	
 (2012).	
 Her	
 phd	
 was	
 in	
 cooperation	
 with	
 King's	
 College	
 London	
 (UK),	
 under	
 a	

sandwich	
 Ph.D.	
 programme	
 of	
 one	
 year,	
 and	
 with	
 University	
 of	
 Waterloo	
 (Canada),	
 with	
 three	
 three-­‐month	
 research	

visits.	
 She	
 was	
 also	
 a	
 post-­‐doc	
 researcher	
 at	
 PUC-­‐Rio	
 in	
 the	
 Software	
 Engineering	
 Laboratory	
 (LES)	
 (2012),	
 and	
 has	

experience	
 in	
 the	
 industry,	
 where	
 she	
 worked	
 as	
 a	
 software	
 developer	
 from	
 2005	
 to	
 2007.	
 She	
 is	
 a	
 section	
 editor	
 of	
 the	

Scientific	
 Initiation	
 Magazine	
 (REIC).	
 Her	
 main	
 research	
 areas	
 are	
 software	
 engineering	
 and	
 artificial	
 intelligence.	

	

Francisco	
 Dantas	
 de	
 Medeiros	
 Neto	
 is	
 Professor	
 Adjunto	
 (Associate	
 Professor)	
 in	
 the	
 Computing	
 Department	
 at	
 State	

University	
 of	
 Rio	
 Grande	
 do	
 Norte,	
 Brazil.	
 He	
 received	
 his	
 B.Sc.	
 (2001)	
 and	
 M.Sc.	
 (2004)	
 degrees	
 in	
 Computer	
 Science	

from	
 Federal	
 University	
 of	
 Rio	
 Grande	
 do	
 Norte,	
 Brazil.	
 In	
 2013,	
 he	
 received	
 the	
 D.Sc.	
 degree	
 in	
 Informatics	
 from	
 the	

Pontifical	
 Catholic	
 University	
 of	
 Rio	
 de	
 Janeiro,	
 Brazil.	
 	
 His	
 doctorate	
 was	
 developed	
 in	
 cooperation	
 with	
 Lancaster	

University	
 (UK),	
 under	
 a	
 sandwich	
 Ph.D.	
 programme	
 of	
 one	
 year.	
 Dantas’	
 research	
 interests	
 include	
 Advanced	

Techniques	
 for	
 Modular	
 Programming,	
 Product	
 Lines,	
 Software	
 Metrics,	
 Empirical	
 Software	
 Engineering	
 and	
 Software	

Architecture.	

	

	
 	

	
 	

	

	
 v	

Technical	
 Committees	

	

General 	
 Chairs 	

Ingrid	
 Nunes	
 (UFRGS)	

Francisco	
 Dantas	
 de	
 Medeiros	
 Neto	
 (UERN)	

	

Organizing	
 Team	
 	

Daniela	
 Brauner	
 (UFPel)	

Daltro	
 Nunes	
 (UFRGS)	

Carlos	
 Lucena	
 (PUC-­‐Rio)	

	

Local	
 Organizers	

Fernando	
 dos	
 Santos	
 (UFRGS)	

Jacob	
 de	
 Quadros	
 Stein	
 (UFRGS)	

Jhonny	
 Marcos	
 Acordi	
 Mertz	
 (UFRGS)	

João	
 Guilherme	
 Faccin	
 (UFRGS)	

Lucas	
 Lazzari	
 Tomasi	
 (UFRGS)	

Matheus	
 Medeiros	
 Dias	
 (UFRGS)	

Vanius	
 Zapalowski	
 (UFRGS)	

	

Program	
 Committee	
 	

Adenilso	
 Simao	
 (USP,	
 Brazil)	

Alejandra	
 Garrido	
 (Universidad	
 Nacional	
 de	
 la	
 Plata,	
 Argentina)	

Álvaro	
 Moreira	
 (UFRGS,	
 Brazil)	

Ana	
 Paula	
 Terra	
 Bacelo	
 (PUC-­‐RS,	
 Brazil)	

Baldoino	
 Santos	
 Neto	
 (UFAL,	
 Brazil)	

Beatriz	
 Marín	
 (Universidad	
 Diego	
 Portales,	
 Chile)	

Claudia	
 Pons	
 (Universidad	
 Nacional	
 de	
 La	
 Plata,	
 Argentina)	

Cláudia	
 Werner	
 (UFRJ,	
 Brazil)	

Claudio	
 Sant’Anna	
 (UFBA,	
 Brazil)	

Daniel	
 Lucrédio	
 (UFSCar,	
 Brazil)	

Daniela	
 Godoy	
 (ISISTAN	
 Research	
 Institute,	
 Argentina)	

Diego	
 Vallespir	
 (Universidad	
 de	
 la	
 República,	
 Uruguay)	

Edson	
 A.	
 Oliveira	
 Junior	
 (UEM,	
 Brazil)	

Eduardo	
 Almeida	
 (UFBA,	
 Brazil)	

Eduardo	
 Figueiredo	
 (UFMG,	
 Brazil)	

Eduardo	
 Guerra	
 (INPE,	
 Brazil)	

Eduardo	
 Piveta	
 (UFSM,	
 Brazil)	

Elder	
 Cirilo	
 (UFSJ,	
 Brazil)	

Erika	
 Cota	
 (UFRGS,	
 Brazil)	

Eugenio	
 Scalise	
 (UCV,	
 Venezuela)	

Fabiano	
 Ferrari	
 (UFSCar,	
 Brazil)	

Fabio	
 Silveira	
 (UNIFESP,	
 Brazil)	

Fernando	
 Castor	
 (UFPE,	
 Brazil)	

Gaston	
 Mousques	
 (Universidad	
 ORT,	
 Uruguay)	

Guilherme	
 Travassos	
 (UFRJ,	
 Brazil)	

Gustavo	
 Rossi	
 (LIFIA,	
 Argentina)	

Hernán	
 Astudillo	
 (Universidad	
 Técnica	
 Federico	
 Santa	
 María,	
 Chile)	

Isela	
 Bertran	
 (GE	
 Global	
 Research	
 Center,	
 Brazil)	

Jair	
 Leite	
 (UFRN,	
 Brazil)	

Jean	
 Cheiran	
 (UNIPAMPA,	
 Brazil)	

Juan	
 Pablo	
 Carvallo	
 (Universidad	
 del	
 Azuay,	
 Ecuador)	

	
 	

	

	
 vi	

Judith	
 Barrios	
 (ULA,	
 Venezuela)	

Leandro	
 Wives	
 (UFRGS,	
 Brazil)	

Leila	
 Ribeiro	
 (UFRGS,	
 Brazil)	

Leopoldo	
 Teixeira	
 (UFPE,	
 Brazil)	

Lucineia	
 Thom	
 (UFRGS,	
 Brazil)	

Lucio	
 Duarte	
 (UFRGS,	
 Brazil)	

Luis	
 Lamb	
 (UFRGS,	
 Brazil)	

Marcelo	
 Pimenta	
 (UFRGS,	
 Brazil)	

Marco	
 Tulio	
 Valente	
 (UFMG,	
 Brazil)	

María	
 Cecilia	
 Bastarrica	
 (Universidad	
 de	
 Chile,	
 Chile)	

Nelio	
 Cacho	
 (UFRN,	
 Brazil)	

Norah	
 Villegas	
 (Icesi,	
 Colombia)	

Paulo	
 Masiero	
 (USP,	
 Brazil)	

Ricardo	
 Choren	
 (IME/RJ,	
 Brazil)	

Ricardo	
 Terra	
 (UFLA,	
 Brazil)	

Ricardo	
 Soto	
 (Pontificia	
 Univ.	
 Católica	
 de	
 Valparaíso,	
 Chile)	

Rodrigo	
 Bonifacio	
 (UnB,	
 Brazil)	

Rodrigo	
 Paes	
 (UFAL,	
 Brazil)	

Romain	
 Robbes	
 (University	
 of	
 Chile,	
 Chile)	

Rosângela	
 Penteado	
 (UFSCar,	
 Brazil)	

Roxana	
 Giandini	
 (Universidad	
 Nacional	
 de	
 la	
 Plata,	
 Argentina)	

Thais	
 Batista	
 (UFRN,	
 Brazil)	

Tiago	
 Massoni	
 (UFCG,	
 Brazil)	

Toacy	
 Oliveira	
 (UFRJ,	
 Brazil)	

Uirá	
 Kulesza	
 (UFRN,	
 Brazil)	

Valter	
 Camargo	
 (UFSCar,	
 Brazil)	

Vinicius	
 Garcia	
 (UFPE,	
 Brazil)	

	

Additional	
 Reviewers 	

Alcemir	
 Santos	
 	

Boris	
 Almonacid	
 	

Carolina	
 Valverde	

Daniel	
 Perovich	
 	

Italo	
 Silva	
 	

Kattiana	
 Constantino	

Luiz	
 Paulo	
 Coelho	
 Ferreira	

Rodrigo	
 Olivares	

	
 	

	
 	

	

	
 vii	

Table	
 of	
 Contents	

Talks	
 and	
 Tutorials	

	

A	
 Tentative	
 Agenda	
 and	
 Perspectives	
 for	
 Software	
 Engineering	
 Young	
 Researchers	
 	

	
 Cláudia	
 Werner	
 1	

	

Tutorial	
 1:	
 Formal	
 Aspects	
 of	
 Software	
 Architecture	
 	

	
 Antónia	
 Lopes	
 2	

	

Tutorial	
 2:	
 A	
 Theory	
 of	
 Modularity	
 for	
 Automated	
 Software	
 Design	
 	

	
 Don	
 Batory	
 3	

	

Tutorial	
 3:	
 Model-­‐driven	
 Development	
 	

	
 Gregor	
 Engels	
 4	

	

Tutorial	
 4:	
 Abstractions	
 for	
 Validation	
 	

	
 Sebastián	
 Uchitel	
 5	

	

Tutorial	
 5:	
 Experimental	
 Software	
 Engineering	
 –	
 The	
 Pathway	
 for	
 Achieving	
 Evidence	
 	

	
 Guenther	
 Ruhe	
 6	

	

Tutorial	
 6:	
 Self-­‐Adaptive	
 Systems	
 	

	
 David	
 Garlan	
 7	

	

Tutorial	
 7:	
 Recommender	
 Systems	
 for	
 Software	
 Engineering	
 	

	
 Gail	
 Murphy	
 8	

	

Panels	

	

Why,	
 When,	
 and	
 How	
 to	
 Write	
 up	
 Your	
 Research	
 Work	
 	

	
 Simone	
 Barbosa	
 9	

	

Software	
 Engineering	
 Research	
 at	
 UFRGS	
 	

	
 	
 10	

	

Perspectives,	
 Opportunities	
 and	
 Challenges	
 of	
 Software	
 Engineering	
 in	
 the	
 Industry	
 	

	
 	
 13	

	

Software	
 Engineer:	
 Industry	
 or	
 Academia?	
 	

	
 	
 15	

	

Mini-­‐courses	

	

Introdução	
 ao	
 Planejamento	
 e	
 à	
 Análise	
 Estatística	
 de	
 Experimentos	
 em	
 Engenharia	
 de	
 Software	
 	

	
 Lisiane	
 Selau	
 17	

	

Vivencial	
 da	
 Metodologia	
 Ágil	
 SCRUM	
 	

	
 Pablo	
 Schoeffel	
 18	

	

	

	
 	

	

	
 viii	

Technical	
 Papers	

	

Duplicidade	
 de	
 Informação	
 e	
 Ferramentas	
 para	
 Limpeza	
 dos	
 Dados	
 	

	
 Carlos	
 Eduardo	
 O.	
 Santos	
 and	
 Sergio	
 Martins	
 Fernandes	
 19	

	

Conceptual	
 Framework	
 to	
 Support	
 Sampling	
 Activities	
 in	
 Software	
 Engineering	
 Surveys	
 	

	
 Rafael	
 M.	
 de	
 Mello	
 and	
 Guilherme	
 H.	
 Travassos	
 30	

	

Processo	
 de	
 Conformidade	
 Arquitetural	
 em	
 Integração	
 Contínua	
 	

	
 Arthur	
 F.	
 Pinto	
 and	
 Ricardo	
 Terra	
 42	

	

AtlasSPL	
 -­‐	
 A	
 Web-­‐Based	
 Tool	
 for	
 Feature	
 Modeling	
 	

	
 Marcelo	
 S.	
 Laser,	
 Elder	
 M.	
 Rodrigues,	
 Cristiano	
 M.	
 Martins	
 and	
 Flávio	
 Oliveira	
 54	

	

Engenharia	
 de	
 Software	
 Orientada	
 a	
 Agentes:	
 Um	
 Estudo	
 Comparativo	
 entre	
 Metodologias	
 que	
 Suportam	
 o	

Processo	
 de	
 Desenvolvimento	
 de	
 Sistemas	
 Multiagente	

	

	
 Rafhael	
 R.	
 Cunha,	
 Diana	
 F.	
 Adamatti	
 and	
 Cléo	
 Z.	
 Billa	
 66	

	

Position	
 Papers	

	

Avaliação	
 Experimental	
 da	
 Relação	
 de	
 Coesão	
 e	
 Acoplamento	
 com	
 o	
 Esforço	
 de	
 Compreensão	
 de	
 Software	
 	

	
 Elienai	
 B.	
 Batista	
 and	
 Claudio	
 Sant’Anna	
 78	

	

Estabelecimento	
 de	
 uma	
 Arquitetura	
 de	
 Referência	
 para	
 Ferramentas	
 de	
 Gerenciamento	
 de	
 Variabilidades	
 	

	
 Ana	
 Paula	
 Allian,	
 Edson	
 OliveiraJr	
 and	
 Elisa	
 Y.	
 Nakagawa	
 82	

	

SMartyComponents:	
 Um	
 Método	
 para	
 Especificação	
 de	
 Arquiteturas	
 de	
 Linhas	
 de	
 Produtos	
 de	
 Software	

Componentizadas	

	

	
 Marcio	
 H.	
 G.	
 Bera,	
 Edson	
 OliveiraJr	
 and	
 Thelma	
 E.	
 Colanzi	
 86	

	

SMartyMetrics:	
 uma	
 Proposta	
 de	
 Framework	
 de	
 Métricas	
 para	
 Arquiteturas	
 de	
 Linha	
 de	
 Produto	
 de	

Software	

	

	
 André	
 Felipe	
 Ribeiro	
 Cordeiro	
 and	
 Edson	
 OliveiraJr	
 90	

	

Estudo	
 de	
 Caracterização	
 de	
 Bugs	
 de	
 Projetos	
 de	
 Código	
 Aberto	
 	

	
 Guilherme	
 A.	
 de	
 Oliveira	
 and	
 Humberto	
 T.	
 Marques-­‐Neto	
 94	

	

Análises	
 Estruturais	
 para	
 Identificação	
 de	
 Falso-­‐Positivos	
 em	
 	
 Recomendações	
 de	
 Refatoração	
 	

	
 Rafael	
 S.	
 Lima	
 and	
 Ricardo	
 Terra	
 98	

	

Formação	
 de	
 Equipes	
 de	
 Alto	
 Desempenho	
 para	
 Desenvolvimento	
 de	
 Software	
 	

	
 Alessandra	
 C.	
 S.	
 Dutra	
 and	
 Rafael	
 Prikladnicki	
 102	

	

Software	
 Crowdsourcing:	
 Barriers	
 Faced	
 by	
 the	
 Crowd	
 	

	
 Leticia	
 Santos	
 Machado	
 and	
 Rafael	
 Prikladnicki	
 106	

	

Decisões	
 sobre	
 arquitetura	
 de	
 software	
 em	
 projetos	
 que	
 utilizam	
 métodos	
 ágeis	
 	

	
 Andrey	
 Baumhardt	
 Ramos	
 and	
 Raquel	
 Aparecida	
 Pegoraro	
 110	

	

Sistema	
 Multiplataforma	
 para	
 o	
 Controle	
 de	
 Denúncias:	
 modelagem	
 para	
 implantação	
 em	
 órgãos	
 públicos	

de	
 fiscalização	

	

	
 Lucas	
 S.	
 Rodrigues	
 and	
 Fernando	
 M.	
 Federson	
 114	

	
 	

	

	
 ix	

	

Abordagem	
 de	
 TBM	
 para	
 Automatizar	
 Testes	
 GUI	
 no	
 Contexto	
 de	
 Aplicações	
 Móveis	
 	

	
 Silvia	
 Meireles	
 and	
 Arilo	
 Dias-­‐Neto	
 118	

	

Discovery	
 and	
 Usage	
 of	
 Computing	
 Devices	
 in	
 IoT	
 Environments	
 	

	
 Willian	
 Lunardi,	
 Sabrina	
 Marczak,	
 Leonardo	
 Amaral	
 and	
 Fabiano	
 Hessel	
 122	

	

Análise	
 da	
 adoção	
 de	
 processo	
 de	
 medição	
 no	
 desenvolvimento	
 ágil	
 de	
 software	
 	

	
 Luis	
 Paulo	
 Correa	
 and	
 Raquel	
 Aparecida	
 Pegoraro	
 126	

	

On	
 the	
 Transformation	
 to	
 Agile	
 in	
 a	
 Large-­‐Complex	
 Globally	
 Distributed	
 Company:	
 A	
 Research	
 Plan	
 to	

Define	
 Guidelines	

	

	
 Greice	
 Roman,	
 Sabrina	
 Marczak	
 and	
 Alessandra	
 Dutra	
 130	

	

Guidelines	
 for	
 Modularizing	
 the	
 Monitor	
 Component	
 when	
 Refactoring	
 Adaptive	
 Systems	
 	

	
 Marcel	
 Serikawa,	
 Bento	
 Siqueira,	
 Fabiano	
 Ferrari,	
 Ricardo	
 Menotti	
 and	
 Valter	
 V.	
 de	
 Camargo	
 134	

	

Furthering	
 Knowledge	
 on	
 How	
 Behavior-­‐Driven	
 Development	
 Can	
 Support	
 Requirements	
 Elicitation	
 	

	
 Lauriane	
 Correa,	
 Sabrina	
 Marczak	
 and	
 Cleidson	
 R.	
 B.	
 de	
 Souza	
 138	

	

What	
 challenges	
 project	
 managers	
 face	
 in	
 software	
 crowdsourcing?	
 	

	
 Graziela	
 Basilio	
 Pereira,	
 Alexandre	
 Lazaretti	
 Zanatta	
 and	
 Rafael	
 Prikladnicki	
 142	

	

Colaboração	
 e	
 Cooperação	
 em	
 Equipes	
 Ágeis:	
 uma	
 investigação	
 baseada	
 na	
 simulação	
 de	
 agentes	
 	

	
 Adriana	
 Neves	
 dos	
 Reis	
 146	

	

Meta-­‐Aprendizado	
 Aplicado	
 à	
 Estimativa	
 de	
 Esforço	
 em	
 Orojetos	
 de	
 Desenvolvimento	
 de	
 Software	
 	

	
 Silvia	
 Nunes	
 das	
 Dôres	
 and	
 Duncan	
 Ruiz	
 150	

	

Sistema	
 de	
 Recomendação	
 de	
 APIs	
 na	
 Engenharia	
 de	
 Software	
 	

	
 Luisa	
 Hernández	
 and	
 Heitor	
 Costa	
 154	

	

An	
 Automatic	
 Approach	
 to	
 Detect	
 Unusual	
 Events	
 in	
 Software	
 Repositories	
 	

	
 Larissa	
 Leite,	
 Christoph	
 Treude	
 and	
 Fernando	
 Figueira	
 Filho	
 158	

	

An	
 Evaluation	
 Model	
 for	
 Software	
 Ecosystem	
 Practice	
 Improvement	
 	

	
 Simone	
 S.	
 Amorim,	
 John	
 D.	
 McGregor,	
 Eduardo	
 S.	
 de	
 Almeida	
 and	
 Christina	
 von	
 Flach	
 G.	
 Chavez	
 162	

	

Melhoria	
 da	
 Qualidade	
 Interna	
 de	
 Software	
 Orientado	
 a	
 Objetos	
 Usando	
 Medidas	
 de	
 Acoplamento	
 e	
 de	

Coesão	

	

	
 Danilo	
 Santos	
 and	
 Antônio	
 Resende,	
 Heitor	
 Costa	
 166	

	

	

	

A Tentative Agenda and Perspectives for Software
Engineering Young Researchers

Cláudia Werner1
1Federal University of Rio de Janeiro (UFRJ), BR

werner@cos.ufrj.br

1. Abstract
Becoming a new professor at a university or a researcher at an industrial research lab is
a challenge. They are typically under tremendous pressure to teach/train new software
engineers, supervise graduate students/subordinates, collaborate with
industry/academia, raise research funds, be leaders in their field, and/or publish
journal/conference papers/technical reports. Moreover, there is a tremendous shortage
of Software Engineering (SE) faculty/professionals in many countries around the world.
In Latin American the situation is not different. Thus, it is important to help young
software engineering researchers survive in academia or industry in their early careers.
Questions such as: “How to plan a research agenda in SE?”, “What has been the
evolution of SE in Latin America?”, “What are the possible academic and industry
careers after the studies?” and “How to balance career and personal life?” need to be
handled. This talk aims to discuss a tentative agenda and perspectives for SE young
researchers, providing ideas on practical guidelines for having a successful and fulfilling
academic/industry career. We also present the trajectory of research in Brazil/Latin
America and some challenges to overcome in this field.

2. Short bio
Cláudia Maria Lima Werner received her D.Sc. from COPPE/UFRJ (1992) (the
Graduate School of Engineering of the Federal University of Rio de Janeiro, Brazil) and
since 1994 is a Professor of the Computer Science Department, being the leader of the
Software Engineering group, at COPPE/UFRJ. She is also a CNPq and FAPERJ
(Cientista do Nosso Estado) researcher, having experience in Software Engineering for
more than 20 year, with emphasis in Software Reuse, Software Engineering Education,
Software Visualization and Ecosystems. She has over 200 technical papers published in
national and international conferences and journals, besides book chapters. She is a
member of the Brazilian Society of Computer Science (SBC) and the program
committee of various national and international conferences, and also co-editor-in-chief
of the Springer Journal of Software Engineering Research and Development (JSERD).

II Latin American School on Software Engineering (ELA-ES 2015)

1

Tutorial 1: Formal Aspects of Software Architecture
Antónia Lopes 1

1Universidade de Lisboa, PT
mal@di.fc.ul.pt

1. Abstract
In the last two decades, Software Architecture has become an important sub-discipline
of Software Engineering. Architecture is now a widely-accepted conceptual basis for the
development of large and complex software systems, the importance of architectural
decisions in the ability of a system to meet its non-functional requirements being widely
recognised. At an architectural level, the design of a system involves deciding on how
the system is to be structured in terms of components and connectors. Representing
those decisions, even if using informal box-and-line drawings, contributes to
understanding the system and to reasoning about runtime quality attributes such as
performance, reliability, availability and security. Such architectural descriptions
become more useful and relevant when expressed in a formal notation equipped with a
semantics that enables formal analysis. In this talk I will discuss the role of software
architecture, and describe the progress that has been made in formal modelling and
analysis of software architectures as well as on formal foundations of software
architecture.

2. Short bio
Antónia Lopes is Associate Professor in the Department of Informatics of the
University of Lisbon, Faculty of Science, Portugal, since March 2006. She received a
Ph.D. in Informatics at the University of Lisbon in 1999. Her research interests are in
the area of formal methods for software engineering. These include mathematically
based techniques for the specification, modelling and analysis of various types of
software intensive systems, namely service-oriented systems and self-adaptive systems.
She was the program committee co-chair of Fundamental Approaches to Software
Engineering 2007 (FASE 2007) and 11th IFIP WG 6.1 International Conference on
Formal Techniques for Distributed Systems (FMOODS/FORTE 2009) and ASAAS
2011 (First Workshop on Assurances for Self-Adaptive Systems). She is member of the
Editorial Board of Academic Editors for PeerJ Computer Science.

II Latin American School on Software Engineering (ELA-ES 2015)

2

Tutorial 2: A Theory of Modularity for Automated
Software Design

Don Batory 1
1University of Texas, USA

dsb@cs.utexas.edu

1. Abstract
Automated Software Development (ASD) uses technologies to develop customized
programs automatically and compositionally from modules. The foundations of ASD
are domain-specific algebras, where each program in the target domain maps to a
unique expression, and modules are expression terms. Programs are optimized
automatically using algebraic identities among module compositions. This tutorial
traces the history of ASD and presents a general theory of modularity for ASD that
follows from its tenets.

2. Short bio
Don Batory holds the David Bruton Centennial Professorship in the Department of
Computer Science at The University of Texas at Austin. He received a B.S. (1975) and
M.Sc. (1977) degrees from Case Institute of Technology, and a Ph.D. (1980) from the
University of Toronto. He was a faculty member at the University of Florida in 1981
before he joined the University of Texas in 1983. He was Associate Editor of IEEE
Transactions on Software Engineering (1999-2002), Associate Editor of ACM
Transactions on Database Systems (1986-1992), member of the ACM Software Systems
Award Committee (1989-1993; Committee Chairman in 1992), Program Co-Chair for
the 2002 Generative Programming and Component Engineering Conference. He is a
proponent of Feature Oriented Software Development (FOSD) and with colleagues (and
former students) has recently authored a textbook on the topic. Since 1993, he and his
students have written 11 Award Papers for their work in automated program
development. He and Lance Tokuda were awarded the Automated Software
Engineering 2013 Most Influential Paper Award on their work on program refactorings.

II Latin American School on Software Engineering (ELA-ES 2015)

3

Tutorial 3: Model-driven Development
Gregor Engels 1

1Universität Paderborn, DE
engels@uni-paderborn.de

1. Abstract
Model-driven resp. model-based approaches have become the de facto standard to
develop, to evolve, to migrate, or to modernize complex software systems. In order to
do so, modeling languages are used, which might be general-purpose modeling
languages (as e.g. UML) or domain-specific modeling languages (DSML). The syntax
of those modeling languages is defined by meta-modelling techniques, while the
semantics is defined directly by transformation techniques or indirectly by translating
models into appropriate semantic domains. During the construction process, models are
stepwise refined. This can be done manually by a modeler or automatically by model
transformations. These are formally specified by using a (domain-specific) model
transformation language (as e.g. QVT, ATL). High quality of models can be achieved
by e.g. deploying design patterns during a forward construction process, by mining
techniques during a backward construction process, or by model checking techniques
during an afterwards analytical process. The talk gives an overview on the state-of-the-
art of model-driven development, its industrial acceptance as well as an overview on
open research questions.

2. Short bio
Gregor Engels received his PhD in Computer Science in 1986 from the University of
Osnabrück, Germany. Between 1991 and 1997 he held the position of Chair of Software
Engineering and Information Systems at the University of Leiden, The Netherlands.
Since 1997, he is Professor of Informatics at the University of Paderborn, Germany.
Currently, he is also director of two technology transfer labs at the University of
Paderborn, the C-LAB, a joint venture together with ATOS, and the s-lab – Software
Quality Lab, where overall more than 50 PhD students do joint research with industrial
partners. His research interests are in the area of model-driven software development,
software architecture, and software quality assurance. He has published more than 200
papers in scientific journals, as book contributions or articles at international
conferences and workshops. He teaches in Bachelor, Master and PhD programmes since
more than 30 years. He also gives regularly tutorials and seminars on recent technology
topics at scientific conferences and industrial events.

II Latin American School on Software Engineering (ELA-ES 2015)

4

Tutorial 4: Abstractions for Validation
Sebastián Uchitel 1

1Universidad de Buenos Aires, AR and Imperial College London, UK

2Department of Computer Science – University of Durham
Durham, U.K.

suchitel@dc.uba.ar

1. Abstract
Validating (as opposed to verifying) software artefacts is notoriously difficult. In this
talk I will discuss the general problem of validation and then focus on a specific kind of
artefacts, those that define a set of operations and impose restrictions to the ordering on
which they have to be invoked. I will discuss Enabledness Preserving Abstractions
(EPAs) and show that they are a concise representations of the behaviour space for such
artefacts. I will also show how these abstractions can be built and how they may be used
to support some programming tasks. Finally, I will discuss limitations of these
abstractions and opportunities for improvement.

2. Short bio
Sebastian Uchitel is a professor at University of Buenos Aires and Imperial College
London. He currently also sits on the board of the national argentine oil company, YPF.
He received his undergraduate computer science degree from University of Buenos
Aires and his Phd in Computing from Imperial College London. His research interests
are in behaviour modelling, analysis and synthesis of requirements and design for
software-intensive systems. He was associate editor of IEEE Transactions on Software
Engineering and is currently associate editor of the Requirements Engineering Journal
and the Science of Computer Programming Journal. He was program co-chair of the
32nd IEEE/ACM International Conference on Software Engineering (ICSE 2010) and
will be general chair of the same conference in 2017, when it will be held in Buenos
Aires, Argentina.

II Latin American School on Software Engineering (ELA-ES 2015)

5

Tutorial 5: Experimental Software Engineering – The
Pathway for Achieving Evidence

Guenther Ruhe1
1 University of Calgary, CA

ruhe@ucalgary.ca

1. Abstract
As for any technology, the same is also true for software engineering technologies
(tools, techniques, processes): When and where is it applicable and when and where is it
not? How good does it work? and how much time and effort is needed to run it? There
is no easy way to accumulate this knowledge. In this mini-tutorial, the empirical
research paradigm is motivated and explained as a means to answer the above questions.
Key steps of conducting experiments are described: (i) experimental context, (ii)
experimental design, (iii) run the experiment, (iv) analysis of results, (v) presentation
and (vi) interpretation of results. As series of examples is given to illustrate the value
added for researchers and users of an empirically validated software technology.

2. Short bio
Günther Ruhe is a Professor at the University of Calgary in Canada. He received a
doctorate rer. nat. degree in Mathematics with emphasis on Operations Research from
Freiberg University and a doctorate habil. nat. degree (Computer Science) from
University of Kaiserslautern (Germany). From 1996 until 2001, he was the deputy
director of the Fraunhofer Institute for Experimental Software Engineering Fh IESE.
Since 2007, he serves as an Associate Editor of the Journal of Information and Software
Technology, published by Elsevier. His main research interests are in the areas of
Product and Project Management, Data Analytics, Decision Support in Requirements
Engineering and Empirical Software Engineering. Günther is the Founder and CEO of
Expert Decisions Inc., a University of Calgary spin-off company created in 2003.

II Latin American School on Software Engineering (ELA-ES 2015)

6

Tutorial 6: Self-Adaptive Systems
David Garlan 1

1 Carnegie Mellon University, USA
garlan@cs.cmu.edu

1. Abstract
The increasing use of computing systems in every facet of our everyday lives raises a
number of challenges for software engineering. In particular, one of the most important
requirements for today’s systems is high availability – even in the presence of faults,
changing environmental conditions, and attacks. To address these requirements we need
to be able to build systems that take more control over their own dependability, security,
and usefulness – automating many of the tasks that now lead to system failures and that
require computing experts and administrators to manage. This has led to a new sub-field
of software engineering and systems design, sometimes termed Autonomic Computing,
Self-healing Systems, or Self-Adaptive Systems. In this talk I describe this emerging
field and recent advances that allow us to address various engineering challenges,
including (a) the ability to support self-healing through architectural models and
automated repair, (b) new techniques for diagnosing faults at run-time with applications
to manufacturing control systems, (c) the ability to support self-securing systems, and
(d) the ability to reason about human-in-the loop systems.

2. Short bio
David Garlan is a Professor of Computer Science and Director of Software Engineering
Professional Programs in the School of Computer Science at Carnegie Mellon
University. His interests include software architecture, self-adaptive systems, formal
methods, and cyber-physical systems. He is considered to be one of the founders of the
field of software architecture, and, in particular, formal representation and analysis of
architectural designs. He is a co-author of two books on software architecture:
“Software Architecture: Perspectives on an Emerging Discipline”, and “Documenting
Software Architecture: Views and Beyond.” In 2005 he received a Stevens Award
Citation for “fundamental contributions to the development and understanding of
software architecture as a discipline in software engineering.” In 2011 he received the
Outstanding Research award from ACM SIGSOFT for “significant and lasting software
engineering research”. He is a Fellow of the Association for Computing Machinery
(ACM) and the Institute of Electrical and Electronic Engineers (IEEE).

II Latin American School on Software Engineering (ELA-ES 2015)

7

Tutorial 7: Recommender Systems for Software
Engineering
Gail Murphy 1

1University of British Columbia, CA
murphy@cs.ubc.ca

1. Abstract
Software developers must interact with large amounts of different types of information
and perform many different activities to build a software system. To ease the finding of
information and hone workflows, there has been growing interest in building
recommenders that are intended to help software developers work more effectively.
Building an effective recommender requires a deep understanding of the problem that is
the target of a recommender, analysis of different aspects of the approach taken to
perform the recommendations and design and evaluation of the mechanisms used to
deliver recommendations to a developer. In this lecture, I will discuss these steps using
case studies of recommendation systems to support software engineering activities.

2. Short bio
Gail Murphy is a Professor in the Department of Computer Science and an Associate
Dean (Research & Graduate Studies) in the Faculty of Science at the University of
British Columbia. She is also a co-founder and currently Chief Science Offer at Tasktop
Technologies. She received a B.Sc. from the University of Alberta and M.Sc. and Ph.D.
degrees from the University of Washington. Her current research interests are in
reducing the information overload and improving the work days of knowledge workers,
including software developers.

II Latin American School on Software Engineering (ELA-ES 2015)

8

Why, When, and How to Write up Your Research Work
Simone Barbosa 1

1 Pontifical Catholic University of Rio de Janeiro (PUC-Rio), BR
simone@inf.puc-rio.br

1. Abstract
Academia communicates its advances through scientific publications. It is through those
papers that we learn who is doing what, why, and how, i.e., the scientific discussions
revolving around important societal and technological issues. It is essential for all
researchers to participate in this discussion, and the prime means to do so is by writing
scientific papers. In today’s fast-paced world, we strive to find balance between rushing
to write half-baked ideas and alienating ourselves from the scientific discussions for too
long because we have not yet achieved the desired results. In this event, I will present
some thoughts on academic writing from prominent scholars to promote discussions on
why and how to write up your work before, during, and after you conduct your research.

2. Short bio
Simone Diniz Junqueira Barbosa is Associate Professor of the Department of
Informatics of the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), where
she teaches, advises and conducts research on Human-Computer Interaction (HCI).
Since 2012, she has taught a graduate course on Research Design and Academic
Writing. Level 2 researcher in CNPq (National Council for Scientific and Technological
Development in Brazil), she has obtained research funding from several national and
international agencies, such as CNPq, FAPERJ, Microsoft Research, and Hewlett-
Packard. She has coordinated or participated in the program committee of both national
and international conferences, including CHI, INTERACT, EICS, and IHC. She was the
Brazilian Computer Society’s representative in IFIP TC 13 from 2008 to 2013, when
she became an expert member and later Vice-chair for Working Groups and Special
Interest Groups. In 2009 she has joined the Editorial Board of Interacting with
Computers (formerly published by Elsevier, now by Oxford University Press); in 2011
the Advisory Board of IxD&A; in 2012 the editorial boards of Springer’s HCI and
CCIS book series; and in 2013 the editorial board of Springer’s OpenAccess Journal of
Interaction Science. Since 2014 she is the chair of the Special Commission for HCI of
the Brazilian Computer Society. She has authored, together with Bruno Santana da Silva
(UFRN), the book “Interação Humano-Computador,” published by Elsevier in the
Brazilian Computer Society series.

II Latin American School on Software Engineering (ELA-ES 2015)

9

Software Engineering Research at UFRGS

1. Abstract
In this panel, groups of professors of the Graduate Program in Computer Science
(PPGC) at UFRGS that work on Software Engineering will present an overview of their
current research work and discuss views on the future needs in their fields. Also,
indirectly, it serves as a mean for students to gain more detailed knowledge of a set of
software engineering topics, such as software architecture, software visualization,
software verification, formal methods, business process management, and agent-
oriented software engineering. Prof. Dr. Daltro Nunes

2. Panelists
Daltro José Nunes is the head of the Secretariat of Institutional Assessment (SAI) and
an invited professor at UFRGS. He has a doctor degree in Informatic from Institut für
Informatik, Universität Stuttgart, Germany, a M.Sc. degree in Informatics from PUC,
Rio de Janeiro, Brazil, and graduated in Electric Engineering at Escola de Engenharia,
UFRGS, Porto Alegre, Brazil. His main research areas are formal methods and theory of
computation.
Érika Cota is an associate professor in the Computer Science Department at Federal
University of Rio Grande do Sul (UFRGS). Her research interests include software
testing, testing and design for test of embedded systems, and hardware testing. Dr. Cota
has a BS in computer science from the Federal University of Minas Gerais (UFMG),
and an MS and a PhD in computer science from Federal University of Rio Grande do
Sul.
Ingrid Nunes is a Professor Adjunto (Associate Professor) of the Instituto de
Informática at the Federal University of Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil, and the head of the Prosoft research group. She completed her undergraduate
studies in Computer Science at UFRGS (2006), obtained her Master’s degree in
Informatics at the Pontifical Catholic University of Rio de Janeiro (2009), and obtained
her Doctor’s degree in Informatics at the Pontifical Catholic University of Rio de
Janeiro (2012). Her phd was in cooperation with King’s College London (UK), under a
sandwich Ph.D. programme of one year, and with University of Waterloo (Canada),
with three three-month research visits. She was also a post-doc researcher at PUC-Rio
in the Software Engineering Laboratory (LES) (2012), and has experience in the
industry, where she worked as a software developer from 2005 to 2007. She is a section
editor of the Scientific Initiation Magazine (REIC). Her main research areas are
software architecture, agent-oriented Software Engineering, and model-driven
Development.
Leandro Krug Wives – Associate professor at Federal University of Rio Grande do Sul
(UFRGS), where he develops research in the fields of information retrieval,
recommender systems, (semantic) web services discovery, integration and
matchmaking. Leandro is particularly interested in Architectures and Frameworks for
Web 2.0 Application Development. He got a Ph.D degree in Computer Science from

II Latin American School on Software Engineering (ELA-ES 2015)

10

(UFRGs). He participated in many research projects in collaboration with France, Spain
and Portugal, the most recent involving Context-Awareness, Business Process
Management, Ontology, Web services and Cloud Computing.
Leila Ribeiro is a Full Professor at the Department of Theoretical Informatics of
INF/UFRGS. She received the Bachelor 1988 and MSc Degrees in Computer Science at
UFRGS in 1888 and 1991, respectively, and the PhD Degree in Computer Science at the
Technical University of Berlin in 1996. She coordinated several scientific projects
involving research institutions from Brazil and abroad, and is the leader of the VeriTeS
Group (Group on Verification, Validation and Test of Computational Systems). She is a
member of the IFIP Working Group 1.3 (Foundations of System Specification).
Her main research interests are modelling and analysis of complex systems, models of
computation, formal specification and verification, concurrent systems and
bioinformatics.
Lucinéia Heloisa Thom is an associate professor with Informatics Institute at Federal
University of Rio Grande do Sul, UFRGS (Brazil). From 2010 to 2011 she was a
visiting Scientist at the University of Grenoble. Before, she was a visiting Scientist at
the University of Ulm (2007-2009). She received her Bachelor’s in Computer Science
from the University of Santa Cruz do Sul, Brazil (1999); her Master’s in Computer
Science from UFRGS (2002); and her PhD in Computer Science from UFRGS (2006).
She developed part of her thesis research at the Institute for Parallel and Distributed
Systems of the University of Stuttgart (2004-2005). Her research interests are in the area
of Business Process Management and workflow with a special focus on workflow
patterns, process design, IT support for healthcare processes and ontology. In these
fields she has many published papers and is involved in several PCs. She has also
participated in the organization of several events such as the Brazilian largest workshop
in Business Process Management (WBPM 2013) and the 5th International Workshop on
Process Model Collections: Management and Reuse (PMC-MR’14) from the most
important conference in Process Management the BPM 2013. She is co-chair of the
First Latin American School on Business Process Management (LAS-BPM 2015).
Lucio Mauro Duarte is a Senior Lecturer at the Department of Theoretical Computer
Science of the Institute of Informatics of the Federal University of Rio Grande do Sul
(UFRGS), where he teachs Algorithms and Software Verification. He holds a Ph.D.
degree in Computing (Imperial College London, University of London) and his main
research areas are Validation and Verification of Systems, Software Testing, and
Software Modelling. His web page is www.inf.ufrgs.br/~lmduarte.
Luis Lamb is Professor and Dean of the Institute of Informatics (2011-2015), Federal
University of Rio Grande do Sul. He was Deputy Dean of the Institute of Informatics at
UFRGS from August 2006 to October 2011. He holds a Ph.D. in Computing Science
from Imperial College London (2000), the Diploma of the Imperial College, MSc by
research (1995) and BSc in Computer Science (1992) from the Federal University of
Rio Grande do Sul, Brazil. In 2010 he received the MIT Executive Certificate in
Strategy and Innovation and in 2014 he received the MIT Executive Certificate in
Management and Leadership. He is Honorary Visiting Fellow at the Department of
Computing, City University London and was Visiting Research Fellow, Abductive
Systems Group, Department of Philosophy, University of British Columbia. His

II Latin American School on Software Engineering (ELA-ES 2015)

11

research interests include Logic in Computer Science, Social Computing and Formal
Methods in Embedded Software.
Marcelo S. Pimenta is an Associate Professor at Institute of Informatics, Federal
University of Rio Grande do Sul (UFRGS), in Brazil. He received his PhD in
Informatique at Université Toulouse 1, France, in 1997 and the bachelor and master’s
degree in Computer Science at UFRGS in 1988 and 1991, respectively. Since 1998, he
is member of a multidisciplinary research group at UFRGS working with topics in
Human-Computer Interaction, Software Engineering, and Computer Music with
emphasis in the integration of these areas. Member and founder of the Ubiquitous Music
Group (g-ubimus), currently his research focuses on ubiquitous music, collaborative
design, adaptive interfaces, digital governance and user-centered software engineering.
Rodrigo Machado is a Professor Adjunto at the Institute of Informatics of the Federal
University of Rio Grande do Sul since 2012. Rodrigo received its Doctorate from the
Postgraduate Program in Computer Science / UFRGS. His research interests include
functional programming, semantics of programming languages, type systems and
formal methods in software development, in particular algebraic graph rewriting. He is
currently interested in the development of theory and tools to specify software
evolution, in particular for rule-based software models.

II Latin American School on Software Engineering (ELA-ES 2015)

12

Perspectives, Opportunities and Challenges of Software
Engineering in the Industry

1. Abstract
The development of modern software systems is a challenging task, given that software
is nowadays everywhere and its complexity never stops growing. In this panel,
representatives of internationally recognised companies that produce software and face
software engineering challenges will share their view in this context, discussing
challenges and opportunities. Attendees will learn about the current state of software
industry, including technologies, challenges, and best practices.

2. Panelists
Antônio Gomes (Chief Architect, HP Brazil R&D) is Chief Architect at HP Brazil
R&D, with 33+ years of experience in R&D and Consulting, where he is responsible to
provide overall technical leadership and promoting innovation across the organization.
He received the Electrical Engineering degree from Universidade Federal do Rio
Grande do Sul (UFRGS) and an Executive MBA, General Business Management, from
ESPM Porto Alegre.
Diego Nobre (Software Architect, ADP Labs): Software Architect at ADP Labs with 18
years of experience developing enterprise-scale systems in varied industries such as
Banking, Communications, Media, Computer Manufacture and HCM. Bachelor’s
degree, Computational and Applied Mathematics – Universidade Federal do Rio Grande
do Sul / UFRGS.
Marcelo Blois (CoE leader, GE Research) has over 18 years of experience on research
in different aspects of software engineering, including software process improvement,
software architectures and middleware, software engineering for multi-agent systems,
and software reuse. He joined GRC Rio in December 2011 as CoE leader, helping the
startup of the new technology center in the area of Systems Integration. Marcelo woked
as a professor in Pontifical Catholic University of Rio Grande do Sul (PUCRS) for 10
years where he coordinated the Intelligent Systems Engineering Research group and the
Systems Engineering Research Center. During this time Marcelo advised over 20
Master students and 3 PhD students. He managed different research initiatives with
local and global companies being responsible for budgeting negotiation and project
management. From 2002 to 2011 Marcelo worked in applied research projects with Dell
Computers helping the company in different process improvement initiatives in its
Software Development Facility in Brazil. Prior to that Marcelo had a software
development company in Rio where he played the role of Executive Director. He
received his PhD and MS in computer science from the Pontifical Catholic University
of Rio de Janeiro (PUC-Rio) and his BS in computer science from the Federal
University of Rio de Janeiro (UFRJ).
Roberto Petry (IT Director, Dell) works as IT Director at Dell where he is globally
responsible for Infrastructure Management Project Delivery leading a team distributed
in several countries. He has Master Degree in Computer Science at UFRGS, with 25+

II Latin American School on Software Engineering (ELA-ES 2015)

13

years’ experience in IT with focus in Database, Project Management, Software
Development and IT Governance. He is PMP and ITIL Foundations certified. He
teaches at Graduation and Post-Degree courses at Unilasalle, Ulbra and PUC
University. He was the former President of the Open Technology Committee at
American Chamber of Commerce in Porto Alegre and past Regional and National
President of User Association Group (SUCESU), acting now as council at PMI-RS &
SUCESU-RS.

II Latin American School on Software Engineering (ELA-ES 2015)

14

Software Engineer: Industry or Academia?

1. Abstract
Students interested in software engineering have many alternatives in their professional
careers. They can work in the industry after they get a bachelor degree in Computer
Science (or related courses). They can pursue a Master or Doctorate degree. They can
become research scientists in leading companies or professors at universities. In this
panel, panelists will discuss about these different alternatives, and what is required for
each of them. Examples of questions to be discussed are: is a Bachelor degree enough to
work in the Industry? Those who get a Master or Doctorate degree should stay in
academia or there are positions available in Latin America where research can be
conducted?

2. Panelists
Daniel Wobeto (TRE-RS): CIO at the Tribunal Regional Eleitoral do Rio Grande do
Sul since 2007, Computer Science Bachelor at UFRGS in 1993, Law Bachelor in 2001,
TI Administration MBA in 2009, member of Urna Eletronica’s Ecosystem Workgroup,
responsible for requirements specification of systems related to voting process in
Brazilian elections.
Eduardo Arruda (VP of ASSESPRO-RS) received the BSc and MSc degrees in
Computer Science at the Universidade Federal do Rio Grande do Sul (UFRGS). He is
CEO of Bluetterfly, which is company dedicated to develop innovative business.
Nowadays it is involved with the conception of a cloud services plataform with a focus
on secure storage of digital content. He is a professor at the Faculty of Informatics of
PUC-RS since 1994. He was an associated and Director of Bussines Development of
uMov.me, a company of mobile technology considered one of the five most innovative
of Brazil by Gartner Group. He was also CIO of Justice Law Departament of Rio
Grande do Sul, coordinating the project of infomatization of this court, the first in the
country to use digital certification in the signment of judgments. Nowadays, he is Vice-
President of Articulation of ASSESPRO-RS, President of the Deliberative Board of
SUCESU-RS, Director of Market Relationship of SEPRORGS and member of the
Administrative Board of SOFTSUL. He is also dedicated to actions to encourage
innovative entrepreneurship.
Luigi Carro (Head of the Graduation Program in Computer Science (PPGC), UFRGS,
BR) was born in Porto Alegre, Brazil, in 1962. He received the Electrical Engineering
and the MSc degrees from Universidade Federal do Rio Grande do Sul (UFRGS),
Brazil, in 1985 and 1989, respectively. From 1989 to 1991 he worked at ST-
Microelectronics, Agrate, Italy, in the R&D group. In 1996 he received the Dr. degree
in the area of Computer Science from Universidade Federal do Rio Grande do Sul
(UFRGS), Brazil. He is presently a full professor at the Applied Informatics Department
at the Informatics Institute of UFRGS, in charge of Computer Architecture and
Organization courses at the undergraduate levels. He is also a member of the Graduation
Program in Computer Science at UFRGS, where he is co-responsible for courses on

II Latin American School on Software Engineering (ELA-ES 2015)

15

Embedded Systems, Digital signal Processing, and VLSI Design. His primary research
interests include embedded systems design, validation, automation and test, fault
tolerance for future technologies and rapid system prototyping. He has advised more
than 20 graduate students, and has published more than 150 technical papers on those
topics. He has authored the book Digital systems Design and Prototyping (2001-in
Portuguese) and is the co-author of Fault-Tolerance Techniques for SRAM-based
FPGAs (2006-Springer), Dynamic Reconfigurable Architectures and Transparent
optimization Techniques (2010-Springer) and Adaptive Systems (Springer 2012). In
2007 he received the prize FAPERGS – Researcher of the year in Computer Science.
His most updated resume is located in http://lattes.cnpq.br/8544491643812450.
Luís Lamb (Dean of the Institute of Informatics, UFRGS, BR) is Professor and Dean of
the Institute of Informatics (2011-2015), Federal University of Rio Grande do Sul. He
was Deputy Dean of the Institute of Informatics at UFRGS from August 2006 to
October 2011. He holds a Ph.D. in Computing Science from Imperial College London
(2000), the Diploma of the Imperial College, MSc by research (1995) and BSc in
Computer Science (1992) from the Federal University of Rio Grande do Sul, Brazil. In
2010 he received the MIT Executive Certificate in Strategy and Innovation and in 2014
he received the MIT Executive Certificate in Management and Leadership. He is
Honorary Visiting Fellow at the Department of Computing, City University London and
was Visiting Research Fellow, Abductive Systems Group, Department of Philosophy,
University of British Columbia. His research interests include Logic in Computer
Science, Social Computing and Formal Methods in Embedded Software.
Marcelo Blois (CoE leader, GE Research) has over 18 years of experience on research
in different aspects of software engineering, including software process improvement,
software architectures and middleware, software engineering for multi-agent systems,
and software reuse. He joined GRC Rio in December 2011 as CoE leader, helping the
startup of the new technology center in the area of Systems Integration. Marcelo woked
as a professor in Pontifical Catholic University of Rio Grande do Sul (PUCRS) for 10
years where he coordinated the Intelligent Systems Engineering Research group and the
Systems Engineering Research Center. During this time Marcelo advised over 20
Master students and 3 PhD students. He managed different research initiatives with
local and global companies being responsible for budgeting negotiation and project
management. From 2002 to 2011 Marcelo worked in applied research projects with Dell
Computers helping the company in different process improvement initiatives in its
Software Development Facility in Brazil. Prior to that Marcelo had a software
development company in Rio where he played the role of Executive Director. He
received his PhD and MS in computer science from the Pontifical Catholic University
of Rio de Janeiro (PUC-Rio) and his BS in computer science from the Federal
University of Rio de Janeiro (UFRJ).

II Latin American School on Software Engineering (ELA-ES 2015)

16

Introdução ao Planejamento e à Análise Estatística de
Experimentos em Engenharia de Software

Lisiane Selau 1
1 Departamento de Estatística, Universidade Federal do Rio Grande do Sul (UFRGS)

Porto Alegre, BR
lisianeselau@gmail.com

1. Resumo
Grande parte do conhecimento científico é desenvolvido por meio de evidências
empíricas. Tais evidências, em geral, são oriundas dos resultados de experimentos
devidamente planejados e analisados. Experimento é uma pesquisa planejada em que
mudanças relevantes são feitas nas variáveis de entrada de um processo de modo a
identificar as razões para mudanças na resposta (saída do processo), tendo por objetivo
tomar decisões (fazer uma recomendação). Para um experimento ser o mais eficiente
possível, um procedimento científico para planejá-lo deve ser empregado. Ao planejar
um experimento o pesquisador tem que ter bem claro quais são os objetivos da pesquisa,
as questões a serem respondidas, e as hipóteses a serem testadas. Nesse sentido, devem
ser empregados procedimentos estatísticos de análise de dados apropriados aos
objetivos do experimento, que sejam consistentes e coerentes com o planejamento
experimental adotado e com o correspondente modelo estatístico estabelecido.

2. Biografia Resumida
Professora Adjunta do Departamento de Estatística da Universidade Federal do Rio
Grande do Sul (UFRGS). Também é professora convidada do Programa de Pós-
Graduação em Fitotecnia da UFRGS. É Bacharel em Estatística pela UFRGS (2000),
Licenciada em Estatística pela UFRGS (2002), Mestre em Engenharia de Produção pela
UFRGS (2008) e Doutora em Administração na área de Sistema de Informação e Apoio
à Decisão pela UFRGS (2012). Tem experiência na área de Modelagem para Gestão do
Risco de Crédito, Planejamento e Análise de Experimentos e Educação Estatística.

II Latin American School on Software Engineering (ELA-ES 2015)

17

Vivencial da Metodologia Ágil SCRUM
Pablo Schoeffel 1

1 Departamento de Sistemas de Informação, Universidade do Estado de
Santa Catarina (UDESC), BR
pablo.schoeffel@udesc.br

1. Resumo
O mini curso tem o objetivo de demonstrar os princípios e valores ágeis, aplicando o
processo e técnicas da metodologia SCRUM. Com isso, os participantes poderão, além
de conhecer os conceitos, vivenciá-los em dinâmicas e práticas para compreendê-los
melhor.

2. Biografia Resumida
Pablo Schoeffel, é mestre em Computação Aplicada na UNIVALI (SC) na área de
Engenharia de Software. Possui graduação em Ciências da Computação (FURB) e
Especialização em Desenvolvimento Web e E-Commerce (ICPG). Atua desde 2002 na
área de desenvolvimento de software, como: programador, analista de sistemas, analista
de negócio, gerente de projetos e coordenador de equipe. Atua como professor em
cursos de tecnologia desde 2007. Atualmente é professor efetivo do Departamento de
Engenharia de Software da Universidade do Estado de Santa Catarina (UDESC) e
consultor na área de Engenharia de Software e Gerência de Projetos. Incentivou e
iniciou a utilização de processos ágeis, e atuou como SCRUM Master em algumas
empresas em que trabalhou. Leciona a disciplina de Métodos Ágeis para cursos de pós-
graduação desde 2011.

II Latin American School on Software Engineering (ELA-ES 2015)

18

DUPLICIDADE DE INFORMAÇÃO E FERRAMENTAS

PARA LIMPEZA DOS DADOS

Carlos Eduardo O. Santos
1
, Sergio Martins Fernandes

1

1
Departamento de Sistemas e Computação - Universidade Salvador –

(UNIFACS) – Salvador – BA - Brasil

eduardo.maceio@yahoo.com.br, sergio.martins@pro.unifacs.br

Abstract. The purpose of this paper is to discuss about the quality of

information stored in databases, regarding the issue of duplicates. To

promote quality assurance of information, some techniques and tools are

created from criteria, characteristics and attributes that direct the obtaining

of this quality. This dimension will be the non-duplicated data, exposing the

solutions found for the data cleaning process. Thus it is proposed

deduplication technique and some existing tools that perform this process in

cleaning and organization of data, aiming to improve the quality of

information.

Resumo. O objetivo deste artigo é discutir sobre a qualidade da

informação armazenada em bancos de dados, referente à questão das

duplicidades. Para promover a garantia da qualidade da informação,

algumas técnicas e ferramentas são criadas a partir de dimensões, critérios,

características e atributos que direcionam a obtenção dessa qualidade. A

dimensão tratada neste trabalho será a de não duplicidade de dados, expondo

soluções encontradas para o processo de limpeza dos dados. Para tal é

proposto a técnica de deduplicação e algumas ferramentas existentes que

realizam este processo na limpeza e organização dos dados, objetivando a

melhoria da qualidade da informação.

1. INTRODUÇÃO

Os problemas na aquisição da informação podem gerar danos irreparáveis. Faz-

se necessário para os ambientes corporativos ter um conhecimento aprofundado da

importância do gerenciamento deste conteúdo e das tecnologias disponíveis que

minimizam essa suscetibilidade de erros, de forma que a qualidade da informação que

circula no seu ambiente, não seja passível de vulnerabilidades, visto que afeta

diretamente no processo de tomada de decisão, como também no gerenciamento da

qualidade do serviço oferecido por essa organização.

Questões envolvendo a qualidade de dados e informações podem variar desde

dificuldades de natureza técnica, por exemplo, integração de fontes de dados diferentes,

até dificuldades não técnicas, por exemplo, a falta de uma estratégia integrada em toda a

organização para assegurar o direito das partes interessadas de acessar a informação

certa, no formato certo, na hora e lugar certo (MADNICK et al, 2009).

II Latin American School on Software Engineering (ELA-ES 2015)

19

Os dados são os elementos que servem de base para a formação de juízos ou

servem para a resolução de problemas. Um dado é apenas um índice, um registro, uma

manifestação objetiva, passível de uma análise subjetiva, isto é, existe a interpretação da

pessoa para a sua manipulação. Em si, os dados têm pouco valor. Todavia, quando

classificados, armazenados e relacionados entre si, os dados permitem a obtenção da

informação.

A informação não é simplesmente um dado, sequências de números, listas de

endereços, ou resultados de testes armazenados num computador. A informação é o

produto de processos de organização dos dados. Assim, segundo Chiavenato (2008), os

dados isolados não são significativos e não constituem informação. Já a Informação,

apresenta significado e intencionalidade, aspectos que a diferenciam do conceito de

dado.

A informação é um ativo (NBR ISO/IEC 27002, 2005) que, como qualquer

outro é essencial para os negócios da organização e, consequentemente, necessita ser

adequadamente protegida, ser refinada e analisada para que decisões importantes sejam

tomadas, por todos que a utilizem, nos mais diversos níveis da hierarquia da empresa.

Entende-se por ativos de informação, todos os tipos de informação que uma empresa

possui, como arquivos e sistemas, que possuam valor, demandando necessidades em

termos de proteção (NBR ISO/IEC 27002, 2005).

Para promover a garantia da qualidade da informação, algumas técnicas e

ferramentas são criadas a partir de critérios, características e atributos que dimensionam

a obtenção dessa qualidade. A ideia a ser exposta nesse artigo está direcionada a uma

questão especifica que é a duplicidade dos dados.

Para tal é apresentado na segunda seção uma exposição mais abrangente sobre a

qualidade da informação (QI), problemas causado pela má qualidade, dando ênfase a

necessidade da limpeza dos dados, mais especificadamente nas ocorrências de

duplicidade. A terceira seção traz a abordagem da técnica de deduplicação, introduzindo

algumas ferramentas existentes que realizam o processo de limpeza e organização dos

dados, objetivando a melhoria da QI.

2. QUALIDADE DA INFORMAÇÃO

A informação pode ser vista como um bem, com dimensões (atributos) de

qualidade que podem ser medidas. Conforme Wand e Wang (1996), a qualidade da

informação é um conceito multidimensional, e assim como um produto físico tem

dimensões de qualidade associadas, um produto de informação também tem dimensões

de qualidade da informação. Uma vez identificados os atributos, a qualidade da

informação pode ser gerenciada (MILLER, 2001).

Inúmeras classificações referentes às dimensões de qualidade, são encontradas

na literatura. É possível apontar um conjunto comum a todos das dimensões de

qualidade da informação (QI), incluindo acuracidade (acuracy), integridade

(completeness), consistência (consistency) e temporalidade (timeliness), que constituem

o foco da maioria dos autores(CATARCI AND SCANNAPIECO, 2002). Entretanto não

existe qualquer consenso geral sobre qual conjunto de dimensões definem a QI, ou

sobre o significado exato de cada dimensão. Dentre estas, a referência adotada é

colocada pelos autores WANG(1996), PIPINO(2002), BATINI(2009) e

II Latin American School on Software Engineering (ELA-ES 2015)

20

GAMBLE(2011), que utilizam as dimensões de Acurácia, Credibilidade (ou

Confiabilidade), Completude, Temporalidade, Atualidade, Precisão, Ausência de Dados

Duplicados e Facilidade de Acesso, para propiciar a medição da qualidade da

informação utilizada nos bancos de dados. Mais especificadamente ao interesse deste

trabalho, a dimensão tratada será a de não duplicidade de dados. Este foco não

desfavorece as outras dimensões, nem tampouco sua escolha se justifica por nível de

importância, mas se torna relevante a continuidade da pesquisa do mestrado que tem

como objetivo a deduplicação de dados, entende-se também, que mesmo restringindo a

só esta dimensão, outras estão implicadas no processo. Dessa forma vamos expor

considerações referentes à duplicidade de informação e ferramentas existentes no

processo de limpeza dos dados.

2.1. Problemas da Qualidade da Informação

Problemas relacionados à qualidade da informação de uma organização, não

necessariamente estão ligados a particularidades dos sistemas ou ao tempo de uso, como

também a linguagem utilizada. Eles podem ser causados pelos próprios usuários,

quando da inserção dos dados, como também em processos de análises mal sucedidas

que são realizadas a partir de dados repetidos. Mesmo que esses erros sejam

perceptíveis pelos usuários que lidam com o sistema, é difícil perceber a dimensão dessa

problemática e, por conseguinte até que ponto isto afeta a organização, tanto no caráter

financeiro, como em sua credibilidade. Esses problemas são indicativos da má

qualidade dos dados.

Para ter dados precisos é necessário um programa formal de garantia da

qualidade de dados com um componente específico dedicado à precisão(OLSON,

2003). Normalmente, isso envolve processos de atualização, padronização, detecção e

limpeza dos registros, por meio de ferramentas específicas, para criar uma visão única

dos dados, mesmo se ele estiver armazenado em vários sistemas distintos.

2.2. Limpeza dos dados

Não importa o quão eficiente seja o processo de entrada de dados, os erros ainda

irão ocorrer e, por conseguinte, os dados sobre validação e correção não podem ser

ignorados. A detecção de erros, validação e limpeza desempenham papéis importantes,

especialmente com dados legados
1
. E, portanto, a prevenção de erros e limpeza de dados

deve ser incorporada em uma política de gestão de dados.

Um ponto importante de limpeza de dados é a identificação das causas

fundamentais dos erros detectados e usar essa informação para melhorar o processo de

entrada de dados para evitar novas recorrências desses erros(RAHM and DO, 2000).

Uma abordagem de limpeza de dados deve satisfazer várias exigências. Em

primeiro lugar, deve detectar e remover todos grandes erros e inconsistências, tanto em

fontes de dados individuais e ao integrar múltiplas fontes.

A ocorrência dos problemas com a qualidade dos dados se dá tanto no nível de

esquema como no nível de instância. Quanto ao nível de esquema, os problemas são

1 Dados armazenados ao longo do tempo.

II Latin American School on Software Engineering (ELA-ES 2015)

21

decorrentes da falta de um modelo adequado ou da aplicação de restrições de

integridade específicas, como por exemplo as limitações do modelo de dados ou a má

concepção do esquema. Quanto ao nível de instância dizem respeito aos erros e

inconsistências que não podem ser prevenidos no nível de esquema como, por exemplo,

erros de escrita, falta de valores, referências incorretas, entre outros. Fica exposto desta

forma, a existência da necessidade de correção e limpeza destes dados em diversas

tabelas dos bancos de dados, inclusive as tabelas da área financeira.

2.3. Duplicação de dados.

Lwin(2010) descreve a detecção de duplicação, como uma sub-tarefa importante

de limpeza de dados, sendo, portanto, a tarefa de identificar múltiplas representações de

um mesmo objeto do mundo real e necessário para melhorar a qualidade dos dados.

Dessa forma entendemos por duplicidade como sendo uma medida de duplicação

indesejada existentes num ou em vários sistemas para um determinado campo, registro

ou conjunto de dados, gerados por erro de armazenamento da informação, ocasionando

a existência da baixa qualidade dos dados.

Há muitos custos ocultos associados com registros duplicados. Assim, dados de

má qualidade custam aos negócios de várias formas: desperdício e retrabalho, perda de

oportunidades de receita, perda de negócios, etc.

Essa duplicação provoca sérios problemas na evolução do sistema como um

todo, tais como, incoerência de uma mesma informação armazenada por dados

duplicados, passíveis de ser alterados individualmente, o que pode provocar uma

inconsistência entre os mesmos, e o custo de manutenção, que aumenta devido ao fato

de uma mesma tarefa estar sendo realizada em dois ou mais processos distintos.

Este problema de detectar e remover entradas duplicadas em repositórios de

dados é conhecido como deduplicação de registros (KOUDAS et al, 2006), mas também

é denominado na literatura de limpeza de dados
2
 (CHAUDHURI et al, 2003),

pareamento de registros
3
 (BHATTACHARYA, 2004); (FELLEGI and SUNTER,

1969); (KOUDAS et al, 2006), e casamento de registros
4
 (VERYKIOS, 2003).

Cecchin (2010) traz as denominações deduplicação, resolução de referências e

reconciliação. Mais especificamente, a deduplicação de registros em repositórios de

dados consiste na identificação e remoção de registros que se referem ao mesmo objeto

ou entidade do mundo real, ainda que apresentem estilos de escrita, grafias, tipos de

dados ou esquemas diferentes.

A importância desse processo fica clara ao analisar o processo de integração de

dados, este consiste em combinar diferentes representações de um objeto do mundo real

em uma representação única, neste caso, a garantia da não duplicidade dos dados, é

fator relevante.

A detecção de duplicidade é um problema difícil e não pode ser resolvido

usando apenas casamentos exatos de atributos, pois há o problema de identificação,

2 Do inglês Data cleasing.
3 Do inglês Record linkage.
4 Do inglês Record matching.

II Latin American School on Software Engineering (ELA-ES 2015)

22

onde diferentes representações referem-se à mesma entidade. Desse modo, vamos

utilizar o termo deduplicação para abordar essa técnica de limpeza de dados.

3. DEDUPLICAÇÃO DE DADOS

Esta técnica tem evoluído durante esta década recente, recebendo uma atenção

ampla da academia e da indústria. Algumas pesquisas se concentram na abordagem pela

qual dados redundantes possam ser mais reduzidos e outras investigam como fazer a

deduplicação de dados em alta velocidade. A técnica consiste em eliminar dados

duplicados, reduzir o espaço utilizado pelas réplicas durante o armazenamento dos

dados, das cópias de dados para armazenamento secundário, ou no contexto de

armazenamento de dados, melhorando, assim, a qualidade dos dados e a integração.

O termo deduplicação foi criado há vários anos pelos administradores de banco

de dados, como uma maneira de descrever o processo de remoção de registros

duplicados de um banco de dados, após a união de dois bancos de dados. Segundo

Tavares (2003), a deduplicação de dados significa identificar registros duplicados em

uma base de dados. Após a identificação desses registros é possível eliminar ou marcar

o dado duplicado para controle. Para Dbdireto (2011) a deduplicação é um processo

para a verificação, marcação e exclusão de registros com valores iguais em um banco de

dados.

3.1. Técnicas de deduplicação

A primeira técnica utilizada de deduplicação executava em apenas uma única

instância, por isso ficou conhecida como SIS (Single-Instance Storage), como objetivo

dessa técnica é diminuir a quantidade de dados repetidos e melhorar o desempenho das

aplicações, ela parte da ideia de manter apenas uma instância do arquivo e criar

ponteiros para ser acessado pelos demais usuários sem que seja necessário ter uma cópia

do arquivo para um usuário distinto, porém tal tecnologia possuía limitações, já que se o

arquivo fosse modificado iria exigir que outro arquivo fosse armazenado com a

alteração realizada, já que, essa tecnologia apenas é executada em nível de arquivo

(DORNALA et al, 2010).

O algoritmo de deduplicação passou por uma evolução e começou a trabalhar

com os dados em nível de blocos de dados, como pode ser visualizado na Figura 1, e

não mais em nível de arquivo. A comparação feita em nível de blocos é mais especifica

do que a feita em nível de arquivos, pois tem a possibilidade de analisar uma sequência

de dados em baixo nível, podendo encontrar sequências idênticas, sendo capaz de

eliminar vários gigabytes de dados repetidos do sistema de armazenamento.

A eliminação permite que o usuário execute o sistema mais rápido e mais

eficiente já que não estará sobrecarregado com dados extras. Além de uma melhora

perceptível relacionada ao tráfego de dados do sistema e consequentemente o aumento

de espaço livre.

Os sistemas de grande porte se beneficiam dessa técnica para a limpeza e

redução de espaço de armazenamento, já que possuem um crescimento no percentual de

dados não estruturados gerados por aplicativos de colaboração, virtualização de

servidores, imagens e demais aplicativos. Com o crescimento dos dados não

II Latin American School on Software Engineering (ELA-ES 2015)

23

estruturados em ritmo exponencial o tempo necessário para uma ampliação do sistema

de armazenamento é reduzido, assim como os custos de armazenagem aumentam. Por

esse motivo, é notado o crescimento da utilização do algoritmo de deduplicação em

ambientes corporativos.

Dessa forma, a deduplicação pode ser resumida em um processo de segmentação

de cada pedaço dos dados que é processado, cada segmento é identificado e confrontado

com os dados que já estão no sistema, caso o dado seja único então ele é armazenado

em um disco, caso o dado esteja duplicado uma referência é criada em seu lugar

apontando para o primeiro dado idêntico a este que teve entrada no sistema. Muitas

vezes, os mesmos dados podem ser armazenados em mais de 50 locais diferentes em um

sistema de armazenamento. Se cada dado tiver um byte de espaço, a deduplicação irá

reduzir o espaço no armazenamento de cinquenta bytes para apenas um byte.

Figura 1: Processo de deduplicação

3.2. FERRAMENTAS DE DEDUPLICAÇÃO DE DADOS

Algumas ferramentas que realizam o processo de deduplicação de dados foram

selecionadas e expostas abaixo. Não reduzindo com isso a existência de muitas outras

soluções. As ferramentas apontadas são referenciadas nas fontes bibliográficas com uma

maior frequência e também funcionam como indicativos para a construção de novas

soluções. Também está demonstrado na Tabela1 um comparativo de visão geral destas

ferramentas.

3.2.1. FRIL

O Fine-grained Record Integration and Linkage (FRIL) (JURCZYK et al, 2008)

é uma ferramenta de Record Linkage, desenvolvida pela Universidade de Emory

(Emory University)
5
, localizada no estado da Geórgia (EUA). Essa ferramenta de

código aberto (open source) tem como proposta associar técnicas tradicionais de Record

Linkage com um rico e configurável conjunto de parâmetros.

5 http://www.emory.edu/home/index.html

II Latin American School on Software Engineering (ELA-ES 2015)

24

3.2.2. BIGMATCH

O programa BigMatch (YANCEY, 2004, 2007) é um Record Linkage

desenvolvido pelo departamento de censo dos Estados Unidos (U.S. Bureau of

Census)
6
, cujo objetivo é extrair combinações plausíveis de fontes de dados de grande

volume. Ele permite que sejam configurados diferentes critérios de blocagem. Esse

software também é utilizado para descobrir duplicações em um arquivo único.

3.2.3 PARALLEL FEBRL

Febrl
7
 - Freely Extensible Biomedical Record Linkage (CHRISTEN, 2008) é

uma das mais completas ferramentas de deduplicação disponíveis como software livre.

Ferramenta de open-source para o data cleaning, que usa as seguintes métricas para a

detecção de duplicados: edit distance e q-gram distance. Para a detecção de nomes

aproximadamente duplicados é usada a codificação fonética (Soundex e Double

Metaphone);

É importante notar que novas funcionalidades podem ser anexadas ao Febrl sem

alterações em sua estrutura, criando uma plataforma ideal para novos experimentos em

deduplicação de dados.

3.2.4. FERAPARDA/ PAREIA

FERAPARDA é uma ferramenta de relacionamento probabilístico capaz de

detectar com sucesso réplicas em grande conjuntos de dados sintéticos com agilidade,

por meio de algoritmo de deduplicação paralela, objetivando limitar o número de

comparações. Inicialmente a ferramenta foi denominada por Feraparda e posteriormente

recebeu o nome de Pareia. Santos et al (2007) descreve a ferramenta Feraparda, que é

baseada no conceito de filtros-fluxo, implementada sobre a plataforma Anthill

(FERREIRA et al, 2005).

3.2.5. SWOOSH

Resolução de entidade (ER)
8
 é um problema que surge em muitas aplicações de

integração de informações. ER (também conhecido como deduplicação ou merge-purge)

usa duas funções, combinar e fundir. O Processo de ER identifica registros duplicados

que se referem à mesma entidade do mundo real (processo de correspondência), e deriva

informação consolidada sobre a entidade (processo de fusão). Além disso, o registro

mesclado pode coincidir com outros registros de forma recursiva.

Foram propostos vários sistemas paralelos de deduplicação para melhorar o

desempenho, desenvolvidos a partir do modelo ER. Os algoritmos da família Swoosh

desenvolvido pelo grupo Infolab (TALBURT, 2008), se encontram nesse modelo. O

algoritmo D-Swoosh (BENJELLOUN et al, 2006) para arquiteturas de processadores

distribuídos e o algoritmo P-Swoosh (KAWAI et al, 2006) para arquiteturas paralelas.

3.2.6. PROGRAMAÇÃO GENÉTICA

A programação genética faz parte de uma área denominada “computação

evolutiva”, que tem como base de inspiração a Teoria da Evolução de Charles Darwin.

É uma área recente, surgida nos anos 50, fazendo parte das pesquisas de Inteligência

6 http://www.census.gov/
7 http://sourceforge.n«t/projects/febrl
8 Entity Resolution

II Latin American School on Software Engineering (ELA-ES 2015)

25

artificial (IA). Porém JOHN KOZA (1992), se tornou o responsável pela sua

popularização, seu algorítmo de Programação Genética, foi aplicado a uma grande

variedade de problemas incluindo controle, robótica, games, classificadores, etc.

Os indivíduos que serão evoluídos, na Programação Genética, são os programas

de computador, representados por estruturas de árvores sintáticas. Estas árvores

possuem funções e terminais, que determinam suas características e definem seu

comportamento no ambiente. Cada função é um ramo da árvore, e cada terminal é uma

folha. As funções podem ser, por exemplo, operações lógicas ou matemáticas, ou

funções que provocam iteração, e os terminais podem ser variáveis, constantes, ou

funções que não recebem argumentos

A linguagem LISP foi originalmente utilizada para implementar os algoritmos

da programação genética, por ter características que facilitam a implementação de

árvores. A linguagem utiliza o princípio da prefixação, o que faz com que as expressões

simbólicas representem a árvore do programa. Atualmente as implementações em

programação genética são desenvolvidas em linguagem C.

Carvalho et al. (2008) apresentaram uma abordagem inovadora para a

identificação de registros duplicados em repositórios de dados, recorrendo a

Programação Genética. Através dessa abordagem, registros são deduplicados utilizando-

se evidências extraídas do conteúdo dos dados para criar funções de similaridade,

genericamente denominadas de funções de deduplicação, capazes de apontar quais

registros do repositório são réplicas.

Tabela 1: Quadro comparativo de ferramentas de deduplicação

SOLUÇÃO ANO DISPONIBILIDADE NA

WEB
LINGUAGEM DE
PROGRAMAÇÃO

SISTEMA
OPERACIONAL

MODELO

FONTES MANUAL

FRILL 2008 ABERTO _ JAVA GRAFO
BIGMATCH 2004,

2007
Disponível
por
solicitação

SIM -
Web

C Windows, UNIX
e VAX

FEBRL 2004 ABERTO Python+ MPI MASTER /
SLAVE

FERAPARDA /
PAREIA

2007 ABERTO C++/PV M PIPELINE

D-SWOOSH
P-SWOOSH

2006
2006

 JAVA GRAFO /
TAREFA
MASTER /
SLAVE

PROGRAMAÇÃO
GENÉTICA

1992 LISP ARVORES
E GRAFOS

4. CONSIDERAÇOES FINAIS

O volume de dados que são operados nos sistemas computacionais hoje, seja na

exploração, armazenamento ou integração de sistemas legados, oferece uma vasta

oportunidade para extrair novos conhecimentos e, ao mesmo tempo, impulsiona a

demanda por novas soluções.

II Latin American School on Software Engineering (ELA-ES 2015)

26

Para atingir tais objetivos, as informações devem estar armazenadas em fontes

de dados concisas e sem erros, ou seja, com uma boa qualidade. No entanto, muitas

fontes de dados sofrem da baixa qualidade devido a anomalias ou impurezas

ocasionadas principalmente pela inserção despadronizada destes dados. No contexto da

deduplicação, os principais desafios giram em torno dos métodos para detectar defeitos

que comprometem os critérios de avaliação da qualidade da informação. Dados

imprecisos e inconsistentes são fontes de problemas e impulsionam os esforços de

desenvolvimento das técnicas de deduplicação.

Dentre as ferramentas pesquisadas, pode-se inferir que algumas técnicas estão

voltadas para características distintas que dão validação a qualidade dos dados, nota-se

também a existência de técnicas voltadas para grandes volumes de dados, e técnicas

voltadas para pequenos conjuntos de dados, explorando características distintas no

contexto da deduplicação.

5. REFERÊNCIAS

Associação Brasileira de Normas Técnicas - ABNT. Norma ABNT NBR ISO/IEC

27002, 2005.

BATINI, C., CAPPIELLO, C., FRANCALANCI, C., & MAURINO, A. Methodologies

for data quality assessment and improvement. ACM Computing Surveys (CSUR). 2009

BENJELLOUN, O. GARCIA-MOLINA, H. KAWAI, H. LARSON, T. MENESTRA,

D. THAVISOMBOON, S. D-Swoosh: A Family of Algorithms for Generic, Distributed

Entity Resolution. Stanford University Technical Report, 2006.

BHATTACHARYA I. AND L. GETOOR, “Iterative Record Linkage for Cleaning and

Integration,” Proc. Ninth ACM SIGMOD Workshop Research Issues in Data Mining

and Knowledge Discovery, pp. 11-18, 2004.

CARVALHO, M.G. DE, LAENDER, A.H.F, GONC¸ALVES, M.A. AND SILVA, A.S.

DA, “Replica Identification Using Genetic Programming,” Proc. 23rd Ann. ACM

Symp. Applied Computing (SAC), pp. 1801-1806, 2008.

CATARCI, T., AND SCANNAPIECO, M. Data quality under the computer science

perspective. Archivi Computer 2. 2002.

CECCHIN, F. UM MODELO PARA RESOLUÇÃO DE CONFLITOS SOBRE

REPOSITÓRIO DE DADOS XML. Dissertação de Mestrado do Programa de Pós-

Graduação em Informática, UFPr, Curitiba. 2010.

CHAUDHURI, S. GANJAM, K. GANTI, V AND MOTWANI, R. “Robust and

Efficient Fuzzy Match for Online Data Cleaning,” Proc. ACM SIGMOD Int’l Conf.

Management of Data, pp. 313-324, 2003

CHIAVENATO, Idalberto. Gestão de Pessoas. 3ª edição, Editora Elsevier – Campus,

2008.

II Latin American School on Software Engineering (ELA-ES 2015)

27

CHRISTEN P. Febrl: A freely available record linkage system with a graphical user

interface. http://crpit.com/confpapers/CRPITV80Christen.pdf, 2008. [Acessado em 19-

07-2014].

DBDIRETO. Higienização de Banco de Dados, 2011. Disponível em: <

dbdireto.com.br/Higienizacao-de-dados.html>. Acesso em 16 out. 2014.

DORNALA, R. AKINGBEHIN, K. YOON, D. Data De-duplication in Storage

Management. Int'l Conf. Internet Computing and Big Data - ICOMP'13. p. 10 – 14,

2013.

FERREIRA, R. MEIRA JR, W. GUEDES, D. DRUMMOND, L. COUTINHO, B.

TEODORO, G. TAVARES, T. ARAUJO, R. FERREIRA, G. “Anthill: A scalable run-

time environment for data mining applications”. In Proc. of the 17th International

Symposium on Computer Architecture and High Performance Computing, Rio de

Janeiro, RJ, 2005.

FELLEGI, I.P. AND SUNTER, A.B. “A Theory for Record Linkage,” J. Am.

Statistical Assoc., vol. 66, no. 1, pp. 1183-1210, 1969.

GAMBLE M.; GOBLE C. “Quality, Trust, and Utility of Scientific Data on the Web:

Towards a Joint Model”. ACM International Conference on Web Science, pp. 1-8,

2011.

JURCZYK, P., LU, J., XIONG, L., CRAGAN, J., & CORREA, A. FRIL: A tool for

comparative record linkage. In Proceedings of the American Medical Informatics

Association Conference (AMIA 2008). 2008

KAWAI, H. GARCIA-MOLINA, H. BENJELLOUN, O. MENESTRINA, D. WHANG,

E. AND GONG. H. “Pswoosh: Parallel algorithm for generic entity resolution”.

Technical Report, Stanford Info-Lab, 2006.

KOUDAS, N. SARAWAGI, S. AND SRIVASTAVA, D. “Record Linkage: Similarity

Measures and Algorithms,” Proc. ACM SIGMOD Int’l Conf. Management of Data, pp.

802-803, 2006

KOZA, J.R. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, 1992.

LWIN, T & NYUNT, T. T. S. An Efficient Duplicate Detection System for XML

Documents. 2nd International Conference on Computer Engineering and Applications.

IEEE. 2010.

MADNICK, S.E., WANG, R.Y., LEE, Y.W. AND ZHU, H. Overview and Framework

for Data and Information Quality Research. ACM Journal of Data and Information

Quality 1, 1, Article #2. 2009.

MILLER, B., et al. Towards a framework for managing the information environment.

Information and Knowledge Systems Management, v. 2. 2001.

II Latin American School on Software Engineering (ELA-ES 2015)

28

OLSON, J. E. Data Quality – The accuracy dimension. San Francisco, CA: Morgan

Kaufmann Publishers, 2003. ISBN: 1-55860-891-5

PIPINO, L. L.; LEE, Y. W.; WANG, R. Y. Data quality assessment. Communications

of the ACM, New York, v. 45, n. 4, p. 68-73, Apr. 2002.

RAHM, E.; AND DO, H. H. “Data Cleaning: Problems and Current Approaches,”

Bulletin of the Technical Committe on Data Engineering – Special Issue on Data

Cleaning, vol. 23, no. 4, pp. 3-13, 2000.

SANTOS. W, TEIXEIRA, T. MACHADO, C. MEIRA, W. SILVA, A. FERREIRA, R.

GUEDES, D. “A Scalable Parallel Deduplication Algorithm”. In 19th International

Symposium on Computer Architecture and High Performance Computing 2007.

TALBURT, John R. Entity resolution and information quality. Elsevier, 2011.

TAVARES, Rossano Soares. Bancos de Dados Qualificados Podem Reduzir Perdas e

Aumentar os Ganhos em CRM, 82 pg. (Monografia (MBA) – Pontifícia Universidade

Católica de São Paulo, São Paulo. 2003.

VERYKIOS, V.S. MOUSTAKIDES, G.V. AND ELFEKY, M.G. “A Bayesian

Decision Model for Cost Optimal Record Matching,” The Very Large Databases J., vol.

12, no. 1, pp. 28-40, 2003.

WAND, Y.; WANG, R. Anchoring data quality dimensions in ontological foundations.

Communications of the ACM, v. 39, n. 11. 1996.

YANCEY, W.E. An adaptive string comparator for record linkage RR 2004-02, US

Bureau of the Census, February. 2004.

YANCEY, W.E. BigMatch: A Program for Extracting Probable Matches from a Large

File. www.census.gov/srd/papers/pdf/rrc2007-01.pdf, 2007. [Acessado em 19-07-2014].

II Latin American School on Software Engineering (ELA-ES 2015)

29

Conceptual Framework to Support Sampling Activities in

Software Engineering Surveys

Rafael M. de Mello, Guilherme H. Travassos

Programa de Engenharia de Sistemas e Computação (PESC), COPPE/UFRJ

Universidade Federal do Rio de Janeiro

Caixa Postal 68.511 – 21.9451-970 – Rio de Janeiro – RJ – Brasil

{rmaiani, ght}@cos.ufrj.br

Abstract. Although questionnaire-based surveys have been frequently applied

in Software Engineering research, specialized literature shows many issues on

establishing representative samples. Consequently, it is hard to generalize or

even to interpret the survey results. The lack of sources for establishing

adequate sampling frames and the lack of systematic activities to support

sampling in Software Engineering surveys contribute to this adverse scenario.

This paper presents an ongoing research aiming at establishing a conceptual

framework to support researchers on conducting sampling activities in

Software Engineering surveys. Based on the lessons learned through the

conduction of preliminary studies, a first version of the conceptual framework

was designed. Then the framework was evolved, with the inclusion of a set of

activities and evidence based recommendations for supporting its use.

1. Introduction

Surveys (questionnaire-based surveys) are one of the most frequently research methods

used in Software Engineering (SE) research, allowing researches to perform descriptive

large-scale investigations without the rigorous control level requested by controlled

(quasi) experiments. Surveys are primary studies that shall support repetition through

several executions and allow the aggregation of observed results. In this context, SE

literature often presents surveys in which their research plans are clearly designed in

many aspects but having sampling frames typically established by convenience [de

Mello and Travassos, 2015]. Consequently, even after exhaustive effort on recruitment,

the interpretation of the survey results is significantly limited since the sampling process

could not be repeated in further replications.

 In comparison with another research areas (i.e. social sciences, nursing,

medicine,…), identifying representative sources of population available in SE research

is a great challenge, motivating researchers to work with alternative sources, such as

logs from open-source projects [Bettenburg et al., 2008], discussion groups [Nugroho

and Chaudon, 2008] and social networks [França e da Silva, 2009; Martínez-Fernández

et al., 2010]. However, the ad hoc use of such technologies per se for increasing sample

sizes is not sufficient to evolve the samples quality, since sample size is just one part of

samples’ representativeness challenge [Kruskal and Mosteller, 1979]. In the context of

our research, a representative sample consists on subset of units of analysis, randomly

retrieved from a heterogeneous population from the point view of the survey target

audience. Such heterogeneity can be measured through the attributes used in a study for

characterizing each unit [de Mello et al., 2015-2]. For instance, in a survey having

II Latin American School on Software Engineering (ELA-ES 2015)

30

Brazilian SE research groups as target audience, the unit of analysis is the research

group and a representative population could be retrieved through the research group

directory from CNPq (http://lattes.cnpq.br/web/dgp). In addition, it is also important to

emphasize that establishing representative samples may be not sufficient if their

individuals (unit of observation) do not effectively participate. In this context, Smith et

al. (2013) argue that individual participation may be stimulated through persuasive

factors applied in the survey recruitment. Thus, the following research questions

emerge:

 How to identify and assess potentially relevant sources of population for

conducting surveys in SE?

 How to deal with the limitations on retrieving relevant information from the

source of population available for a survey?

 How to stimulate the participation of individuals out from the convenience

samples in SE surveys?

 How to systematize the whole sampling process in order to make it reusable?

 In order to answer the presented questions, it has been observed that surveys

guidelines available in SE literature do not provide enough guidance [Pfleeger and

Kitchenham, 2001; Kasunic, 2005; Pfleeger and Kitchenhan, 2008]. Thus, this paper

presents the ongoing research in the context of a Doctoral Thesis aiming at establishing

a conceptual framework for supporting researchers on establishing representative

samples in SE surveys. Such framework includes a set of activities and evidence-based

recommendations in order to guide the use of its concepts.

 Section 2 discusses the related works. Section 3 presents the research proposal,

delimitating its scope and describing the expected contributions to SE research. Section

4 presents the research progress and related publications, including each step performed

until the submission of this paper. Section 5 presents the conclusions.

2. Related Works

Kasunic [2005] presents a hands-on set of guidelines for conducting SE surveys,

describing the survey process through seven steps. Four of these steps are composed by

planning activities (Figure 1), being the second and the third steps directly related with

the research presented in this paper. In this context, it was observed that challenges and

issues regarding the establishment of the target audience and the sampling design in SE

surveys are barely discussed. Also, no discussion is presented regarding how to

stimulate the participation in SE surveys.

 In a series of five short papers discussing the design of SE surveys, Pfleeger and

Kitchenham [Pfleeger and Kitchenham, 2001] devotes one paper for presenting

population and sampling concepts in general. Again specifically issues and

recommendations for SE issues were not observed, which is also observed in a more

recent work [Pfleeger and Kitchenham, 2008].

 In addition, specialized literature presents a couple of papers can be considered

as guidelines due to the initiative of their authors on detailed reporting their own

experiences on conducting large-scale surveys in SE [Ciolkowski et al., 2003; Conradi

et al., 2005]. Ciolkowski et al. [2003] present a comprehensive work reporting the

II Latin American School on Software Engineering (ELA-ES 2015)

31

authors’ experience on conducting three SE surveys. However, although they present

the composition of each survey sample, sampling issues in SE are barely discussed.

Conradi et al. [2005] reported in depth how they established the target audience for an

international survey and how they obtained a representative sample through an

exhaustive process of gathering organizations’ data from three countries. The authors

also describe a relevant set of attributes collected for characterizing each respondent and

how they applied such attributes for better interpreting the survey results. This survey

was replicated by Li et al. [2008] having organizations from a fourth country as

sampling frame. In both studies, the authors discuss the challenges and the limitations

on establishing representative populations for SE surveys. However, no proposal or

even guidelines for overcome such challenges was identified.

Figure 1. Activities for survey planning [Kasunic, 2005].

 Regarding the quality of surveys reports, Stavru [2014] introduced a set of

criteria of thoroughness to evaluate the quality of industrial surveys on agile method

usage, which includes the need of survey papers specifying the target audience (target

population), sampling frame and sample size, among others. In Savru approach, one or

more of the following trustworthiness attributes should be applied for evaluating each

criterion: neutrality, consistency, truth value and applicability. The author observed that

eight from the nine studies analyzed present insufficient thoroughness and subsequently

low trustworthiness. Then, the author presents as set of recommendations to improve

this scenario, including that “special provisions should be taken to increase the

objectivity of surveys on agile method usage in order to ensure that their findings are

not biased by the individuals or organizations conducting them”.

3. Research Proposal

The research proposal consists on establishing a framework composed by a set of

concepts and activities for supporting researchers on designing representative samples

for surveys in Software Engineering. The research plan has been adapted from the

evidence-based approach for introducing new SE technologies used by the Experimental

Software Engineering group (ESE Group) at COPPE/UFRJ [Dias-Neto et al., 2010].

Figure 1 presents the proposed research methodology, which includes the following

main activities:

1. Conceptual characterization of the technology, presenting relevant concepts for

providing systematized support for sampling in SE surveys;

2. Conduction of Preliminary studies, applying the result of the previous activity

on replicating surveys from diverse SE researches conducted by ESE group;

II Latin American School on Software Engineering (ELA-ES 2015)

32

3. Framework development: concepts, applying the lessons learned in the

preliminary studies for reviewing the proposed concepts and organize then into a

conceptual framework;

4. Framework development: activities, aggregating activities and evidence-based

recommendations to the conceptual framework;

5. Feasibility study- planned to have, at least, SE researchers from a post-

graduation class applying and evaluating the proposed framework.

Figure 1. The research methodology proposed.

As the main contribution of this research, it is expected the evolution of quality on

planning and replicating SE surveys. In addition, it is expected to contribute with the

following SE research topics:

 Characterization of context in SE research [Petersen e Wholin et al., 2009];

 Identification and establishment of alternative sources of population in SE

surveys [de Mello et al., 2014].

 Persuasive factors and Participation in SE surveys [Smith et al., 2013];

 Improvement of sampling in large-scale experiments [de Mello et al., 2015].

4. Research Progress and Publications

A conceptual characterization of the technology was designed based on surveys’

knowledge available in the technical literature, the lessons learned by the ESE Group on

II Latin American School on Software Engineering (ELA-ES 2015)

33

conducting questionnaire-based surveys and the specific challenges observed in SE

research on characterizing populations and aggregating results from aggregated

experiments [de Mello et al., 2013]. These concepts were applied to perform a first

preliminary study [de Mello et al., 2013-2], in which was designed a recruitment plan

for replicating a survey on requirements effort estimation. Through a comparison

between convenience sampling and the planned sample, it was observed evidence that

applying a recruitment plan over a professional social network (LinkedIn) contributed

for delivering more heterogeneous samples without less in confidence level (experience)

of the subjects. A second preliminary study on simulation-based studies in Software

Engineering was also replicated [França and Travassos, 2014]. However, due to the

specificity of the study, an insufficient effective sample size was retrieved for testing

any hypothesis regarding the samples’ quality.

 Then, a new recruitment plan was designed to support a third preliminary study,

regarding a replication of a survey on Agility in Software Processes [Abrantes and

Travassos, 2012]. The use of the recruitment plan allowed the recruitment of a

representative sample composed by 7,745 distinct individuals, members from a set of 19

groups of interest (grouped into eight strata) systematically selected from the

professional social network LinkedIn (www.linkedin.com) [de Mello et al., 2014-2].

After analyzing the answers from the respondents regarding their main SE skills the

original eight strata were reorganized into five groups [de Mello et al., 2014-3]. As

evidenced in the first preliminary study, it was also observed in this third study that the

recruitment process delivered a more heterogeneous sample without losing in

confidence, when compared with the previous two survey executions [Abrantes and

Travassos, 2013]. Such heterogeneity was essential to support the identification of

relevant opinion divergences between groups regarding the research context, to

reinforce some results observed in the previous executions and to put another ones in

doubt [de Mello et al., 2014-4].

 Thus, based mainly on the experience obtained conducting the aforementioned

studies, the first version of the conceptual framework was designed [de Mello et al.,

2014], including new concepts for dealing with challenges observed on SE surveys.

Then, part of the conceptual framework was applied to evaluate nine possible

alternative sources available in the Web for establishing representative populations in

SE surveys, including professional social networks, crowdsourcing tools and

freelancing tools [de Mello et al., 2014]. The use of the conceptual framework was also

exemplified in the context of a real survey [de Mello et al., 2015-2].

 After the establishment of the first version of the conceptual framework, a

structured review over the proceedings of the two most relevant Empirical Software

Engineering Conferences (ESEM and EASE) was undertaken aiming at investigating

the state of practice on characterizing sampling frames in SE surveys [de Mello and

Travassos, 2015]. As a result, 56 surveys were identified in which was observed that

only seven reported efforts on designing representative samples. From these, four

surveys were designed having SE researchers as their target audience, accessed through

the list of authors of papers retrieved from a SLR (systematic literature review)

previously conducted for each research context [Dias Neto and Travassos, 2008; Santos

and da Silva, 2013; Carver et al., 2013; Gúzman et al., 2014]. The survey conducted by

Rodríguez et al. [2012], demonstrates the benefits on accessing a national database

composed by Finnish software professionals and organizations (FIPA). As a result,

II Latin American School on Software Engineering (ELA-ES 2015)

34

4,450 SE practitioners from Finland could be recruited and 408 answers were obtained.

Other two surveys [de Mello and Travassos, 2013-2; de Mello et al., 2014-3] consists on

already presented survey replications conducted in the context of this research.

 After the conduction of the mentioned structured review, it was observed the

need of evolving the framework concepts and then activities and recommendations to

support the framework use were designed. The results of the review allowed us to

include a set of recommendations for applying the framework activities. Following

subsections presents, respectively, the new version of the framework concepts and

exemplify one of the framework activities.

4.1 Framework Development- Concepts

Following subsection briefly presents the new version of the framework concepts.

Figure 2 presents such concepts associated to deliverables from survey planning and

execution.

Figure 2. The relationship between the main concepts of the framework.

4.3.1 Target Audience

A survey target audience characterizes who can best provide the information needed in

order to achieve the research objective [Kasunic, 2005]. In our framework, this concept

is extended to a formal characterization of the survey unit of observation and unit of

analysis. In questionnaire based surveys, data is always collected from units of

observation represented by the individual (respondent). However, the survey’s target

audience may demand a higher level of analysis (unit of analysis). In a recent structured

review conducted to characterizing sampling frames in SE surveys, it was observed that

15 from the 56 surveys since 2005 established specific groups of individuals as their

unit of analysis, including organizational units, organizations and project teams [de

Mello and Travassos, 2015].

 4.3.2 Source of Population

A survey population consists on the set of accessible units of analysis from the target

audience [Thompson, 2010]. Thus, a source of population consists on a database

Survey Population

Framework Concepts

Survey

Sample

Effective

Sample

Source of

Population
Target

Audience

Characterization

Questionnaire

Population

Search Plan

Sampling

Strategy

Recruitment

Strategy

Survey

Questionnaire

Research

Objective

II Latin American School on Software Engineering (ELA-ES 2015)

35

(automated or not) in which a valid population for a specific target audience can be

systematically retrieved. As a consequence, if a source of population can be considered

valid for supporting a specific research context, it can be concluded that adequate

sampling frames can be established from it for the same research context.

 In the context of a source of population, its search unit characterizes the entity

from which one or more units of analysis can be retrieved from a specific source of

population. In an ideal scenario, it is expected that both unit of analysis and search unit

are the same thing. However, SE literature presents some examples in which these units

are different. For instance, Conradi et al. [2005] aimed at investigating the opinion of

software project teams (unit of analysis), but accessed them keeping in touch with

organizations (search unit) from three distinct countries. Dias Neto and Travassos

[2008] opted to survey the authors (unit of analysis) of each paper (search unit)

retrieved from the results of specifics SLRs conducted for each research context.

 Figure 3 exemplified the concepts of source of population (SoP) and search unit

(SU) with the concepts of target audience (TA), population (POP) and unit of analysis

(UA). One can see that not necessarily all instance of search unit from a source of

population can be used to compose a specific population. To be considered valid, a

source of population should satisfy, at least, the following essential requirements (ER):

 ER1. A source of population should not intentionally represent a segregated

subset from the target audience, i.e., for a target population audience “X”, it is

not adequate to search for units from a source intentionally designed to

compose a specific subset of “X”.

 ER2. A source of population should not present any bias on including on its

database preferentially only subsets from the target audience. Unequal criteria

for including search units mean unequal sampling opportunities.

 ER3. All source of population’ search units, their units of analysis (and their

units of observation) must be identified by a logical or numerical id.

 ER4. All source of population’ search units must be accessible. If there are

hidden search units, it is not possible to contextualize the population.

Figure 3. Population obtained from a source of population and its units.

II Latin American School on Software Engineering (ELA-ES 2015)

36

 There are still also nine desirable requirements (DR), three concerned with the

samples’ accuracy (ADR), two concerned with clearness (CDR) and four regarding

sample’s completeness (CoDR). The first version of such requirements can be observed

in [de Mello et al., 2014].

4.3.3 Characterization Questionnaire

Attributes needed for characterizing each individual are frequently unavailable in the

sources of population. Thus, such attributes data are commonly retrieved based on

subjects’ answers to one or more survey questions. For instance, Dias Neto and

Travassos [2008] collected from each subject the set of attributes needed to support

their research since the source of population/search unit used (digital libraries/ papers)

do not retrieve another information regarding the subjects than their names and e-mails.

The characterization questionnaire is typically included at the beginning or at the end of

the survey questionnaire and should avoid ask any information already available (and

updated) in the source.

4.3.4 Search Plan

A search plan describes how search units will be systematically retrieved from a source

of population and evaluated in order to deliver the study population, being composed by

the following elements:

 Search string- a set of search expressions connected through logical operators

that can be applied to a source of population in order to retrieve adequate search

units.

 Search algorithm- describes each step, automated or not, that must be followed

in order to filter the search units in a source of population, including how to

apply the planned search string.

 Exclusion criteria- describes a set of restrictions that must be applied in order to

exclude undesirable search units retrieved from the search plan execution.

Exclusion criteria can be especially helpful when the source of population is

significantly generic and the use of search string are limited, such as in the case

of the professional social networks [de Mello et al., 2013; de Mello et al., 2014-

2] and yellow pages [Conradi et al., 2005].

4.3.5 Sampling Strategy

A sampling strategy establishes criteria for composing the survey sampling frame and

describes the survey sampling design. While the sampling frame is the source from

which a sample can be retrieved [Thompson, 2012], the sampling design describes the

criteria for extracting samples from the sampling frame, i.e. which individuals (from

which unit of analysis) will be invited to answer the survey.

4.3.6 Recruitment Strategy

The recruitment strategy characterizes how the individuals from the survey sample will

be recruited. It includes the invitation message and the following factors that can

influence subjects’ participation [Smith, 2013]: execution esteemed time, invitation

method, period available, reminding method and Reward method rewards may be, but is

not limited to include payments, raffles, gifts and donations for NGOs.

II Latin American School on Software Engineering (ELA-ES 2015)

37

4.4 Framework Development- Activities

Six activities and 17 tasks were developed to support SE researchers on applying the

conceptual framework presented in Section 3. Each task is supported by one or more

recommendations, totalizing 27. Such recommendations was developed based on

evidence observed in the specialized literature on conducting SE surveys, specially

identified in the structured review [de Mello and Travassos, 2015]. As mentioned in the

Section 3, the conceptual framework was developed to support only population and

sampling issues in SE surveys. Thus, Figure 4 presents through a BPMN model how the

framework activities are inserted in the survey planning steps presented in the Section 2.

Shadowed activities are out from the framework scope. One can see that the framework

introduces new steps between the characterization of the target audience and the design

the sampling design presented by Kasunic [2005]. The proposed framework also

devotes specific activities for designing the characterization questionnaire and designing

the recruitment strategy.

Figure 4. The framework activities inserted in the survey planning process.

II Latin American School on Software Engineering (ELA-ES 2015)

38

 Since the research objectives were identified, a target audience must be

established, and an accessible population should be found, which will be supported by

applying a population search plan over the selected source of population. Then, a

compatible sampling strategy should be applied in order to deliver the sample of the

survey trial. Finally, the recruitment strategy should be designed focusing on

stimulating the participation in the survey. Due to the limitation of space, the

description of all 17 tasks and the 27 recommendations are not displayed in this paper.

Figure 5 exemplifies the third task of the activity “Identify and Characterize the Target

Audience” (TA03) and its respective recommendations (R02, R03 and R04).

Figure 5. The framework activities inserted in the survey planning process.

5. Conclusion

This paper presented an on-going Doctoral research to develop a conceptual framework

to support sampling in SE surveys. Most of the planned research steps were performed.

As immediate next step, the second version of the conceptual framework will be

submitted to a feasibility study having Doctoral and Master students from an

Experimental Software Engineering class as subjects. Within the results of such study,

the framework will be improved to be presented in the context of the Doctoral Thesis.

Future steps include the conduction of additional studies for evaluating the conceptual

framework and expanding the use of the framework concepts to support large scale

experiments in SE. It is also expected that new evidence observed in future SE surveys

could be used to improve and add new recommendations to the framework.

Acknowledgement

We would like to thank to Dr. Per Runeson (Lund University, Sweden) to the external

supervision during the sandwich doctorate program and to Pedro Correa

(COPPE/UFRJ) to the support in the research activities. We also thanks to Dr. Martin

Höst (Lund University), Dr. Carolyn Seaman (UMBC, EUA), Dr. Alessandro Garcia

(PUC-RJ, Brazil) and Dr. Márcio Barros (UNIRIO, Brazil) by the relevant contributions

for the research. Finally, we thanks to CAPES to the support on the external scholarship

program at Lund University.

TA03. Establish the unit of analysis attributes. First, establish the set of control

attributes and their respective values that will restrict the unit of analysis. Then,

enumerate the other attributes that should be collected from each unit and define how

to measure each one.

R02. Individuals are commonly characterized in SE through the following attributes:

experience in the research context, experience in SE, current professional role,

country and higher academic degree.

R03. Organizations are commonly characterized in SE through the following

attributes: size (scale typically based in the number of employees), industry segment

(software factory, avionics, finance, health, telecommunications, etc.), country and

organization type (government, private company, university, etc.).

R04. Project teams can be characterized through attributes such as project size; team

size, client/product professional segment (avionics, finance, health,

telecommunications, etc.) and their physical distribution.

II Latin American School on Software Engineering (ELA-ES 2015)

39

Referências Bibliográficas

A. C. Dias Neto, G. H. Travassos. Surveying Model Based Testing Approaches

Characterization Attributes. In: Proc. 2nd ACM/IEEE ESEM, pp. 324–326, 2008.

A. C. Dias-Neto, R. O. Spínola and G. H. Travassos. “Developing software technologies

through experimentation: experiences from the battlefield,” Proceedings of

Conferencia Ibero-Americana en Software Engineering, pp. 107-121, 2010.

A. Nugroho and M. R. V. Chaudon. A survey into the rigor of UML use and its

perceived impact on quality and productivity. Proceedings of the Second ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement

(ESEM), pp. 90-99. ACM, 2008.

C. C. Franca, F. Q. B. da Silva. An Empirical Study on Software Engineers

Motivational Factors. Proc. Third ACM/IEEE ESEM, pp. 405-409. IEEE, 2009.

E. Smith et al. Improving developer participation rates in surveys. 6th Intl. Workshop

on Cooperative and Human Aspects of Software Engineering (CHASE), IEEE, 2013.

B. B. N. França and G. H. Travassos. Simulation Based Studies in Software

Engineering: A Matter of Validity. CLEI Elet. Journal vol. 18.1, Article No. 4, 2014.

J. C. Carver, E. Hassler, E. Hernandes, N. A. Kraft. Identifying Barriers to the

Systematic Literature Review Process. In: Proc. 7th ACM/IEEE ESEM, pp. 203–

212, 2013.

J. F. Abrantes and G. H. Travassos. Towards Pertinent Characteristics of Agility and

Agile Practices for Software Processes. CLEI Electronic Journal 16.1, No. 5, 2013.

J. L. Martínez-Fernández et al. Using Surveys to Evaluate a Business Rules Based

Development Approach. Business Information Systems, pp. 132-143. Springer

Berlin Heidelberg, 2010.

K. Petersen and C. Wohlin. Context in industrial software engineering research.

Proceedings of the Third ACM/IEEE ESEM. IEEE, 2009.

L. Guzmán, C. Lampasona, C. Seaman, D. Rombach. Survey on Research Synthesis in

Software Engineering. In: Proc. 18th EASE, pp. 2:1–2:10, 2014.

M. Ciolkowski, O. Laitenberger, S. Vegas, S. Biffl. Practical experiences in the design

and conduct of surveys in empirical software engineering. In: Conradi R, Wang AI

(eds). Empirical Methods and Studies in Software Engineering- Experiences from

ESERNET, pp. 104-128. Springer Berlin Heidelberg, 2003.

M. Kasunic. Designing an Effective Survey. TR CMU/SEI-2005-HB-004, Carnegie

Mellon University, 2005.

N. Bettenburg et al. What Makes a Good Bug Report? Proceedings of the 16th ACM

SIGSOFT Intl. Symp. on Foundations of Soft. Eng., pp. 308-318. ACM, 2008.

P. Rodríguez et al. “Survey on agile and lean usage in finnish software industry,”

Proceedings of Proceedings of 6th ACM/IEEE ESEM. ACM, 2012.

R. Conradi et al. Reflections on conducting an international survey of Software

Engineering. Proceedings of ESEM, pp. 10, 2005.

II Latin American School on Software Engineering (ELA-ES 2015)

40

R. E. S. Santos, F. Q. B. Da Silva. Motivation to Perform Systematic Reviews and their

Im-pact on Software Engineering Practice. In: Proc. 7th ACM/IEEE ESEM, pp. 292–

295, 2013.

R. M. de Mello and G. H. Travassos. An ecological perspective towards the evolution of

quantitative studies in software engineering. Proceedings of the 17th International

Conf. on Evaluation and Assessment in Software Engineering (EASE). ACM, 2013.

R. M. de Mello and G. H. Travassos. Would Sociable Software Engineers Observe

Better? In Proceedings of 7th ESEM, IEEE, 2013-2.

R. M. de Mello, P. C. da Silva, P. Runeson, G. H. Travassos Towards a framework to

support large scale sampling in software engineering surveys. Proceedings of the 8th

ACM/IEEE ESEM, pp. 48-52. ACM, 2014.

R. M. de Mello, P. C. da Silva, G. H. Travassos. Investigating Probabilistic Sampling

Approaches for Large-Scale Surveys in Software Engineering. Proceedings of 11th

Workshop on Experimental Software Engineering (ESELAW), Pucón, Chile, 2014-2

R. M. Mello, P. C. da Silva, G. H. Travassos Sampling improvement in software

engineering surveys. Proceedings of the 8th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, pp. 13-17. ACM, 2014-3.

R. M. de Mello, P. C. Silva, G. H. Travassos. Agilidade em Processos de Software:

Evidências Sobre Características de Agilidade e Práticas Ágeis. In: XIII Brazilian

Symposium on Sofware Quality, Blumenau, Brazil, 2014-4. (in Portuguese)

R. M. de Mello and G. H. Travassos, GH. Characterizing Sampling Frames in Software

Engineering Surveys. In: Proceedings of 18th ESELAW, Lima, Peru, 2015.

R. M. Mello, K. T. Stolee, G. H. Travassos. Investigating Samples Representativeness

for Online Experiments in Java Code Search. ESEM 2015. (submitted)

R. M. de Mello, P. C. da Silva, G. H. Travassos. Investigating Probabilistic Sampling

Approaches for Large-Scale Surveys in Software Engineering. Journal of Software

Engineering Research and Development (JSERD), 2015-2. (accepted)

S. K. Thompson SK. Sampling. John Wiley & Sons, 3 ed. 2012.

S. L. Pfleeger and B. A. Kitchenham. Principles of survey research: part 1: turning

lemons into lemonade. ACM SIGSOFT Soft. Eng. Notes 26.6, pp. 16-18, 2001.

S. L. Pfleeger and B. A. Kitchenham. Personal Opinion Surveys. Guide to Advanced

Empirical Software Engineering, pp 63-92. Springer London, 2008.

S. Stavru. A critical examination of recent industrial surveys on agile method usage.

Journal of Systems and Software 94, pp: 87-97. 2014.

W. Kruskal and F. Mosteller. Representative Sampling III: The Current Statistical

Literature. International Statistical Review / Revue Internationale de Statistique, Vol.

47, No. 3, pp. 245-265, 1979.

II Latin American School on Software Engineering (ELA-ES 2015)

41

Processo de Conformidade Arquitetural
em Integração Contínua

Arthur F. Pinto, Ricardo Terra

Departamento de Ciência da Computação,
Universidade Federal de Lavras (UFLA), Brasil

arthurfp@sistemas.ufla.br, terra@dcc.ufla.br

Abstract. As software evolves, developers usually introduce deviations from the
planned architecture, due to unawareness, conflicting requirements, technical
difficulties, deadlines, etc. Although architectural compliance processes identify
architectural violations, (i) these tools are underused and (ii) detected violati-
ons are rarely corrected. To address these shortcomings, this paper proposes a
solution of architectural compliance into continuous integration. Thus, the ar-
chitectural compliance process is triggered by every code integration, and when
no violations are detected, the code is integrated into the repository. In addi-
tion, this paper presents the ArchCI tool—that implements the proposed solution
using DCL as underlying conformance technique and Jenkins as the CI server—
and a controlled evaluation that demonstrates the applicability of the solution.

Resumo. No decorrer de um projeto de software, desenvolvedores normalmente
introduzem desvios em relação à arquitetura planejada, seja por desconheci-
mento, requisitos conflitantes, dificuldades técnicas, prazos curtos, etc. Embora
processos de conformidade arquitetural identifiquem violações arquiteturais,
(i) essas ferramentas são subutilizadas e (ii) violações detectadas são raramente
corrigidas. Diante disso, este artigo propõe uma solução de conformidade ar-
quitetural em integração contínua. Isso implica que o processo de conformidade
arquitetural é ativado a cada integração de código e, quando violações não fo-
rem detectadas, o código poderá ser integrado ao repositório. Além disso, este
artigo apresenta a ferramenta ArchCI – que implementa a solução proposta
usando DCL como técnica de conformidade e Jenkins como servidor de CI – e
uma avaliação controlada que demonstra a aplicabilidade da solução.

1. Introdução
No decorrer de um projeto de software, desenvolvedores normalmente introduzem
desvios em relação à arquitetura planejada, seja por desconhecimento, requisitos
conflitantes, dificuldades técnicas, prazos curtos, etc. [14, 13, 19]. Isso se agrava em
projetos com vários desenvolvedores uma vez que o acúmulo dos possíveis desvios
arquiteturais que podem ocorrer durante sua implementação, são potencializados pelo
aumento do número de desenvolvedores em um projeto, levando ao fenômeno conhecido
como erosão arquitetural [11, 6]. Mais importante, esses desvios arquiteturais impactam
negativamente o projeto, podendo anular características essenciais de um sistema, como
manutenibilidade, reusabilidade, escalabilidade, portabilidade, etc. [13, 20].

II Latin American School on Software Engineering (ELA-ES 2015)

42

Embora processos de conformidade arquitetural identifiquem violações arquite-
turais, (i) essas ferramentas são subutilizadas e (ii) violações detectadas são raramente
corrigidas. Diante disso, este artigo propõe uma solução de conformidade arquitetural em
integração contínua. Isso implica que o processo de conformidade arquitetural é ativado a
cada integração de código e, quando violações não forem detectadas, o código poderá ser
integrado ao repositório, o que soluciona os problemas (i) e (ii). Além disso, este artigo
apresenta a ferramenta ArchCI – que implementa a solução proposta usando DCL (Depen-
dency Constraint Language) como técnica de conformidade [19] e Jenkins como servidor
de CI [16] – e uma avaliação controlada que demonstra a aplicabilidade da solução.

O restante deste artigo está organizado como a seguir. A Seção 2 introduz concei-
tos fundamentais ao estudo. A Seção 3 descreve a solução proposta que evita os problemas
decorrentes de um processo de erosão arquitetural. A Seção 4 detalha a implementação
da ferramenta ArchCI. A Seção 5 avalia a aplicabilidade da solução proposta. Por fim, a
Seção 6 apresenta as considerações finais e trabalhos futuros.

2. Background

2.1. Controle de Versão

Um sistema de controle de versão (Version Control System, VCS) é um software com
a finalidade de gerenciar diferentes versões no desenvolvimento de artefatos de um pro-
jeto [17, 18]. Como principal contribuição, oferece rastreabilidade das alterações, como
o responsável pelas mudanças, hora e data, diferenças das versões, etc.

Os sistemas podem ser centralizados ou distribuídos [9]. VCSs centralizados apre-
sentam repositórios de códigos, onde o acesso e a escrita de dados estão restritos a um
grupo de desenvolvedores [2]. VCSs distribuídos, por outro lado, trabalham com a arqui-
tetura peer-to-peer, de forma que cada cópia de um projeto contém todo o histórico e os
metadados do projeto, garantindo aos desenvolvedores a capacidade de compartilhar as
mudanças da forma que mais se adeque às suas necessidades [12]. Dentre as principais
ferramentas de controle de versão – CVS, SVN, Git e Mercurial – escolheu-se, para o
desenvolvimento deste projeto, o Git1 por oferecer a possibilidade de se desenvolver de
maneira centralizada e distribuída, além de ser um dos mais utilizados atualmente [12].

Neste artigo, é importante a contextualização com os seguintes conceitos [17, 18]:
(i) tag, nome simbólico atribuído à uma versão específica; (ii) branch, um conjunto de
versões de arquivos fontes que é identificado por uma tag; (iii) commit, comando que
integra as alterações de um desenvolvedor a um branch do repositório local; e (iv) push,
comando que integra uma série de commits de um desenvolvedor a um branch do reposi-
tório remoto.

2.2. Integração Contínua

Integração Contínua (Continuous Integration, CI) trata-se da prática de desenvolvimento
de software, onde membros de uma equipe incorporam certas mudanças ao software,
aplicando processos de compilação e testes que asseguram a integridade do projeto [8].
Essa prática facilita na detecção de erros e problemas nas fases anteriores à conclusão do
software, visando um menor custo de reparo [3]. A solução proposta neste artigo objetiva

1http://git-scm.com/

II Latin American School on Software Engineering (ELA-ES 2015)

43

http://git-scm.com/

complementar esse processo de integração, provendo meios de verificar a arquitetura do
sistema de software.

Servidores de CI podem ser configurados para verificarem sempre que mudan-
ças são realizadas em um repositório [7]. Assim, recupera as versões mais recentes das
classes, compila o código, e, em seguida, executa os testes para integração, exibindo os
resultados aos desenvolvedores [4]. Dentre os servidores de CI mais relevantes – Jen-
kins, TeamCity e CruiseControl – o Jenkins2 conseguiu um alcance maior na comunidade
open-source, tendo assim, certa vantagem para a identificação e correção de bugs, bem
como certas melhorias, se tornando o servidor mais recomendado para este projeto [16].

2.3. Conformidade Arquitetural
Conforme um projeto de software é desenvolvido, sua arquitetura está sempre evoluindo à
medida que seu sistema também evolui. Portanto, são necessários meios de rastrear essas
evoluções e outros aspectos implícitos do sistema de software. Esse processo é chamado
de architectural monitoring [11]. Torna-se, assim, imprescindível para um sistema de
software garantir a conformidade entre a arquitetura planejada e sua implementação atual.
Contudo, é comum o acúmulo de violações arquiteturais ao longo do tempo, levando ao
fenômeno conhecido como erosão arquitetural [14].

Define-se como erosão arquitetural o fenômeno que ocorre quando a arquitetura
implementada de um sistema de software diverge de sua arquitetura planejada [6]. Exis-
tem diversas técnicas para evitar a erosão arquitetural, bem como para se realizar o pro-
cesso de architectural monitoring. Dentre as principais técnicas, pode-se citar: Modelos
de Reflexão [10], Matrizes de Dependências Estruturais [15], Source Code Query Lan-
guages [21], ArchJava [1], Testes de Desenho [5], e Linguagens de Restrição Arquite-
turais [19]. Dessas técnicas, a que será utilizada neste projeto será a linguagem DCL,
devido ao seu fácil uso e ao fato da mesma apresentar uma alta expressividade na forma
de se tratar o problema de erosão arquitetural.

DCL é uma linguagem declarativa de domínio específico, que apoia a definição
de restrições estruturais entre módulos em sistemas orientados a objetos, tendo como ob-
jetivo principal, restringir a organização modular de um sistema de software, em vez de
seu comportamento [19]. Através da definição de restrições estruturais por meio do DCL,
torna-se possível capturar dois tipos de violações arquiteturais: divergências (quando uma
dependência observada no código fonte não está de acordo com o modelo arquitetural do
sistema) e ausências (dependência inexistente no código fonte, mas que é obrigatória de
acordo com o modelo arquitetural). Essencialmente, esse modelo abrange qualquer forma
de relação entre classes que podem ser verificadas estaticamente. Através da combinação
de uma linguagem simples e autoexplicativa com uma ferramenta de suporte publica-
mente disponível, acredita-se que DCL possa auxiliar na prevenção da erosão arquitetural.

3. Solução Proposta
Embora processos de conformidade arquitetural identifiquem violações arquiteturais,
(i) essas ferramentas são subutilizadas e (ii) violações detectadas são raramente corri-
gidas. Diante disso, esta seção descreve uma solução de conformidade arquitetural em
integração contínua, conforme ilustrada na Figura 1.

2http://jenkins-ci.org/

II Latin American School on Software Engineering (ELA-ES 2015)

44

http://jenkins-ci.org/

Figura 1. Funcionamento do ArchCI

O processo de conformidade arquitetural é ativado a cada integração de código
e, quando violações não forem detectadas, o código poderá ser integrado ao repositório.
Isso visa a integridade da arquitetura do software, uma vez que mantém o código-fonte
sempre convergente com a arquitetura planejada. Assim, a solução proposta garante que:

• O processo de verificação de conformidade arquitetural seja realizado em toda
integração de código sem a necessidade de instalações em máquinas de desen-
volvedores, apenas no servidor de CI. Isso visa solucionar o problema (i) de
subutilização de ferramentas de conformidade arquitetural.

• Como o processo de conformidade arquitetural é ativado a cada integração de
código, é possível permitir a integração de código ao repositório apenas quando
violações arquiteturais não forem detectadas. Isso visa solucionar o problema (ii)
de violações detectadas serem raramente corrigidas.

É importante observar que a integração da solução proposta em processos reais
de desenvolvimento de software contribuirá diretamente com a qualidade arquitetural do
sistema de software, uma vez que a arquitetura implementada (como implementada no
código fonte) estará sempre em conformidade com a arquitetura planejada.

3.1. Linguagem DCL

A solução proposta requer uma técnica de conformidade arquitetural subjacente. Para
demonstrar a aplicabilidade da solução, utiliza-se DCL para definir as restrições arquite-
turais de um projeto. Nessa técnica, define-se módulos que são conjunto de classes e, em
seguida, restrições arquiteturais entre os módulos definidos, conforme Figura 2.

Figura 2. Sintaxe DCL

II Latin American School on Software Engineering (ELA-ES 2015)

45

O exemplo a seguir demonstra a definição e o funcionamento de tais restrições
estruturais entre módulos:

1: only Factory can- c r e a t e Product
2: Util can-depend-only $java, Util
3: View cannot-a c c e s s Model
4: Product must- implement Serializable

A restrição da linha 1 especifica que somente classes do módulo Factory podem
criar objetos de classes no módulo Product. A restrição da linha 2 especifica que que
as classes do módulo Util podem estabelecer dependências somente com o próprio mó-
dulo Util e a biblioteca padrão da linguagem Java. Já a restrição da linha 3 especifica
que as classes do módulo View não podem acessar as classes do módulo Model. Por úl-
timo, a restrição da linha 4 especifica que todas as classes no módulo Product devem
implementar a interface Serializable.

Como pode ser observado, é de suma importância a definição de restrições arqui-
teturais. DCL provê quatro tipos de restrições: cannot, can only, only can e must. Assuma
os módulos MA e MB de um sistema. Assuma também que A e B representem duas clas-
ses aleatórias do sistema e que MA representa o complemento de MA, assim como MB

representa o complemento de MB. Por fim, assuma que dep corresponde às possíveis de-
pendências que podem ser especificadas por meio do DCL, como create, access, declare,
handle, etc. Dessa forma, é possível estipular a seguinte semântica vinculada ao tipo de
restrição cannot:

∃A∃B [A ∈ MA ∧ B ∈ MB ∧ dep(A, B)]

Assim, para os tipos de restrição can only e only can, as semânticas podem ser
estipuladas em função da restrição cannot:

only MA can-dep MB =⇒ MA cannot-dep MB

MA can-only-dep MB =⇒ MA cannot-dep MB

Por fim, a semântica vinculada ao tipo de restrição must:

∃A¬∃B [A ∈ MA ∧ B ∈ MB ∧ dep(A, B)]

3.2. Jenkins

A solução proposta requer um servidor de CI subjacente. Para demostrar a aplicabili-
dade da solução, utiliza-se o servidor Jenkins para programação das tarefas que garantam
a conformidade arquitetural das integrações realizadas pelos desenvolvedores. Cada ta-
refa inclusa no Jenkins refere-se a um projeto de software específico, ou mesmo suas
ramificações (seus diferentes branches). Sendo assim, cada integração (push) realizada
ao repositório, dispara um gatilho no servidor, que dará início à tarefa específica do refe-
rente projeto, onde esta, por sua vez, validará somente as classes alteradas na determinada
integração.

II Latin American School on Software Engineering (ELA-ES 2015)

46

Caso o processo de conformidade arquitetural não detecte violações, as alterações
serão integradas ao repositório com sucesso. No entanto, caso violações sejam detec-
tadas, a tentativa de integração será negada, informando ao desenvolvedor que acionou
a tarefa, as violações encontradas. Desse modo, a ferramenta garante a propriedade de
atomicidade, assegurando que somente as integrações que estejam em total acordo com
as restrições de dependência estabelecidas sejam aceitas pelo servidor, rejeitando, assim,
alterações que estejam em desacordo ou parcial acordo, mesmo que as mesmas sejam
uma série de integrações realizadas ao servidor local (commits) antes da requisição de
integração ao servidor remoto (push).

4. Ferramenta ArchCI
A ferramenta ArchCI implementa a solução proposta, tendo sua concepção voltada para o
uso da linguagem DCL como técnica subjacente de conformidade arquitetural e o Jenkins
como servidor de CI. Primeiramente, foi necessário criar uma implementação standalone
de DCL que dependesse apenas de uma biblioteca de manipulação de AST (Eclipse JDT,
Java Development Tools). Dessa forma, tornou-se possível sua integração ao Jenkins, o
que implica que a ferramenta não requeira qualquer instalação em máquina cliente. Além
disso, a verificação de conformidade arquitetural das integrações no servidor remoto é re-
alizada de forma individual, verificando cada arquivo separadamente e, mais importante,
apenas aqueles que sofreram alguma modificação.

Conforme ilustrado na Figura 3, a implementação de ArchCI segue uma arquite-
tura com cinco módulos principais:

Figura 3. Arquitetura do ArchCI

• Dependencies Parser: Módulo responsável pela obtenção das dependências de
um projeto, assim como a manipulação das mesmas. Apresenta funções que
analisam cada elemento das classes a serem validadas, analisando o tipo de
dependência ao qual o determinado elemento se refere.

• Constraints Parser: Módulo encarregado da análise e decomposição do arquivo
contendo os módulos do projeto e as restrições de dependência estabelecidas para
a arquitetura do sistema.

II Latin American School on Software Engineering (ELA-ES 2015)

47

• Dependencies Validation: Módulo envolvendo funções para garantir a confor-
midade arquitetural do projeto por meio da verificação e validação de desvios
arquiteturais com base nas restrições de dependência previamente estabelecidas.

• Auxiliary Functions: Módulo responsável por fornecer funções que auxiliem as
tarefas do ArchCI de modo geral, tais como localizar o caminho das bibliotecas e
dos arquivos necessários para a resolução das dependências, identificar o tipo de
projeto, etc.

• Integration Functions: Módulo contendo as funções relacionadas às práticas de
CI, assim como funções necessárias para integrar o código ao servidor Jenkins.
Esse, por sua vez, engloba funções para a customização do build, obtenção do
workspace com o código a ser integrado, identificação das classes a serem valida-
das, etc.

Por fim, após a conformidade arquitetural realizada durante a integração contínua,
o ArchCI fornece como retorno uma mensagem de erro juntamente com as violações
encontradas nas classes alteradas da integração, caso as mesmas existam. A interface da
mensagem e sua representação é demonstrada na Figura 4(c), tendo como base o exemplo
de restrição de dependência da Figura 4(a) e a violação da Figura 4(b).

module Main: project.main.*

Main cannot-depend java.lang.Math

(a) Exemplo de Restrição de Dependência

package project.main;

public class Main {
public static void main(S t r i n g[] args) {

System.out.println(Math.pow(2, 5));
}

}

(b) Exemplo de Violação

(c) Relatório após a tentativa de integração de código

Figura 4. Interface ArchCI

5. Avaliação
Para demonstrar a aplicabilidade da solução proposta, foi conduzida uma avaliação con-
trolada envolvendo a aplicação myAppointments [13], um sistema de gerenciamento de
informação pessoal simples implementado para ilustrar técnicas de conformidade arqui-
tetural. O sistema possui funcionalidades primárias aos usuários, como criar, recuperar,
atualizar e excluir contatos pessoais. Apesar de seu tamanho e sua complexidade serem
simplificados, seu conjunto de restrições de dependência são provavelmente utilizados em
muitos casos de conformidade arquitetural de projetos reais.

II Latin American School on Software Engineering (ELA-ES 2015)

48

A arquitetura do myAppointments segue um padrão bastante conhecido chamado
Model-View-Controller (MVC), fornecendo uma nítida divisão entre seus componentes.
O componente Model encapsula o estado da aplicação, enquanto o componente View está
associado à objetos da interface. O componente Controller, por sua vez, faz a mediação
de todas as interações entre o Model e o View. Internamente ao componente Model, estão
contidos Domain Objects, que representam entidades de domínio, e Data Access Objects
(DAOs), que encapsulam o framework de persistência da aplicação. Tal arquitetura é
ilustrada pelo diagrama da Figura 5:

Figura 5. Arquitetura MVC do MyAppointments

Embora simplificado, o sistema do myAppointments trabalha com as principais
restrições de dependência envolvendo o modelo MVC. Sua implementação usa as seguin-
tes restrições arquiteturais (RA):

(RA1) Somente a camada View pode depender dos componentes providos pelo
AWT/Swing.

(RA2) Somente os DAOs da camada Model podem depender dos serviços de banco
de dados. Uma exceção é concedida para a classe model.DB, responsável por
controlar as conexões do banco de dados.

(RA3) A camada View pode depender apenas dos serviços providos por ela mesma, pela
camada Controller e pelo pacote Util (por exemplo, para dissociar a apresentação
dos dados do acesso aos dados, componentes do View não podem acessar
componentes do Model diretamente).

(RA4) Domain Objects não devem depender dos módulos DAO, Controller e View.

(RA5) Classes DAO podem depender somente de Domain Objects, das classes Model
autorizadas a utilizar os serviços de banco de dados (como o model.DB), quanto
do pacote Util.

(RA6) O pacote Util não pode depender de nenhuma classe específica do código fonte
do sistema.

II Latin American School on Software Engineering (ELA-ES 2015)

49

Para utilização da solução proposta, a definição das restrições arquiteturais em
DCL é demonstrado na Figura 6.

%Módulos
module Controller: myappointments.controller.*
module View: myappointments.view.*
module Model: myappointments.model.**
module Domain: myappointments.model.domain.*
module Util: myappointments.util.*
module DB: myappointments.model.DB
module DAO: "myappointments.model.[a-zA-Z0-9/.]*DAO"
module JavaAwtSwing: java.awt.**, javax.swing.**
module JavaSql: java.sql.**

%Restrições
only View can-depend JavaAwtSwing
only DAO, DB can-depend JavaSql
View cannot-depend Model
Domain can-depend-only $java
DAO can-depend-only Domain, Util, javaSql
Util cannot-depend $system

Figura 6. Restrições Arquiteturais DCL do MyAppointments

Para avaliar o funcionamento da solução proposta, foram intencionalmente criadas
seis violações arquiteturais, uma para cada restrição de dependência do myAppointments,
conforme ilustrado na Figura 7.

package myappointments.model.domain;

import java.util.Date; [...]

public class Appointment {

public Appointment() throws Exception{

javax.swing.JOptionPane dialog;

Date date = new java.sql.Date(2015, 04, 19);

myappointments.controller.AgendaController ac;

}
[...]

(a) Violações RA1, RA2 e RA4

package myappointments.view;

import myappointments.model.AgendaDAO; [...]

public class AppointmentView extends
AbstractAppointmentView {

public AppointmentView
(AppointmentController controller)

throws Exception {
this.controller = controller ;
this.appForm = new AppointmentForm() ;

Object aDAO = AgendaDAO.getInstance();

initComponents() ;
[...]

(b) Violação RA3

package myappointments.model;

import myappointments.view.AppointmentView; [...]

public class AgendaDAO extends AbstractAgendaDAO {

private static AgendaDAO agendaDAO
= new AgendaDAO();

private static AppointmentView av;
[...]

(c) Violação RA5

package myappointments.util;

import myappointments.view.AppointmentView; [...]

public class DateUtils {

public static final S t r i n g HOUR_FMT = "HH:mm";
public static final S t r i n g SHORT_DATE_FMT =

"MM/dd/yyyy";
public static final S t r i n g LONG_DATE_FMT =

"MM/dd/yyyy HH:mm";

private static AppointmentView av;
[..]

(d) Violação RA6

Figura 7. Violações introduzidas no MyAppointments

(RA1) Um variável do tipo javax.swing.JOptionPane foi declarada dentro da classe
Appointment que pertence a camada Domain. Isso representa uma violação
na restrição (RA1) que indica que somente a camada View pode depender dos
componentes providos pelo AWT/Swing (vide Figura 7(a)).

II Latin American School on Software Engineering (ELA-ES 2015)

50

(RA2) Foi instanciado um objeto do tipo java.sql.Date na classe Appointment da
camada Domain, violando a restrição (RA2) de que somente os DAOs da camada
Model podem depender dos serviços de banco de dados (vide Figura 7(a)).

(RA3) O método getInstance() do objeto AgendaDAO, pertencente à camada DAO foi
invocado pela classe AppointmentView da camada View, violando a restrição
(RA3) de que a camada View pode depender apenas dos serviços providos por
ela mesma, pela camada Controller e pelo pacote Util (vide Figura 7(b)).

(RA4) A classe Appointment da camada Domain instancia a variável ac do tipo
AgendaController (pertencente à camada Controller), violando a restrição
(RA4) de que Domain Objects não devem depender dos módulos DAO, Controller
e View (vide Figura 7(a)).

(RA5) A classe AgendaDAO presente na camada DAO contém o campo av do tipo
AppointmentView (pertencente à camada View), violando a restrição (RA5)
de que classes DAO podem depender somente de Domain Objects, das classes
Model autorizadas a utilizar os serviços de banco de dados, quanto do pacote
Util (vide Figura 7(c)).

(RA6) Assim como na violação anterior, a classe DateUtils presente na camada Util
contém o campo av do tipo AppointmentView (pertencente à camada View), vio-
lando a restrição (R6) de que o pacote Util não pode depender de nenhuma classe
específica do código fonte do sistema (vide Figura 7(d)).

Dessa forma, foi realizada a avaliação do sistema para verificar se a ferramenta
proposta é capaz de realizar o processo de conformidade arquitetural corretamente, detec-
tando todas as violações criadas. O resultado da aplicação da ferramenta é demonstrado
na Figura 8. Conforme observado, o ArchCI foi capaz de encontrar todas as violações
criadas para esta avaliação com sucesso, cancelando o processo de integração (push) e
informando as referentes violações ao desenvolvedor, cumprindo assim, seu propósito.

Figura 8. Violações detectadas pelo ArchCI no MyAppointments

II Latin American School on Software Engineering (ELA-ES 2015)

51

Limitações: A avaliação foi realizada em um ambiente controlado – um sistema de pe-
queno porte, um único desenvolvedor, poucas integrações de código e um pequeno con-
junto de violações. Entretanto, o objetivo da avaliação de se verificar a aplicabilidade da
solução proposta foi atingido ao se demonstrar que é sim possível integrar um processo
de conformidade arquitetural em Integração Contínua.

6. Conclusão

É de suma importância para a engenharia de software garantir a conformidade arquite-
tural de um sistema, principalmente no desenvolvimento de software em conjunto, onde
problemas como a erosão arquitetural tornam-se mais comuns, causando a anulação de
características como manutenibilidade, reusabilidade, escalabilidade, portabilidade, etc.

Este artigo apresenta uma solução para a verificação da conformidade arquitetural
de um projeto de software – com base em restrições arquiteturais entre módulos – incor-
poradas em um servidor de Integração Contínua. Como principal contribuição, a solução
proposta evita os problemas decorrentes de um processo de erosão arquitetural através
de um processo de conformidade arquitetural mais rígido, e.g., integrações de código só
ocorrem quando não foram detectadas violações arquiteturais.

Como trabalho futuro, pretende-se: (i) aplicar a solução proposta em cenários reais
de desenvolvimento a fim de avaliar sua expressividade, aplicabilidade e desempenho;
(ii) avaliar a usabilidade da ferramenta, e.g., melhor forma de se realizar a verificação,
melhor forma de se apresentar as violações, além das características mais importantes
para aceitação dos desenvolvedores, considerando distintas abordagens para o reporte
de violações, e.g., exibição de warnings ou envio de e-mails, ao invés de bloquear a
integração de código; (iii) analisar como fatores humanos influenciam as violações para
propor novas funcionalidades; e (iv) realizar melhorias na implementação da ferramenta.

Agradecimentos

Este trabalho foi apoiado pela FAPEMIG, CAPES e CNPq.

Referências

[1] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting software
architecture to implementation. In 24th International Conference on Software Engi-
neering (ICSE), pages 187–197, 2002.

[2] Brian De Alwis and Jonathan Sillito. Why are software projects moving from centralized
to decentralized version control systems? In 2nd Cooperative and Human Aspects
on Software Engineering (CHASE), pages 36–39, 2009.

[3] Alan Berg. Jenkins Continuous Integration Cookbook. Packt Publishing, Birmingham,
2012.

[4] Jon Bowyer and Janet Hughes. Assessing undergraduate experience of continuous inte-
gration and test-driven development. In 28th International Conference on Software
Engineering (ICSE), pages 691–694, 2006.

II Latin American School on Software Engineering (ELA-ES 2015)

52

[5] João Brunet, Dalton Serey, and Jorge Figueiredo. Structural conformance checking with
design tests: An evaluation of usability and scalability. In 27th International Confe-
rence on Software Maintenance (ICSM), pages 143–152, 2011.

[6] Lakshitha de Silva and Dharini Balasubramaniam. Controlling software architecture ero-
sion: A survey. Journal of Systems and Software, 85(1):132–151, 2012.

[7] Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Improving
Software Quality and Reducing Risk. Pearson Education, Boston, 2007.

[8] Martin Fowler and Matthew Foemmel. Continuous integration. Technical report,
Thought-Works, 2006.

[9] Konrad Hinsen, Konstantin Läufer, and George K. Thiruvathukal. Essential tools: Version
control systems. Computing in Science & Engineering, 11(6):84–91, 2009.

[10] G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the gap
between source and high-level models. In 3rd Symposium on Foundations of Soft-
ware Engineering (FSE), pages 18–28, 1995.

[11] Oscar Nierstrasz and Mircea Lungu. Agile software assessment. In 20th International
Conference on Program Comprehension (ICPC), pages 3–10, 2012.

[12] Bryan O’Sullivan. Making sense of revision-control systems. Queue, 7(7):30–40, 2009.

[13] Leonardo Passos, Ricardo Terra, Renato Diniz, Marco Tulio Valente, and Nabor Men-
donça. Static architecture conformance checking: An illustrative overview. IEEE
Software, 27(5):132–151, 2010.

[14] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. Software
Engineering Notes, 17(4):40–52, 1992.

[15] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency models
to manage complex software architecture. In 20th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 167–176,
2005.

[16] John Ferguson Smart. Jenkins: The Definitive Guide. O’Reilly Media, Inc, Sebastopol,
2011.

[17] Diomidis Spinellis. Version control, part 1. IEEE Software, 22(5):107–107, 2005.

[18] Diomidis Spinellis. Version control, part 2. IEEE Software, 22(6):c3–c3, 2005.

[19] Ricardo Terra and Marco Tulio Valente. A dependency constraint language to ma-
nage object-oriented software architectures. Software: Practice and Experience,
39(12):1073–1094, 2009.

[20] Ricardo Terra and Marco Tulio Valente. Definição de padrões arquiteturais e seu impacto
em atividades de manutenção de software. In VII Workshop de Manutencao de
Software Moderna (WMSWM), pages 1–8, 2010.

[21] Mathieu Verbaere, Michael W. Godfrey, and Tudor Gîrba. Query technologies and ap-
plications for program comprehension. In 16th IEEE International Conference on
Program Comprehension, pages 285–288, 2008.

II Latin American School on Software Engineering (ELA-ES 2015)

53

AtlasSPL - A Web-Based Tool for Feature Modeling
Marcelo Schmitt Laser1, Elder Macedo Rodrigues1, Cristiano Moreira Martins1,

Flávio Oliveira1

1School of Computer Science (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Postal Code 90.619-900 – Porto Alegre – RS – Brazil

{marcelo.laser, cristiano.martins}@acad.pucrs.br

{elder.rodrigues, flavio.oliveira}@pucrs.br

Abstract. This paper presents a graphical web-based feature modeling tool
called AtlasSPL that aims to facilitate the training of new professionals in basic
Software Product Line design concepts. AtlasSPL provides an intuitive graph-
ical interface for the construction and visualization of feature models, is an
accessible solution, gives access to a repository of previously-validated feature
models, and supports five different feature model notations. We believe that
these qualities define it as a highly accessible solution for both educational and
small-scale industrial settings.

1. Introduction
Software Product Line Engineering (SPLE) is a technique that has grown considerably in
recent years. Due to allowing for a great degree of systematic reuse, as well as decreasing
long-term costs and time-to-market, it has proven itself as a valuable technique in the
design, development and management of software where a core of commonalities can be
identified between different products [Clements and Northrop 2001] [Pohl et al. 2005]. A
key concept of a Software Product Line (SPL) is the definition of variability, this being the
characteristics (or features) that vary from one product to another within a single family
of software products.

The clear and expressive representation of variability during the design of
an SPL is invaluable to its continued success [Pohl et al. 2005]. While there
are different techniques to aid in this task, Feature Modeling [Kang et al. 1990]
[Czarnecki and Eisenecker 2000] is one of the most widely used [Berger et al. 2013], al-
lowing for a graphical representation of variability that is recognisable by all stakeholders.
Although there are several tools that aid in feature modeling, none of them meet our us-
ability and availability requirements.

Various notations have been proposed to represent Feature Models, most of
them based on FODA [Kang et al. 1990]. Some of the most notable ones in the litera-
ture are the Czarnecki-Eisenecker base [Czarnecki and Eisenecker 2000] and extended
[Czarnecki et al. 2005] notations, the FeatuRSEB notation [Griss et al. 1998] and the
Gurp-Bosch-Svahnberg notation [van Gurp et al. 2001]. Despite having important dif-
ferences in presentation, they share a common set of semantics that can be exploited in
the construction of a feature modeling tool.

Over the course of our work, we have often run into difficulties when having to
build and present feature models, for reasons ranging from lack of knowledge from our

II Latin American School on Software Engineering (ELA-ES 2015)

54

collaborators to lack of support in the tools available to us. To resolve this issue, we have
defined a set of requirements, based on our expertise in this field, for a tool to support
feature modeling with the purpose of basic education in software variability and feature
modeling, as well as facilitating the collaboration between professionals who may not be
acquainted with abstract structures such as trees.

In this paper we present AtlasSPL, a web-based feature modeling tool built to
meet these requirements. AtlasSPL was created with the primary purpose of training our
collaborators in the use of feature models, and should therefore be a suitable tool for
educational environments. We believe that it is also sufficiently complete to allow for the
basic feature modeling activities of managing SPL variability, and is therefore suitable for
small-scale industrial use.

The rest of this paper is organized as follows: Section 2 presents some background
information regarding feature models and their applicability in Software Engineering, as
well as some tools that aid in the feature modeling process; Section 3 presents our in-
house feature modeling tool (AtlasSPL), along with a summary of the requirements on
which this tool’s design is based and an example of its application through the modeling
of a pedagogical SPL; Section 4 presents some lessons learned from the development of
these tools as well as some proposals of future work; Section 5 presents a summary of our
conclusions based on the material presented in this paper.

2. Background

In this section we briefly present the basic concepts of feature modeling. This is followed
by the descriptions of four tools that support the feature modeling process, along with
the merits and flaws that we have perceived in them. Finally, we provide a contextualiza-
tion of our own experiences in this field of research, along with the motivations for the
development of a new feature modeling tool.

According to [Czarnecki and Eisenecker 2000], “a feature is an important prop-
erty of a concept instance”, representing any commonality or difference between the
different products of an SPL. A model that groups the representation and relationships
between the features of an SPL is called a Feature Model, which can be comprised of
one or more Feature Diagrams. Feature Models are commonly used for the representa-
tion of variability in SPLs, both for their simplicity and expressiveness, and for the ease
with which they can be explained to stakeholders, specially those from outside the field
of Software Engineering.

A feature model is typically comprised of a root feature, representing the domain
of the SPL, and several child features representing variation points of this domain. These
variation points may in turn have child features of their own, either to further subdivide
them into smaller variation points or to represent variants available to the SPL.

2.1. Related Feature Modeling Tools

Although a number of tools exist that aid in the feature modeling process, the better
portion of them appears to be experimental or incomplete. Prior to our decision to develop
a tool of our own, as well as to guide us in its design, we have identified three major
tools that stand out as being in a more mature stage. We have also used a tool previously

II Latin American School on Software Engineering (ELA-ES 2015)

55

designed by our own research group during previous projects as a basis for the conception
of our work.

FeatureIDE is a framework based on Eclipse and developed to support Feature-
Oriented Software Development (FOSD) [Thüm et al. 2014]. Although FeatureIDE is
undeniably a powerful tool, used primarily for the purposes of teaching and research, its
target user is a professional who already has a certain knowledge of feature modeling
and SPL concepts. Conversely, our target users are students and professionals who are
entirely unacquainted with these concepts, and our target activities include the design and
visualization of SPL features.

FeaturePlugin is a feature modeling plug-in for the Eclipse IDE, and proposes
to integrate feature modeling with a complete and established development environment
[Antkiewicz and Czarnecki 2004]. It provides support to feature modeling through the
use of tree structures and logical statements, and integrates feature modeling and feature-
based configuration. Though it is a complete solution to feature modeling, it is restricted
to a single environment (Eclipse) and does not provide a graphical editor, while we seek
greater intuitiveness and compatibility.

The Software Product Line Online Tools (S.P.L.O.T.) are a collection of web-
based tools that include a feature model editor with advanced constraint definition and
validation techniques [Mendonça et al. 2009]. S.P.L.O.T. contains a vast repository of
models which are available to the public, making it a substantial information base for
feature modeling practices. The tool does not, however, offer any means of graphical
construction of feature models, being based instead on a tree structure. The use of this
kind of structure could be inadequate for presentation purposes where the audience is
unacquainted with certain basics of Computer Theory, such as tree structures.

PlugSPL, the in-house tool on which AtlasSPL is largely based has been described
extensively elsewhere [de M. Rodrigues et al. 2014]. Regardless, it is important to assert
those characteristics of it that are specific to the SPL Design activity, both in regards to
what is being adopted from it as to what components had to be developed or adapted
for reuse. It is also important to highlight that PlugSPL is a stand-alone tool that supports
several phases of the SPL development cycle, and was therefore built around very different
requirements from AtlasSPL.

Our previous approach to the development of the SPL Design module, and indeed
for the entire tool, had been to develop an extensible plugin-based tool written in C#
and run directly from the user’s machine. Our experience with this previous project has
shown us that for the purposes of accessibility and ease of collaboration, it would be
advantageous to turn instead to a web-based User Interface (UI). Though the original
architecture had been made in a modular manner, such a drastic change to the mode of
input/output creates certain issues that have to be addressed.

Another important difference between PlugSPL and AtlasSPL is the decision to
have native support of a number of feature model notations, allowing each user to decide
at the time of a model’s creation which one to base it on. We believe that this allows
for greater accessibility, as well as enabling the user to learn about the more common
notations found in the literature.

Finally, we have chosen to reuse some of the assets created for PlugSPL, viz. the

II Latin American School on Software Engineering (ELA-ES 2015)

56

persistence structures and the validation code executed in their construction. Adapting
these structures for use in a broader scope (more than one notation) and to operate with
web-based technologies was yet another challenge in the design and development of our
new tool.

2.2. Context

Over the course of our group’s research into Software Testing1, we have developed a
family of Software Testing Tools by use of SPL practices [de M. Rodrigues et al. 2010]
[Silveira et al. 2011] [Costa et al. 2012]. Given the volatile nature of our research envi-
ronment, we have had to repeat certain processes several times, particularly in what relates
to product configuration, product generation [de M. Rodrigues et al. 2014].

In order to eliminate these repeated efforts, we have proposed and developed
an in-house tool (PlugSPL) that supports several phases of the SPL development cycle
[de M. Rodrigues et al. 2014]. Among the requirements of that tool we identified the sup-
port for graphical-based notation for designing feature models. Though the resulting tool
was satisfactory in resolving the requirements we had at the time, it was made primarily
for use by a core group of the research team that already had experience with feature
modeling. Over the course of the following years, we have found that PlugSPL could be
difficult to use by new collaborators, particularly in what refers to the SPL Design activity.

Given that feature modeling is a crucial activity during SPL design, we sought
out means by which to train our collaborators in their use. Furthermore, it is widely
accepted that feature models are of easier presentation to stakeholders who are not versed
in variability analysis than other similar representations [de M. Rodrigues et al. 2014].
For this reason, we also sought tools that would allow collaboration during the design of
feature models.

Despite their merits, the results that we turned up in regards to actual tools were
scarce. Some major qualities that were lacking in these tools were simplicity, ease of
use and accessibility, which rendered them inadequate to our needs in feature modeling
practices. We also found the existing tools lacking in terms of presentation due to their
complexity. In order to facilitate the understanding of variability management, as well as
to provide a shared and collaborative environment for feature modeling, we decided to
create an in-house web-based tool for graphical feature modeling.

3. AtlasSPL - Feature Model Editor Web-Tool
AtlasSPL is a web-based feature modeling tool that was designed and developed with
the qualities of ease-of-use and versatility at the forefront of our team’s goals. It is the
culmination of six years of study and experience with SPL design, working with a volatile
team whose members were constantly being shifted in and out of projects, with new
members coming into the team often without any knowledge of SPL or feature modeling
concepts. With AtlasSPL, we hope to greatly facilitate the training of new professionals
in feature modeling and design, as well as basic notions of Software Product Lines.

This section presents: the design decisions taken for the development of AtlasSPL,
as well as the requirements that drove them; a complete description of the functionalities

1www.cepes.pucrs.br

II Latin American School on Software Engineering (ELA-ES 2015)

57

of the tool as well as the ways to access it; a brief description of the feature model no-
tations supported by the tool, and; an explanation of the validation process applied by
AtlasSPLL.

3.1. Requirements and Design Decisions

In order to present the current state of our studies in feature modeling practices, as well
as the needs we perceived for the training of our collaborators, we have defined some
requirements that must be addressed by a feature modeling tool. These requirements
refer primarily to the usability and functionality of the tool, and do not largely concern
themselves with architectural or performance constraints.

In our context, the first and most important requirement is ease of access and porta-
bility. If the tool is dependent on a particular machine configuration, operating system,
language, development environment or framework, or if it requires prior installation and
preparation, it could be limited in its applicability. This requirement has been the driving
reason to our decision of making a web-based tool, resolving all of these dependencies so
long as the client machine has a connection to the Internet.

Another requirement is the availability of multiple feature modeling notations,
which is particularly important for processes of training and collaborative work. We judge
that training in more than one feature model notation is essential to the comprehension
of the basic feature model semantics, enabling the trained professional to design more
complete and expressive models. Furthermore, the collaborative nature of SPLs demands
that professionals be able to apply different views of the same concept in order for a better
exchange of ideas to be reached.

The tool must also possess an intuitive user interface based on the graphical repre-
sentation of feature modeling objects. Given that feature models are ultimately a graphical
artifact, we find it important for the user to be given a “canvas” with which to represent
them, rather than depending on textual input and tree structures for their design.

It is valuable, particularly in a tool directed at training and education, that there
be feature model validation functionalities. Given that our aim is to provide the very
first steps of training in feature modeling practices, we have opted to provide support to
structural validation. To achieve this we have largely reused one of our research team’s
previous assets.

Finally, we believe it advantageous to have an easily accessible repository of ref-
erence models. We have opted to give the user access to previously-validated models, as
well as the option to add new models to the public repository. The repository also has
the option of allowing users to create private access groups, permitting the collaboration
between closed teams without the support of file-sharing solutions.

3.2. Tool Functionalities

AtlasSPL provides the user with the most basic operations required for feature model-
ing, these being: adding, moving and removing features and relationships; setting feature
properties; renaming features; creating, saving and loading feature models, and; validat-
ing feature models. These functions were built into the tool in the way the authors judged
to be the most intuitive for the user. Figure 1 shows the user interface for AtlasSPL and

II Latin American School on Software Engineering (ELA-ES 2015)

58

presents an example feature model in construction, drawn from the Arcade Game Maker
Pedagogical Product Line (AGM) and using the FODA notation.

Figure 1. AtlasSPL Webtool - AGM Feature Model using FODA

Upon clicking the “New” button, a dialogue menu is opened (see Figure 2) where
the user may name the new feature model and select the feature model notation to be used
(refer to Subsection 3.3 for the available notations).

Figure 2. New feature model dialogue menu

There are three ways for the user to add a new feature to the model, allowing
for greater efficiency. The user may click the “+” button and then click anywhere inside
the canvas. The user may also right-click anywhere inside the canvas and select “New
Feature” from the context menu. Finally, the user may double-click anywhere inside the

II Latin American School on Software Engineering (ELA-ES 2015)

59

canvas. Any of these actions will result in a feature object being created at the current
cursor position and a dialogue menu being opened to name it.

To remove a feature, the user must right-click on that feature and select “Remove
Feature” from the context menu. In future versions of AtlasSPL, it will also be possible
to select a feature by clicking it and then deleting the selected feature. To move a feature,
the user may click it and drag it over the canvas. To rename it, the user must right-click
the feature and select “Feature Name” from the context menu.

Figure 3. AtlasSPL Webtool - AGM Feature Model using FeatuRSEB

To add a relationship, the user must click anywhere upon the lower edge of the
desired parent feature (the area will be highlighted when moused over) and drag the cursor
towards the child feature. By clicking on an existing relationship and dragging the cursor
over to another feature, the relationship’s child feature may be changed. By clicking
on an existing relationship and dragging the cursor to an empty area of the canvas, the
relationship is removed.

The appearance of a relationship is dependent on the properties of its child feature
and the selected feature model notation. For example, Figure 1 shows the alternative
relationship between the subfeature rules and its variants brickles, pong and bowling as a
semi-circle, in accordance to the FODA notation. Meanwhile, Figure 3 represents this as
an XOR relationship by using the unfilled diamond shape and straight lines, in accordance
with FeatuRSEB.

To set a feature’s properties one must right-click it and select the desired relation-
ship type from the context menu. The available relationship types vary according to the
feature model notation in use.

Finally, to conduct the structural validation of a feature model, the user must click
the “Validate” button, which will attempt to reconstruct the diagram currently on the
canvas. After the validation process is completed, a dialogue box will open to present the
results, either stating “Valid Diagram” or “Invalid Diagram”. Figure 4 shows an example

II Latin American School on Software Engineering (ELA-ES 2015)

60

of the tool declaring a feature model as invalid.

Figure 4. Validation dialogue box

For a more thorough validation, presenting data such as the number of valid con-
figurations that may be derived from the feature model and the number of dead features
within that model, AtlasSPL allows the user to export a feature model in the S.P.L.O.T.
native XML format.

3.3. Adopted Feature Model Notations
We have selected five feature model notations for which to provide native support. This
selection was based on our own experience, as well as brief literature searches by the
authors into surveys of and comparisons between feature model notations. The selected
notations are:

• FODA [Kang et al. 1990];
• Czarnecki-Eisenecker Base Notation [Czarnecki and Eisenecker 2000];
• Czarnecki-Eisenecker Extended Notation [Czarnecki et al. 2005];
• FeatuRSEB [Griss et al. 1998];
• Gurp-Bosch-Svahnberg Notation [van Gurp et al. 2001].

The Feature-Oriented Domain Analysis notation (FODA), which is the original
feature modeling notation, can be used as a basis for the study of feature model semantics.
It presents all of the main components of a feature model, these being features themselves,
relationships, the notions of mandatory (must be present in all product configurations) and
optional (may or may not be present in a product configuration) features, and the notion
of alternative (mutually exclusive) features.

The Czarnecki-Eisenecker Base notation (also known as the Generative Program-
ming notation, hereby referred to as GP) has been broadly used as the primary reference
notation for feature models. Building on FODA, GP permits all of the original com-
ponents of its predecessor using different graphical representations, and proposes new

II Latin American School on Software Engineering (ELA-ES 2015)

61

components to allow for greater expressiveness. The alternative features are now called
an XOR feature group, to differentiate them from the new OR feature group (one or more
may be present in a product configuration).

The Czarnecki-Eisenecker Extended notation (also known as the Cardinality-
based notation, hereby referred to as CB) is an extension of the GP notation, presenting
a new and more precise form by which to graphically represent relationships between
features. By allowing the user to define a specific cardinality for each relationship, it is
possible to precisely determine the occurrence of features in product configurations.

FeatuRSEB proposes to integrate FODA with Reuse-Driven Software Engineering
Business (RSEB), an UML-based process, and presents feature models primarily from
the point of view of the developer, or “reuser”. FeatuRSEB deals with binding time
directly by specifying whether an alternative relationship is resolved statically (XOR) or
dynamically (OR).

The Gurp-Bosch-Svahnberg notation (GBS) proposes a framework to organize
the approaches that existed at the time into. This notation is also primarily characterized
by the definition of binding time within relationships, as well as presenting the idea of
external features, features that are provided by a certain configuration’s target platform
and are therefore important to that configuration, but which are not part of the system
itself.

3.4. Feature Model Validation

AtlasSPL provides structural validation of feature models by use of a number of proce-
dures that check the consistency of a model by reconstructing it in the form of a restrictive
data structure. This data structure was designed to only allow the instantiation of feature
models if they are built in accordance to the guidelines of a given notation. Any structural
inconsistencies in a feature model will result in a failure to instantiate this data structure,
which AtlasSPL responds to by declaring the feature model as invalid.

While the algorithms by which this structural validation is executed are beyond
the scope of this work, we present now the particular inconsistencies that are validated by
AtlasSPL.

• There must be only one root feature within a feature diagram. Should there be
more than one root feature in a single diagram, the feature model is declared in-
valid.
• All features must be connected by relationships. Should there be any features that

have not been connected to the rest of the diagram, the feature model is declared
invalid.
• All features must be reachable from the root feature through a single set of rela-

tionships. If AtlasSPL identifies more than one path from the root feature to any
other given feature, the feature model is declared invalid.
• All features must be given a name (label) and all names must be different from one

another. Should any two features share the same name, or should any one feature
have the empty string for a name, the feature model is declared invalid.

II Latin American School on Software Engineering (ELA-ES 2015)

62

4. Future Work
This section presents the lessons learned during the development of this research, as well
as prospects for future research based on them.

• Given the successful application of feature modeling concepts within a web envi-
ronment that was achieved by this project, the authors believe it would be advan-
tageous to expand upon this initiative and build modules to support other parts of
the SPL development cycle. While feature modeling has proven to be one of the
most difficult topics in training new collaborators, it is also important to acquaint
them with other SPL concepts.
• The extension of AtlasSPL to deal with the design and validation of logical con-

straints may prove useful for more advanced training. Furthermore, it would en-
able the tool to fully support the SPL Design activity within a production setting.
• The creation of a common data structure for multiple feature model notations may

enable AtlasSPL to serve as a centralizing tool for feature modeling. It is likely
that we may approach this matter through the analysis of semantic commonalities
between notations, as well as the creation of parsers for existing feature modeling
tools.
• We are aware that the tool must be improved to meet the requirements of different

environments, especially in regards to providing better support for Feature Model
analysis and validation. Moreover, the tool must provide detailed feedback to the
user regarding any modeling mistakes so as to be usable by inexperienced users
without the presence of an experienced tutor.
• Studies to empirically evaluate the success of AtlasSPL in achieving its proposed

goals would solidify it as an educational tool. The authors are particularly inter-
ested in studying the intuitiveness of its UI, as well as the degree by which it aids
in the teaching of basic feature modeling concepts.

5. Conclusion
AtlasSPL is a feature modeling web-tool proposed for the purpose of easing the training
of professionals entirely unacquainted with feature model and SPL concepts. It aims
to achieve this goal by providing a simple and accessible interface, based on graphical
components to aid in the construction of feature models as well as their visualization.
Furthermore, AtlasSPL was designed to be sufficiently complete so as to serve as an
initial tool for the inception and presentation of new SPLs.

The tool offers native support to five different feature modeling notations, these
being the Feature-Oriented Domain Analysis notation, the Czarnecki-Eisenecker base and
extended notations, the FeatuRSEB notation and the Gurp-Bosch-Svahnberg notation. By
allowing the user to choose between these notations, AtlasSPL enables different degrees
of precision and simplicity, as well as different semantics to facilitate collaboration be-
tween users familiar with different notations.

Acknowledgements
Study partially developed by the Research Group of the PDTI 001/2012, financed by Dell
Computers of Brazil Ltd. with resources from Law 8.248/91. We thank Dell for the
support in the development of this work.

II Latin American School on Software Engineering (ELA-ES 2015)

63

References
Antkiewicz, M. and Czarnecki, K. (2004). FeaturePlugin: Feature Modeling Plug-in

for Eclipse. In Proceedings of the 2004 OOPSLA Workshop on Eclipse Technology
eXchange, pages 67–72, New York, NY, USA. ACM.

Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czarnecki, K., and Wasowski,
A. (2013). A survey of variability modeling in industrial practice. In Proceedings
of the Seventh International Workshop on Variability Modelling of Software-intensive
Systems, New York, NY, USA. ACM.

Clements, P. C. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
SEI Series in Software Engineering. Addison-Wesley.

Costa, L. T., Czekster, R., Oliveira, F. M., Rodrigues, E. M., Silveira, M. B., and Zorzo,
A. F. (2012). Generating Performance Test Scripts and Scenarios Based on Abstract
Intermediate Models. In 24th International Conference on Software Engineering and
Knowledge Engineering, pages 112–117.

Czarnecki, K. and Eisenecker, U. (2000). Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Boston, MA.

Czarnecki, K., Helsen, S., and Eisenecker, U. (2005). Staged configuration through spe-
cialization and multi-level configuration of feature models. In Software Process Im-
provement and Practice.

de M. Rodrigues, E., Passos, L., Teixeira, F., Zorzo, A. F., and Saad, R. (2014). On
the Requirements and Design Decisions of an In-House Component-based SPL Auto-
mated Environment. In 26th International Conference on Software Engineering and
Knowledge Engineering, pages 483–488.

de M. Rodrigues, E., Viccari, L. D., Zorzo, A. F., and Gimenes, I. M. (2010). PLeTs-
Test Automation using Software Product Lines and Model Based Testing. In 22nd
International Conference on Software Engineering and Knowledge Engineering, pages
483–488.

Griss, M., Favaro, J., and d’Alessandro, M. (1998). Integrating feature modeling with
the RSEB. In Proceedings. Fifth International Conference on Software Reuse, pages
76–85.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (1990). Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

Mendonça, M., Branco, M., and Cowan, D. D. (2009). S.P.L.O.T.: software product lines
online tools. In Arora, S. and Leavens, G. T., editors, OOPSLA Companion, pages
761–762. ACM.

Pohl, K., Böckle, G., and van der Linden, F. J. (2005). Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer, 1 edition.

Silveira, M. B., Rodrigues, E. M., Zorzo, A. F., Vieira, H., and Oliveira, F. (2011). Model-
Based Automatic Generation of Performance Test Scripts. In 23rd International Con-
ference on Software Engineering and Knowledge Engineering, pages 1–6, Miami, FL,
USA. Knowledge Systems Institute Graduate School.

II Latin American School on Software Engineering (ELA-ES 2015)

64

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014). Fea-
tureIDE: An Extensible Framework for Feature-oriented Software Development. Sci-
ence of Computer Programming, 79:70–85.

van Gurp, J., Bosch, J., and Svahnberg, M. (2001). On the notion of variability in software
product lines. In Proceedings Working IEEE/IFIP Conference on Software Architec-
ture, pages 45–54.

II Latin American School on Software Engineering (ELA-ES 2015)

65

Engenharia de Software Orientada a Agentes: Um Estudo
Comparativo entre Metodologias que Suportam o Processo de

Desenvolvimento de Sistemas Multiagente
Rafhael R. Cunha 1, Diana F. Adamatti1, Cléo Z. Billa1

1Centro de Ciências Computacionais – Universidade Federal do Rio Grande (FURG)
Av. Itália km 8 – Bairro Carreiros – Rio Grande - RS - Brasil

{rcrafhaelrc,dianaada,cleo.billa}@gmail.com

Resumo. Este artigo pertence ao domı́nio da Agent Oriented Software Engine-
ering (AOSE) e Sistemas MultiAgente (SMA). O trabalho apresenta brevemente
as metodologias Prometheus, Tropos e MaSE, elencando suas etapas e carac-
terı́sticas de desenvolvimento. O objetivo deste trabalho é analisar as meto-
dologias exploradas, através da comparação dos artefatos que delas resultam.
Ao final deste trabalho, conclui-se que cada uma das metodologias analisadas
possui enfoques distintos, atribuindo ao projetista a tarefa de escolher a que
melhor se adeque as suas necessidades.

1. Introdução
No decorrer dos anos, a área de engenharia de software (ES) tem procurado definir proces-
sos de desenvolvimento de software e linguagens de modelagem que visem estabelecer
etapas bem definidas para a construção de um software. Este fato tem como propósito
tornar a produção de um software mais robusta, rápida, organizada, confiável e de fácil
manutenção e reutilização [Guedes 2012].

Na área de inteligência artificial, o paradigma orientado a agentes tem sido pes-
quisado e utilizado para minimizar a complexidade e aumentar a eficiência de softwares
distribuı́dos [Jayatilleke et al. 2007] [Rodriguez et al. 2011]. Esta prática tem se mos-
trado eficiente para a construção de softwares com essas caracterı́sticas, viabilizando um
aumento no desenvolvimento de sistemas multiagente (SMA) [Guedes 2012].

Entretanto, devido à complexidade e distribuição desse tipo de sistema, novos de-
safios para a área de ES tradicional foram encontrados. Esses desafios ocorreram em
virtude de linguagens conceituadas para se fazer modelagem na área, como Unified Mo-
delling Language (UML), não suprirem as caracterı́sticas presentes neste grupo de siste-
mas conforme [Cunha et al. 2015]. Essa ausência levou ao surgimento de uma subdivisão
da área que mescla conceitos de engenharia de software e inteligência artificial, chamada
de Agent Oriented Software Engineering (AOSE) ou Engenharia de Software Orientada a
Agentes. Seus objetivos principais são propor métodos e linguagens/notações para proje-
tar e modelar softwares orientados a agentes [Guedes 2012].

Dentro desse contexto, diversas metodologias foram propostas buscando suprir a
demanda de softwares orientados a agentes [Bergenti et al. 2004]. Essas metodologias
foram criadas pelos mais variados motivos. Algumas, basearam-se em melhorias nos
diagramas presentes na UML, outras, criaram seus próprios meta-modelos e notações
para seu uso.

II Latin American School on Software Engineering (ELA-ES 2015)

66

Este trabalho tem como motivação apresentar uma revisão de algumas metodo-
logias para construção de sistemas multiagente, mostrando as etapas presentes nessas
metodologias e os artefatos utilizados para apoiar essas etapas. Por fim, como objetivo
principal na realização deste trabalho, pretende-se fazer uma análise comparativa, especi-
ficando a similaridade/disparidade dos artefatos gerados pelas metodologias estudadas.

2. Metodologias AOSE
Segundo [Brandão 2014], as metodologias existentes até o presente momento para mo-
delar SMA sobre a perspectiva da engenharia de software são as apresentadas na Figura
1. Nesta figura, os retângulos azuis indicam metodologias e processos OO; magentos
com traços cheios indicam metodologias AO que estendem OO; magentas pontilhadas
indicam metodologias AO que estendem outras AO; magentas tracejadas usam princı́pios
OO, mas não estendem metodologias existente; violetas indicam que estende OO mas
usam também técnicas de IA/ eng. de conhecimento; e Tropos que tem como base a
analise de requisitos usando a*.

Figura 1. Metodologias AOSE [Brandão 2014]

A escolha das metodologias a serem estudadas neste trabalho, baseou-se na ten-
tativa de explorar ao menos uma metodologia derivada de cada uma das metodologias
clássicas, como RUP, OMT, Fusion e Open. Entretanto, Open foi excluı́da devido a
inexistência de documentações que pudessem levar ao seu entendimento. Além disso,
procurou-se selecionar uma metodologia que não apresentava nenhuma derivação, foi o
caso de Prometheus; também buscou-se uma metodologia que não herdasse caracterı́sticas
do paradigma OO, como Tropos. Ingenias foi excluı́da deste trabalho em razão de sua ex-
tensividade, porém, uma extensão deste trabalho é encontrado em [Cunha et al. 2014].

2.1. Prometheus
Segundo [Padgham and Winikoff 2005] e [Khallouf and Winikoff 2009] Prometheus é
uma metodologia que consiste em três fases: a fase de especificação do sistema; a fase
de projeto arquitetural; e a fase de projeto detalhado. A primeira fase é composta por
duas etapas: Determinar o ambiente do sistema (percepções e ações) e determinar os ob-
jetivos e funcionalidades do sistema (objetivos e cenários de casos de uso). Na fase de

II Latin American School on Software Engineering (ELA-ES 2015)

67

projeto arquitetural são definidos quais agentes devem existir no sistema a ser modelado
[Padgham and Winikoff 2002]. O objetivo final dessa etapa da metodologia é especificar
completamente a interação entre os agentes. A última fase, projeto detalhado, foca no
desenvolvimento da estrutura interna de cada um dos agentes e como os mesmos irão
realizar suas tarefas dentro do sistema modelado.

2.2. Tropos
Segundo [Bresciani et al. 2004], a metodologia Tropos tem como propósito apoiar to-
das as atividades de análise e projeto do desenvolvimento de software orientado a agen-
tes. Tropos é composto por cinco fases distintas no seu processo de desenvolvimento,
sendo: Requisitos Iniciais; Requisitos Finais; Projeto Arquitetural; Projeto Detalhado e
Implementação. Na primeira fase de análise dos requisitos, o usuário da metodologia
identifica os agentes de domı́nio e modela-os como atores sociais, que dependem uns dos
outros para atingirem os objetivos, planos e compartilharem dos mesmos recursos. Na
segunda fase, o modelo conceitual é estendido de modo a incluir um novo ator, o qual
representa o sistema, além de uma série de dependências com outros atores do ambiente.
Nas próximas fases, projeto arquitetural e as fases de projeto detalhado, se concentram
na especificação do sistema, em maneiras de garantir as exigências resultantes das fases
anteriores. A etapa de implementação segue em passos, baseando-se na especificação do
projeto detalhado com base no mapeamento estabelecido entre as construções da plata-
forma de execução e as noções do projeto detalhado [Bresciani et al. 2004].

2.3. MaSE
A metodologia Multiagent Systems Engineering (MaSE) é composta de duas fases prin-
cipais. A primeira fase inclui três etapas: captura de objetivos, aplicação de casos de uso
e refinamento de papéis. A segunda fase é composta por quatro etapas: criação de classes
de agentes, construção das conversações, montagem das classes dos agentes e o projeto
do sistema. A finalidade da primeira etapa da fase de análise é capturar os objetivos do
sistema, extraindo-os da especificação inicial do sistema. Na etapa de aplicação de casos
de uso, o analista transforma os objetivos e sub-objetivos em casos de uso. A terceira
etapa tem como propósito garantir que foram identificados todos os papéis necessários no
sistema e desenvolver as tarefas que definem o comportamento dos papéis e os padrões
de comunicação. Na segunda fase, a primeira etapa identifica as classes de agentes a
partir dos papéis refinados. A próxima fase é a construção de conversações. O objetivo
desta etapa é definir os detalhes dessas conversas, baseados nos detalhes internos de ta-
refas simultâneas. Os elementos internos dos agentes são projetados durante a etapa de
montagem das classes dos agentes, que inclui duas sub-etapas: a definição da arquitetura
de agentes e a definição dos componentes da arquitetura. Projeto do sistema é o último
passo da metodologia MaSE. Nessa etapa é utilizado o diagrama de implantação para
demonstrar os números, tipos e locais das instâncias dos agentes no sistema.

3. Similaridades encontradas nos artefatos das metodologias exploradas
A comparação proposta neste trabalho consiste na verificação dos artefatos similares pre-
sentes nas metodologias exploradas. Para isso, nas subseções seguintes, foram explanados
os detalhes que explicam essas similaridades. Nas tabelas ilustradas nessas subseções, o
sı́mbolo -, significa a não existência de artefatos que sejam semelhantes. O sı́mbolo *,
corresponde ao encontro de artefato semelhante, porém com restrições.

II Latin American School on Software Engineering (ELA-ES 2015)

68

3.1. Similaridades dos artefatos da metodologia Prometheus

Tabela 1. Similaridade dos artefatos da metodologia Prometheus com as demais
metodologias

Prometheus Tropos MaSE
Diag. de Cenários - -

Diag. Visão Geral Objetivos Diag. de Objetivos Diag. de Hierarquia de
Objetivos

Diag. Papéis do Sistema - Diag. de Modelo de
Papéis

Diag. Familiaridade de Agentes Diag. de Ator Diag. de Classe de
Agentes

Formulário Descritor de Agentes - -
Diag. de Acoplamento de Dados - -
Diag. de Ligação de Papel com
Agente - Diag. de Modelo de

Papéis
Diag. de Visão geral do Sistema - -

Diag. de Interação Diag. de Interação Diag. de Classe de
Comunicação

Diag. de Protocolos de Interação Diag. de Interação
(AUML)

Diag. de Classe de
Comunicação

Diag. de Visão Geral de Agentes - -
Diag. Capacidades contendo
Planos - -

Formulário Descritor de Planos - -

A visualização das similaridades presentes na metodologia Prometheus com as
demais, é apresentada na tabela 1. Abaixo são listados os principais artefatos da meto-
dologia Prometheus, explicando suas funções e comparando com os artefatos de outras
metodologias.

• Diagrama de Cenários: Este diagrama tem a função de disponibilizar uma visão
generalizada acerca do sistema [Padgham and Winikoff 2002]. Contudo, as de-
mais metodologias não pensaram em um diagrama para demonstrar a seu usuário
esse tipo de visão. Todas propõem diagramas que entram em detalhes mais es-
pecı́ficos do SMA. Por esse motivo, não existe nenhum outro diagrama das meto-
dologias estudadas que poderia se equiparar a esse.
• Digrama de Visão Geral de Objetivos: Segundo [Padgham and Winikoff 2002],

os objetivos de um sistema são representados por meio de um diagrama de visão
geral de objetivos.

– Diagrama de Objetivos (Tropos): Conforme
[Padgham and Thangarajah 2004], os objetivos representam os in-
teresses estratégicos dos autores. Para modelar esses objetivos, na
metodologia Tropos usa-se o diagrama de objetivos. Embora os conceitos
possam parecer semelhantes, ocorre uma diferenciação entre a semântica
da palavra objetivo nas duas metodologias. Para Prometheus, objetivos do
sistema vão além dos interesses dos agentes, o que não ocorre em Tropos.

II Latin American School on Software Engineering (ELA-ES 2015)

69

– Diagrama de Hierarquia de Objetivos (MaSE): Em MaSE, existe uma fase
especı́fica na sua metodologia para a captura de objetivos. O conceito
de objetivos dessa metodologia é idêntico ao apresentado na metodologia
Prometheus, por esse motivo os dois diagramas apresentam similaridade
em sua notação gráfica.

• Diagrama de Papéis do Sistema: Este diagrama serve para ligar as percepções,
objetivos e ações aos papéis identificados.

– Tropos: A metodologia Tropos não possui nenhum diagrama que ex-
presse os conceitos envolvidos no diagrama de papéis da metodologia Pro-
metheus, pois trabalha com alguns conceitos diferentes. Por exemplo, em
Tropos os papéis do sistema estão implı́citos na modelagem de atores, o
mesmo não ocorre em Prometheus. Por esse razão, não existe um diagrama
para expressar fielmente tal representação.

– Diagrama de Modelo de Papéis (MaSE): Na metodologia MaSE, o dia-
grama de modelo de papéis, tem finalidade semelhante, com exceção da
falta de expressividade em relação as percepções. Entretanto, MaSE acres-
centa em seu diagrama os protocolos de interação entre os papéis, o que
não é visto no diagrama de papéis da metodologia Prometheus. Para este
fim, Prometheus possui o diagrama de protocolos de interação.

• Diagrama de Familiaridade de Agentes: O objetivo do diagrama de familiaridade
de agentes presente na metodologia Prometheus é ligar um agente com os agentes
que ele possui algum tipo de interação [Padgham and Winikoff 2002].

– Diagrama de Ator (Tropos): Na metodologia Tropos, o diagrama de atores
faz esse papel com excelência, e ainda acrescenta outros conceitos como:
objetivos, subobjetivos, entre outros.

– Diagrama de Classes de Agentes (MaSE): A metodologia MaSE dispõe do
diagrama de classes de agentes para representar essa interação entre dife-
rentes tipos de agentes no sistema. Ela modela as interações em um nı́vel
hierárquico mais alto, ou seja, entre os papéis. A metodologia Prometheus
modela sobre os agentes, não importando-se com os papéis. Na verdade
a metodologia Prometheus utiliza desse diagrama justamente para identi-
ficar quais agentes do sistema podem ser agrupados e assim identificar os
papéis.

• Formulário Descritor de Agentes: Nenhuma outra metodologia propõe algum
método para descrever informações de alto nı́vel acerca dos agentes utilizando
linguagem natural.
• Diagrama de Acoplamento de Dados: Nenhuma outra metodologia propõe algum

método para representar a necessidade de dados que devem ser guardados no sis-
tema.
• Diagrama de Ligação de Papel com Agente: Este diagrama tem a finali-

dade de fazer a ligação dos agentes com os papéis que eles desempenharão
[Padgham and Winikoff 2002].

– Tropos: Esta metodologia não lida com o conceito de papéis, pois os
papéis estão implı́citos na modelagem dos atores.

– Diagrama de Modelo de Papéis (MaSE): MaSE possui um diagrama cha-
mado de modelo de papéis que tem como propósito garantir que foram

II Latin American School on Software Engineering (ELA-ES 2015)

70

identificados todos os papéis necessários no sistema e desenvolver as tare-
fas que definem o comportamento dos papéis e os padrões de comunicação
[Henderson-Sellers and Giorgini 2005]. Observa-se que esse diagrama
além de suprir a informação presente no diagrama de ligação de papel
com agente da metodologia Prometheus, acrescenta também informações
dos protocolos de comunicação desses papéis e as funcionalidades que de-
vem ser executadas por esses papéis.

• Diagrama de Visão Geral do Sistema: Conforme [Padgham and Winikoff 2002],
o diagrama de visão geral do sistema é o artefato crucial na fase de processo
arquitetural do Prometheus. Este diagrama enlaça agentes, percepções, dados,
ações, mensagens. Pode-se dizer que ele é uma mesclagem de todos os diagramas
desenvolvidos anteriormente. Em virtude disso, nenhuma outra metodologia é
capaz de agrupar essa quantidade de informações em um único artefato. Contudo,
não significa que as metodologias não tem esse poder de expressividade, e sim que
elas necessitam de mais diagramas para pode chegar a esse nı́vel de detalhamento.
• Diagrama de Interação: Conforme [Padgham and Winikoff 2002], o diagrama de

interação serve para especificar completamente a interação com os agentes.

– Diagrama de Interação (Tropos): Esta metodologia dispõe um diagrama
de interação semelhante ao encontrado na metodologia Prometheus. Am-
bos tem o mesmo propósito. Portanto, é possı́vel utilizar o presente na
metodologia Tropos sem perda de sentido.

– Diagrama de Classe de Comunicação (MaSE): A metodologia MaSE
contém um diagrama chamado de diagrama de classes de comunicação
que também especifica as interações entre os agentes. Entretanto, esse dia-
grama é um pouco mais refinado, pois nele é possı́vel definir um protocolo
de coordenação entre dois agentes [Henderson-Sellers and Giorgini 2005].

• Diagrama de Protocolo de Interação: Segundo [Padgham and Winikoff 2002],
o objetivo do diagrama de protocolo de interação é definir precisamente quais
sequências de interações são válidas dentro do sistema.

– Diagrama de Interação (Tropos): A metodologia Tropos utiliza do di-
agrama de interação da Agent Unified Modeling Language (AUML) 1.
Através desse diagrama é possı́vel satisfazer essas condições e expressar
de forma exata as mesmas informações presentes no diagrama de proto-
colo de interação da metodologia Prometheus.

– Diagrama de Classe de Comunicação (MaSE): MaSE possui um diagrama
chamado de diagrama de classe de comunicação que tem como finali-
dade definir os detalhes internos das conversas entre os agentes. Portanto,
através desse diagrama, é possı́vel transcrever o diagrama de Protocolo de
Interação, sem perda de informações.

• Diagrama de Visão Geral de Agente: O diagrama de Visão Geral de Agente pre-
sente na metodologia Prometheus, demonstra capacidades, ações, mensagens, da-
dos e percepções acerca dos agentes. Por ser um diagrama que contém um número
considerável de informações, não existe nenhum outro artefato único nas demais
metodologias que consigam expressar tantas informações juntas. Por esse razão,

1AUML é uma adaptação da UML que buscou suprir as caracterı́sticas do âmbito de agentes .

II Latin American School on Software Engineering (ELA-ES 2015)

71

esse diagrama só é possı́vel ser transpassado através da junção de dois ou três
diagramas das outras metodologias.
• Diagrama de Capacidade contendo Planos: Este diagrama tem o poder de expres-

sar as percepções, dados, ações, mensagens e planos que compõem os agentes. As
outras metodologias não tem o poder de representar em um único diagrama todas
as informações que o diagrama de capacidade contendo planos possui.
• Formulário Descritor de Planos: Conforme acontece com o outro formulário de

descritor de agentes, nenhuma outra metodologia tem em seu processo um artefato
que possibilite que seu usuário descreva em linguagem natural um formulário com
a descrição dos planos do SMA.

3.2. Similaridades dos artefatos da metodologia Tropos
A visualização das similaridades presentes na metodologia Tropos com as demais é apre-
sentada na tabela 2. Abaixo são listados os principais artefatos da metodologia Tropos,
explicando suas funções e comparando com os artefatos de outras metodologias.

Tabela 2. Similaridade dos artefatos da metodologia Tropos com as demais me-
todologias

Tropos Prometheus MaSE

Diag. de Ator Diag. Geral de Objeti-
vos*

Diag. de Hierarquia de
Objetivos*

Diag. de Objetivos - -
Diag. de Objetivos para Modelar
Plano - -

Diag. de Capacidade Diag. de Visão Geral de
Agente -

Diag. de Interação Diag. de Interação Diag. de Classe de
Comunicação

• Diagrama de Ator: Este diagrama é utilizado para modelar os atores, seus objeti-
vos concretos e nebulosos.

– Diagrama Geral de Objetivos (Prometheus): A metodologia Prometheus
pensa em objetivos de maneira diferente a apresentada na metodologia
Tropos. Para Tropos, os objetivos e subobjetivos são ligados diretamente
aos agentes. Em Prometheus, esses objetivos fazem parte do sistema, onde
são definidos papéis, que posteriormente são assumidos por agentes, para
que futuramente esses objetivos sejam satisfeitos pelos agentes. Um dia-
grama parecido na metodologia Prometheus é o diagrama geral de objeti-
vos. Entretanto, neste diagrama é somente possı́vel modelar os objetivos e
subobjetivos. Não existe nenhuma relação com os agentes e não é possı́vel
expressar as dependências entre os objetos da mesma forma que é contem-
plado no diagrama de Ator da metodologia Tropos.

– Diagrama de Hierarquia de Objetivos (MaSE): Na metodologia MaSE
ocorre o mesmo problema exemplificado em Prometheus. Contudo, MaSE
também apresenta um diagrama para modelar objetivos, intitulado dia-
grama de hierarquia de objetivos. Porém, também não é possı́vel trans-
crever o diagrama de ator de Tropos para esse diagrama sem perda de
conteúdo.

II Latin American School on Software Engineering (ELA-ES 2015)

72

• Diagrama de Objetivos: Este diagrama tem por finalidade modelar objetivos, pla-
nos, e a ligação de composição/decomposição além da contribuição entre planos
e objetivos.

– Prometheus: A metodologia Prometheus trabalha com o conceito de ob-
jetivos associado ao SMA, ao invés dos agentes. Além disso, o diagrama
de objetivos da metodologia Tropos modela alguns outros conceitos. Por-
tanto, não existe nenhum diagrama da metodologia Prometheus que con-
siga suprir essa demanda de informações.

– MaSE: Esta metodologia é semelhante a do Prometheus em referência ao
conceito de Objetivos. Portanto, também não existe um diagrama para
expressar tais informações na metodologia MaSE.

• Diagrama de Objetivos para Modelar Planos: Funciona de forma semelhante ao
diagrama de objetivos, pois a notação gráfica desse diagrama é semelhante, mu-
dando apenas o conteúdo do que se deseja expressar.
• Diagrama de Capacidade: Este diagrama é utilizado para modelar as capacidades

dos agentes, percepções, dados, ações e mensagens [Bresciani et al. 2004].
– Diagrama de Visão Geral de Agentes (Prometheus): Esta metodologia

disponibiliza de um diagrama chamando de Diagrama de Visão Geral de
Agentes. Através desse diagrama, é possı́vel modelar o diagrama de capa-
cidades utilizado na metodologia Tropos sem perda de expressividade.

– MaSE: Esta metodologia não suporta o conceito de capacidade estipulada
na metodologia Tropos. Por essa razão, não possui diagramas para mode-
lar essa informação.

• Diagrama de Interação: Este diagrama serve para modelar as interações que ocor-
rem entre os agentes que compõem o sistema.

– Diagrama de Interação (Prometheus): A metodologia Prometheus possui
um diagrama de interação semelhante ao encontrado na metodologia Tro-
pos. Pode-se transcrever as informações de um para o outro sem perda de
informação.

– Diagrama de Classe de Comunicação (MaSE): Esta metodologia dispõe do
diagrama de classe de comunicação que consegue desempenhar o papel do
digrama de interação sem devaneios. Contudo, no diagrama da metodolo-
gia MaSE ainda é possı́vel especificar um protocolo de comunicação entre
agentes.

3.3. Similaridades dos artefatos da metodologia MaSE
A visualização das similaridades presentes na metodologia MaSE com as demais é apre-
sentada na tabela 3. Abaixo são listados os principais artefatos da metodologia MaSE,
explicando suas funções e comparando com os artefatos de outras metodologias.

• Diagrama de Hierarquia de Objetivos: Segundo
[Henderson-Sellers and Giorgini 2005], a captura de objetivos é a primeira
finalidade da etapa da análise de requisitos. Depois dessa captura, os objetivos
são organizados conforme sua importância.

– Diagrama de Visão Geral de Objetivos (Prometheus): A metodologia Pro-
metheus possui o diagrama de visão geral de objetivos, que possui o
mesmo grau de representatividade. Portanto, é possı́vel transcrever um
no outro sem perda de informações.

II Latin American School on Software Engineering (ELA-ES 2015)

73

Tabela 3. Similaridade dos artefatos da metodologia MaSE com as demais meto-
dologias

MaSE Prometheus Tropos
Diag. de Hierarquia de Objeti-
vos

Diag. de Visão Geral de
Objetivos Diag. de Objetivos

Diag. de Sequência Diag. de Familiaridade
de Agentes

Diag. de Interação
(AUML)

Diag. de Modelo de Papéis Diag. de Ligação de Pa-
pel com Agente* -

Diag. de Tarefas Concorrentes Diag. de Protocolo de
Interação -

Diag. de Classes de Agentes Diag. de Cenários* -
Diag. de Classe de
Comunicação

Diag. de Protocolo de
Interação -

Diag. de Arquitetura de Agentes - -
Diag. de Implantação - -

– Diagrama de Objetivos (Tropos): Existe uma diferença no significado da
palavra objetivo perante as duas metodologias. Em Tropos, os objetivos
são modelados de acordo com os atores. Por esse motivo, é possı́vel
transcrever o diagrama de Hierarquia de Objetivos de Mase para Tropos.
Porém, o processo inverso não é viável.

• Diagrama de Sequência: O objetivo do diagrama de sequência na metodologia
MaSE é representar sequências de eventos entre os papéis.

– Diagrama de Familiaridade de Agentes (Prometheus): Na metodologia
Prometheus, o diagrama de Familiaridade de Agentes desempenha papel
semelhante ao diagrama de sequência. Neste diagrama, é possı́vel mode-
lar a troca de eventos entre os agentes, ou seja, em um nı́vel hierárquico
mais baixo se comparado ao diagrama de sequências de MaSE, que mo-
dela a troca de eventos entre papéis. Se forem especificados todos os agen-
tes que compõem os papéis do sistema, é possı́vel transcrever o diagrama
de sequências de MaSE no diagrama de familiaridade de agentes de Pro-
metheus sem perda de expressividade.

– Diagrama de Interação (Tropos): A metodologia Tropos utiliza do dia-
grama de interação da AUML para especificar a troca de eventos entre
agentes/papéis de um SMA. Por esse motivo, é possı́vel utilizá-lo para re-
presentar os mesmos conceitos envolvidos no diagrama de sequência da
metodologia MaSE.

• Diagrama de Modelo de Papéis: Este diagrama tem como propósito representar
papéis, tarefas e protocolos de interações [Henderson-Sellers and Giorgini 2005].

– Diagrama de Ligação de Papel de Agente (Prometheus): O diagrama de
ligação de papel de agente da metodologia Prometheus possui propósito
semelhante ao diagrama de modelo de papéis. Entretanto, neste diagrama
não é possı́vel representar as tarefas e nem os protocolos de interação. A
transcrição das informações do diagrama de modelo de papéis de MaSE

II Latin American School on Software Engineering (ELA-ES 2015)

74

para o diagrama de ligação de papéis de Prometheus acarretaria na perda
de informações.

– Tropos: Não trabalha com o conceito de papéis. Para a metodologia, os
papéis estão implı́citos nos agentes. Por esse motivo, não existem diagra-
mas para essa representação na metodologia Tropos.

• Diagrama de Tarefas Concorrentes: O propósito deste diagrama é definir protoco-
los de interação complexos e de alto nı́vel que necessitem de coordenação entre
agentes múltiplos [Henderson-Sellers and Giorgini 2005].

– Diagrama de Protocolo de Interação (Prometheus): A metodologia Pro-
metheus detêm do diagrama de protocolo de interação que tem carac-
terı́sticas semelhantes ao diagrama de tarefas concorrentes. Entretanto,
neste diagrama o foco é validar essas interações. Contudo, em linhas ge-
rais, ambos tem o mesmo objetivo, que é demonstrar e validar as interações
entre os agentes.

– Tropos: A metodologia Tropos, embora trabalhe com o conceito de
interações entre os agentes, não utiliza uma abstração maior, como proto-
colos. Por esse motivo, não existe um diagrama que seja possı́vel modelar
tal finalidade nesta metodologia.

• Diagrama de Classes de Agentes: O objetivo deste diagrama é retratar a
organização geral dos agentes no sistema [Henderson-Sellers and Giorgini 2005].
Além disso, as ligações entre essas classes representam as conversações que de-
vem existir entre elas.

– Diagrama de Cenários (Prometheus): Prometheus, possui um diagrama
que tem finalidade semelhante ao diagrama de classe de agentes, chamado
de diagrama de cenários. Entretanto, o diagrama de cenários tem como
propósito oferecer uma visão geral do sistema sob o ponto de vista de
cenários, e não agentes, como é o caso de diagrama de classes de Agentes.
Além disso, no diagrama de cenários da metodologia Prometheus não é
possı́vel estipular conversas entre os cenários. Portanto, embora que com
o mesmo propósito, ambos os diagramas apresentam visões diferentes do
sistema.

– Tropos: A metodologia Tropos não dispõe de nenhum diagrama que con-
siga demonstrar as conversações entre as classes de agentes e uma visão
generalizada das classes que representam os agentes.

• Diagrama de Classe de Comunicação: O objetivo do diagrama de classe
de comunicação é expressar o protocolo de conversa entre os agentes
[Henderson-Sellers and Giorgini 2005].

– Diagrama de Protocolo de Interação: Em Prometheus, existe o diagrama
de protocolo de interação que tem finalidade semelhante ao diagrama ed
classe de comunicação. Ele pode expressar as mesmas informações sem
perda de sentido.

– Tropos: Similar as demais explicações sobre protocolos em Tropos, sabe-
se que esta metodologia não suporta esse conceito. Por esse motivo, não
contém diagramas para tal finalidade.

II Latin American School on Software Engineering (ELA-ES 2015)

75

• Diagrama de Arquitetura de Agentes: Este diagrama tem como finali-
dade demonstrar a interação entre os componentes da arquitetura de agentes
[Henderson-Sellers and Giorgini 2005]. Além disso, através desse diagrama é
possı́vel demonstrar a visibilidade entre os componentes e a conexões externas
destes para recursos, como agentes, sensores, processadores de efeitos e banco de
dados.

– Prometheus: A metodologia Prometheus não trabalha com o conceito da
arquitetura de agentes. Para Prometheus, os agentes são baseados na ar-
quitetura Believe-Desire-Intention (BDI) [Rao and Georgeff 1991]. Ou-
tro ponto importante, consiste na falta de modelagem do Prometheus em
relação aos componentes externos que o SMA pode utilizar. Por esse mo-
tivo, não existem diagramas na metodologia Prometheus para representar
as informações contidas no diagrama de Arquitetura de Agentes.

– Tropos: A metodologia Tropos também não trabalha com o conceito de
arquitetura de agentes e nem com a possibilidade de representar os compo-
nentes que podem interagir com o ambiente. Portanto, não existe diagrama
para tal finalidade nesta metodologia.

• Diagrama de Implantação: O diagrama de implantação da metodologia MaSE
demonstra os números, tipos e locais das instâncias dos agentes no sistema
[Henderson-Sellers and Giorgini 2005]. Nenhuma metodologia das exploradas
disponibiliza uma forma de representação semelhante a encontrada no diagrama
de implantação da metodologia MaSE. Algumas, chegam no ponto de especificar
as interações dos agentes com o ambiente. Entretanto, não apresentam o maior
nı́vel de todos, que é demonstrar onde esses agentes estão instalados no sistema.

4. Conclusões e trabalhos futuros
Este trabalho teve como objetivo apresentar uma revisão de algumas metodologias para
modelagem de sistemas multiagente. Também foi realizado um estudo comparativo entre
as metodologias estudadas (Prometheus, Tropos e MaSE) de forma a apresentar similari-
dades e diferenças entre as metodologias.

Com base esse estudo, percebe-se que cada metodologia uma possui enfoque em
caracterı́sticas distintas. Enquanto Prometheus e Tropos focam sua modelagem no âmbito
de agentes, MaSE possui conceitos que propiciam também a modelagem de recursos e ar-
quiteturas alternativas de agentes. Percebe-se também que nenhuma metodologia explo-
rada é capaz de suprir os conceitos envolvidos no paradigma multiagente, apresentando
disparidade de objetivos, fato que enfraquece a normalização da área.

Desta forma, conclui-se que a área de AOSE deve progredir para atingir uma
padronização. Sugere-se que seja feito um mapeamento dos requisitos necessários
para desenvolver qualquer tipo de SMA. Posteriormente, deve-se desenvolver notações
gráficas que corresponderão a conceitos relacionados a todas as caracterı́sticas mapeadas
anteriormente. Através dessas ações, consegue-se definir uma linguagem de modelagem,
semelhante a UML, porém, que atenda a requisitos provenientes dos SMA.

5. Agradecimentos
Os autores agradecem à Universidade Federal do Rio Grande - FURG e a Fundação de
Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGS pelo suporte financeiro

II Latin American School on Software Engineering (ELA-ES 2015)

76

na realização do presente trabalho.

Referências
Bergenti, F., Gleizes, M.-P., and Zambonelli, F. (2004). Methodologies and software

engineering for agent systems: the agent-oriented software engineering handbook,
volume 11. Springer.

Brandão, A. A. F. (2014). Apresentação de oficina no wesaac 2014 - engenha-
ria de software orientada a agente. Enviado por e-mail pela autora (anarosabran-
dao@gmail.com), em 17 julho 2014.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J. (2004). Tropos:
An agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems, 8(3):203–236.

Cunha, R. R., Adamatti, F. D., and Billa, Z. C. (2014). Engenharia de software orientada a
agentes: Um estudo sobre metodologias que suportam o processo de desenvolvimento
de sistemas multiagente. Universidade Federal do Rio Grande - Trabalho Individual
apresentado ao programa de Pós Graduação em Engenharia de Computação (PPG-
COMP).

Cunha, R. R., Adamatti, F. D., and Billa, Z. C. (2015). Engenharia de software orientada a
agentes: Um estudo comparativo entre uml e metodologias que suportam o processo de
desenvolvimento de sistemas multiagente. Workshop-Escola de Sistemas de Agentes,
seus Ambientes e apliCações, to appear.

Guedes, G. T. A. (2012). Um metamodelo UML para a modelagem de requisitos em
projetos de sistemas multiagentes. PhD thesis, Universidade Federal do Rio Grande do
Sul.

Henderson-Sellers, B. and Giorgini, P. (2005). Agent-oriented methodologies. IGI Global.

Jayatilleke, G. B., Padgham, L., and Winikoff, M. (2007). Evaluating a model driven
development toolkit for domain experts to modify agent based systems. In Agent-
Oriented Software Engineering VII, pages 190–207. Springer.

Khallouf, J. and Winikoff, M. (2009). The goal-oriented design of agent systems: a
refinement of prometheus and its evaluation. International Journal of Agent-Oriented
Software Engineering, 3(1):88–112.

Padgham, L. and Thangarajah, J. (2004). Tutorial prometheus.
http://www.cs.rmit.edu.au/agents/pdt/docs/Tutorial.pdf.

Padgham, L. and Winikoff, M. (2002). Prometheus: A methodology for developing intel-
ligent agents. John Wiley & Sons.

Padgham, L. and Winikoff, M. (2005). Developing intelligent agent systems: A practical
guide, volume 13. John Wiley & Sons.

Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within a bdi-architecture.
KR, 91:473–484.

Rodriguez, L., Insfran, E., and Cernuzzi, L. (2011). Requirements Modeling for Multi-
Agent Systems. INTECH Open Access Publisher.

II Latin American School on Software Engineering (ELA-ES 2015)

77

Avaliação Experimental da Relação de Coesão e
Acoplamento com o Esforço de Compreensão de Software

Elienai B. Batista1, Claudio Sant’Anna1
1Departamento de Ciência da Computação – Universidade Federal da Bahia (UFBA) –

Salvador – BA - Brasil
elienaibittencourt@gmail.com, santanna@dcc.ufba.br

Abstract. Coupling and cohesion are well-known software design quality
attributes. They are believed to directly influence the comprehensibility of a
system. It is claimed that the greater the cohesion and the lower the coupling
of a module the easier it is to understand it. However very few studies have
been conducted to analyze the relation of values of cohesion and coupling,
quantified by means of metrics, with the effort for comprehending source code.
In this context, we propose two quasi-experiments that aim to empirically
evaluate in which extent the degrees of cohesion and coupling of software
modules are related to the effort for understanding their source code.

Resumo. Acoplamento e coesão são atributos de qualidade do design de
software bem conhecidos. Acredita-se que eles podem influenciar diretamente
a compreensibilidade de um sistema. Afirma-se que, quanto maior a coesão e
menor o acoplamento de um módulo, mais fácil é sua compreensão.
Entretanto, poucos estudos foram realizados para analisar qual é a relação
entre os valores de coesão e acoplamento, quantificados por meio de métricas,
com o esforço de compreensão do código fonte. Diante disso, propomos a
realização de dois quase-experimentos para de avaliar empiricamente em que
nível o grau de coesão e de acoplamento de módulos de software estão
relacionados ao esforço para compreender seus códigos fontes.

1. Introdução
 Acoplamento e coesão são dois conceitos bem conhecidos e usados como
atributos de qualidade do design de software [Pflegger & Atlee, 2010]. A coesão de um
módulo é o grau pelo qual aquele módulo está focado em implementar apenas uma
responsabilidade do sistema. Acoplamento é uma indicação da quantidade e força das
dependências entre os módulos que compõem um sistema [Pflegger & Atlee, 2010].
Afirma-se que um software bem projetado é aquele cujos módulos são bem coesos e
fracamente acoplados entre si.
 Uma série de métricas tem sido propostas para quantificar coesão e acoplamento
de sistemas orientados a objetos [Chidamber & Kemerer 1994], [Henderson- Sellers et
al., 1996], [Briand et al., 1998], [Briand et al., 1999], [Silva et al., 2011]. A maioria
dessas métricas quantifica coesão e acoplamento de cada uma das classes que compõem
o código fonte do sistema. Existem métricas de dois tipos: estruturais e conceituais. As
métricas estruturais consideram características sintáticas do código e avaliam as
relações de dependência estrutural: (i) entre os métodos de uma classe, para quantificar

II Latin American School on Software Engineering (ELA-ES 2015)

78

coesão, e (ii) entre as classes do sistema, para quantificar acoplamento [Briand et al.,
1998], [Briand et al., 1999]. Métricas conceituais consideram aspectos semânticos do
código fonte para calcular coesão e acoplamento. A maioria delas se baseia em técnicas
de mineração de textos para determinar elementos do código fonte semanticamente
relacionados entre si [Marcus & Poshyvanyk, 2005], [Silva et al., 2012].
 Acredita-se que, quanto maior for coesão e menor for o acoplamento dos
módulos do sistema, menor é o esforço para se compreender o sistema [Henderson-
Sellers et al., 1996], [Briand et al., 1999]. Módulos com baixa coesão são, teoricamente,
mais difíceis de compreender, pois possuem código relativo a diferentes
responsabilidades, o que pode atrapalhar o entendimento de cada uma delas. Módulos
com alto acoplamento também são, teoricamente, mais difíceis de compreender, pois
para entendê-los pode ser necessário entender os módulos dos quais ele depende.
 Compreensão de software consiste da realização de atividades para se obter
conhecimento geral sobre um software, sobre suas funcionalidades, sua organização e
seu propósito [Bois et al., 2006]. Estima-se que desenvolvedores dediquem em média
mais da metade do esforço de manutenção de software com atividades de compreensão.
Além disso, parte substancial do esforço de compreensão de software está relacionada à
compreensão do código fonte. Apesar da importância do processo de compreensão e da
grande quantidade de métricas de acoplamento e coesão existentes, poucos estudos
foram realizados para avaliar empiricamente qual é a relação entre coesão e
acoplamento, quantificados por meio de métricas, e o esforço para se compreender o
código fonte de sistemas de software.
 Os trabalhos relacionados a esse tema ou estudam como outras características do
código fonte estão relacionadas à compreensão dos sistemas, ou estudam a relação de
coesão e/ou acoplamento com outros atributos externos, como propensão a defeitos ou
propensão a mudanças. Por exemplo, Bois et al. (2006) estudam se refatorações para
eliminar um anomalia específica de design melhoram a compreensibilidade do código
fonte. Silva et al. (2012), por sua vez, estudam a relação entre medições de coesão e
acoplamento com a propensão que classes tem de sofrer mudanças. Não conhecemos
trabalhos que avaliem como medições de coesão ou acoplamento, de forma isolada,
estão relacionadas ao esforço para se compreender o código fonte de sistemas.

2. Proposta
Diante desse contexto, o trabalho aqui proposto tem o objetivo de avaliar empiricamente
em que nível o grau de coesão e de acoplamento de módulos de sistemas de software
estão relacionados ao esforço para compreender seu código fonte. Pretendemos também
avaliar se os diferentes tipos de métricas – estrutural e conceitual – tem relação
diferente com o esforço de compreensão. Para atingir esses objetivos, pretendemos
realizar dois quase-experimentos: (i) um no qual participantes executem tarefas de
compreensão do código fonte de classes com diferentes graus de coesão conceitual e
estrutural, quantificados por meio de métricas de código fonte e (ii) outro no qual os
participantes executem tarefas de compreensão do código fonte de classes com
diferentes graus de acoplamento, quantificados por meio de métricas de código fonte.
 O primeiro experimento visa responder as seguintes questões de pesquisa: (i) A
coesão de uma classe tem influência sobre o esforço para compreender seu código
fonte? (ii) Existe diferença entre a relação de coesão estrutural e coesão conceitual com

II Latin American School on Software Engineering (ELA-ES 2015)

79

o esforço de compreensão do código fonte? O segundo estudo visa responder a seguinte
questão de pesquisa: O acoplamento de uma classe tem influência sobre o esforço para
compreender seu código fonte?
 De forma resumida, os experimentos serão configurados da seguinte forma: No
laboratório, participantes realizarão atividades que demandarão a compreensão do
código fonte de um conjunto de classes. A realização dessas atividades permitirá que
seja medido o esforço desprendido por cada participante para compreender cada classe.
As classes devem apresentar diferentes valores de coesão e acoplamento para que
possamos compará-los com o esforço de compreensão.
 Medição do esforço de compreensão. Para quantificarmos o esforço necessário
para compreender o código fonte de cada classe, usaremos duas métricas: (i) o tempo
necessário para o participante responder um conjunto de perguntas sobre cada uma das
classes, e (ii) o número de perguntas com respostas erradas. As perguntas são do tipo
que exigem a simulação mental do código fonte, tais como “Dado que determinado
método recebe um conjunto específico de argumentos, qual será seu retorno?” Essa
estratégia está alinhada com o que se é recomendado na literatura para medir esforço de
compreensão de código fonte [Bois et al., 2006].
 Métricas: Pretendemos usar a métrica de coesão conceitual Lack of Concern-
Based Cohesion (LCbC) [Silva et al., 2008], pois ela já vem sendo usada em outros
estudos de comparação com métricas estruturais [Silva et al., 2012], [Silva et al., 2014].
Pretendemos usar a métrica de coesão estrutural Lack of Cohesion on Methods 5
(LCOM5) [Henderson-Sellers et al., 1996]. Essa métrica representa a versão mais atual
da tradicional métrica de coesão LCOM, de Chidamber e Kemerer (1994). Além disso,
há ferramentas disponíveis que automatizam sua aplicação. Para quantificar
acoplamento, planejamos usar a métrica Coupling Between Object Classes (CBO)
[Chidamber & Kemerer, 1994]. CBO é uma das métricas de acoplamento mais
referenciadas na literatura e tem sua aplicação automatizada por algumas ferramentas.
 Seleção de Classes: Esse é um ponto crítico e não trivial da preparação dos
estudos. Ao selecionar as classes temos que procurar minimizar ao máximo a influência
de fatores de confusão. Nosso plano é, portanto, selecionar classes: (i) de tamanhos
semelhantes em termo de número de linha de código, (ii) de domínios simples e
acessíveis a todos os participantes, (iii) com nomes de identificadores com qualidade
semelhantes e (iv) sem comentários. Além disso, no estudo sobre coesão, as classes
devem apresentar valores similares de acoplamento e vice-versa. Selecionaremos
classes de diferentes sistemas de informação open source escritos em Java.
 Participantes: Os participantes dos estudos serão alunos de graduação e de pós-
graduação em Ciências da Computação da Universidade Federal da Bahia (UFBA). Os
participantes assinarão um termo de consentimento e responderão a um questionário
para podermos caracterizar sua experiência em programação orientada a objetos.
 Ameaças à validade: Além dos fatores de confusão relacionados à similaridade
do código fonte das classes, pretendemos realizar estudo piloto para controlar outras
ameaças à validade, tais como, a possível fadiga dos participantes e a falta de clareza
das perguntas sobre as classes. O questionário sobre o perfil dos participantes nos dará
informações para controlar possíveis discrepâncias de nível de experiência.

II Latin American School on Software Engineering (ELA-ES 2015)

80

3. Andamento do Trabalho
Até o momento, já realizamos um estudo preliminar para avaliar a relação entre coesão
(estrutural e conceitual) e compreensão de código fonte. O estudo teve como
participantes 14 alunos de graduação e quatro alunos de pós-graduação. Cada
participante realizou atividades de compreensão em quatro classes. Essas atividades
consistiram do participante responder quatro questões sobre cada uma das classes.
 Esse estudo se caracterizou como preliminar por envolver poucos participantes e
poucas classes. Além disso, inadvertidamente, deixamos de controlar um fator de
confusão importante: o grau de acoplamento das classes. Como resultado, uma classe
com grau de acoplamento bem mais alto que as outras demandou muito mais esforço de
compreensão. Esse resultado nos motivou a estudar também a relação entre
acoplamento e compreensão. Um dos pontos positivos do estudo preliminar foi o fato da
estratégia usada para medir o esforço de compreensão ter funcionado bem.
 A partir da experiência com o estudo preliminar, pretendemos realizar os dois
experimentos propostos com um número maior de participantes e classes. Também
seremos mais rigorosos no controle dos fatores de confusão. Atualmente, estamos
trabalhando no planejamento do novo estudo sobre coesão: as classes estão selecionadas
e questionários construídos. Sua execução se dará ainda no primeiro semestre desse ano.

Referências
Bois, B. D., Demeyer, S., Verelst, J., Ments, T. and Temmerman, M (2006). “Does God

Class Decomposition Affect Comprehensibility?” IASTED Conf. on Software
Engineering. Innsbruck, pp. 346-355.

Briand, L. C., Daly, J. W. and Wust, J. K. (1998). A Unified Framework for Cohesion
Measurement in Object-Oriented Systems, Empirical Software Engineering - An
International Journal, 3(1), pp. 65-117.

Briand, L. C., Daly, J. W. and Wust, J. K. (1999). “A Unified Framework for Coupling
Measurement in Object-Oriented Systems”. IEEE Transactions on Software
Engineering. 25(1), pp. 91-12.

Chidamber, S.; Kemerer, C. (1994) “A Metric Suite for Object Oriented Design”. IEEE
Transactions on Software Engineering, 20(6), pp. 476-493.

Henderson-Sellers, B., Constantine, L. and Graham, M. (1996) “Coupling and Cohesion
(Towards a valid metrics suite for object-oriented analysis and design)”. Object
Oriented Systems, vol 3, pp. 143-158.

Marcus, A. & Poshyvanyk, D. (2005) “The Conceptual Cohesion of Classes”. Intl’
Conference on Software Maintenance (ICSM ‘05). Washington, DC, pp. 133-142.

Pfleeger, S.; Atlee, J. (2010) “Software Engineering: theory and practice”, 4th ed,
Prentice Hall.

Silva, B., Sant’Anna, C., Chavez, C. and Garcia, A. (2012) “Concern-Based Cohesion:
Unveiling a Hidden Dimension of Cohesion Measurement”. IEEE International
Conference on Program Comprehension (ICPC 2012), Passau, pp. 103-112.

Silva, B., Sant’Anna, C., Chavez, C. “An Empirical Study on How Developers Reason
about Module Cohesion.” Int’l Conference on Modularity (Modularity 2014),
Lugano, pp. 121-132.

II Latin American School on Software Engineering (ELA-ES 2015)

81

Estabelecimento de uma Arquitetura de Referência para
Ferramentas de Gerenciamento de Variabilidades

Ana Paula Allian1, Edson OliveiraJr1, Elisa Y. Nakagawa2

1Universidade Estadual de Maringá (UEM) – Maringá, PR – Brazil

2Universidade de São Paulo (USP) – São Carlos, SP – Brazil

ana.allian@gmail.com, edson@din.uem.br, elisa@icmc.usp.br

Abstract. Variability management (VM) is one of the core activities for the suc-
cess of software reuse. Several VM tools have been proposed toward supporting
such an activity. In another context, reference architectures (RA), a special type
of software architecture, can contribute to the reuse of knowledge about VM and
standardization of tools for this pourpose. This paper presents an ongoing re-
search on VMTools-RA, a RA for VM tools. We intend this RA can contribute to
the development of new VM tools, besides providing support to integration and
reuse of projects experiences.

Resumo. Gerenciamento de variabilidades (GV) é uma das atividades essenci-
ais para o sucesso do reúso de software. Várias ferramentas de GV têm sido
propostas para apoiar tal atividade. Em outro contexto, arquiteturas de re-
ferência (AR), um tipo especial de arquitetura de software, podem contribuir
para o reúso de conhecimento sobre GV e padronização de ferramentas para tal
proposito. Este artigo apresenta a pesquisa em andamento sobre a VMTools-
RA, uma AR para ferramentas de GV. Espera-se que essa AR possa contribuir
para o desenvolvimento de novas ferramentas de GV, além de fornecer suporte
à integração e reuso de experiências em projetos.

1. Introdução
Variabilidade é o termo utilizado para representar como produtos de software podem se
diferenciar entre si. A variabilidade pode ser identificada mediante o conceito de feature,
uma caracterı́stica de um sistema que é relevante e visı́vel para o usuário final. O conceito
de variabilidade se consolidou em diferentes abordagens, sobretudo em linha de produto
de software [Linden et al. 2007], tornando a atividade de Gerenciamento de Variabilida-
des (GV) essencial para o sucesso dessa estratégia de reúso de software sistemático.

Atualmente, existem diversas ferramentas de GV. Por causa da heterogeneidade de
ferramentas, a indústria tem utilizado diferentes tipos de soluções para gerenciar a varia-
bilidade, além de criar suas próprias ferramentas [Berger et al. 2013]. Além disso, essas
ferramentas não seguem um padrão pré-definido para seu desenvolvimento. Portanto,
entende-se como uma oportunidade de pesquisa responder a seguinte questão:É possı́vel
propor uma padronização em nı́vel arquitetural para ferramentas de GV? Para respon-
der a tal questão, pode-se explorar os conceitos relacionados às arquiteturas de referência.

Uma Arquitetura de Referência (AR) é considerada um padrão pré-definido pro-
jetado para um determinado contexto de negócio. Tal conceito faz uso de ativos (assets),

II Latin American School on Software Engineering (ELA-ES 2015)

82

muitas vezes, concebidos em projetos anteriores. Além disso, uma AR promove a
reutilização de experiências e facilita o desenvolvimento, padronização, qualidade e
evolução de sistemas de software [Angelov et al. 2009, Nakagawa et al. 2014].

2. Proposta de Solução
Esta pesquisa tem como objetivo propor uma AR para ferramentas de GV seguindo o
processo ProSA-RA, que é iterativo e sistematiza as etapas para construir, representar e
avaliar ARs [Nakagawa et al. 2014]. ProSA-RA é composto de quatro etapas:

Investigação das fontes de informação:obtidas de pessoas, software, livros, mo-
delos de referência, ontologias, etc. Para o desenvolvimento dessa etapa, um estudo se-
cundário na forma de uma Revisão Sistemática da Literatura(RSL) seguindo as diretrizes
propostas em [Kitchenham et al. 2009] foi realizado1. Foram identificadas 43 ferramentas
de GV. A maioria das ferramentas utilizam processos especı́ficos para modelar as features
sendo que 13% apoiam o método Feature Oriented Domain Analisys(FODA). 41% foram
desenvolvidas para modelagem de variabilidades e 23% dão suporte à configuração de
variabilidades. No que diz respeito à representação gráfica, 32% utilizam representações
hierárquicas em formato de árvore. Com relação à arquitetura, 46% foram desenvolvidas
como plugins e 11% são baseados em arquiteturas multicamadas. Além disso, 27,9%
tem um mecanismo de persistência em banco de dados e 55% dão suporte à arquivos
XML/XMI. A Figura 1 apresenta uma visão conceitual da relação entre ferramentas de
GV e AR e resume a perspectiva da pesquisa sobre a criação de AR. Observe que um
conjunto de ferramentas de GV pode ser utilizado para fornecer informações ao projeto
de uma AR. Tal AR serve como base para desenvolver novas ferramentas de GV.

Conjunto de Ferramentas de GV disponíveis

Arquitetura de Referência

fornece
informações

funcionalidades elementos
arquiteturais

conceitos

usa
informação de

promove
integração

fornece
interoperabilidade

aumenta
reuso

facilita desenvolvimento /
evolução de

fornece compreensão
clara das decisões

...

Nova ferramenta de GV baseada
na Arquitetura de Referência

Ferramenta
de GV #1

Ferramenta
de GV #2

Ferramenta
de GV #3

Ferramenta
de GV #4

Ferramenta
de GV #5 Ferramenta

de GV #n

Figura 1. Relação entre Ferramentas de GV e AR

Somados às fontes de pesquisa anterior, pode-se destacar a RSL realizada
por [Lisboa et al. 2010] que abrange as principais funcionalidades das ferramentas
de GV. Tal estudo identificou 19 soluções com funcionalidades e objetivos como:
i)Planejamento, responsável por identificar informações para a definição do escopo do
domı́nio; ii)Modelagem, representa o escopo de domı́nio baseado em variabilidade,
features, regras de composição, etc; e iii)Validação, funcionalidades responsáveis pela
validação do domı́nio.Outro estudo importante é a RSL de [Pereira et al. 2015] que
identificou 41 ferramentas de GV. O estudo de [Pereira et al. 2015] utilizou a mesma
classificação de funcionalidades de [Lisboa et al. 2010], sendo que 73% necessitam
de suporte às atividades de planejamento; 81% dão suporte à derivação de produtos;
[Berger et al. 2013] realizou um estudo importante no qual apresentou os tipos de abor-
dagens e ferramentas de GV utilizados na indústria. Tal estudo identificou que 38% são
ferramentas de domı́nio especı́fico, 29,4% são ferramentas de código aberto e 26,5% são
ferramentas comerciais. Tais estudos contribuı́ram para o projeto da VMTools-RA com

1Um artigo sobre a RSL está em fase de submissão ao periódico Information and Software Technology.

II Latin American School on Software Engineering (ELA-ES 2015)

83

a identificação de funcionalidades, caracterı́sticas, tecnologias, conceitos sobre ferramen-
tas de GV. As funcionalidades identificadas foram elencadas e agrupadas. Como exemplo
pode-se citar: Modelo de feature, representa as variabilidades do produto; Rastreabili-
dade, relaciona features com requisitos; e Documentação.

Estabelecimento dos requisitos arquiteturais: Essa etapa visa elencar os requi-
sitos da AR proposta a partir das informações identificadas na Etapa 1. Neste projeto,
as funcionalidades encontradas serviram como base na identificação dos requisitos de sis-
tema das ferramentas de GV. Como exemplo, para a funcionalidade Rastreabilidade temos
o seguinte requisito de sistema: Permitir rastreabilidade entre features e requisitos. Após
a identificação dos requisitos do sistema de GV observou-se que os mesmos poderiam
ser agrupados em grupos mais abstratos identificando assim, os requisitos arquiteturais
da AR proposta. Como exemplo temos os seguintes requisitos de sistema: i) Permitir
rastreabilidade entre features e requisitos; ii) Permitir modelo de feature. Tais requisitos
de sistema foram mapeados ao requisito arquitetural: AR deve permitir modelagem de
feature.

Projeto arquitetural: os requisitos arquiteturais identificados serão utilizados
como base para realizar o projeto arquitetural da AR. Descrições textuais, fluxogramas ou
UML, por exemplo, podem ser utilizados para representar a AR em diferentes visões ar-
quiteturais como estrutural, de implantação e de tempo de execução. A Figura 2 apresenta
uma visão geral da VMTools-RA em uma representação mais abstrata com os principais
elementos e suas relações. A VMTools-RA é baseada no estilo arquitetural em camadas:
i) camada de apresentação, refere-se à interface do usuário; ii) camada de aplicação,
contém o modelo lógico para gerenciar os diferentes elementos do GV; iii) camada de
persistência, para o armazenamento das informações. Além disso, essa AR está divi-
dida em três grupos: modelagem, representa os modelos de features e de variabilidade;
configuração, permite criar e editar configurações dos modelos de features garantindo
ao usuário gerar configurações válidas de um modelo de produto; e validação, verifica a
consistência dos produtos de software garantindo que funcionem corretamente.

...Editor de Configuração do Produto

...

PersistênciaPersistência

ApresentaçãoApresentação

...

Elementos do Modelo de Feature Elementos do Modelo
de Variabilidade

...
......

Feature Grupo de Feature

MODELAGEM

Análise de Restrições /
Regras de Composição

Obrigatório

Variabilidade

Elementos de Configuração Produto

AplicaçãoAplicação

Elementos de Validação

...

......

...

CONFIGURAÇÃO VALIDAÇÃO

Rastreabilidade
Configuração de Produto

Verificação de Consistência

Editor do Modelo de Feature

...Tree View Hierarchical view

Grupo da
funcionalidade

Elementos da
funcionalidade FuncionalidadePersistência Comunicação

entre camadas
Comunicação
entre elementos

XML Banco de Dados Repositório

Legenda:

Figura 2. Visão Geral da VMTools-RA: Proposta inicial.

Avaliação arquitetural: Tal etapa está descrita a seguir na Seção 3.

3. Avaliação da Solução Proposta

A avaliação da AR tem por objetivo obter informações para averiguar: (i) se a AR está
adequadamente representada; (ii) se são considerados os atributos de qualidade para a
AR, tais como, integração e segurança; (iii) se a AR pode ser plenamente instanciada;
e (iv) o que pode ser alterado a fim de evoluir a AR. Para a avaliação desta pesquisa,
será realizado um estudo empı́rico e um estudo de caso. O estudo empı́rico envolverá

II Latin American School on Software Engineering (ELA-ES 2015)

84

um estudo qualitativo e será apoiado por procedimentos de Grounded Theory como, por
exemplo, Coding buscando codificar o conhecimento e respaldo dos especialistas sobre a
AR proposta. Neste projeto, um questionário será elaborado e aplicado a especialistas em
AR e GV. Os resultados obtidos com base nas respostas serão categorizados por meio da
técnica de (Coding) para contribuir com a avaliação da viabilidade da AR. Já o estudo de
caso envolverá a implementação de uma ferramenta de GV.

4. Atividades Realizadas
Até o momento foi realizada uma RSL com o objetivo de identificar ferramentas de GV
existentes na acadêmia e na indústria, bem como analisar suas principais caracterı́sticas,
padrões arquiteturais e funcionalidades. Somados à RSL, outros estudos citados na Seção
2 estão sendo considerados para extrair as funcionalidades principais e definir os requisi-
tos essenciais da AR de ferramentas de GV. Além disso, um conjunto de requisitos já foi
identificado e uma proposta inicial de uma visão geral da VMTools-RA foi estabelecida.

5. Conclusão
Neste artigo foram apresentadas as atividades que estão sendo conduzidas para o esta-
belecimento da VMTools-RA, uma AR para ferramentas de GV. A partir da VMTools-
RA, objetiva-se padronizar o desenvolvimento de novas ferramentas de GV por meio
da identificação das principais funcionalidades, caracterı́sticas, requisitos, conceitos e
informações desse domı́nio. Espera-se com isso, contribuir com um maior reúso de ex-
periências em projetos, aumentando a produtividade durante a fase de desenvolvimento
dessas ferramentas, além de promover a integração e estabelecer as melhores práticas de
desenvolvimento de software.

Referências
Angelov, S., Grefen, P., and Greefhorst, D. (2009). A classification of software reference

architectures: Analyzing their success and effectiveness. In WICSA/ECSA, Cambridge,
UK, pages 141–150.

Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czarnecki, K., and Wsowski,
A. (2013). A survey of variability modeling in industrial practice. In VaMoS, Pisa,
Italy, pages 7:1–7:8.

Kitchenham, B., Pearl, B. O., Budgen, D., Turner, M., Bailey, J., and Linkman, S. (2009).
Systematic literature reviews in software engineering. Information and Software Tech-
nology, 51(1):7–15.

Linden, F. J. v. d., Schmid, K., and Rommes, E. (2007). Software product lines in action:
The best industrial practice in product line engineering. Springer-Verlag, New York.

Lisboa, L. B., Garcia, V. C., Lucrédio, D., Almeida, E. S., Meira, S. R. L., and Fortes, R.
P. M. (2010). A systematic review of domain analysis tools. Information and Software
Technology, 52(1):1–13.

Nakagawa, E. Y., Guessi, M., Maldonado, J. C., Feitosa, D., and Oquendo, F. (2014).
Consolidating a process for the design, representation, and evaluation of reference ar-
chitectures. In WICSA, Sydney, NSW, pages 143–152.

Pereira, J. A., Constantino, K., and Figueiredo, E. (2015). A systematic literature review
of software product line management tools. In ICSR, Miami, FL, USA, pages 73–89.

II Latin American School on Software Engineering (ELA-ES 2015)

85

SMartyComponents: Um Método para Especificação de
Arquiteturas de Linhas de Produtos de Software

Componentizadas
Marcio H. G. Bera, Edson OliveiraJr, Thelma E. Colanzi

1Programa de Pós-Graduação em Ciências da Computação (PCC) da
Universidade Estadual de Maringá (UEM).

Departamento de Informática, Av. Colombo, 5790 - Zona 07
CEP 87020-900 - Maringá - PR - Brasil

marciobera@hotmail.com, edson@din.uem.br, thelma@din.uem.br

Abstract. Reuse is the key to productivity in software development. Approa-
ches such as Software Product Line (SPL) and Component Based Development
(CBD) support the reuse of artifacts and components.UML Components is a
CBD method that stands out for assisting the user to identify as early as pos-
sible components. Stereotype-based Management of Variability (SMarty) is an
approach used for identify and represent variabilities in UML models. Thus,
this proposal uses the SMarty concepts applied in the UML Components pro-
cess, allow this especify component-based SPLAs.

Resumo. Reúso é a chave para a produtividade no desenvolvimento de soft-
ware. Abordagens como Linha de Produto de Software (LPS) e Desenvolvi-
mento Baseado em Componentes (DBC) apoiam o reúso de artefatos e compo-
nentes. O UML Components é um método de DBC que se destaca por auxiliar
o usuário a identificar os componentes o mais cedo possı́vel. Stereotype-based
Management of Variability (SMarty) é uma abordagem utilizada para identificar
e representar variabilidades em modelos UML. Assim, esta proposta utiliza os
conceitos de SMarty aplicados ao processo do UML Components, permitindo
assim especificar ALPSs componentizadas.

Palavras-chave: Arquitetura de Linha de Produto de Software, Variabilidade, Desenvol-
vimento Baseado em Componentes, UML Components, SMarty.

1. O problema de pesquisa e motivação
Com a crescente evolução da tecnologia nos últimos anos, a indústria de software busca
meios para maximizar a produtividade no desenvolvimento de software [Jensen 2015].
Recursos são investidos na criação de produtos para um mesmo domı́nio sem que os
artefatos destes produtos possam ser reutilizados.

Linha de Produto de Software (LPS) é uma abordagem que proporciona a
reutilização dos artefatos, baseado em uma infraestrutura central denominada núcleo de
artefatos, que contém artefatos com similaridades e variabilidades [Linden et al. 2007].
Uma LPS pode gerar vários produtos de uma mesma famı́lia, o que indica a existência de
várias arquiteturas diferentes, ou seja, uma para cada produto especı́fico. Uma abstração
de todas estas arquiteturas é denominada Arquitetura de LPS (ALPS).

II Latin American School on Software Engineering (ELA-ES 2015)

86

O Desenvolvimento Baseado em Componentes (DBC) é uma abordagem muito
difundida na literatura, e que também visa o reúso. Existem várias abordagems de DBC na
literatura, destaque para o UML Components [Cheesman and Daniels 2001], que permite
a identificação de componentes nos primeiros workflows.

A abordagem Stereotype-based Management of Variability (SMarty)
[OliveiraJr et al. 2010, Marcolino et al. 2013] é formada por um perfil denominado
SMartyProfile, e um processo denominado SMartyProcess. SMartyProfile possui um
conjunto de estereótipos para representar variabilidades. SMartyProcess toma de entrada
os artefatos de saı́da de um processo, e por meio de um conjunto de diretrizes, guia os
stakeholders a identificar e representar variabilidades em tais artefatos.

2. Trabalhos relacionados
O estudo de Razavian e Khosravi [Razavian and Khosravi 2008] é uma abordagem anota-
tiva para representar variabilidades em arquiteturas baseadas em componentes nos nı́veis
de componentes, conectores e interfaces. Já o estudo de Haber et al. [Haber et al. 2011],
é uma abordagem transformacional para representar variabilidades, que combina a
representação modular das mudanças entre variantes do sistema com meios expressivos
para capturar a influência das caracterı́sticas dos produtos. O estudo de Nakagawa et al.
[Nakagawa et al. 2013] apresenta um processo denominado ProSA-RA2PLA, que siste-
matiza a utilização de arquiteturas de referência para a construção de ALPSs. No entanto,
nenhum destes trabalhos propõe uma maneira de especificar ALPSs componentizadas.

3. O trabalho proposto
A combinação do método UML Components com a abordagem SMarty já foi reali-
zada em trabalhos realizados anteriormente, e a sua efetividade foi comprovada em
[Contieri Junior et al. 2011]. Tal combinação foi denominada SMartyComponents, porém
não houve nenhuma formalização da mesma. SMarty 5.2 fornece gerenciamento de va-
riabilidades no relacionamento de componentes com portas e interfaces, relacionamento
de portas com interfaces, e relacionamento de interfaces com operações. A Figura 1
apresenta um exemplo da LPS Arcade Game Maker (AGM) com representação de vari-
abilidades SMarty em nı́vel de porta e interfaces. A porta pPlayGame é um ponto de
variação e possui três interfaces �alternative OR�. Os estereótipos SMarty em portas,
são anotados no compartimento do componente.

Figura 1. Exemplo de Representação de Variabilidade com SMarty 5.2

De um modo geral, SMartyComponents explora os workflows de Requisitos e Es-
pecificacão do UML Components. Assim, os artefatos resultantes de cada workflow, são

II Latin American School on Software Engineering (ELA-ES 2015)

87

tomados de entrada pelo SMartyProcess, que identifica e, por meio dos estereótipos do
SMartyProfile, representa as variabilidades. A Figura 2 apresenta a visão geral de SMarty-
Components.

Workflow de Requisitos Workflow de Especificação

Arquitetura SMarty
Componentizada

Modelo Conceitual
de Negócio SMarty

Componentes
SMarty

Arquiteto de Linha
de Produto Arquiteto de Linha

de Produto

Modelo de
Casos de Uso

SMarty

Interfaces
SMarty

Especificação de
Componente

Identificação de
Componente

SMartyProcess

SMartyProcessInteração de
Componente

Especialistas
em Domínio

Requisitos
de NegócioCliente

Analistas
de Negócios

Definição de
Requisitos «nesting»

«nesting»

«nesting»
«local replacement»

«nesting»

«local replacement»

«local replacement»

«local contribution»

«local contribution»

«local contribution»

«nesting»

«nesting»
«nesting»

«nesting»

«nesting»

«nesting»
«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«local replacement»

«responsible»

«responsible»

«responsible»

Figura 2. Visão Geral de SMartyComponents

Assim, ao término da última atividade do workflow de Especificação, serão
gerados três artefatos: (i) Arquitetura SMarty componentizada; (ii) Componentes
SMarty; e (iii) Interfaces SMarty. Um exemplo da atividade Iteração de Compo-
nente do workflow de Especificação pode ser visualizado na Figura 3. Neste exemplo,
os artefatos Interfaces do Sistema SMarty, Espec. de Componente
& Arquitetura SMarty e Interfaces de Negócio SMarty são entradas
para as tarefas Descobrir Operações de Negócio, Refinar Interfaces & Operações e Re-
finar Espec. de Componentes & Arquitetura. A tarefa Refinar Interfaces & Operações
gera o artefato Especificação de Interfaces e alimenta a tarefa Refinar Es-
pec. de Componente & Arquitetura. Esta, de acordo com os artefatos recebidos, refina o
artefato Espec. de Componente & Arquitetura SMarty. Os artefatos re-
sultantes destas tarefas são entradas para o SMartyProcess. Por fim, os artefatos de saı́da
do SMartyProcess contém as variabilidades identificadas e representadas.

Interação de Componente SMartyProcess

Espec. de Componente
& Arquitetura SMarty

Espec. de Componente
& Arquitetura SMarty

Espec. de Componente
& Arquitetura SMarty

Rastrear e Controlar
Variabilidades

Interfaces do Sistema
SMarty

Interfaces de Negócio
SMarty Descobrir Operações

de Negócio

Refinar Interfaces
& Operações

Interfaces SMarty

Refinar Espec.
de Componentes

& Arquitetura

Diretrizes do
SMartyProcess

Representar
Variabilidades

Identificar
Variabilidades

Delimitar
Variabilidades

Especificação
de Interfaces

SMartyProfile
Arquiteto de

Linha de Produto

Arquiteto
de Linha de

Produto

«input» «performs»

«performs»

«performs»

«performs»

«input»«input»

«output»

«performs»

«input»

«performs»
«input»

«output»

«output»

«input»

«input»

«output»

«performs»

«input»

Workflow de Especificação

Figura 3. Atividade: Interação de Componente do Workflow de Especificação

II Latin American School on Software Engineering (ELA-ES 2015)

88

4. Resultados
Em um Mapeamento Sistemático (MS) realizado, o estudo de Razavian e Khosravi
[Razavian and Khosravi 2008] se destacou representar variabilidades em uma quantidade
maior de elementos que demais estudos, por ser baseado em UML e por ser uma aborda-
gem anotativa. Além disso, o estudo possui um estudo de caso com uma LPS denominada
Virtual University. O estudo experimental comparou a efetividade de SMarty em relação
a abordagem de Razavian e Khosravi. Os resultados obtidos neste estudo evidenciam a
efetividade de SMarty e compõem um artigo publicado na International Conference on
Enterprise Information Systems (ICEIS) [Bera et al. 2015]. A proposta de SMartyCom-
ponents foi definida e um estudo empı́rico qualitativo está sendo preparado para avaliá-la.

Referências
Bera, M. H. G., OliveiraJr, E., and Colanzi, T. E. (2015). Evidence-based SMarty Sup-

port for Variability Identification and Representation in Component Models. In Proc.
ICEIS, pages 295–302.

Cheesman, J. and Daniels, J. (2001). UML Components: A Simple Process for Specifying
Component-based Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition.

Contieri Junior, A. C., Correia, G. G., Colanzi, T. E., Gimenes, I. M. S., OliveiraJr, E.,
Ferrari, S., Masiero, P. C., and Garcia, A. F. (2011). Extending UML Components
to Develop Software Product-Line Architectures: Lessons Learned. In Proc. ECSA,
pages 130–138.

Haber, A., Rendel, H., Rumpe, B., and Schaefer, I. (2011). Delta Modeling for Software
Architectures. In Proc. MBEES, pages 1–10.

Jensen, R. W. (2015). Improving Software Development Productivity: Effective Lea-
dership and Quantitative Methods in Software Management. Pearson Education, Inc.,
Westford, Massachusetts, USA.

Linden, F. J., Schmid, K., and Rommes, E. (2007). Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

Marcolino, A., OliveiraJr, E., Gimenes, I., and Maldonado, J. (2013). Towards the Ef-
fectiveness of a Variability Management Approach at Use Case Level. In Proc. SEKE,
pages 214–219.

Nakagawa, E. Y., Becker, M., and Maldonado, J. C. (2013). Towards a Process to Design
Product Line Architectures Based on Reference Architectures. In Proc. SPLC, pages
157–161. ACM.

OliveiraJr, E., Gimenes, I., and Maldonado, J. (2010). Systematic Management of Varia-
bility in UML-based Software Product Lines. Journal of Universal Computer Science,
16(17):2374–2393.

Razavian, M. and Khosravi, R. (2008). Modeling Variability in the Component and Con-
nector View of Architecture Using UML. In Proc. AICCSA, pages 801–809.

II Latin American School on Software Engineering (ELA-ES 2015)

89

SMartyMetrics: uma Proposta de Framework de Métricas
para Arquiteturas de Linha de Produto de Software

André Felipe Ribeiro Cordeiro, Edson OliveiraJr

1Departamento de Informática – Universidade Estadual de Maringá (UEM)
CEP 87020-900 – Maringá-PR – Brasil

cordeiroandrefelipe@gmail.com, edson@din.uem.br

Abstract. This paper presents a research proposal of a metrics framework for
evaluating Software Product Line Architectures (SPLA), taking into account
the SMarty approach. Such an approach aims to managing variability
management in UML-based Software Product Lines. The metrics study
involves literature review, proposal and experimental validation of the metrics
and the framework, based on SMarty UML models. Among main expected
contributions from this work is the definition of a set of metrics to evaluate
SPLAs and a framework, as well as improving the state of the art with regard
to evaluation of SPLAs.

Resumo. Este artigo apresenta uma proposta de pesquisa no contexto de um
framework de métricas para avaliação de Arquiteturas de Linha de Produto
de Software (ALPS), considerando a abordagem SMarty. Tal abordagem
permite o gerenciamento de variabilidades em Linhas de Produto de Software
modeladas em UML. O estudo de métricas envolve a revisão da literatura,
proposta e validação experimental das métricas e do framework,
considerando modelos UML SMarty. Entre as principais contribuições
esperadas para este trabalho estão a definição de um conjunto de métricas
para avaliar ALPSs e de um framework, além do aprimoramento do estado da
arte com relação à avaliação de ALPSs.

1. Introdução

Linha de Produto de Software (LPS) é uma abordagem de desenvolvimento de software
baseada no reuso sistemático e organizado em um domínio específico de atuação
[Linden et al. 2007]. Os artefatos de uma LPS são classificados em artefatos comuns e
variáveis [Capilla et al. 2013]. Os artefatos comuns estão presentes em todos os
produtos derivados da LPS e geralmente envolvem características do domínio. Os
artefatos variáveis são aqueles que diferenciam os produtos derivados da LPS.

 O conjunto de artefatos definidos para uma LPS é armazenado em um
repositório, conhecido como Núcleo de Artefatos [Linden et al. 2007]. Um dos artefatos

II Latin American School on Software Engineering (ELA-ES 2015)

90

mais importantes do núcleo é a arquitetura da LPS (ALPS). Tal artefato descreve os
detalhes arquiteturais, levando em consideração as características técnicas e de negócio
da futura LPS.

 Gerenciar esses artefatos torna-se relevante para o processo de adoção e
manutenção de uma LPS. Entre as atividades de gerenciamento, está a Avaliação de
LPS (AVLPS) [Oliveira Junior et al., 2013]. A partir da AVLPS, os arquitetos e
gerentes podem avaliar características como complexidade dos produtos derivados e
Return On Investment (ROI) [Pohl et al. 2005]. Dada a complexidade do gerenciamento
de LPSs, alguns métodos de AVLPS têm sido propostos na literatura, com critérios e
processos sistemáticos.

 Entre os métodos de AVLPS propostos, está o Systematic Evaluation Method for
UML-based Software Product Line Architectures (SystEM-PLA) [Oliveira Junior et al.
2013], para avaliação de ALPSs modeladas em UML. Este método permite a avaliação
de ALPSs nos estágios iniciais do processo de desenvolvimento, possibilitando que
alterações realizadas na LPS não sejam onerosas ao projeto. O SystEM-PLA utiliza a
abordagem Stereotype-based Management of Variability (SMarty) [Oliveira Junior et al.
2010] para realizar a(s) avaliação(ções). SMarty fornece um conjunto de estereótipos
denominado SMartyProfile e um conjunto de diretrizes denominado SMartyProcess. O
SMartyProfile permite a representação de artefatos comuns e variáveis em modelos
UML da LPS e o SMartyProcess apresenta diretrizes para identificar e aplicar os
estereótipos em elementos variáveis da LPS.

 A abordagem SMarty é utilizada pelo método SystEM-PLA na geração de
artefatos, mais especificamente, de modelos UML representativos de LPS, que
permitem a realização das atividades de avaliação definidas pelo método.

 Este projeto apresenta a proposta de um framework de métricas para as
atividades de AVLPS. Tal framework deve incorporar as métricas já suportadas pelo
SystEM-PLA [Oliveira Junior e Gimenes 2014; Marcolino et al. 2013], além de novas
métricas, que devem ser definidas e avaliadas experimentalmente. Essas novas métricas
são propostas com o objetivo de ampliar do escopo de AVLPS, considerando a
abordagem SMarty.

2. Métricas para Arquitetura de LPS existentes no SystEM-PLA
As métricas apresentadas em Oliveira Junior e Gimenes (2014), Marcolino et al. (2013)
e Oliveira Junior et al. (2008), para avaliar ALPSs modeladas em UML estão
organizadas em duas categorias: métricas básicas e métricas para atributos de qualidade.

 As métricas básicas [Oliveira Junior et al. 2008] verificam as características dos
elementos presentes no(s) modelo(s) UML da LPS. Tais elementos podem ser comuns
ou variáveis. Caso o elemento seja comum, é provável que o mesmo esteja em todos os

II Latin American School on Software Engineering (ELA-ES 2015)

91

produtos derivados. Caso seja variável, a verificação de possíveis restrições entre os
elementos do modelo é necessária.

 As métricas para atributos de qualidade verificam a complexidade e
extensibilidade de uma LPS a partir de seus produtos derivados. Tais atributos de
qualidade foram adaptados ao contexto de LPS para auxiliarem na AVLPS. As métricas
de complexidade [Marcolino et al. 2013] consideram a Complexidade Ciclomática (CC)
e o número de Métodos Ponderados por Classe (Weighted Methods per Class – WMC),
existentes em cada elemento da LPS. As métricas de extensibilidade [Oliveira Junior e
Gimenes 2014] consideram a presença de características de herança e classes abstratas.

3. SMartyMetrics: um Framework de Métricas para ALPS

De forma sucinta, este projeto tem o objetivo de construir um framework de métricas
para AVLPSs. Além das construção do framework, estão previstas as definições e
validações experimentais de outras métricas para AVLPS.

 O conjunto de métricas presentes no Framework deve contemplar as métricas
existentes no SystEM-PLA, e o acréscimo de um novo conjunto de métricas, que devem
ser investigadas neste projeto. A proposta de novas métricas acontece com o objetivo de
ampliar o escopo das AVLPSs. A ampliação do escopo se faz necessária por conta das
características não cobertas pelas métricas básicas e de atributos de qualidade
existentes. Por exemplo, entre as características não cobertas, estão o esforço de
manutenção e a estabilidade de classes[Alshayeb et al. 2011].

 Algumas métricas, como a métrica para avaliar a estabilidade de classes não são
exclusivas de LPS. Neste caso, tais métricas devem ser adaptadas considerando as
informações relevantes para a AVLPS. Detalhes de possíveis adaptações ainda não
estão definidos, pois tal decisão depende diretamente das métricas que forem
selecionadas para a incorporação ao framework. Com relação as métricas que devem ser
investigadas, ainda não se definiu o número de métricas, bem como quais características
serão priorizadas. O que se sabe até o momento é que as futuras métricas deverão
possibilitar análises significativas com a relação as LPSs modeladas em UML.

 Para a construção do Framework de Métricas, objetivo geral deste projeto, estão
sendo considerados os seguintes objetivos específicos: Revisão Sistemática de
Literatura (RSL) sobre as métricas, tanto de LPS, quanto de Orientação a Objeto (OO),
que possam ser aplicadas em Modelos de LPS UML SMarty; Validação Teórica e
Experimental de tais métricas selecionadas na RSL; Representação das métricas
adotando o Structured Metrics Metamodel (SMM) (SMM 2015), para possibilitar a
troca de dados entre projetos/ferramentas; Proposição e Modelagem do Framework de
Métricas e Validação Experimental do Framework de Métricas.

II Latin American School on Software Engineering (ELA-ES 2015)

92

4. Conclusão

 Este artigo apresentou um projeto de pesquisa contendo as atividades
necessárias a construção de um Framework de métricas para AVLPSs, baseadas em
modelos UML SMarty. O SMartyMetrics deve conter as métricas já suportadas pelo
método SystEM-PLA e novas métricas que serão definidas e validadas. Ao final, espera-
se que o framework construído contribua para a evolução do estado da arte na AVLPS,
possibilitando a expansão da abordagem SMarty

Referências

Alshayeb, M.; Naji, M.; Elish, M. O.; Al-Ghamdi, J. Towards measuring object-
oriented class stability. IET Software, 2011, v. 05, p. 415-424, 2011.

Capilla, R.; Bosch, J.; Kang, K. Systems and Software Variability Management:
Concepts, Tools and Experiences. SpringerLink : Bucher. Springer, 2013.

Linden, F. J.; Schmid, K.; Rommes, E. Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

Marcolino, A. S.; Oliveira Junior E. A.; Gimenes I. M. S.; Conte, T. U. Towards
Validating Complexity-Based Metrics for Software Product Line Architectures. In:
SBCARS, 2013, Brasília. 2013. v. 1. p. 69-94.

Oliveira Junior, E. A.; Gimenes, I. M. S. Empirical Validation of Product-line
Architecture Extensibility Metrics. In: ICEIS, 2014, Lisbon. v. 2. p. 111-118.

Oliveira Junior, E. A.; Gimenes, I. M. S.; Maldonado, J. C.; Masiero, P. C.; Barroca, L.
Systematic Evaluation of Software Product Line Architectures. Journal of Universal
Computer Science, 2013, v. 19, p. 25-52, 2013.

Oliveira Junior, E. A.; Gimenes, I. M. S.; Maldonado, J. C. Systematic Management of
Variability in UML-based Software Product Lines. Journal of Universal Computer
Science (JUCS), 2010, v. 16, p. 2374-2393, 2010.

Oliveira Junior, E. A.; Gimenes, I. M. S.; Maldonado, J. C. A Metric Suite to Support
Software Product Line Architecture Evaluation. In: CLEI, 2008, Santa Fe. 2008. p.
489-498.

Pohl, K.; Bockle, G.; Linden, F. J. Software Product Line Engineering: Foundations,
Principles, and Techniques. Secaucus, NJ, USA: Springer-Verlag, 2005.

SMM. Structured Metrics Meta-Model. OMG Group. 2015. Disponível em :
http://www.omg.org/spec/SMM/. Acesso em 14/04/2015.

II Latin American School on Software Engineering (ELA-ES 2015)

93

Estudo de Caracterização de Bugs
de Projetos de Código Aberto

Guilherme A. de Oliveira1, Humberto T. Marques-Neto1

1Instituto de Ciências Exatas e Informática
Pontifı́cia Universidade Católica de Minas Gerais (PUC Minas)

30.535-901 – Belo Horizonte – MG – Brasil

Resumo. Em sistemas de código aberto populares, uma grande quantidade de
requisições de manutenção são reportados em sistemas de gerenciamento de
bugs. Por exemplo na fundação Mozilla, cerca de 250 bugs foram criados por
dia em 2012. Com certeza, entender melhor o processo de manutenção pode
melhorar a produtividade dos desenvolvedores que resolvem bugs. Este traba-
lho realiza uma caracterização de bugs de um sistema de código aberto, a partir
do ciclo de vida de um bug. Os resultados dessa caracterização apontam a ne-
cessidade de se investir no processo de aceitação de novos bugs e também no
controle de qualidade para verificação de bugs resolvidos.

1. Introdução
A manutenção é uma das fases mais importantes e custosas de um software [Erlikh 2000,
Mookerjee 2005]. Desenvolvedores de projetos de código aberto, normalmente, traba-
lham nas requisições de manutenção (i.e., bugs) assim que elas ficam disponı́veis no sis-
tema de gerenciamento de bugs, e.g., Bugzilla, Jira [Mockus et al. 2002, Liu et al. 2012].

Entretanto, sistemas de código aberto populares podem possuir uma grande quan-
tidade de desenvolvedores e de bugs. Por exemplo, a fundação Mozilla1 possuı́a mais
de 280 mil bugs cadastrados entre 2009 e 2012. Nesse mesmo perı́odo de tempo, 5.045
desenvolvedores interagiram de alguma forma na resolução desses bugs. Somente em
2012, foram criados aproximadamente 7.500 bugs por mês com 1.390 desenvolvedores
trabalhando ativamente na resolução destes bugs.

Essa enorme quantidade de bugs aliada ao trabalho não coordenado de muitos
desenvolvedores pode prejudicar a produtividade das tarefas de manutenção em grandes
sistemas de código aberto [Mockus et al. 2002, Tan and Mookerjee 2005]. Uma análise
do processo de manutenção poderia indicar pontos crı́ticos a serem aperfeiçoados para
melhorar esse cenário. Este trabalho apresenta uma caracterização de bugs do Mozilla,
realizada com o objetivo de ajudar no entendimento do processo de manutenção de siste-
mas de código aberto.

2. Estudo
Esta seção descreve o estudo realizado com 283.971 bugs da fundação Mozilla, que pos-
sui bugs de diversos produtos como Firefox, Thunderbird, entre outros. Foram estudados
bugs criados entre 2009 e 2012, para caracterizar o processo de manutenção. Esse pro-
cesso é referido como o ciclo de vida de um bug e mostra o fluxo de trabalho para a

1www.mozilla.org, acessado em 2015-04-01.

II Latin American School on Software Engineering (ELA-ES 2015)

94

resolução de um bug [Anvik et al. 2006, Anvik and Murphy 2011]. A Figura 1 mostra o
ciclo de vida juntamente com as porcentagens de bugs analisados no estudo. Os valores
nas transições dessa figura mostram a porcentagem de bugs que saı́ram do estado de ori-
gem. O número dentro de cada estado indica a porcentagem de bugs que permaneceram
naquele mesmo estado. Portanto, somando os valores dentro do estado juntamente com
as transições de saı́da, obtém-se 100%.

Figura 1. Ciclo de vida de um bug no Bugzilla

Durante o processo de manutenção, um bug pode caminhar por diversos estados
do ciclo de vida. Quando um novo bug é reportado no Bugzilla, ele pode ser registrado
como Unconfirmed ou Confirmed (respectivamente 31% e 69% dos bugs da base). Nor-
malmente, os bugs reportados por usuários comuns são registrados como Unconfirmed,
e super-usuários (i.e., usuários com permissões especiais) podem criar bugs Confirmed.
Entretanto, em certos projetos Mozilla, usuários comuns também podem criar bugs Con-
firmed. Por isso a quantidade de bugs Confirmed (69%) neste estudo é maior que Uncon-
firmed (31%).

Bugs Unconfirmed podem mudar para Confirmed se receberem votos de outros
usuários comuns confirmando a ocorrência do problema, ou se algum super-usuário de-
cidir mudar seu estado. Super-usuários também podem mudar o estado de Unconfirmed
para Resolved, caso o bug reportado não possa ser corrigido (i.e., inválido, duplicado, etc.)
ou caso não era um problema de fato. Interessante notar que a maioria dos bugs Uncon-
firmed do estudo são resolvidos diretamente (61%) e apenas uma pequena parte (21%)
segue para o inı́cio do processo de manutenção como Confirmed. Em poucas ocasiões
(3%), um super-usuário pode atribuir um bug Unconfirmed diretamente para um desen-
volvedor trabalhar nele, mudando assim seu estado para In progress.

Quando um Confirmed bug é designado a um desenvolvedor, este bug assume o
estado de In progress. Também é possı́vel que um Confirmed bug não possa ser corri-

II Latin American School on Software Engineering (ELA-ES 2015)

95

gido, nesse caso o bug é marcado como Resolved. Pode-se notar que a porcentagem de
Confirmed bugs que são marcados diretamente como resolvidos (62%) é bem próxima a
dos Unconfirmed que seguem o mesmo caminho (61%). Outra informação inesperada é
que apenas 16% dos Confirmed bugs são alocados para desenvolvedores trabalharem.

Um bug no estado In progress indica que existe um desenvolvedor trabalhando
ativamente nele. Se o desenvolvedor enviar a resolução do bug, o estado muda para
Resolved. Os dados do estudo indicam que a maioria dos bugs In progress (89%) são
resolvidos. Se o desenvolvedor parar de trabalhar no bug, este volta para o estado de
Confirmed. Segundo os bugs da base estudada, são ocorrências incomuns um bug retornar
para Confirmed (3%).

O estado Resolved representa bugs que foram resolvidos ou fechados. Caso seja
necessário, um bug resolvido pode ser verificado por usuários do controle de qualidade
(QA – Quality Assurance) para certificar que a resolução está realmente correta. Nesse
caso, depois de ser aprovado pela verificação, o bug assume o estado de Verified. Como
mostrado na Figura 1, apenas 22% dos bugs estudados passaram por esse controle de
qualidade. Também é possı́vel que um bug dado como resolvido retorne ao estado de
Confirmed (1%) ou Uncofirmed (1%) se o controle de qualidade não ficar satisfeito com a
solução. Entretanto, a maior parte dos bugs resolvidos (76%) permanecem como Resolved
e não são verificados pelo controle de qualidade.

Um bug verificado pode retornar aos estados iniciais do processo de manutenção
como Confirmed ou Unconfirmed. Entretanto, esse cenário é bastante incomum ocorrendo
em 3% dos bugs estudados. Então, 97% dos bugs verificados permanecem nesse estado.

A Tabela 1 apresenta a quantidade de bugs estudados que passaram, em algum
momento do seu ciclo de vida, por algum estado do processo de manutenção. Essa tabela
também mostra a porcentagem de bugs que passaram por aquele estado, de acordo com o
total de bugs criados entre 2009 e 2012 (283.971 bugs). Além disso, a Tabela 1 apresenta
o tempo de espera (em dias) de bugs nesse estado. Nesse tempo de espera, foram con-
siderados apenas os bugs que saı́ram do estado, i.e., esta informação ignora os bugs que
permaneceram no mesmo estado porque neste caso o tempo de espera seria infinito.

Pode-se perceber que o estado em que se passaram a maior quantidade de bugs,
foi o Resolved, que foi também o estado que obteve a menor média de dias de espera. Os
estados Unconfirmed e Confirmed são os que tem as maiores médias de tempo de espera.
A quantidade de bugs que caminharam pelo estado Unconfirmed foram bem menores
que Confirmed. A quantidade de bugs que passaram por In progress é a menor da base
estudada. Isso era esperado visto que grande parte dos bugs reportados são resolvidos
diretamente. Para o estado Verified a quantidade de bugs que passaram por esse estado e
a média de dias de trabalho são relativamente baixa, indicando que poucos testes podem
ser feitos em bugs resolvidos.

3. Conclusão

Este trabalho apresenta uma avaliação de 283.971 bugs da fundação Mozilla. Analisando
estes bugs no processo de manutenção, é possı́vel encontrar informações interessantes.
É importante evidenciar que os projetos Mozilla precisam de investimentos maiores no
processo de aceitação de novos bugs. Isso se deve ao fato que mais de 60% (170 mil) dos

II Latin American School on Software Engineering (ELA-ES 2015)

96

Tabela 1. Bugs Caminhando pelos Estados do Ciclo de Vida do Mozilla

Estado Bugs Tempo de Espera (dias)
Quantidade % Min Max Média Desvio Mediana

Unconfirmed 87.216 30,71 0 1360 93 184 1
Confirmed 214.996 75,71 0 1373 61 150 6
In Progress 47.448 16,71 0 1312 33 95 5
Resolved 226.685 79,83 0 1259 2 45 6
Verified 49.573 17,46 0 1229 15 73 7
Total 283.971 100 – – – – –

bugs são resolvidos logo após sua criação. Estes bugs são fechados justamente porque
não podem ser corrigidos (por exemplo, por serem inválidos ou duplicados).

Outro ponto importante é que apenas 22% dos bugs resolvidos são verificados pelo
controle de qualidade do Mozilla. Uma análise mais aprofundada é necessária para des-
cobrir o motivo dessa ocorrência. Isso pode indicar a necessidade de atrair mais pessoas
para a área de controle de qualidade da fundação Mozilla.

Como trabalhos futuros, pretende-se realizar um estudo em intervalos menores de
tempo da base de dados, para verificar se o comportamento analisado neste trabalho varia
em conformidade com o intervalo de tempo. Outra possibilidade seria usar algoritmos de
clusterização para criar grupos mais coesos de bugs e analisar o processo de manutenção
para cada grupo. Finalmente, pode-se analisar a produtividade dos desenvolvedores em
relação aos tipos de bugs resolvidos.

Referências
Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who should fix this bug? In Proceedings

of the 28th International Conference on Software Engineering, ICSE ’06, pages 361–
370, New York, NY, USA. ACM.

Anvik, J. and Murphy, G. C. (2011). Reducing the effort of bug report triage: Re-
commenders for development-oriented decisions. ACM Trans. Softw. Eng. Methodol.,
20(3):10:1–10:35.

Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IT Professional,
2(3):17–23.

Liu, K., Tan, H. B. K., and Chandramohan, M. (2012). Has this bug been reported? In
20th ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering (FSE), pages 28:1–28:4.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies of open source
software development: Apache and Mozilla. ACM Transactions on Software Enginee-
ring and Methodology, 11(3):309–346.

Mookerjee, R. (2005). Maintaining enterprise software applications. Communications of
the ACM, 48(11):75–79.

Tan, Y. and Mookerjee, V. (2005). Comparing uniform and flexible policies for soft-
ware maintenance and replacement. IEEE Transactions on Software Engineering,
31(3):238–255.

II Latin American School on Software Engineering (ELA-ES 2015)

97

Análises Estruturais para Identificação de Falso-Positivos em
Recomendações de Refatoração

Rafael S. Lima, Ricardo Terra

Departamento de Ciência da Computação,
Universidade Federal de Lavras (UFLA), Brasil

rafaelsplima@computacao.ufla.br,terra@dcc.ufla.br

Resumo. Desenvolvedores – para atingir objetivos de curto prazo – reali-
zam alterações de código que se opõem à organização estrutural existente.
Nesse cenário, ferramentas de identificação de oportunidades de refatoração
são normalmente aplicadas no intuito de reverter tais alterações. O problema,
entretanto, consiste no fato de que tais ferramentas reportam uma parcela con-
siderável de falsos positivos. Diante disso, este estudo tem o intuito de prover
desenvolvedores com uma série de análises que visam explicar o porquê o mé-
todo deve ser refatorado ou não. No estado atual da pesquisa, foram propostas
três análises aplicáveis em refatorações Extract Method e Move Method cujas
implementações estão sendo realizadas no Ambiente Moose.

1. Introdução
Desenvolvedores – para atingir objetivos de curto prazo – realizam alterações de código
que se opõem à organização estrutural existente [8]. Para reverter essas alterações, nor-
malmente são aplicadas refatorações que consistem no processo de alteração de um sis-
tema de software sem modificar seu comportamento no intuito de melhorar a estrutura e
o entendimento do código [1, 4].

Diversas técnicas vêm sendo propostas na literatura para a identificação de opor-
tunidades de refatoração, por exemplo, baseadas em Feature Envy bad smells [9], métri-
cas [2], similaridade estrutural [6, 7], etc. O problema, entretanto, consiste no fato de
que normalmente essas ferramentas reportam diversas recomendações e que uma parcela
relevante consiste de falsos positivos, o que implica em uma baixa precisão.

Diante disso, este estudo – a partir de uma série de recomendações sugeridas por
outras ferramentas – tem o intuito de prover desenvolvedores com uma série de análises
estruturais para identificação de falsos positivos, visando explicar o porquê o método deve
ser refatorado ou não. Por exemplo, assuma que o método m da classe C depende dos
tipos {A,B} enquanto que todos os outros métodos de C dependem de {X, Y }. Uma
ferramenta baseada em similaridade estrutural recomendaria mover m para uma outra
classe C ′ que seja mais similar.

No entanto, por mais coerente que se pareça, uma análise da dependência em nível
de pacotes poderia indicar que A, B, X e Y pertencem ao mesmo pacote p, o que poderia
levar a um questionamento por parte do desenvolvedor.

O restante deste artigo está organizado conforme a seguir. A Seção 2 introduz
conceitos fundamentais ao estudo. A Seção 3 apresenta a proposta de pesquisa descre-
vendo um conjunto de análises estruturais no auxílio de refatorações. E, por fim, a Seção 4
conclui descrevendo as contribuições esperadas.

II Latin American School on Software Engineering (ELA-ES 2015)

98

2. Background
Similaridade Estrutural: Coeficiente de similaridade mede o grau de correspondência
entre duas entidades conforme um critério estabelecido [5]. Assume-se que uma entidade
de código fonte (e.g., um método) é representada pelo conjunto de tipos com quais ela es-
tabelece dependência. Desse modo, o cálculo de similaridade entre duas entidades pode
ser realizado usando o coeficiente Jaccard, que considera a relação existente entre o nú-
mero de tipos comuns e o número de tipos encontrados em cada entidade, como a seguir:

sim(E1, E2) =
a

a+ b+ c

onde a = número de tipos comuns, b = números de tipos exclusivos à entidade E1,
c = números de tipos exclusivos à entidade E2. Por exemplo, considere dois métodos
m1 = {B,C,D} e m2 = {C,D}. Como a = 2, b = 1 e c = 0, sim(m1,m2) = 0.666.

Extract Method: Métodos longos que acumulam diversas responsabilidades – o que
implica em baixa coesão e alto acoplamento no nível de métodos – são bad smells
comumente encontrados em sistemas de software. Por exemplo, assuma um método que
realize duas responsabilidades. Nesse cenário, desenvolvedores normalmente aplicam a
refatoração Extract Method que extrai um fragmento do método original para um novo
método. Essa refatoração, além de contribuir diretamente para a modularidade, promove
reúso e reduz duplicação de código [1, 4].

Move Method: Métodos implementados em classes incorretas – o que implica em baixa
coesão e alto acoplamento no nível de classes – também são bad smells comumente
encontrados em sistemas de software. Nesse cenário, desenvolvedores normalmente
aplicam a refatoração Move Method que move o método para uma classe mais apropriada.
Essa refatoração diminui o acoplamento e aumenta a coesão em nível de classe, além de
promover a organização [1, 4].

Moose: É um ambiente independente de linguagem para engenharia reversa e reenge-
nharia de sistemas de software.1 Moose provê um conjunto de serviços que incluem um
meta-modelo comum, visualização e avaliação de métricas, repositório de modelos e um
apoio visual para consulta, navegação e agrupamento [3]. A Figura 1 ilustra um exemplo
de duas visualizações do Moose baseadas em similaridade estrutural: (a) uma que reporta
oportunidades de refatoração Extract Method que pôde identificar um bloco no método
save que depende de tipos diferentes do restante do método; e (b) uma que reporta oportu-
nidades de refatoração Move Method que pôde identificar que o método persist depende
de tipos diferentes dos demais métodos da classe ProductAction.

(a) Rec. de Extract Method (b) Rec. de Move Method

Figura 1. Exemplo de visualizações no Moose

1http://www.moosetechnology.org

II Latin American School on Software Engineering (ELA-ES 2015)

99

http://www.moosetechnology.org

3. Proposta de Pesquisa
O objetivo do presente estudo é prover análises baseadas em similaridade estrutural que
validem ou invalidem recomendações providas por ferramentas de identificação de opor-
tunidades de refatoração. Conforme ilustrado na Figura 2, logo que uma ferramenta apon-
tar uma oportunidade de refatoração, disponibilizar-se-á uma série de análises que visam
explicar o porquê o método deve ser de fato refatorado ou não.

Figura 2. Proposta de Pesquisa

No estado atual desta pesquisa, foram propostas análises – as quais são ilustradas na
Figura 2 – com o objetivo de verificar as seguintes hipóteses:

H1. Apenas um ou mais tipos são responsáveis pela baixa similaridade. Isso indi-
caria que uma sugestão de refatoração não seria recomendada se o método não
dependesse de um certo tipo e/ou fosse adicionado um novo tipo. Por exemplo, o
método foo depende de {A,B,C} e tem similaridade de 0.25 com a classe atual.
Se C fosse retirado e D adicionado, a similaridade subiria para 0.7.

H2. Embora os tipos sejam diferentes, a maioria pertence ao mesmo pacote. Isso
indicaria que uma sugestão de refatoração não seria dada se a similaridade fosse
calculada no nível de pacotes e não de tipos. Por exemplo, um bloco do método
bar depende de {A,B} e tem similaridade de 0.01 com o restante do método. Se
o conjunto considerado fosse o do pacote dos tipos – {com.pkg1, com.pkg2} – a
similaridade subiria para 1.0.

H3. Os tipos que a entidade depende são largamente (no fator quantitativo) utilizados.
Isso indicaria que uma sugestão de refatoração não seria dada se a similaridade
fosse calculada considerando multiplicidade, i.e., o número de vezes que um
tipo é acessado. Por exemplo, o método qux depende de {B,C} e tem simila-
ridade de 0.1 com a classe atual. Se o conjunto considerasse multiplicidade –
{[B, 54], [C, 1]} – a similaridade subiria para 0.65.

As análises supracitadas foram elaboradas a partir de justificativas de desenvolve-
dores para não acatarem certas recomendações. Novas análises serão propostas por inves-
tigações qualitativas em repositório de sistemas de código aberto. A avaliação, contudo,

II Latin American School on Software Engineering (ELA-ES 2015)

100

será realizada por meio de questionários. Serão enviadas recomendações que casem com
alguma análise proposta, indagando o desenvolvedor se o mesmo a aplicaria ou não com
as devidas justificativas, as quais serão utilizadas para aperfeiçoar e corrigir as análises.

4. Considerações Finais
Desenvolvedores – para atingir objetivos de curto prazo – realizam alterações de código
que se opõem à organização estrutural existente. Para reverter essas alterações, normal-
mente são aplicadas refatorações. Nesse cenário, existem diversas ferramentas que iden-
tificam oportunidades de refatoração baseadas em Feature Envy bad smells, métricas,
similaridade estrutural, etc.

A maior contribuição desta pesquisa consiste em prover desenvolvedores com
uma série de análises que visam explicar o porquê o método deve ser refatorado ou não.
O estudo limita-se a refatorações Extract Method e Move Method e utiliza ferramentas
centradas em similaridade estrutural adaptadas para o ambiente Moose [6, 7]. No en-
tanto, é esperado que, com o decorrer da pesquisa, um maior número de refatorações e
ferramentas sejam incorporadas ao estudo.

Agradecimentos
Este trabalho foi apoiado pela FAPEMIG, CAPES e CNPq.

Referências
[1] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley,

Boston, 1999.

[2] Radu Marinescu. Detection strategies: Metrics-based rules for detecting design flaws.
In 20th International Conference on Software Maintenance (ICSM), pages 350–359,
2004.

[3] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̌rba. The story of Moose: An agile reen-
gineering environment. In 10th European Software Engineering Conference (ESEC),
pages 1–10, 2005.

[4] William Opdyke. Refactoring object-oriented frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, 1992.

[5] H. Charles Romesburg. Cluster Analysis for Researchers. Lulu Press, North Carolina,
2005.

[6] Vitor Sales, Ricardo Terra, Luis Fernanda Miranda, and Marco Tulio Valente. Recommen-
ding Move Method refactorings using dependency sets. In 20th Working Conference
on Reverse Engineering (WCRE), pages 232–241, 2013.

[7] Danilo Silva, Ricardo Terra, and Marco Tulio Valente. Recommending automated Extract
Method refactorings. In 22nd International Conference on Program Comprehension
(ICPC), pages 146–156, 2014.

[8] Ricardo Terra and Marco Tulio Valente. A dependency constraint language to ma-
nage object-oriented software architectures. Software: Practice and Experience,
32(12):1073–1094, 2009.

[9] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of Move Method re-
factoring opportunities. IEEE Transactions on Software Engineering, 99:347–367,
2009.

II Latin American School on Software Engineering (ELA-ES 2015)

101

Formação de Equipes de Alto Desempenho para
Desenvolvimento de Software

Alessandra C. S. Dutra, Rafael Prikladnicki
1Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)

Av. Ipiranga, 6681 – 90619-900 – Porto Alegre – RS – Brazil
{alessandra.dutra,rafaelp}@pucrs.br

Resumo. Este artigo descreve o trabalho que tem sido desenvolvido para
analisar a formação de equipes de alto desempenho para desenvolvimento de
software frente às abordagens de capacitação existentes, avaliando a
oportunidade de propor uma abordagem metodológica de capacitação
visando formar equipes de alto desempenho para o desenvolvimento de
software.

1. Introdução
O mercado de desenvolvimento de software opera em um ambiente global, com
mudanças rápidas, e precisam responder com agilidade a estas novas oportunidades e a
estes novos mercados [Sommerville 2011]. Conseguir agilidade, competitividade e
resultados sem uma equipe de desenvolvimento de software capacitada e de alto
desempenho é uma tarefa difícil e pode trazer resultados pouco competitivos.
 Este contexto indica que a formação qualificada e a capacitação de profissionais
são cada vez mais necessárias na sociedade em que vivemos. Seja em cursos de curta
duração, graduação ou pós-graduação, formar bons profissionais faz parte do
compromisso das Instituições de Ensino Superior (IES) com a sociedade [Enricone
2006].
 A qualidade da capacitação em ES pode contribuir significativamente à melhoria
do estado da arte do desenvolvimento de software e auxiliar a solução de alguns
problemas tradicionais e crises relacionadas com as práticas da indústria de software
[Gibbs 1994]. Hoje, a capacitação e o treinamento para formar profissionais de software
devem incluir não apenas conhecimentos básicos na área de computação, mas também o
ensino de conceitos, processos e técnicas para definição, desenvolvimento e
manutenção de software [Saiedian 1999] [ACM/IEEE 2013].
 Neste sentido, o processo de ensino e aprendizagem de Engenharia de Software
tem passado por questionamentos acerca dos métodos utilizados nas atividades de
capacitação [Santos et al 2008]. Estudos recentes observam que estes métodos
envolvem estratégias tradicionais de ensino, tais como apresentação de teoria, aulas
expositivas e leituras complementares, fazendo com que os alunos encontrem na
indústria um cenário diferente do que é ensinado na academia [Santos et al 2008]
[Prikladnicki et al 2009].
 Nesse contexto, faz-se necessário saber quais os resultados de investigações
científicas em relação às características da formação de equipes de alto desempenho em
desenvolvimento de software e as atuais abordagens de capacitação existentes e que de
alguma forma exploram algumas destas características.

II Latin American School on Software Engineering (ELA-ES 2015)

102

 Este artigo tem como objetivo apresentar o trabalho que tem sido desenvolvido
nesta pesquisa, onde pretende-se analisar a formação de equipes de alto desempenho
para desenvolvimento de software frente às abordagens de capacitação existentes,
avaliando a oportunidade de propor uma abordagem metodológica de capacitação
visando formar equipes de alto desempenho para o desenvolvimento de software.

2. Referencial Teórico

A Engenharia de Software é uma disciplina preocupada com a aplicação de teoria,
conhecimento e prática para o desenvolvimento efetivo e eficiente de sistemas de
software que satisfaçam os requisitos dos usuários [ACM/IEEE 2008]. Os profissionais
de ES [Conn 2002], estão insatisfeitos com a falta de preparo dos estudantes
universitários que ingressam no mercado de trabalho, o que leva a indústria a ter que
complementar a sua educação com treinamentos. Este preparo pode envolver
profissionais ou equipes, incluindo equipes de alto desempenho.

 Uma equipe de alto desempenho [Moscovici 2003], além de ter todos os
requisitos de uma equipe, tem seus membros comprometidos com o crescimento e o
sucesso pessoal de cada um dos membros da equipe. Esta equipe supera o desempenho
de todas as outras equipes, além de conseguir resultados além das expectativas.

3. Metodologia de Pesquisa

3.1. Desenho e Etapas da Pesq uisa
Para o desenvolvimento desta pesquisa, será utilizada a metodologia proposta por Mafra
[Mafra et al 2006], cujo desenho de pesquisa está representado na Figura 1. Cada uma
das etapas desta metodologia é detalhada a seguir [Mafra et al 2006], [Shul et al 2001]:
• Estudos Secundários: essa etapa consiste na condução de estudos secundários, tais
como revisão sistemática da literatura, que tem como objetivo buscar evidências
primárias na área em estudo.
• Proposta Inicial: essa etapa consiste na produção, com base no conhecimento
adquirido e nas evidências identificadas através da condução da revisão sistemática, de
uma proposta inicial da tecnologia.
• Estudo de Viabilidade: essa etapa verifica, através de estudos empíricos e
experimentais, a viabilidade do processo ou tecnologia sendo analisada. Pesquisas
utilizando estudantes são aplicáveis nesta etapa.
• Estudo de Observação: essa etapa avalia todos os passos, em detalhes, que constituem
o processo de aplicação da nova tecnologia de forma a garantir que cada passo é efetivo
e é executado na ordem correta.
• Estudo de Caso com Ciclo de Vida Real: essa etapa consiste de um caso de estudo
avaliando o processo ou tecnologia em um ciclo de vida real de desenvolvimento de
software.

II Latin American School on Software Engineering (ELA-ES 2015)

103

Figura 1 - Metodologia Experimental – [Mafra et al 2006]

• Estudo de Caso na Indústria: uma vez que nas etapas anteriores o processo já foi
adaptado para ser executado em um ciclo de vida real e demonstrou ser eficaz, nesta
fase o processo ou tecnologia é avaliado em um ambiente de indústria.

4. Resultados Preliminares

4.1. Revisão Sistemática
Como resultados preliminares foi executada uma Revisão Sistemática da Literatura
onde identificamos algumas características que as equipes de alto desempenho devem
ter no desenvolvimento de software. Identificamos características organizacionais,
comportamentais e técnicas. As mais citadas foram comunicação eficiente,
coordenação, trabalho em equipe, diversidade da equipe, liderança, coesão e motivação.
Podemos sugerir que as equipes de alto desempenho (1) possuem uma comunicação
eficaz, (2) apresentam uma diversidade que estimula a aprendizagem e a inovação, (3)
possuem coesão, motivação, liderança e coordenação, a fim de alcançar seus objetivos.
Estes resultados geraram uma visão inicial das características esperadas para uma
equipe de alto desempenho. Estas equipes precisam ser capacitadas e desenvolver seus
pontos fortes, visando proporcionar um conjunto de competências que somente estas
equipes apresentam. A capacitação neste caso é, portanto, um aspecto essencial para o
desenvolvimento destas equipes.

5. Próximos Passos da Pesquisa
Esta pesquisa tem como passo seguinte o planejamento e a execução de um estudo de
viabilidade. Este estudo terá como objetivo aprofundar a análise nas características das
equipes de alto desempenho, identificando suas práticas, bem como técnicas de
capacitação utilizadas pelas empresas para aprimorar estas práticas em seus projetos de
desenvolvimento de software.

II Latin American School on Software Engineering (ELA-ES 2015)

104

 A pesquisa será exploratória, qualitativa, e executada através de uma survey. As
pessoas entrevistadas serão: gerentes de projetos, líderes de projetos e coordenadores
de projetos. A coleta de dados será feita através de entrevistas semi-estruturadas com
questões abertas e fechadas. A aplicação do Questionário será com entrevistas pessoais.
 A análise de dados será feita através de uma apresentação das contribuições do
estudo e uma análise crítica com relação a estes resultados. Nesta análise será
desenvolvida uma confrontação dos resultados obtidos com as teorias e estudos
relacionados e será realizada uma análise qualitativa dos dados coletados, através de um
mapeamento das respostas dos entrevistados.
 Após o estudo de viabilidade, serão planejados e executados estudos de
observação e de estudos de caso com ciclo de vida real, visando avaliar as práticas de
alto desempenho e as técnicas de capacitação identificadas a partir das características
destas equipes.

Referências Bibliográficas
Sommerville, I. (2011) “Engenharia de Software” 9a edição. São Paulo: Pearson

Prentice Hall.
Enricone, D. (2006). “Ser Professor”, 5a edição, EDIPUCRS.
Gibbs, W. (1994) “Software's chronic crisis”. Scientific American 2713, pp. 86–95.
Saiedian, H. (1999) “Software engineering education and training for the next

millennium, Journal of Systems and Software”, v. 49, i. 2-3, p. 113-115
ACM/IEEE. (2013) Computer Science Curriculum, Guidelines for Undergraduate

Degree Programs in Software Engineering.
Santos, R. P., Santos, P. S. M., Werner, C. M. L., Travassos, G. H. (2008) “Utilizando

Experimentação para Apoiar a Pesquisa em Educação em Engenharia de Software no
Brasil”, Fórum de Educação em Engenharia de Software.

Prikladnicki, R., Albuquerque, A., Wangenheim Santos et al 2008, e Cabral R., (2009)
“Ensino de Engenharia de Software: Desafios, Estratégias de Ensino e Lições
Aprendidas,” no FEES.

Conn, R. (2002) “Developing Software Engineers at the C-130J Software Factory”.
IEEE Software,Los Alamitos, v. 19, n. 5, p. 25-29.

Moscovici, F. (2003) “Equipes dão certo: A multiplicação do Talento Humano”. Rio de
Janeiro: José Olympio, 8a edição.

Mafra, S., Barcelos, R., Travassos, G. H. (2006) “Aplicando uma Metodologia Baseada
em Evidência na Definição de Novas Tecnologias de Software”. In: Proceedings of
the 20th Brazilian Symposium on Software Engineering (SBES 2006), v. 1, pp. 239 –
254, Florianopolis.

Shull, F., Carver, J., Travassos, G. H. (2001) “An empirical methodology for
introducing software processes”. SIGSOFT Softw. Eng. Notes, 26(5):288–296.

II Latin American School on Software Engineering (ELA-ES 2015)

105

1

Software Crowdsourcing: Barriers Faced by the Crowd

Leticia Santos Machado
1
, Rafael Prikladnicki

1

1
Faculdade de Informática– Pontifícia Universidade Católica do Rio Grande do

Sul (PUCRS)

Av. Ipiranga, – 90.619-900 – Porto Alegre – RS – Brazil

leticia.smachado@gmail.com, rafaelp@pucrs.br

Abstract. Software Engineering has recently started to explore the

Crowdsourcing’s model in tasks of software development seeking collective

solutions to problems, ways to accelerate the time-to-market and reduce costs.

However, the crowd can face many challenges when contributing to a task in a

crowdsourcing context. The purpose of this research is to collect empirical

evidences in order to understand what are the barriers that hinder crowd

workers in software crowdsourcing projects, and propose a set of strategies

that can be used to support the crowd in software crowdsourcing projects.

1. Introduction

The evolution of global accessibility through Web 2.0 media technologies have created

opportunities that have transformed the collaborative format of the teams distributed

software development [Begel et al, 2012; Peng et al. 2014]. Soon, classical

organizations such as companies and open source communities will be replaced by

decentralization and interrelation of software ecosystem it employs crowdsourcing,

outsourcing, offshoring, spontaneous collaboration and social networking [Kaganer,

2013]. The introduction of collaboration ubiquitous tools already indicates changes in

the design, development, test, software product delivery or software system solutions.

 Crowdsourcing is a distributed problem-solving model. The term

“crowdsourcing” was coined by Jeff Howe when discussing how businesses were

effectively using the Internet to outsource work to many individuals (Howe, 2008). In

this study we adopt the widely accepted definition, crowdsourcing is the act of an

organization outsourcing their work to an undefined, networked labor using an open call

for participation.

Crowdsourcing in software development derives from crowdsourcing more

generally. It means to engage a global pool of online workers that can be tapped on-

demand to provide software solutions or services [Lakhani, Garvin and Lonstein, 2010],

[Stol and Fitzgerald, 2014]. Small, atomized, tasks that can be completed and paid for in

small increments are unprecedented in the history of work. Software has been the

pioneer in all the large mega-trends of the last generation: in computer technology,

technological entrepreneurship, offshore outsourcing, and now—in crowdsourcing.

 In order to effectively support software crowdsourcing, there are computational

platforms that handle the technical aspects of the crowdsourcing tasks including the

broadcasting of tasks to be performed, the selection of tasks, reception of results of the

II Latin American School on Software Engineering (ELA-ES 2015)

106

2

tasks, and so on. Examples of these platforms include TopCoder [Lakhani, Garvin and

Lonstein, 2010], Utest and Amazon Mechanical Turk.

 Thus there are three key components in a crowdsourcing project (Figure 1). The

platform is the middleman, i.e., it intermediates the communication between the two

other parties. Second, is the crowd—the workers who will effectively perform the tasks.

The crowd is a global dispersed and undefined crowd. Third, on the left, are the buyers

or requesters. These are the firms that place the requests for work (the tasks)

[Prikladnicki et al. 2014]. In this study we are interested to investigate the crowd

component.

Figure 1. Basic model Crowdsourcing

 An industry case study of crowdsourcing software development was presented

in [Stol and Fitzgerald, 2014]. In this related work, it discussed a number of challenges

that arise when software crowdsourcing process was adopted during a project of

software development, such as: lifecycle model, software development tasks

interdependencies, overhead in terms of company effort to prepare specifications and

answer crowdsourcing community queries and quality issues. The authors also

synthesized a set of six key concerns, which had relevance in a software development

context: task decomposition, coordination and communication, planning and scheduling,

quality assurance, knowledge and intellectual property and motivation and

remuneration.

 The goal of our research is to explore the barriers faced by the crowd when

contributing to software crowdsourcing projects and analyzing which practices can be

used to support the crowd in the software development life cycle. In other words we

want to answer the following research question: “What are the barriers and the

approaches that can be used to support the crowd in software crowdsourcing projects?”

In order to answer these questions, a set of secondary research questions were defined:

 What are the barriers faced by the crowd when contributing to software

crowdsourcing projects?

 What are the aspects that influence the quality and delivery time of the

solutions provided by the crowd in software crowdsourcing projects?

 What are the approaches that can be used to help the crowd in developing

successful software crowdsourcing projects?

2. Research Design

Software Crowdsourcing is a relatively new and emergent phenomenon with limited

empirical research and theory. For this reason, this study uses an exploratory approach.

An initial ad hoc literature review was conducted with the purpose of sharing the basic

concepts and identifying the main challenges of software crowdsourcing. The research

II Latin American School on Software Engineering (ELA-ES 2015)

107

3

design is composed of three phases, as presented in Figure 2 and, described as

following.

 Warm up. This phase consists of the planning and execution of interviews

conducted with software developer professionals in order to explore their software

crowdsourcing experiences and to better understand the problem addressed by this

study.

 Phase I – Find Barriers. This phase is composed of several empirical studies

that have as a goal to identify the barriers that hinder the crowd of contributing to

software crowdsourcing projects. We will first gather the barriers from the literature, by

means of systematic and snowballing literature review. We will then conduct interviews

with software crowdsourcing platforms users (the crowd). The results obtained in the

literature review and in the interviews will be analyzed in focus groups that will be

executed with a different set of crowd participants.

 Phase II – Proposing practices to overcome barriers. In this phase, the goal is

to consolidate the barriers that hinder the crowd of contributing to software

crowdsourcing projects and propose a set of approaches that can be used to support the

crowd and overcome the identified barriers. We plan to propose the approaches based

on: (i) recommendations and empirical evidence that emerge during the Phase I; (ii) and

the practices and experiences that crowd workers have used and adopt in their software

crowdsourcing projects. In the Phase 2, we intend to design and conduct a controlled

experiment to assess the effectiveness of using the proposed solutions to the selected

barriers.

Figure 2. Research Design

3. Preliminary Results

During the warm up phase we have conducted several interviews with crowd workers

from the Brazilian IT industry [Machado et al., 2014]. Preliminary findings showed that

software crowdsourcing has potential and could benefit both the companies and the

professionals. The main blockers about their experiences with software crowdsourcing

were summarized as it follows:

 Unavailability of documentation;

 Poor feedback;

 Scarce context project information;

II Latin American School on Software Engineering (ELA-ES 2015)

108

4

 Specific knowledge of the technologies and business rules.

Based on these impressions found, we plan to talk about several crowd workers in

person, by voice, by video, and/or by email. We will keep on conducting semi-

structured interviews and analyzing these data, and additional data will focus on the

barriers (challenges) that they face when involved with software crowdsourcing

projects. We will also collect feedback from Brazilian buyers to obtain information

about Brazil crowdsourcing initiatives that companies had participated in and the

challenges faced by the crowd. We will then be able to generate recommendations that

will be useful for crowd workers, as well as to better understand the use of

crowdsourcing in the context of software engineering.

Acknowledgment

The authors would like to thank the CNPq (process number 309000/2012-2) for the

financial support.

References

Begel, A., Herbsleb, J. D. and Storey, M. (2012). "The future of collaborative software

development", Proceedings of the ACM Conference on Computer Supported

Cooperative Work Companion.

Peng, X., Babar, M. A., & Ebert, C. (2014). “Collaborative Software Development

Platforms for Crowdsourcing”. IEEE software, 31(2), 30-36.

Kaganer, E., Carmel, E., Hirscheim, R., and Olsen, T. (2013), “Managing the Human

Cloud”. MIT Sloan Management Review, 54(2), 23-32.

Howe, J. (2008). “Crowdsourcing: How the power of the crowd is driving the future of

business”. Random House.

Lakhani, K., Garvin, D. A., & Lonstein, E. (2010), “Topcoder (a): Developing software

through crowdsourcing”. Harvard Business School General Management Unit Case.

Stol, K. J., & Fitzgerald, B. (2014) “Two's company, three's a crowd: a case study of

crowdsourcing software development”, In Proceedings of the 36th International

Conference on Software Engineering (pp. 187-198). ACM.

Prikladnicki, R., Machado, L., Carmel, E., and de Souza, C. R. B. (2014) “Brazil

Software Crowdsourcing: A First Step in a Multi-year Study”, 1st International

Workshop on CrowdSourcing in Software Engineering (CSI-SE). Collocated with the

36th International Conference on Software Engineering (ICSE), Hyderabad, India

Machado, L., Pereira, G., Prikladnicki, R., Carmel, E. & de Souza, C. R. (2014).

“Crowdsourcing in the Brazilian IT industry: what we know and what we don't

know.” In Proceedings of the 1st International Workshop on Crowd-based Software

Development Methods and Technologies (pp. 7-12). (CrowdSoft) ACM. Collacated

with the 22
nd

 Foundations of Software Engineering (FSE), Hong Kong.

II Latin American School on Software Engineering (ELA-ES 2015)

109

Decisões sobre arquitetura de software em projetos que
utilizam métodos ágeis

Andrey Baumhardt Ramos1, Raquel Aparecida Pegoraro1

1Departamento de Ciência da Computação – Universidade Federal da Fronteira Sul
(UFFS) – Chapecó, SC – Brasil

Andreybramos@hotmail.com, Raquel.pegoraro@uffs.edu.br

Abstract. In the last few years the agile method using has been increasing.
However, the lack of architectural focus in agile methods as created the ne-
cessity of developing evolutionary architecture studies. This research has the
following objectives: (a) To identify the project evolution and software archi-
tecture problems and their reasons in the agile methods development; (b) To
identify the practices that allow it to improve the capacity software architecture
evolution; (c) To propose a decision analysis estructure that relates problems
and practices, allowing the teams to make the right decisions on the agile pro-
jects architecture. With this study we hope to give knowledge basis about how
to create a software architecture for agile projects.

Resumo. A adoção dos métodos ágeis vem crescendo significativamente nos
últimos anos. Porém, a falta de foco arquitetônico tem gerado a necessidade
de desenvolver estudos sobre a arquitetura evolutiva centrada em projetos que
utilizam métodos ágeis. Esta pesquisa tem como objetivos: (a) Identificar os
problemas relacionados à evolução do projeto e arquitetura de software e suas
causas em projetos que utilizam métodos ágeis; (b) Identificar quais práticas
permitem melhorar a capacidade de evoluir a arquitetura de software em proje-
tos que utilizam métodos ágeis; (c) Propor uma estrutura de análise de decisão
relacionando problemas e práticas que permita que as equipes, baseadas nas
situações dos seus projetos, tomem decisões referentes à arquitetura de projetos
ágeis. Espera-se com este estudo gerar uma base de conhecimento sobre ar-
quitetura de software para projetos ágeis que permita que as empresas tomem
melhores decisões sobre o assunto.

1. Introdução

A importância de vincular metas de qualidade com a arquitetura de software é
conhecida e praticada na construção de projetos de domínio complexo, sendo
considerada um dos primeiros passos para construção de sistemas escaláveis
[Ramakrishnan 2010],[Pressman 2011]. O projeto da arquitetura está preocupado com
a compreensão de como um sistema deve ser organizado e com será a estrutura geral
desse sistema, sendo o elo crítico entre o projeto e a engenharia de requisitos, pois identi-
fica os principais componentes estruturais de um sistema e os relacionamentos entre eles
[Sommerville 2011]. O planejamento maciço inicial de requisitos e arquitetura é muito
utilizado na abordagem tradicional de desenvolvimento de software [Pressman 2011].

II Latin American School on Software Engineering (ELA-ES 2015)

110

Para lidar com o fato que os requisitos evoluem e que a mudança é algo normal
e aceitável em projetos de software, surgiram os métodos ágeis. Esses métodos se ca-
racterizam por utilizarem abordagem iterativa e incremental de desenvolvimento, com
equipes auto-organizadas, com constante colaboração do cliente que se ajusta dinamica-
mente às suas necessidades através da aceitação de mudanças de requisitos em qualquer
momento do projeto, que busca a minimização de produtos de trabalho de engenharia de
software, entre eles a documentação de software, e a simplicidade no desenvolvimento
[Abbas et al. 2010], [Dybå and Dingsøyr 2008].

Apesar da crescente adoção dos métodos ágeis pelas empresas e de vários relatos
de sucesso da sua adoção, os mesmos são criticados pela a sua falta de foco arquitetô-
nico [Hochstein and Lindvall 2005], [Dybå and Dingsøyr 2008]. Há um consenso entre
vários autores sobre a necessidade de pesquisar sobre arquitetura evolutiva centrada no
desenvolvimento ágil, isso devido a importância das decisões dos envolvidos ao longo
do projeto e da necessidade de adequação às mudanças [Babar and Abrahamsson 2008],
[Ambler 2008], [Hadar and Silberman 2008], [Chen and Babar 2014]. Porém, a revisão
sistemática feita por [Breivold et al. 2010] em estudos publicados sobre arquitetura em
métodos ágeis aponta que há uma discrepância entre a literatura de arquitetura de soft-
ware e os métodos ágeis, e que há falta de apoio científico e de estudos empíricos para
conhecer plenamente as vantagens e desvantagens dos método ágeis de software, no que
tange a arquitetura de software.

[Parsons et al. 2007] afirmam que para uma adoção bem sucedida de ágil é neces-
sário não apenas a seleção de um método ágil, mas também adoção de técnicas apropri-
adas que possibilitem combinação de qualidade e melhoria do processo. Destacam que
muitas equipes podem não ter o conhecimento e habilidades para escolher as melhores
técnicas a serem utilizadas, e que a estratégia usual é de adotar um método ou prática ágil
que julgar conveniente, avaliar e após adaptá-lo para melhorar os resultados. Utilizar esta
estratégia de definição das práticas para decisões relacionadas a arquitetura do software
pode ser um risco para a sua evolução.

Segundo [Babar 2009] problemas como a falta de tempo para considerar escolhas
de arquitetura, ou a falta de foco em atributos de qualidade, podem ocasionar a dificuldade
de manutenções e altos custos para os projetos que adotam abordagens ágeis. Algumas
práticas podem ser adotadas para conseguir lidar com essas situações, tais como criar
uma fase pré-desenvolvimento para planejar as diferentes opções relevantes de arquitetura
do sistema, ou utilizar o atendimento aos atributos de qualidade como uma medida de
sucesso.

Neste contexto, percebe-se que há uma lacuna na literatura sobre métodos ágeis e o
impacto da arquitetura nos projetos, o que é entendido como um fator crítico na utilização
desses métodos e, para se beneficiar plenamente dos métodos, é necessário entender esta
correlação de dependência. A partir desta problemática, este projeto busca responder à
seguinte questão de pesquisa: “Como evoluir de forma sistematizada e com qualidade a
arquitetura de software em projetos que utilizam métodos ágeis?”

Motivados pela necessidade de compreender a evolução do projeto e arquitetura
de software em empresas que utilizam métodos ágeis e de investigar maneiras de apoiar
esta evolução, os objetivos desta pesquisa são:

II Latin American School on Software Engineering (ELA-ES 2015)

111

• Identificar os problemas relacionados à evolução do projeto e arquitetura de soft-
ware e suas causas em projetos que utilizam métodos ágeis;

• Identificar quais práticas permitem melhorar a capacidade de evoluir a arquitetura
de software em projetos que utilizam métodos ágeis;

• Propor uma estrutura de análise de decisão para apoiar as escolhas e definições
sobre a documentação de arquitetura de software em projetos de software que
utilizam métodos ágeis. A estrutura analítica será composta pela relação entre os
problemas e práticas identificados na fase anterior da pesquisa.

Espera-se através da estrutura proposta que as empresas, baseados no contexto
específico dos seus projetos, possam refletir sobre as escolhas a cerca da arquitetura de
software e tomar melhores decisões.

2. Procedimentos Metodológicos

A metodologia que será utilizada na pesquisa consistirá nos seguintes passos:

1. Mapeamento sistemático da literatura com o objetivo de identificar os fatores
críticos que impactam na evolução satisfatória arquitetura de projetos de soft-
ware que utilizam métodos ágeis, e seus efeitos. O resultado será apresentado
através do diagrama causa e efeito, o qual permite estruturar hierarquicamente
as causas de determinado problema ou oportunidade de melhoria. Para realiza-
ção do mapeamento sistemático da literatura serão seguidas as recomendações de
[Kitchenham et al. 2010];

2. Mapeamento sistemático da literatura identificando as práticas utilizadas
para construir e evoluir a arquitetura de software em projetos que utili-
zam métodos ágeis, e as situações em que cada prática pode ser utilizada
[Kitchenham et al. 2010];

3. Estudo de caso exploratório com o objetivo de identificar as práticas de arquitetura
utilizadas pelas empresas e os desafios enfrentados [Yin 2015];

4. Embasado nos achados das etapas anteriores desta pesquisa será proposta uma
estrutura de análise de decisão para apoiar as escolhas e definições sobre a do-
cumentação de arquitetura de software, relacionando problemas ou situações de
projetos e práticas para solução.

3. Resultados esperados

Ao final deste projeto de pesquisa espera-se alcançar os seguintes resultados:

• Identificação dos fatores críticos que impactam na evolução satisfatória da arqui-
tetura de projetos de software que utilizam métodos ágeis, e seus efeitos;

• Identificação das práticas utilizadas para construir e evoluir a arquitetura de soft-
ware em projetos que utilizam métodos ágeis;

• Compreensão dos desafios enfrentados pelas empresas de software quanto a ar-
quitetura de software na utilização de métodos ágeis;

• Proposição de uma estrutura de análise de decisão, relacionando problemas e prá-
ticas, que permita que as equipes, baseadas nas situações dos seus projetos, tomem
melhores decisões referente à arquitetura do software.

II Latin American School on Software Engineering (ELA-ES 2015)

112

Referências
Abbas, N., Gravell, A. M., and Wills, G. B. (2010). The impact of organization, project

and governance variables on software quality and project success. In Agile Conference
(AGILE), 2010, pages 77–86. IEEE.

Ambler, S. W. (2008). Agile software development at scale. In Balancing agility and
formalism in software engineering, pages 1–12. Springer.

Babar, M. (2009). An exploratory study of architectural practices and challenges in using
agile software development approaches. In Software Architecture, 2009 European
Conference on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP
Conference on, pages 81–90.

Babar, M. A. and Abrahamsson, P. (2008). Architecture-centric methods and agile appro-
aches. In Agile Processes in Software Engineering and Extreme Programming, pages
242–243. Springer.

Breivold, H. P., Sundmark, D., Wallin, P., and Larsson, S. (2010). What does research say
about agile and architecture? In Software Engineering Advances (ICSEA), 2010 Fifth
International Conference on, pages 32–37. IEEE.

Chen, L. and Babar, M. A. (2014). Towards an evidence-based understanding of emer-
gence of architecture through continuous refactoring in agile software development.
In Software Architecture (WICSA), 2014 IEEE/IFIP Conference on, pages 195–204.
IEEE.

Dybå, T. and Dingsøyr, T. (2008). Empirical studies of agile software development: A
systematic review. Information and Software Technology, 50(9):833–859.

Hadar, E. and Silberman, G. M. (2008). Agile architecture methodology: Long term stra-
tegy interleaved with short term tactics. In Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and applications, pa-
ges 641–652. ACM.

Hochstein, L. and Lindvall, M. (2005). Combating architectural degeneration: a survey.
Information and Software Technology, 47(10):643–656.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., and
Linkman, S. (2010). Systematic literature reviews in software engineering–a tertiary
study. Information and Software Technology, 52(8):792–805.

Parsons, D., Ryu, H., and Lal, R. (2007). The impact of methods and techniques on
outcomes from agile software development projects. In Organizational Dynamics
of Technology-Based Innovation: Diversifying the Research Agenda, pages 235–249.
Springer.

Pressman, R. S. (2011). Engenharia de software:Uma Abordagem Profissional. McGraw
Hill Brasil.

Ramakrishnan, S. (2010). On integrating architecture design into engineering agile soft-
ware systems. Issues in Informing Science and Information Technology, 7.

Sommerville, I. (2011). Engenharia de Software. Pearson Education do Brasil, 9 edition.

Yin, R. K. (2015). Estudo de Caso-: Planejamento e Métodos. Bookman editora.

II Latin American School on Software Engineering (ELA-ES 2015)

113

 Sistema Multiplataforma para o Controle de Denúncias:
modelagem para implantação em órgãos públicos de fiscalização

Lucas S. Rodrigues, Fernando M. Federson

Instituto de Informática – Universidade Federal de Goiás (UFG)
Alameda Palmeiras, Quadra D, Câmpus Samambaia

Caixa Postal 131 - CEP 74001-970 - Goiânia – GO - Brasil

{lucas.soarod, federson}@gmail.com

Abstract. The capacity of the Society to inform the possible violations to the
supervisory bodies responsible by efficient communication channels is always a
challenge for any government. In order to assist the Government in this task, we
propose a process and the resulting modeling of a tool that can adapt to many
regulatory agencies using latest technologies, especially mobile technology. A
model of business processes is outlined from the case study of administrative
practices employed in providing the service within the Regional Council of
Engineering and Agronomy of Goiás. The architecture of a multiplatform system
is also presented to meet the modeled processes.

Resumo. A Sociedade poder informar as possíveis infrações às entidades
fiscalizadoras responsáveis através de canais de comunicação eficientes é um
desafio sempre presente para qualquer Governo. No sentido de auxiliar o
Governo nesta tarefa, são propostos um processo e a modelagem resultante de
uma ferramenta que pode se adaptar a muitos órgãos fiscalizadores utilizando
tecnologias recentes, em especial, a tecnologia móvel. Um modelo de processos
de negócio é delineado a partir do estudo de caso de práticas administrativas
empregadas no oferecimento do serviço de denúncias no âmbito do Conselho
Regional de Engenharia e Agronomia de Goiás. A arquitetura de um sistema
multiplataforma também é apresentada para atender os processos modelados.

1. Introdução
No Brasil, o chamado Governo Eletrônico determina uma série de diretrizes com foco na
eficiência e efetividade das funções governamentais através da TIC (Tecnologia da
Informação e Comunicação) para democratizar o acesso à informação, dar transparência de
processos e informações e ainda dinamizar a prestação de serviços públicos [1]. O uso
efetivo das tecnologias disponíveis, como passo seguinte à formulação de diretrizes,
possibilitaria às agências governamentais, em especial as de caráter fiscalizador, darem uma
resposta eficiente às situações de irregularidades informadas pela população, mas este
recurso é ainda pouco explorado no Brasil. Este trabalho tem como propósito demonstrar
um caso de aplicação dessas diretrizes.

II Latin American School on Software Engineering (ELA-ES 2015)

114

Nas próximas seções apresentamos, resumidamente, a metodologia utilizada, a
elucidação do processo de tratamento de denúncias empregado atualmente no Conselho
Regional de Engenharia e Agronomia de Goiás (CREA-GO), o novo modelo de processos
melhorado e a arquitetura de sistema, baseada nas plataformas móvel e web. Por fim,
apresentamos os resultados obtidos e nossos objetivos futuros.

2. Metodologia
A metodologia empregada na execução do presente trabalho foi baseada na seguinte
sequência de atividades: 1) Elucidação do processo de negócio atual; 2) Avaliação do
modelo atual; 3) Proposta de um novo modelo de processos de negócios; 4) Especificação
da Arquitetura de Sistema que suporte o modelo de processos proposto. O padrão de
modelagem utilizado para os processos de negócio é o Business Process Modelling
Notation (BPMN) [2]. A arquitetura de sistema foi dividida em Perspectiva de Implantação
e Perspectiva Modular. Na Perspectiva de Implantação foi utilizado o padrão de notação
Unified Modeling Language (UML) [3], através do Diagrama de Implantação. Para a
Perspectiva Modular foi elaborado uma explanação textual para entendimento do modelo.

3. Modelo de Processos de Negócio

3.1. Análise e Avaliação
A seguir explicamos o funcionamento do processo de negócio para tratamento de denúncias
atualmente praticado no CREA-GO. O processo inicia-se com a manifestação por parte do
cidadão (Sociedade → Cidadão) sobre alguma irregularidade no campo profissional, por
exemplo: execução de obra sem o acompanhamento de um Engenheiro Civil. A
comunicação é feita através de e-mail ou telefone, à Central de Denúncias do CREA-GO,
depois o cadastramento é realizado no sistema existente. É feito uma análise para
identificar se realmente é uma denúncia procedente relativo ao escopo do órgão. Caso seja
procedente, é pedido ao Departamento de Fiscalização uma programação da data e o fiscal
que realizará a denúncia. Esta elucidação estará contida também na Figura 1, onde foi
proposto um modelo melhorado para este processo.

O gargalo percebido é: o sistema computacional utilizado atualmente não permite
que além da própria Central de Denúncias, os demais atores também encaminhem registros
entre si e para o sistema. Isso faz com que todo e qualquer direcionamento deva enviar uma
resposta (informação) à Central.

3.2. Modelo Proposto
Na Figura 1, é apresentado um modelo proposto após correção do gargalo identificado na
subseção anterior. Tanto para a perspectiva de fases, que foram definidas como Cadastro,
Análise, e Execução, quanto para as tarefas modeladas, o modelo de negócio especificado
permite a “fluidez” da informação para que chegue com rapidez ao agente de fiscalização
que averiguará os fatos.

II Latin American School on Software Engineering (ELA-ES 2015)

115

Figura 1. Modelo de Processo de Negócio melhorado.

A melhoria apresentada é a possibilidade da própria Fiscalização ao receber a
demanda da denúncia encaminhá-la ao fiscal, sem que haja obrigatoriedade de repassar
antes à Central de Denúncias para realizar o encaminhamento. Os próprios envolvidos no
processo validam a proposta identificando como esta, a melhor alternativa para o modelo.

4. Arquitetura de Sistema

 Figura 2. Diagrama de Implantação para o Sistema Multiplataforma para o Controle
de Denúncias.

II Latin American School on Software Engineering (ELA-ES 2015)

116

4.1. Perspectiva de Implantação
Quanto à Perspectiva de Implantação (Figura 2), além dos nós, definimos tecnologias
subjacentes a cada um destes, assim como também as técnicas de comunicação entre eles.
Pensando no compartilhamento do mesmo repositório de dados um dos padrões
arquiteturais aplicados é o Cliente-Servidor. Baseado na pluralidade de Sistemas
Operacionais dos smartphones e tablets indica-se que o aplicativo seja compilado para o
executável nativo da maioria dos Sistemas Operacionais Mobile existentes através da
codificação usando HTML(HyperText Markup Language), CSS(Cascading Style Sheets),
javascript e o framework Apache Cordova [4].

4.2. Perspectiva Modular
A Perspectiva Modular, para este trabalho, foi dividida em quatro Visões Funcionais:
Cidadão, Central de Denúncias, Área Administrativa da Fiscalização e Fiscal. A Visão do
Cidadão foi dividida nos submódulos: Registro, Acompanhamento e Histórico. A Visão
Fiscal terá o submódulo Relatórios de Visita, e também o submódulo Backlog (ou “em
espera”), que mostrará as denúncias a serem elucidadas, que foram alocadas àquele fiscal,
mas ainda não foram programadas para visita. A Visão Central de Denúncias foi dividida
em: Análise, Acompanhamento, Estatísticas e Relatório Geolocalizado. O Relatório
Geolocalizado é um componente que poderá orientar a fiscalização do órgão a concentrar
esforços em uma determinada área, caso haja maior recorrência de casos em uma região
geográfica. A Visão Área Administrativa da Fiscalização terá todos os mesmo submódulos
da Central de Denúncias, com exceção do módulo de Análise, porém em acréscimo o
submódulo Distribuição para alocação das denúncias aos fiscais.

5. Conclusão e Trabalhos Futuros
Neste trabalho concluímos a modelagem arquitetural, importante etapa no processo de
construção de um sistema. Os resultados são animadores. Os modelos estão em processo de
aprovação por especialistas do órgão e encontra-se em prototipagem com o objetivo de
validação e detalhamento das especificações. Esta construção se prosseguirá nas etapas
comuns para desenvolvimento do sistema: projeto detalhado, codificação, teste,
implantação e treinamento.

6. Referências
[1] da Silva, C. R. C., Tavares, T. C., & Bicharra, A. C . (2009). Governo Eletrônico em

Ambientes Colaborativos Virtuais. IX Simpósio Brasileiro de Sistemas de Informação,
122-132.

[2] Model, B. P. (2013). Notation (BPMN) Version 2.0. Object Management Group
specification.

[3] Uml, O. M. G. (2004). 2.0 Superstructure Specification. OMG, Needham.

[4] Cordova, A. (2013). About Apache Cordova. Disponivel
em:<http://cordova.apache.org>. Acessado em: 15 dez. 2014.

II Latin American School on Software Engineering (ELA-ES 2015)

117

Abordagem de TBM para Automatizar Testes GUI no

Contexto de Aplicações Móveis

Silvia Meireles1, Arilo Dias-Neto1

Instituto de Computação (IComp) – Universidade Federal do Amazonas (UFAM)

Av. General Rodrigo Octávio, 6.200, Campus Universitário Senador Arthur Virgílio

Filho – Setor Norte – Manaus – CEP 69.077-000 – Manaus – AM – Brasil

{silvia,arilo}@icomp.ufam.edu.br

Resumo. A crescente demanda de Aplicações Móveis que devem ser

desenvolvidas em um curto período de tempo traz consigo a necessidade de se

buscar estratégias para reduzir o tempo e/ou custo de desenvolvimento e

promover o aumento da qualidade do produto. Isso pode ser feito por meio do

teste de software, especificamente por meio da automatização de atividades de

teste, onde normalmente são escolhidas atividades repetitivas, como geração e

execução de casos de teste. Este artigo descreve a proposta de uma

abordagem de TBM para apoiar a automatização de testes GUI em Aplicações

Móveis, que engloba a geração do modelo, geração e execução de casos de

teste e suporte a atividades de pós-teste.

1. Introdução

Desde o surgimento do primeiro smartphone em 2007, houve uma verdadeira revolução

causada pela utilização de dispositivos móveis. Hoje, esses dispositivos são

simplesmente fundamentais em nossa vida cotidiana e se torna difícil pensar em realizar

algumas tarefas simples, como enviar/receber mensagens, emails e realizar operações

bancárias, sem o uso de Aplicações Móveis, também conhecidas como Apps.

Apps possuem diversas características não encontradas em outros domínios, tais

como: suporte a uma vasta gama de dispositivos, plataformas e versões. Para avaliação

da sua qualidade, existem outras variáveis que devem ser consideradas no teste de

dispositivos móveis, como, a qualidade da ligação de rede e o próprio movimento do

dispositivo podem influenciar o comportamento de uma App (WILLIAMSON, 2013).

O teste de software é uma forma de se melhorar a qualidade em sistemas de

software (DELAMARO et al., 2007). Apps, como qualquer sistema de software,

necessitam ser testadas, porém, testar é uma atividade cara, complexa e exige grande

esforço (GAO et al., 2014). Esse fato tem despertado o interesse de pesquisadores em

buscar alternativas para reduzir seus elevados custos.

A automatização de teste é uma estratégia comumente utilizada para reduzir o

custo e/ou tempo de teste e também permite aumentar sua eficiência e confiabilidade

(MARIANI et al., 2012). Apesar de inúmeros trabalhos demonstrarem os benefícios da

automatização de teste, o teste manual é a abordagem mais comum em aplicações

móveis na indústria (WILLIAMSON, 2013). Por outro lado, diversos trabalhos têm

pesquisado aspectos individuais da automatização de teste em Apps, como: geração de

modelos para teste (MOREIRA e PAIVA, 2014); geração de oráculos de teste (ZAEEM

II Latin American School on Software Engineering (ELA-ES 2015)

118

et al., 2014), geração de dados de teste (LI et al., 2014; ANAND et al., 2012), teste

baseado em reconhecimento de imagens (CHANG et al., 2010; WU e LIU, 2012),

dentre outros. Embora diversos trabalhos abordem aspectos relacionados à

automatização de teste, normalmente não há integração de técnicas/abordagens para

englobar vários aspectos da geração/execução de teste.

 Zaeem et al. (2014) alertam para a necessidade de se desenvolver ferramentas

de teste automatizado para apoiar o desenvolvimento de aplicativos móveis. Wu e Liu

(2012) ressaltam que o Teste Baseado em Modelos (TBM) é uma das estratégias mais

populares para dar suporte à geração e execução de casos de teste.

Neste trabalho, pretende-se instanciar uma abordagem de TBM que suporte a

geração e execução automática de casos de teste GUI para aplicações móveis. Isso será

feito a partir de técnicas/abordagens existentes para geração automática de dados e

oráculos de teste. Também faz parte do escopo deste trabalho integrar ferramentas em

cada uma das atividades englobadas neste trabalho, com o objetivo de maximizar o uso

dessas ferramentas.

2. Trabalhos relacionados

Moreira e Paiva (2014) descrevem uma abordagem de TBM para aplicações GUI,

denominada Pattern Based GUI Testing (PBGT) que visa sistematizar e automatizar o

processo de Testes GUI por meio de Padrões de Teste GUI. PBGT possui apoio

ferramental, fornecendo um ambiente integrado de modelagem e teste, que permite gerar

automaticamente casos de teste a partir de modelos e executá-los por meio de uma GUI.

Li et al. (2014) propõem o framework ADAutomation para teste automatizado

GUI que utiliza o Diagrama de Atividades da UML. Esse framework modela o

comportamento do usuário, gera casos de teste GUI, oferece análise de pós-teste e

depuração.

Zaeem et al. (2014) propõem uma abordagem extensível para gerar oráculos de

teste que permite a geração de sequências de teste que aproveitam esses oráculos. Nessa

abordagem que possui suporte ferramental, features da aplicação são definidas e

armazenadas em uma biblioteca. Ao testar uma App, features da biblioteca são

instanciadas, e por meio das suas definições são gerados casos de teste com oráculos de

teste para testar exaustivamente cada feature.

Amalfitano et al. (2014) apresentam uma técnica automática para teste GUI em

aplicações Android, denominada MobiGUITAR. Nessa técnica, os estados dos widgets

são extraídos em tempo de execução e são usados para gerar uma máquina de estado

escalável em conjunto com critérios de cobertura de Teste Baseado em Evento, que

permite gerar dados de teste automaticamente.

Anand et al. (2012) apresentam uma técnica, denominada Contest, para gerar

eventos de entrada para Apps. Essa técnica realiza a execução Concolic, que é uma

evolução da execução simbólica para gerar sequências de eventos sistematicamente.

3. Abordagem proposta

Neste trabalho, pretende-se instanciar uma abordagem automatizada para TBM no

contexto de aplicações móveis que contemple a geração do modelo, geração e execução

de casos de teste e apoie a comparação de resultados do teste. A primeira atividade desta

II Latin American School on Software Engineering (ELA-ES 2015)

119

abordagem é a geração do modelo (estrutural ou comportamental) da App testada. Esse

modelo pode ser construído a partir dos seguintes artefatos de software:

 Código da aplicação, como demonstrado em Amalfitano et al. (2014) que é

uma extensão ao trabalho de Nguyen et al. (2013). Neste, a ferramenta

Guitar explora automaticamente a aplicação testada capturando todas as

possíveis interações de eventos GUI, e ao final deste processo gera o

modelo estrutural da mesma, conhecida como Árvore GUI;

 Diagramas da UML, como o Diagrama de Atividades, que é utilizado para

modelar o comportamento do usuário em (Li et al., 2014);

 Modelos GUI descritos em outras linguagens, como o modelo em linguagem

PARADIGM proposto em (Moreira e Paiva, 2014), que descrevem padrões

de widgets.

Com base no modelo gerado, serão utilizadas técnicas para gerar um conjunto de

casos de teste por meio da geração de dados e oráculos de teste. Para gerar as entradas

do teste, podem ser utilizadas as seguintes abordagens:

 Execução simbólica, que permite gerar sequências de eventos, como

proposta em (Anand et al., 2012) que utiliza a execução Concolic;

 Mapeamento de Padrões GUI que gera caminhos entre elementos iniciais

e finais dentro do modelo descrito em (MOREIRA e PAIVA, 2014).

Outra atividade importante é a geração de oráculos de teste para determinar se a

execução dos testes está correta. Para essa etapa, pode-se partir do trabalho Zaeem et al.

(2014), adaptando-se a abordagem que utiliza a definição de features de interação de

usuários que são incrementalmente adicionadas.

Uma vez geradas as entradas e os oráculos de teste, é possível executar

os casos de teste. Para isso, deve-se escolher uma plataforma sob a qual os casos de

teste serão executados. Nessa etapa, pode-se optar pela plataforma Android, visto que a

mesma é a plataforma mais popular de Apps e é utilizada em diversos trabalhos

(ZAEEM et al., 2014; NGUYEN et al., 2013).

Ao final da execução de cada caso de teste, o resultado obtido é comparado

com o resultado definido pelo respectivo oráculo. Nos casos em que o resultado obtido

é igual ao previsto pelo oráculo, os testes são aprovados, caso contrário os incidentes de

teste devem ser reportados.

A abordagem proposta será desenvolvida a partir de técnicas/abordagens

existentes, pois o objetivo é reutilizá-las e adaptá-las quando necessário. Esta

abordagem contemplará as principais atividades do processo automatição de teste

em aplicações móveis com o propósito de integrar ferramentas utilizadas neste processo.

4. Resultados esperados

Como resultado espera-se automatizar testes GUI em aplicações móveis e com isso

reduzir o ciclo de desenvolvimento da automatização de testes, por meio da redução de

tempo/custo nas atividades de uma abordagem de TBM para Apps, como geração de

modelo e geração/execução dos casos de teste GUI.

II Latin American School on Software Engineering (ELA-ES 2015)

120

Dentro deste trabalho, está definida a avaliação experimental de ferramentas de

automatização de testes GUI com o propósito de identificá-las e/ou integrá-las com o

propósito de maximizem seu uso.

Agradecimentos

Os autores agradecem à FAPEAM e INDT pelo apoio financeiro para a realização desta

pesquisa.

Referências

Amalfitano, D.; Fasolino, A.; Tramontana, P.; Ta, B.; Memon, A. (2014)

"MobiGUITAR - A Tool for Automated Model-Based Testing of Mobile Apps,"

Software, IEEE , vol.PP, no.99, pp.1,1.

Anand, Saswat; Naik Mayur; Harrold, Mary Jean; Yang, Hongseok (2012)

"Automated concolic testing of smartphone apps". In: Proceedings of the ACM

SIGSOFT.

Chang, Tsung-Hsiang; Yeh, Tom; Miller, Robert C. (2010) "GUI testing using computer

vision". In: Proceedings of the Conference on Human Factors in Computing

Systems.

Delamaro, M. E.; Maldonado, J. C.; Jino, M. (2007) "Introdução ao Teste de Software".

Rio de Janeiro: Elsevier.

Gao, J.; Wei-Tek Tsai; Paul, R.; Xiaoying Bai; Uehara, T., (2014) "Mobile Testing-as-a-

Service (MTaaS) -- Infrastructures, Issues, Solutions and Needs," , In: 15th

International Symposium on High-Assurance Systems Engineering (HASE), vol.,

no., pp.158,167, 9-11.

Li, Ang; Qin, Zishan; Chen, Mingsong; Liu, Jing (2014) "ADAutomation: An

Activity Diagram Based Automated GUI Testing Framework for Smartphone

Applications". In: 8th International Conference on Software Security and Reliability

(SERE), pp.68-77.

Mariani, Leonardo; Pezzè, Mauro; Riganelli, Oliviero; Santoro, Mauro (2012) "Auto

BlackTest: Automatic Black-Box Testing of Interactive Applications". In: 34th

International Conference on Software Engenieering.

Moreira, Rodrigo M.L.; Paiva, Ana C.R. (2014) "PBGTTool: An Integrated Modeling

and Testing Environment for Pattern-Based GUI Testing". In: 29th IEEE/ACM

International Conference on Automated Software Engineering (ASE).

Nguyen, Bao; Robbins, Bryan; Banerjee, Ishan; Memon, Atif. (2013) "Guitar: an

innovative tool for automated testing of gui-driven software".Automated Software

Engineering, pp. 1-41, Springer US.

Zaeem, Razieh N.; Prasad, Mukul R.; Khurshid, Sarfraz (2014) "Automated generation

of oracles for testing user-interaction features of mobile apps". In: 7th International

Conference on Software Testing, Verication and Validation, pp.183-192.

Williamson, L. (2013) "A mobile application development primer: A guide for

enterprise teams working on mobile application projects". IBM Software Thought

Leadership White Paper.

Wu, Yumei; Liu, Zhifang (2012) "A Model Based Testing Approach for Mobile

Device". In: International Conference on Industrial Control and Electronics

Engineering (ICICEE), pp.1885-1888.

II Latin American School on Software Engineering (ELA-ES 2015)

121

Discovery and Usage of Computing Devices in IoT
Environments

Willian Lunardi1, Sabrina Marczak1, Leonardo Amaral1, Fabiano Hessel1

1Faculdade de Informática – Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS)

{willian.lunardi, leonardo.amaral}@acad.pucrs.br,

{sabrina.marczak, fabiano.hessel}@pucrs.br

Abstract. During the past few years, with the fast development and proliferation
of the Internet of Things (IoT) as well as with the growing number of active com-
puting devices in IoT environments around the world, many application areas
have started to exploit this new computing paradigm. Consequently, a mecha-
nism to deal with different devices has become necessary. Middleware systems
solutions for IoT have been developed in both research and industrial environ-
ments to supply this need. However, discover and usage of computing devices
remain a critical challenge due to the large amount of devices available and the
lack of intuitive mechanisms to deal with them. This paper presents a brief and
preliminary discussion on the alternatives reported in literature to address this
issue. Our long-term goal is to propose a framework to help programmers of
IoT applications to select and to interact with middleware devices.

1. Introduction
The term Internet of Things (IoT) was coined in 1998 [Kevin 2009] and defined as
the computing paradigm that allows people and things to be connected Anytime, Any-
place, with Anything and Anyone, ideally using Any path/network and Any service
[Guillemin et al. 2009]. In this sense, there are current market statistics and predictions
that demonstrate a rapid growth in computing device deployments related to IoT environ-
ments. By 2020, it is estimated that there will be 50 to 100 billion IoT devices connected
to the Internet [Sundmaeker et al. 2010]. These statistics and facts imply that we will be
faced with a vast amount of IoT devices, which, when properly used, will add more value
to the environment.

A inherited issue in this new setting is information overload, i.e. users face vast
and distributed information sources, and have difficulty in selecting those that satisfy
their needs and interests. In this sense, the biggest challenge and time-consuming task is
to select and use the appropriate devices when there is a large amount of available devices
to choose from and, often, with heterogeneous characteristics.

Middleware systems solutions for IoT have been developed to supply this
need. However, discovery and usage of middleware devices remain a critical challenge
[Perera et al. 2012]. End users, such as programmers that are in charge of selecting (ag-
gregating) heterogeneous devices in order to contextualize virtual environments and apply
operations among them, are not aware of domain modeling and middleware specification
patterns (to define what and how they want to interact with things/devices). Besides, pro-
grammers may not have enough knowledge to perform such task without devoting time to

II Latin American School on Software Engineering (ELA-ES 2015)

122

understand the middleware patterns or to engage others who are responsible for modeling
the domain of devices.

By analyzing other IoT middleware systems (e.g., [GSN Team],
[Digital Enterprise Research Institute], [Amaral et al. 2015]), we found that they
do not provide intuitive search methods and also do not focus on ease of use of devices
by programmers. Trying to fill this gap, our long-term goal is to propose a framework
that will embed mechanisms to a middleware solution to solve these issues. Our first step
in our research journey is to learn more about how to suggest devices based on users
needs. This paper presents a brief overview about the IoT paradigm to contextualize the
motivation to our work, and describes two device recommendation approaches we have
found in our preliminary literature search that might be applicable to our solution.

2. Internet of Things and Context of Things
During the past decade, the IoT has gained significant attention by academia and by in-
dustry. It promises to create a world where all objects (also called ’smart objects’) around
us are connected to the Internet and communicate with each other with minimum human
intervention [Le-Phuoc et al. 2009].

On the other hand, there is no any standard definition for IoT [Perera et al. 2014].
A commonly used definition is that IoT allows people and things to be connected Any-
time, Anyplace, with Anything and Anyone, ideally using Any path/network and Any
service [Guillemin et al. 2009].

In this sense, IoT ecosystems are based on a layered architecture style and use this
view to abstract the integration of objects and to provide services solutions to applica-
tions [Jing et al. 2014]. In IoT, high-level system layers as the application layer are com-
posed of IoT applications and middleware system, which is a software layer interposed
between the infrastructure of devices and applications, and is responsible for providing
services according to devices functionality [Atzori et al. 2010]. Many of the system archi-
tectures proposed for IoT middleware comply with Service-Oriented Architecture (SOA).
This approach allows each device to offer its functionality as standard services. There-
fore, IoT middleware systems have evolved from hiding network details to applications
into more sophisticated systems to handle many important requirements, providing sup-
port for heterogeneity and interoperability of devices, data management, security, etc.

In most instances, the middleware device connection is followed by a contextual-
ization process that aims to acquires and stored its characteristics. Context is considered
any information that can be used to characterize the situation of an entity. Besides, context
information about IoT devices needs to be acquired and stored with annotations that will
make easy to retrieve it later. Abowd and Mynatt [Abowd and Mynatt 2000] identified
the five Ws (Who, What, Where, When, and Why) as the minimum annotations that are
necessary to understand context. Studies like this one imply that IoT middleware requires
a mechanism for the acquisition of context characteristics of devices in order to provide
features such devices discovery, management, and others.

3. Recommenders Systems
As mentioned earlier, device discovery remains a critical challenge. To move towards fill-
ing this gap, we learned that context information can be used to promote devices discovery

II Latin American School on Software Engineering (ELA-ES 2015)

123

in IoT middleware solutions. Also, that a software system that uses such contextual infor-
mation to recommend devices based on users needs can provide a more intuitive manner
to the user discover and use devices.

A system that recommends things by producing customized recommendations
as output or has the effect of guiding the user in a personalized way to interesting or
useful objects in a large space of possible options is named a recommendation system
[Burke 2002].

Adomavicius and Tuzhilin [Adomavicius and Tuzhilin 2011] elicited different ap-
proaches to use contextual information in the recommendation process. These can be
broadly categorized into two groups: (1) recommendation via querying and search, and
(2) recommendation via preference elicitation and estimation.

1. The querying and search approach uses information to query or search a certain
repository of resources and present the best matching resources to the user.

2. The preference elicitation and estimation approach attempts to model and learn
user preferences, i.e., by observing the interactions of this and other users with the
systems or by obtaining preference feedback from the user on various previously
recommended items, and uses these preferences to make its recommendations.

Search-based recommender systems usually create an index of objects and use
this index to respond to queries from users. An index is a data structure that makes the
system efficient to retrieve objects given the value of one or more elements of the objects.
Queries are evaluated by processing the index in order to identify similarities, which are
then returned to the user. These systems also have procedures to analyze variations in
documents and queries. The verification of these variations can improve the searching
process. These procedures can play functions such as ’synonym check’ which aims to
search for words with equivalent meanings, ’stopwords check’ which aims to identify
keywords that are not considered relevant, and so on.

4. Discussion and Research Plan
With the constant growth of the IoT and the provision of a huge number of IoT devices
in the near future, it is unfeasible that application programmers manually look for desired
devices without a standardized system support.

A IoT context-based recommender system can provide improvements to the IoT
application development process that is composed of the process of finding and using mid-
dleware devices, especially for users that do not know the domain and/or the middleware
configuration patterns.

Given our previously stated problem, facts, and definitions, with our preliminary
review of literature, we found that we can recommend devices and guide the user through
search-based recommender systems. In this case, the user will not be aware of the content
and structure of the system data to ask a precise question. Therefore, through a search we
can provide a ranked list of items that are strongly related to the search terms that the user
entered, even if they do not exactly match.

The next step is to conduct a systematic literature review of search engines and
search-based recommender systems to conclude which techniques are most appropriate to

II Latin American School on Software Engineering (ELA-ES 2015)

124

compose our framework solution. Once we finish this more formal and organized review,
we will develop a software prototype that implements our framework solution composed
of the chosen techniques. The framework will be coupled on SOA-based middleware
previously developed by our research group [Amaral et al. 2015]. Next, we will conduct
a case study with real data from a health care system to evaluate the framework.

References
Abowd, G. D. and Mynatt, E. D. (2000). Charting past, present, and future research in

ubiquitous computing. ACM Trans. Comput.-Hum. Interact., 7(1):29–58.

Adomavicius, G. and Tuzhilin, A. (2011). Context-aware recommender systems. In
Recommender systems handbook, pages 217–253. Springer.

Amaral, L., Tiburski, R., Matos, E., and Hessel, F. (2015). Cooperative middleware plat-
form as a service for internet of things applications. In Proc. of the ACM Symposium
on Applied Computing (to be published), SAC ’15, New York, NY, USA. ACM.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer
Networks, 54(15):2787 – 2805.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12(4):331–370.

Digital Enterprise Research Institute. Linked sensor middleware (lsm). http://lsm.
deri.ie/. Accessed: 2015-03-26.

GSN Team. Global Sensor Network. http://sourceforge.net/apps/trac/
gsn/. Accessed: 2015-03-11.

Guillemin, P., Friess, P., et al. (2009). Internet of things strategic research roadmap. The
Cluster of European Research Projects, Tech. Rep., September.

Jing, Q., Vasilakos, A., Wan, J., Lu, J., and Qiu, D. (2014). Security of the internet of
things: perspectives and challenges. Wireless Networks, 20(8):2481–2501.

Kevin, A. (2009). That internet of things thing, in the real world things matter more than
ideas. RFID Journal, 22.

Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., and Morbidoni, C. (2009).
Rapid prototyping of semantic mash-ups through semantic web pipes. In Proceedings
of the 18th international conference on World wide web, pages 581–590. ACM.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2012). Ca4iot: Con-
text awareness for internet of things. In Proc. Int’l Conf. on Green Computing and
Communications, pages 775–782. IEEE.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014). Context aware
computing for the internet of things: A survey. Communications Surveys Tutorials,
IEEE, 16(1):414–454.

Sundmaeker, H., Guillemin, P., Friess, P., and Woelfflé, S. (2010). Vision and challenges
for realising the internet of things.

II Latin American School on Software Engineering (ELA-ES 2015)

125

Análise da adoção de processo de medição no

desenvolvimento ágil de software

Luis Paulo Correa
1
, Raquel Aparecida Pegoraro

 1

1
Departamento de Ciência da Computação – Universidade Federal da Fronteira Sul

(UFFS) – Chapecó, SC – Brasil

correaluisp@gmail.com, raquel.pegoraro@uffs.edu.br

Resumo. Motivados pelo crescimento da adoção dos métodos ágeis e pela

necessidade de realizar a análise do desempenho desses projetos através da

análise de métricas e da implantação de processos de medição, bem como

pela carência de estudos que tratam sobre esse assunto, esta pesquisa tem

como objetivos: (a) Avaliar o impacto da adoção de um processo de medição

na análise do desempenho numa empresa que utiliza métodos ágeis na gestão

de seus projetos; (b) Identificar os fatores comportamentais ou

organizacionais que interfiram positivamente ou negativamente na

implantação do processo de medição. Ao final deste projeto de pesquisa

espera-se alcançar os seguintes resultados: (a) entender quais fatores

interferem na implantação do processo de medição com métodos ágeis; (b)

entender se a adoção de um processo de medição auxilia na análise de

medição avaliando os fatores qualidade, produtividade e evolução do projeto,

e qual a relação de impacto entre esses fatores.

Abstract. Motivated by developing of adoption of agile methods and the

necessity to do the performance analysis projects through analyzing metrics

and the implementation of measurement processes, as well as the lack of

studies that deal with this issue, this research aims to: (a) Evaluate the impact

of the measuring process adoption in the performance analysis on a company

which uses the agile methods in the management of its project; b) Identify the

behavioral or organizational factors that interfere positively or negatively in

the implementation in the measuring process. By the end of this research we

expected to achieve the following results: (a) Understand which factors

influence the implementation of the measurement process with agile methods;

(b) Understand if the adoption of measurement process helps in measuring

analysis evaluating the quality factors, productivity and evolution of the

project, and what the impact of relationship between these factors.

Palavras-chaves: Métricas de software. Processo de medição. Métodos ágeis.

Pesquisa exploratória. Projeto de experimentos.

II Latin American School on Software Engineering (ELA-ES 2015)

126

1. Introdução

 Os métodos ágeis tem chamado atenção das empresas de software devido aos

inúmeros relatos de sucesso, porém, segundo Dingsoyr et al., (2012), apesar do

crescimento ascendente de sua adoção, muito trabalho ainda tem de ser empreendido

para tornar coerente o discurso atual sobre a agilidade. Mikulenas e Butleris (2010)

afirmam que as pesquisas da área se concentram na apresentação de histórias de sucesso

ou de lições aprendidas por organizações que adotaram métodos ágeis para projetos

específicos, havendo uma falta de pesquisas de avaliação de adequação dos métodos

ágeis, considerando diversas características ambientais em empresas de software, entre

eles adoção de métricas de software.

 As métricas são essenciais para as empresas desenvolvedoras de software, pois

ajudam na medição da qualidade, na estimava dos recursos necessários e dos custos, no

planejamento e controle do progresso de desenvolvimento de software (Mishra, Kumar

e Kumar, 2009). Poonacha e Bhattacharya (2012) argumentam que muitas organizações

adotam métodos ágeis sem entender quais os fatores devem ser medidos e controlados.

O Standish Group publicou em 2011 o relatório Chaos Manisfesto que compara

o desempenho entre projetos ágeis e tradicionais de software e apresenta fatores

motivadores para adoção de métodos ágeis. Nos projetos tradicionais (modelo cascata)

14% tiveram sucesso, 57% foram contestados e 29% falharam, sendo que nos projetos

ágeis 42% tiveram sucesso, 49% foram contestados e 9% falharam (Standish Group,

2012). Os dados apresentados na pesquisa mostram que os projetos realizados a partir da

abordagem ágil tiveram mais sucesso que os tradicionais, porém a taxa de projetos que

falharam ou foram contestados ainda é alta, o que demonstra sérios problemas de gestão

e reforça a importância de um monitoramento e controle eficazes nos projetos desta

natureza.

 A revisão sistemática publicada por Dyba e Dingsoyr (2008) a qual faz um vasto

levantamento sobre estudos empíricos utilizando métodos ágeis, não cita nenhum estudo

sobre métricas de software, processo de medição ou indicadores de desempenho,

constatando que nos primeiros anos após o advento do Manifesto Ágil os estudos não

trataram destes temas. Após este período alguns estudos foram publicados sobre o

assunto, porém predominando estudos de caso com relatos de experiência sobre a

adoção de métricas em métodos ágeis (Petersen e Wohlin, 2011) (Talby e Dubinsky,

2009) (Green, 2011) (Middleton e Joyce, 2012). Os autores Dingsoyr et al., (2012)

avaliaram os primeiros 10 anos dos métodos ágeis e afirmam que entre os assuntos que

ainda precisam ser evoluídos nos métodos ágeis está o gerenciamento desses projetos,

especialmente sobre planejamento, controle, avaliação do desempenho e estimativas.

Neste contexto, este projeto de pesquisa possui os seguintes objetivos:

 Avaliar o impacto da adoção de um processo de medição na análise do

desempenho numa empresa que utiliza métodos ágeis na gestão de seus projetos;

 Identificar os fatores comportamentais ou organizacionais que interfiram

positivamente ou negativamente na implantação do processo de medição.

 Este artigo está estruturado da seguinte forma: na sessão 2 são apresentados os

procedimentos metodológicos que serão utilizados e na sessão 3 são apresentados os

resultados esperados para esta pesquisa.

II Latin American School on Software Engineering (ELA-ES 2015)

127

2. Procedimentos Metodológicos

 A metodologia que será utilizada na pesquisa consistirá em:

a) Realização de um estudo de caso numa empresa de grande porte que possui um

setor de desenvolvimento de software para atender as demandas internas de

sistemas de informação e utiliza métodos ágeis na gestão de seus projetos, sendo

subdivido em 2 fases de pesquisa. Na primeira fase será utilizada a estratégia de

pesquisa exploratória (Gil, 2010) e serão acompanhadas várias iterações de um

projeto com o objetivo de conhecer a realidade vivenciada pela empresa quanto

ao monitoramento dos seus projetos, neste momento sem interferência do

pesquisador. Posteriormente será utilizada a estratégia de pesquisa-ação (Gil,

2010), nesta fase será implantado um processo de medição seguido às

recomendações de Pegoraro (2014) que apresenta recomendações de como

implantar um processo de medição para projetos ágeis de software, e de Softex

(2011) que define resultados a serem esperados de um processo de medição

maduro. Para definição das métricas será utilizado o método GQM (Goals

Questions Metrics) proposto por Basili et al. (1996), abordagem muito utilizada

para definição de métricas na engenharia de software. Nesta fase da pesquisa

serão utilizadas as técnicas de coleta de dados de entrevistas e grupos focados.

b) Para a avaliação do impacto da adoção de um processo de medição na análise de

desempenho, será realizado um estudo quantitativo através técnica de análise e

projetos de experimentos. Os fatores a serem investigados serão: (a) qualidade;

(b) produtividade; e (c) evolução do projeto. Foram definidos esses fatores por

serem aspectos críticos da gestão ágil de projetos. A forma de controle desses

fatores será através do monitoramento das métricas e os dados serão coletados

durante as fases de pesquisa exploratória e pesquisa-ação; após, os resultados

serão submetidos à análise de variância (ANOVA) para identificar quais fatores

tiveram interação significativa após a adoção do processo de medição. Para a

condução do projeto de experimentos será seguindo as recomendações de

(Werkema e Aguiar, 1996) e (Montgomery, 1997).

3. Resultados esperados

 Ao final deste projeto de pesquisa espera-se alcançar os seguintes resultados: (a)

entender quais fatores interferem na implantação do processo de medição nos métodos

ágeis; (b) entender se a adoção de um processo de medição auxilia na análise de

desempenho avaliando os fatores qualidade, produtividade e evolução do projeto, e qual

a relação de impacto entre esses fatores.

4. Referências

BIOLCHINI, J. C. de A. et al. Scientific research ontology to support systematic review

in software engineering. Advanced Engineering Informatics, v. 21, n. 2, p. 133-151,

2007.

II Latin American School on Software Engineering (ELA-ES 2015)

128

BASILI, V. et al. Goal question metric approach. Encyclopedia of software engineering.

In: Encyclopedia of Software Engineering. John Wiley and Sons, pp. 528–532, 1996.

DINGSOYR, T. et al. A decade of agile methodologies: Towards explaining agile

software development. Journal of Systems and Software, v. 85, n. 6, p. 1213–1221,

jun. 2012.

DYBA, T.; DINGSOYR, T. Empirical studies of agile software development: A

systematic review. Information and Software Technology, Amsterdam, v. 50, n. 9-10,

p.833-859, ago. 2008.

GIL, A. C. Como elaborar projetos de pesquisa. 5. Ed. São Paulo: Atlas, 2010.

GREEN,P. Measuring the Impact of Scrum on Product Development at Adobe Systems.

System Sciences (HICSS), 2011 44th Hawaii International Conference on. p. 1-10.

MIDDLETON, P.; JOYCE, D. Lean Software Management: BBC Worldwide Case

Study. Engineering Management, IEEE Transactions on. v. 59, n.1, p.20-32, 2012.

MIKULENAS, G.; BUTLERIS, R. An approach for constructing evaluation model of

suitability assessment of agile methods using analytic hierarchy process. Electronics

and Electrical Engineering, v. 10, n. 106, p. 99-104, 2010.

MISHRA, D.; BALCIOGLU, E.; MISHRA, A. Measuring Project and Quality aspects

in Agile Software Development. TTEM-Technics Technologies Education

Management, v. 7, n. 1, 2012.

MONTGOMERY, D. C. Design and Analysis of Experiments. 5. ed. New York: John

Wiley & Sons, 1997.

SOFTEX. Melhoria de Processo do Software Brasileiro: Guia Geral. Campinas:

SOFTEX, 2011.

STANDISH Group. Chaos Manifesto. 2012. The Standish Group International.

Relatório. Disponível em: <https://secure.standishgroup.com/reports/reports.php>

Acesso em: 01 mar. 2015.

POONACHA, K. M.; BHATTACHARYA, S. Towards a Framework for Assessing

Agility. System Science (HICSS), In: 45TH HAWAII INTERNATIONAL

CONFERENCE, 2012. Proceedings… p. 5329-5338, 2012.

PEGORARO, R. A. Métricas de avaliação para abordagens ágeis em projetos de

software. 2014. Tese. Universidade de Federal do Rio Grande do Sul, 2014.

PETERSEN, K. WOHLIN, C. Measuring the flow in lean software development.

Software: Practice and Experience. v. 41. n. 9, p. 975-996, 2011.

TALBY, D.; DUBINSKY,Y. Governance of an agile software project. Software

Development Governance, 2009. SDG '09. ICSE Workshop on. p.40-45.

WERKEMA, M. C. C.; AGUIAR, S. Planejamento e Análise de Experimentos: como

identificar e avaliar as principais variáveis influentes em um processo. Belo

Horizonte: Fundação Christiano Ottoni, 1996.

II Latin American School on Software Engineering (ELA-ES 2015)

129

On the Transformation to Agile in a Large-Complex Globally
Distributed Company: A Research Plan to Define Guidelines

Greice Roman, Sabrina Marczak, Alessandra Dutra

1Faculdade de Informática – Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS)
Av. Ipiranga, 6681 – Partenon – 90.619-900 – Porto Alegre – RS – Brazil

greice.roman@acad.pucrs.br, {sabrina.marczak, alessandra.dutra}@pucrs.br

Abstract. The transformation to agile is not a simple process and although there
is vast literature on the topic, there is still no consolidated body of knowledge
on how to proceed when this transformation happens in large-complex glob-
ally distributed companies. This paper presents the research plan to follow the
transformation into agile of a large-complex distributed IT organization aiming
to serve as an exploratory case study for our long-term goal of proposing a set
of guidelines to guide the transformation in such type of company.

1. Introduction
The Agile Manifesto [Beck and colleagues 2001] was written in February 2001. It offers
new values to motivate software companies to deliver high-quality products faster and
produce satisfied customers. Since then, companies are discussing whether to become
agile and how to go about transforming themselves to achieve such ’agility’. The trans-
formation process involves more than deciding on which agile method to adopt. It refers
to making changes in such a way that the company and its projects will ’become’ agile.

Academia has been supporting industry to go through the transformation process
for as long as the agile philosophy has been defined. However, achieving success in large-
scale companies as reported in [Fry and Greene 2007]), for example, is a complex process
and brings numerous challenges to organizations [Korhonen 2013]. For instance, how
much can requirements keep changing when they cross hundreds of applications at a time?
[Dingsøyr and Moe 2014] presents a research agenda on the topic showing that there are
still several open questions. Given the large number of large companies migrating to agile,
there is a need for a consolidated and more extensive body of knowledge.

This paper presents the research plan to follow the transformation into agile of a
large-complex distributed IT organization aiming to serve as an exploratory case study
for our long-term goal of proposing a set of guidelines to guide the agile transformation
process in large-complex globally distributed software companies. We will contribute to
furthering the body of knowledge on the topic for this type of company.

2. Agile Transformation
The agile transformation process (ATP) has been encouraged to remedy inherent problems
of traditional software development [Gandomani et al. 2014] and is defined as the process
of leaving the traditional way to development software and adopting the agile philosophy,
tools, and principles [Ranganath 2011]. A true ATP must focus on ’being’ agile rather
than ’doing’ agile. This is the main reason that makes ATP more difficult than expected.

II Latin American School on Software Engineering (ELA-ES 2015)

130

[Gandomani et al. 2014] identified a set of categories of an ATP, as follows: pre-
requisites to become agile, training on methods and what it is about, facilitators (people
who will guide the process), transition framework (a stepwise view on how to do it), man-
aging the transition, assessment of progress, reasons for aiming to agility, coaching the
transition, technical issues, human aspects-related issues, customer-related issues, selec-
tion of pilot projects for the transition, and agile method selection. [Fontana et al. 2015],
on the other hand, identified the following categories: practices to become agile, team
composition and behavior, deliveries (evolution from traditional to continuous delivery),
requirements (transition from traditional requirements elicitation to use stories), product
(practices to improve the software product), and customer relationship.

In large-scale agile transformation, the key challenges seem to be managing a large
number of agile teams, dividing work among those teams, achieving the system-wide
properties of the software, and guaranteeing the simultaneous releases of cross-cutting
features [Ganesh and Thangasamy 2012]. In their study, [Dingsøyr and Moe 2014] iden-
tified four principles to be observed in large-scale agile development, namely: architec-
ture - figuring out how work is coordinated; inter-team coordination - creating effective
knowledge networks is essential due to the knowledge-intensive nature of software de-
velopment; portfolio management - providing continuous feedback from the portfolio to
project levels enables the teams and project members to take decisions that are consistent
with the goals of the large-scale agile portfolio, and scaling - describing the context for
agility and scale is essential for understanding how to improve agility in large-scale agile.

The discussion becomes even more interesting when a large company is physically
distributed and develops complex-interrelated applications.

3. Our Long-Term Research Plan and Case Study Design

To achieve our goal we will follow a qualitative approach organized in four major phases
(see Figure 1). Phase 1, named Foundation, aims to build the foundation for our two-year
long investigation and is organized in two major sub-phases. The Literature Review sub-
phase aims to review definitions for related concepts such as agile transformation, large-
scale development, and development of complex applications, and define the concepts
we will adopt. It will also serve the purpose of identifying related work. We expect
to identify an initial list of aspects that have to be considered when going through the
referred transformation (Jan to May’15). The Benchmarking sub-phase aims to provide
us with deeper knowledge about how large-scale complex globally distributed companies
have gone through the ATP themselves. We will visit companies in Europe who have
gone through this process and discuss the aspects identified during the Literature Review
with them. We plan two months of work including visits and data analysis (Jun-Jul’15).

Phase 2, named Exploration, composed of a case study, aims to further the knowl-
edge acquired in Phase 1 by observing the identified aspects in a more comprehensive
manner (Aug-Dec’15). Section 3.1 presents the case study design in more details. Phase
3, named Solution, aims to have our guidelines for agile transformation in large-scale
complex globally distributed companies defined (version alpha). We will systematically
organize the insights from the prior phases in the format of policies or procedures that will
indicate a course of actions to be taken for each of the aspects related to the transformation
when a company wants to become agile (period: Jan-Apr’16).

II Latin American School on Software Engineering (ELA-ES 2015)

131

Phase 1: Foundation

Literature Review

Benchmarking
Case study

Phase 2: Exploration

Guidelines draft

Phase 3: Solution Phase 4: Evaluation

Field study:
Interviews

Field study:
Institutionalization

Figure 1. Proposed research design

In Phase 4, named Evaluation, we will evaluate whether our proposed guidelines
is fit to help large-scale complex globally distributed companies to become agile. We
will conduct a field study based on interviews with professionals who have been involved
with agile transformation aiming to have them pointing out whether each of the proposed
guidelines are proper to the aspect they mean to address and how they could be improved
(May-Jul’16). Once we compile the provided feedback, we will generate a new version
of the guidelines document (version beta)–as part of Phase 3 (Aug’16), and then consult
a new set of professionals to evaluate this version–as part of Phase 4 again (Set-Dec’16).
This time we will interview professionals who are currently involved in the transformation
process and that would be willing to consider adopting our guidelines. We will invite them
to select a sample to try in their companies and later ask them about their perception of
the results. There is a risk that guidelines will not be institutionalized given the short
time, however, we still think that having a preliminary try to observe changes and results
is valuable to have a more refined feedback on how fit is our set of guidelines.

3.1. Case Study Background and Design

The case study will be investigate in a large IT multinational company chosen by conve-
nience. The company, named ORG (fictitious name), has started its agile transformation
in Jan’15. ORG’s IT department develops software products to support the organization’
business processes. Demands to develop or to update these products come from the sev-
eral business departments distributed around the world. The IT department is organized
by business area. Each IT team attends a business area only and is composed of the fol-
lowing functions: project management, business and requirements analysts, developers,
and architects. The Test team is a separate organizational unit and has its members allo-
cated per project by business area as requested by IT teams. IT personnel are distributed
among the headquarters’ office located in the US and also in Brazil, India, and Malaysia.

Projects are defined once a year as part of the IT roadmap plan. Once approved,
projects are assigned to project managers who allocate their teams and start a discussion
with business representatives acting as project owner proxies of what features should be
developed first. A Sprint plan is then approved and development starts. A project backlog
is kept and rediscussed each iteration until the scope is finished. Each project might tackle
business requests that might cross software applications, presenting the organization with
the challenge of having to manage the complexity of large systems interlocks.

Each business IT team is free to organize itself as it wants as long as the team re-
spects the worldwide guidelines defined by the IT board, such as adopt the tools to support
software development defined by the organization and follow agile practices proposed by
Scrum and XP only. Managers anticipate that this ’freedom’ will increase the complexity

II Latin American School on Software Engineering (ELA-ES 2015)

132

of coordinating software development cross business areas and system interlocks.

We will observe four projects selected as pilots by the organization for the ATP.
These projects are receiving training and guidance from a company specialized in Agile
Transformation. Each project belongs to a distinct business area and are distributed in at
least two sites each. We will be present at the Brazilian site but we also got permission to
participate in virtual meetings and conference calls with remote team members.

We aim to gather data about how the teams are organizing themselves and why
such organization, which practices they are adopting and why, which issues they are going
through and how they are solving them, and which needs they have that require feedback
from senior management. We will take into consideration the work environment they
have (e.g., applications and team members background, imposed organizational guide-
lines, etc) and collect the perception they have on how such environment influences the
transformation. Data will be collected and analyzed simultaneously to allow for follow-up
clarifications and exploration of new insights coming from the observed data.

4. Final Remarks
This paper presents our long-term goal to define a set of guidelines to support the ATP in
large-complex globally distributed companies. We discuss in more details one of the four
research phases, Phase 2, composed of a case study, highlighting the importance to collect
empirical evidence in this kind of study. Although we have just recently started our in-
vestigation, we have already identified a set of aspects that have to be observed during the
ATP from literature. We expect that our findings will shed some light in understanding the
phenomena and providing guidance to companies who want to go through this process.

Acknowledgment
This work is sponsored by the PDTI Program, financed by Dell Computers of Brazil Ltd.
(Law 8.248/91).

References
Beck, K. and colleagues (2001). Manifesto for agile software development.

Dingsøyr, T. and Moe, N. (2014). Towards principles of large-scale agile development.
In Dingsøyr, T., Moe, N., Tonelli, R., Counsell, S., Gencel, C., and Petersen, K., edi-
tors, Agile Methods. Large-Scale Development, Refactoring, Testing, and Estimation,
volume 199 of Lecture Notes in Business Information Processing, pages 1–8. Springer.

Fontana, R., Meyer, V., Reinehr, S., and Malucelli, A. (2015). Progressive outcomes: A
framework for maturing in agile sw development. J. of Systems and Sw, 102:88–108.

Gandomani, T., Zulzalil, H., and Nafchi, M. (2014). Agile transformation: What is it
about? In Proc. Malaysian SEng. Conf., 2014, Langkawi, Malaysia, pages 240–245.

Ganesh, N. and Thangasamy, S. (2012). Lessons learned in transforming from traditional
to agile development. Journal of Computer Science, 8:389–392.

Korhonen, K. (2013). Evaluating the impact of an agile transformation: a longitudinal
case study in a distributed context. Software Quality Journal, 21:599–624.

Ranganath, P. (2011). Elevating teams from ’doing’ agile to ’being’ and ’living’ agile. In
Proceedings of the Agile Conference, Aug 2011, Salt Lake City, USA, pages 187–194.

II Latin American School on Software Engineering (ELA-ES 2015)

133

Guidelines for Modularizing the Monitor Component
when Refactoring Adaptive Systems

Marcel A. Serikawa1, Bento R. Siqueira1, Fabiano C. Ferrari1,
Ricardo Menotti1, Valter V. de Camargo1

1Computing Department – Federal University of São Carlos (UFSCar)
Caixa Postal 676 – 13.565-905 – Sao Carlos – SP – Brazil

{marcel.serikawa, bento.siqueira, fabiano, menotti, valter}@dc.ufscar.br

Abstract. Adaptive systems are system that can adapt themselves to environ-
mental or internal changes in order to improve their quality of service. Most
authors agree that control loops are an intrinsic part of these systems, but in
most cases they are designed and implemented in a spread and tangled way,
harnessing maintenance activities. An alternative for that is to perform refac-
torings aiming at re-modularizing control loops as first class entities. Therefore,
in this paper we present our initial steps in creating a refactoring catalogue for
adaptive systems based on MAPE-K model. Our intention is to provide some
guidelines for refactoring the monitor component. Our approach is illustrated
with code snippets from a context-aware mobile application.

1. Introduction

Adaptive systems are able to modify their behavior and/or structure in response to a
changing environment[Garlan and et al 2004, Cheng and et al 2009]. Most authors agree
that this kind of systems is naturally and intrinsically composed by a set of control
loops [Weyns and et al 2013], which are a sequence of processes to gather information
from the managed system and its environment, process this information and make neces-
sary changes to achieve a specific goal [Garlan and et al 2004]. Usually, a control loop
is composed by the following components: Monitor, Analyzer, Planner and Executor
[IBM 2006].

Previous research have shown that control loops are often tangled and spread
with the system main logic [Cámara and et al 2013], harnessing maintenance and evo-
lution activities. To solve these problems, several authors [Cámara and et al 2013,
Garlan and et al 2004] state that designing control loops in a modular way can reduce the
complexity and improve the maintainability. A possible alternative for that is by refactor-
ing the source code, aiming to change its structure without changing its external observed
behavior [Fowler and et al 1999]. However there is a lack of systematic knowledge about
refactoring adaptive systems in order to modularize their control loops.

Although there is no an exact solution for designing adaptive software, the
majority of solutions are based on the MAPE-K model proposed by IBM (2006)
[Weyns and et al 2013]. Therefore in this paper we present two design alternatives for
refactoring the Monitor component. The Monitor is the Control Loop element respon-
sible for collecting information from the managed system and the environment in order
to update the Control Loop Knowledge. Before updating the Knowledge, the Monitor

II Latin American School on Software Engineering (ELA-ES 2015)

134

may preprocess the collected data, which may include conversions, standardization, data
aggregation and data filtering [Gil de La Iglesia 2014].

In this paper we have focused on two major steps on refactoring the monitor: (1)
the identification of code snippets that represent monitor abstractions and (2) modulariza-
tion of the identified monitor code in two design alternatives. The first one is based on
the observer pattern and it is called Event-Triggering, and the another is based on Polling
and it is called Time-Triggering.

2. Monitor Identification
Although each system can be built in many different ways, we still have some good ev-
idences to find the monitor abstraction in the code. An important characteristic is that
they have to be frequently updated with sensor’s data, it gives two important evidences
about the monitor code snippet. The first is that it should be a sensor instantiated, and the
second is that the monitor abstraction is inside a loop structure statement being constantly
updated. Although, it is very important to emphasize that to accomplish an adaptive sys-
tem monitor modularization, the software engineer needs a good knowledge about the
system [Cámara and et al 2013].

To exemplify this identification and refactoring process it is used a context-aware
mobile application called PhoneAdapter [Sama and et al 2010]. This application is re-
sponsible to adapt the mobile configuration according to the data gathered by sensors like
GPS, Bluetooh, system calendar and users needs. In the Figure 1 it is shown the class
ContextManager code, where it is possible to identify the Monitor abstraction evidences
as listed before. In this class there are sensor devices imported as can be seen in lines 2-6
and a "while" statement in line 11 being processed every 2 minutes (line 31).

Figure 1. Monitor evidences.

3. Monitor Modularization
In Figure 2 it is shown the class diagram of Event-triggering on the left and Time-
triggering on the right. The Event-triggering Monitor is designed as the Observer
Pattern, therefore the Sensor class, the Subject, adds the Monitor in a list of Ob-
server, the Sensor implements the method Sensor.notifyObservers() respon-
sible to call the Monitor.notify() method when there is a data change event. The

II Latin American School on Software Engineering (ELA-ES 2015)

135

Time-triggering Monitor class has the method Monitor.update() that will call the
Sensor.getData() method to gather the Sensor’s data, this process occurs according
to the attribute timer. The main difference between these monitors is which element will
trigger the data update process and the choice between which monitor to be used is based
on the data being monitored.

Figure 2. Monitor Class Diagram with Event- (left) and Time-triggering (right).

In the Figure 3 it is shown an Event-triggering Monitor example, there are two
classes SensorWeekday on the right and MonitorWeekday on the left, with the
stereotype Observable and Observer respectively. The SensorWeekday class imple-
ments Observable which is the Subject equivalent in JAVA, this class instantiates the
system sensor Calendar (line 4) from where it collects the original data. The method
notifyObservers() is responsible to update the Monitors everywhen the day at-
tribute value has change, as can be seen in the method setDay().

Figure 3. Example of a event-triggering refactor.

The MonitorWeekday class implements the update() method (line 3) which is
equivalent of the notify() method in Observer Patter, it is responsible to get the infor-
mation provided by the Sensor (Subject). The MonitorWeekday.preprocess()
method is responsible to pre-process the data gathered, therefore the code from lines 15
- 22 in Figure 1 is placed in this method. After this process, this data is updated in the
Knowledge component and then processed by the others control loop components.

This monitor choice was based in the data type weekday, assuming that this value
changes every 24 hours it does not need to be updated every two minutes as it is done in

II Latin American School on Software Engineering (ELA-ES 2015)

136

the original class, Figure 1, line 31. And since in this Event-triggering monitor the Sensor
component is responsible to trigger the monitoring process, it should be instantiate inside
a class responsible to manage all Sensors or as a separated thread.

4. Conclusion
The guidelines provided in this paper are an initial set which still need to be extended in
order to be fully applicable. Up to this moment, we have identified two kinds of monitors
and explained their characteristics, what assists modernization engineers along the identi-
fication process. We have also provided two design alternatives for the re-modularization.
Although we have not conducted an experiment yet, we have evidences that the modu-
larized version of the system has its maintainability and understandability improved. As
future work we intend to analyze the remaining components of control loop and develop
the complete refactoring catalogue for Adaptive Systems.

References
Cámara, J. and et al (2013). Evolving an adaptive industrial software system to use

architecture-based self-adaptation. In Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2013 ICSE Workshop on, pages 13–22. IEEE.

Cheng, B. H. C. and et al (2009). Software engineering for self-adaptive systems: A re-
search roadmap. In Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P., and Magee,
J., editors, Software Engineering for Self-Adaptive Systems [outcome of a Dagstuhl
Seminar], volume 5525 of Lecture Notes in Computer Science, pages 1–26. Springer
Berlin Heidelberg.

Fowler, M. and et al (1999). Refactoring: Improving the design of existing programs.

Garlan, D. and et al (2004). Rainbow: Architecture-based self-adaptation with reusable
infrastructure. IEEE Computer, 37(10):46–54.

Gil de La Iglesia, D. (2014). A Formal Approach for Designing Distributed Self-Adaptive
Systems. PhD thesis, Linnaeus University, Department of Media Technology.

IBM (2006). Autonomic computing white paper: An architectural blueprint for autonomic
computing. IBM White Paper, page 34.

Sama, M. and et al (2010). Context-aware adaptive applications: Fault patterns and their
automated identification. IEEE Transactions on Software Engineering, 36(5):644–661.

Weyns, D. and et al (2013). On patterns for decentralized control in self-adaptive systems.
In Software Engineering for Self-Adaptive Systems II, pages 76–107. Springer.

II Latin American School on Software Engineering (ELA-ES 2015)

137

Furthering Knowledge on How Behavior-Driven Development
Can Support Requirements Elicitation

Lauriane Correa1, Sabrina Marczak1, Cleidson R. B. de Souza2

1Computer Science School – Pontifı́cia Universidade Católica do Rio Grande do Sul
90619-900 – Porto Alegre – RS – Brasil

2Instituto Tecnológico Vale e Universidade Federal do Pará
66055-080 – Belém – PA – Brasil

lauriane.moraes@acad.pucrs.br, sabrina.marczak@pucrs.br

cleidson.desouza@acm.org

Abstract. Requirements elicitation major’s challenge is establishing common
ground with the customer. Behaviour-Driven Development (BDD), inspired on
the concept of ’Specification by Example’, proposes a structured, English-based
format named scenario to state the desired behavior for the software to be built.
We aim to understand BDD usage in the field by first exploring the topic through
a multiple case study and later by confirming the preliminary findings in a large-
scale survey. While we are still conducting the exploratory study, we have also
started planning the survey. In this paper we introduce our research plan to
conduct the survey aiming to promote discussion on how to better acquire com-
prehension about the phenomena.

1. Introduction

Requirements elicitation tries to discover the application domain, business needs, require-
ments and system constraints by consulting stakeholders [Sommerville 2010]. Require-
ments analysts and stakeholders often do not share a common understanding of related
concepts and terms. Such lack of common ground can cause misalignment of the elicited
requirements [Zowghi and Coulin 2005]. Stakeholders also often have difficulties ex-
pressing their needs, making it harder to define the software expected behaviors.

A recurrent reported issue in literature is the difficulty of software teams to com-
municate clearly [International 2013], causing projects to go over budget or fail. That
is why Behavior-driven Development (BDD) emerges as a promessing approach. BDD
is the name given to a set of methods and techniques put together aiming to help teams
to focus their efforts on identifying, understanding, and building valuable features that
matter to businesses, and to ensure that these features are well designed and implemented
[Smart 2014]. The way the pieces are tied together aims to ensure consistency and trace-
ability of requirements throughout the development life cycle, to allow for timely com-
munication with anyone involved in the project, including the customer. Communication
aspects become less important since BDD uses a structured form.

Despite the promissed benefits and the anedoctal reports of how much BDD can do
for a software team, there is little empirical evidence of the extent that it can specifically
support requirements elicitation. To fill in this gap, we posed the following research

II Latin American School on Software Engineering (ELA-ES 2015)

138

question: How can BDD support requirements elicitation in practice?, and designed an
empirical study to answer it. We set to first explore how BDD is used in practice through
a case study and then later confirm the preliminary findings in a large-scale survey. Our
interest in a large-scale study is to better understand the contexts in which BDD can
support requirements engineering (e.g., when the analyst writes the specification, when
there is an internal customer), aiming for generalization of our findings. While we brielfy
introduce our entire research plan to provide context, the goal of this paper is to present
the survey design aiming to collect feedback to help us ensure we are in the right path.

2. Behavior-Driven Development in a Nutshell

Behavior-driven Development (BDD) was designed to help teams build and deliver more
valuable, higher-quality software faster [Smart 2014]. It was initially proposed by Dan
North as a way to teach Test-driven Development (TDD) [North 2006]. It is composed of
a set of practices from agile methodologies, such as TDD, automated acceptance testing,
and continuous building [Smart 2014]. It also incorporates the definition of features or
requirements based on examples as proposed by [Adzic 2011].

BDD provides a connection from code to the requirements, offering a better envi-
ronment for managing project progress. This is done through scenarios that define a way
to describe how the system should behave based in a language that is native to the stake-
holder, promoting a common understanding of the business domain between stakeholders
and development team [Evans 2003]. BDD starts by identifying relevant business goals
and software features that will cover these goals. Collaborating with the customer, BDD
practitioners use concrete examples to illustrate the features. These features can be bro-
ken down into smaller chunks, named user stories, when more than one aspect composes
them. The defined examples are then automated in the form of executable specifications
that follow a structured format named ’scenarios’.

Figure 1 illustrates the notation defined to write an example that represents a
certain feature. This feature is composed of two scenarios, each composed of a set of
steps marked by pre-defined clauses as explained next. A Feature is a descriptive text of
what is desired by the customer. This description provides context to those reading and

Figure 1. Illustration of a Feature and Its Scenarios using BDD

II Latin American School on Software Engineering (ELA-ES 2015)

139

using a feature definition and describes the business value of the feature to the software
as a whole [North 2006]. A feature usually contains a list of Scenarios [Smart 2014].
Each scenario is composed by a set of pre-defined clauses, namely: ’Given’, ’When’, and
’Then’. Given describes the preconditions for the scenario and prepares the test environ-
ment. When describes the key action the user performs, or state transition. Then is used
to describe outcomes. The observations should inspect the output of the system (a report,
user interface, message, command output). And and But are additional clauses used to
join the previous clauses and provide a more readable way to specify the feature.

3. Proposed Survey in the Context of Our Long-Term Research Plan
Given its novelty, there is little empirical evidence how BDD is used in practice and none,
to the best of our knowledge, on how it addresses requirements elicitation issues. To better
understand this phenomena and explain the benefits and challenges of BDD adoption, we
are currently conducting an exploratory study organized in two smaller steps as indicated
in Figure 2, Phase 2, and are preppering for applying a survey (Phase 3) as previously
mentioned. We briefly introduce the exploratory studies to provide context.

Our goal conducting the Interview step was to develop a initial understanding
about how BDD is defined and used in practice. We have conducted ten semi-structured
interviews before the book ’BDD in Action’ [Smart 2014] has been released. This book
provides a consolidated description of BDD and its related techniques. While analyzing
data from the interviews, we started observing team members of a project at a large agile
IT company with development centers located in five continents. The case was selected
based on convenience and access to the company’s office in Brazil. In this project, ana-
lysts discussed the needs for a software solution with the customer and wrote the elicited
features down using user stories. Later, these stories were transformed into scenarios with
the development team’s help and then automated by a tool that supports BDD. We have
just recently joined the company on site. An iteration is about to be completed soon,
allowing us to get familiar with all activities of an interation cycle.

Although we are still conducting the Case Study, we have already started design-
ing the Survey study (Phase 3). Our goal with the survey is to aim for generalization of our
findings from Phase 2. So, for now, we have decided that our population is IT profession-
als located in any place around the world who adopt BDD. We will follow a snowballing
sampling to select our sample, that should be as large as possible given the two months
we plan to keep the survey open. We will ask the ten participants of our interview step
to indicate colleagues and request them to indicate other people. We have also already
started to look for additional respondents by inspecting discussion groups in social media
websites such as LinkedIn. Eight groups of interest located in Latin America, Europe,
and Asia have been identified so far.

Figure 2. Proposed Research Method

II Latin American School on Software Engineering (ELA-ES 2015)

140

The survey will be made available online and will be non-supervised. We have
already tested the Qualtrics survey tool to make the questionnaire instrument available
but we learned that the license our University owns is limitated to 200 respondents. We
are looking for a reliable, free-of-cost alternative solution at this moment.

The survey instrument will be composed of closed questions only, in a Likert-
scale format. Response choices will be designed based on the findings from the literature
review, our interviews, and the insights from our case study. We have an initial draft
but this work will be refined and completed as the case study is finished and data ana-
lyzed. The general constructs we are considering to design the questions are as follows:
BDD concept, BDD activities, roles involved in the process, artifacts used, tools adopted,
benefits of adoption and challenges faced when using BDD. Requirements engineering re-
lated specific contructs are as follows: requirements elicitation issues, requirements qual-
ity, product quality, communication issues, common ground establishment, and obsolete
documentation. Our survey design is following Kitchenham’s and Pfleeger’s guidelines
[Kitchenham and Pfleeger 2002].

4. Final Remarks
BDD aims to promote collaboration and to facilitate communication among stakeholders
and the software team. We aim to further our knowledge about BDD usage in the wild by
conducting a large-scale survey to confirm findings from our previous initial exploratory
studies. This paper presented our high level plan to conduct the survey. We hope that
our about-to-come-soon findings will motivate additional practitioners to adopt BDD and
researchers to explore other aspects related to this topic.

Acknowledgment
This work is sponsored by the PDTI Program, financed by Dell Computers of Brazil Ltd.
(Law 8.248/91).

References
Adzic, G. (2011). Specification by Example: How Successful Teams Deliver the Right

Software. Manning Publications Co., Greenwich, CT, USA.

Evans, E. (2003). Domain-Driven Design: Tacking Complexity In the Heart of Software.
Addison-Wesley, Boston, MA, USA.

International, T. S. G. (2013). The chaos manifesto.

Kitchenham, B. A. and Pfleeger, S. L. (2002). Principles of survey research part 2: De-
signing a survey. SIGSOFT Softw. Eng. Notes, 27(1):18–20.

North, D. (2006). Introducing BDD. http://dannorth.net/
introducing-bdd/.

Smart, J. (2014). BDD in Action: Behavior-Driven Development for the Whole Software
Lifecycle. Manning Publications, Shelter Island, NY.

Sommerville, I. (2010). Software Engineering. Addison-Wesley, England, 9 edition.

Zowghi, D. and Coulin, C. (2005). Requirements Elicitation: A Survey of Techniques,
Approaches. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

II Latin American School on Software Engineering (ELA-ES 2015)

141

What challenges project managers face in software
crowdsourcing?

Graziela Basilio Pereira, Alexandre Lazaretti Zanatta, Rafael Prikladnicki

1Computer Science School - PUCRS, Porto Alegre, Brazil 90619-900

{graziela.basilio, alexandre.zanatta}@acad.pucrs.br,

rafael.prikladnicki@pucrs.br

Abstract. Crowdsourcing means outsourcing to the crowd and can be used to
support software development activities. In this paper we present software
crowdsourcing, a global trend and show how Brazilian project managers are
inside this context. We also introduce a preliminary study about the challenges
faced by project managers in software crowdsourcing projects.

1. Introduction
Crowdsourcing (CS) means outsourcing to the crowd. It is a compound contraction of
Crowd and Outsourcing and represents “the act of a company or institution taking a func-
tion once performed by employees and outsource it to an undefined (and generally large)
network of people in the form of an open call” [Howe 2006].

CS rises as an option to software development projects, providing access to a
scalable workforce of online experts. It also promises cost savings, time to market, pro-
ductivity and flexibility, tapping the intellect of the crowd [Carmel 1999]. At first sight
CS emerges as a solution for software projects with limited budgets and constrained re-
sources.

In a software development process CS can be adopted at certain stages or through-
out the whole project. Any software development task can be crowdsourced, including
requirements, design, coding, testing, evolution and documentation [Huhns et al. 2013].
There are platforms that cover every software development process like TopCoder and
others which were designed to attend specific tasks, like uTest. Furthermore, CS can be
incorporated independently of the software methodology or lifecycle, such as waterfall or
agile [Huhns et al. 2013]. Enterprises have been outsourcing software development for a
long time through the use of other companies to build their software solutions. During
this period project managers were learning, developing methods and techniques to work
on projects with this feature.

Software development projects require communication, coordination, and man-
agement. Organizations increasingly sought the project management area to solve
problems and guarantee successful projects, that meet clients’ needs with quality
[Schwalbe 2013].

Recently, a new software engineering approach is emerging, enabled by cloud
solutions that provide large scale and highly available computational resources. This new
approach, known as crowdsourcing software development or software crowdsourcing,
uses the cloud to outsource parts or the entire software project to a crowd of developers
[Huhns et al. 2013].

II Latin American School on Software Engineering (ELA-ES 2015)

142

In software CS processes the project manager can play the part of any of the three
main CS actors. Buyer (sponsor/client) - company that places the work requests (tasks). In
this case the project manager is responsible for monitoring and controlling the contracted
project. Crowd - a community of developers globally dispersed. Individual suppliers
that will effectively perform the tasks. As development (coding, testing, analysis, and
documentation) can be outsourced, nothing avoids the project manager to join the crowd.
CS Platforms - the platform is the middleman, i.e., it intermediates the communication
between buyers and the crowd itself. The CS systems show the tasks requirements that
should be solved by solvers (crowd). Some platforms have the role of the project manager
to ensure that projects contracted through the platform meet the goals.

Unfortunately, there is a lack of information available about project management
on software CS. As a result, there are several questions surrounding this area, such as:
What are the challenges of managing software CS projects? What strategies can be
adopted to minimize the challenges while managing a software CS project? Is there
any difference between manage a software CS and a distributed software development
project?

In order to identify and answer these questions, we planned an empirical research
study based on a survey and collected data from project managers in Brazil. In the next
sections we introduce the preliminary results of a pilot survey and four interviews. We
conclude the paper presenting our analysis based in the data collected.

2. Software crowdsourcing: Is it increasing?
The crowd work industry is now quickly growing in scope and ambition. Crowd work
today spans a wide range of skills and pay levels, with commercial vendors providing
access to a range of workers and focused support for various tasks [Kittur et al. 2013].

The benefits of CS to the organizations, like cost reduction, time to market, pro-
ductivity and flexibility, tapping the intellect of the crowd are evidenced by many authors
[Huhns et al. 2013] [Kittur et al. 2013] [Carmel 1999].

Along with the benefits to the companies, CS equally presents advantages to
the workers like flexible schedule, extra remuneration and learning. Besides this, it
also provides new opportunities for income and social mobility in regions where local
economies are stagnant or in those where local government structures discourage invest-
ment [Kittur et al. 2013].

This context is emphasized by most of the industrial software giants like Apple,
Oracle and Microsoft. These firms are engaging and adopting CS to create new products,
start new projects, secure funding and identifying talents [Huhns et al. 2013]. The work-
force in a crowd also evidences this growing. TopCoder, a CS plataform created in 2001
has reached more than 500,000 members in 2014 [Huhns et al. 2013].

The presented information supports that the crowd work continues to expand, un-
locking an incredible number of opportunities for careers and skilled work in online mar-
ketplaces.

To identify if Brazil is following this global trend, from the perspective of the
project managers, we performed a pilot survey, which received 363 project managers
answers. The survey presented questions about the usage, experience, challenges and

II Latin American School on Software Engineering (ELA-ES 2015)

143

recommendations for managing software CS projects. Through a quantitative analysis it
became clear that Brazil is not following the CS rapid growth. The collected data showed
us how many of the respondents were aware of the term Crowdsourcing. Only 35 % had
already heard about CS before the survey, while 65 % were unaware about it. Just 7%
of the respondents already had some experience with CS, indicating that the Brazilian
market is immature in this area.

This moderated adhesion occurs due to several factors according to
[Machado et al. 2014]: buyers prefer to develop in-house or outsourcing, fear of exposing
strategic business information, concern to ensure deadlines, uncertainty about laws and
taxes that may be involved in CS activities.

3. Software CS: What are the challenges faced by project managers?
According to [Malone et al. 2010] making CS manageable and controllable is currently a
concern in CS projects. Software development processes require coordination, communi-
cation, and management. A large number of organizations increasingly sought the project
management area to solve problems and guarantee successful projects that meet clients’
needs with quality [Schwalbe 2013]. To unlock the potential of the crowd’s work, man-
agers need a deeper understanding of how these projects are developed and if additional
or different practices are needed to manage software CS projects.

We have gathered the challenges related to the pilot survey and four project man-
ager interviews. The most quoted challenges for managing CS software projects were re-
lated to communication, data confidentiality, people management and time management.
The key challenges mentioned were:

• Coordinate activities in the crowd
• Track the work progress and guarantee the tasks deadline and quality
• Ensure the project confidentiality
• Changes management
• To specify product requirements without limiting innovation and creativity
• Recognize how to define which activities can be done in the crowd
• Resource management - allocation, engagement and ensure the commitment

Respondents expressed concern about the exposure of project’s strategic informa-
tion and recommended that the more strategic it is, the less CS should be used. The ability
to communicate with people at all management levels was the most important concern
identified.

Finally, the appropriate project selection and the team training methods were also
cited as concerns, once not every project is suitable for CS application and some people
have to be trained to work in this environment.

4. Conclusion
CS is relatively new and many of its grand promises and bad predictions have yet to
spread. Despite of that, firms and employees are already engaged into the CS market,
seeking the model, its unique benefits and accepting consciously or not the associated
risks [Felstiner 2011]. The project manager has an important role to identify the inher-
ent risks, set its boundaries, mitigate them and benefit from the advantages that CS can
provide.

II Latin American School on Software Engineering (ELA-ES 2015)

144

Throughout our analysis we believe that all the challenges were adherent to any
of the knowledge areas of PMBOK [PMI 2014]. There were no issues that did not fit in
these areas. This lead us to think that CS projects can be managed based on the guide
of knowledge proposed by PMI. This hypothesis was reinforced along two interviews in
which project managers affirmed that software CS projects can be treated like any other
project. According to them, these projects may require deeper management in some fields
of expertise or specific techniques and tools to communicate or monitor the project.

The next steps in this research includes (1) to conclude the analysis of all an-
swers received in the pilot survey and interviews, (2) to execute a comprehensive litera-
ture review on managing CS projects, (3) to interview project managers in order to deeply
explore the challenges and recommendations identified, and (4) to propose project man-
agement practices for managing CS projects.

References
Carmel, E. (1999). Global software teams: collaborating across borders and time zones.

Prentice Hall PTR.

Felstiner, A. (2011). Working the crowd: employment and labor law in the crowdsourcing
industry. Berkeley J. Emp. & Lab. L., 32:143.

Howe, J. (2006). The rise of crowdsourcing. Wired magazine, 14(6):1–4.

Huhns, M. N., Li, W., and Tsai, W.-T. (2013). Cloud-based software crowdsourcing
(dagstuhl seminar 13362). Dagstuhl Reports, 3(9).

Kittur, A., Nickerson, J. V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J., Lease,
M., and Horton, J. (2013). The future of crowd work. In Proceedings of the 2013
conference on Computer supported cooperative work, pages 1301–1318. ACM.

Machado, L., Pereira, G., Prikladnicki, R., Carmel, E., and de Souza, C. R. (2014).
Crowdsourcing in the brazilian it industry: what we know and what we don’t know. In
Proceedings of the 1st International Workshop on Crowd-based Software Development
Methods and Technologies, pages 7–12. ACM.

Malone, T. W., Laubacher, R., and Dellarocas, C. (2010). The collective intelligence
genome. IEEE Engineering Management Review, 38(3):38.

PMI, P. M. I. (2014). A guide to the project management body of knowledge(pmbok
guide). fifth edition.

Schwalbe, K. (2013). Information technology project management. Cengage Learning.

II Latin American School on Software Engineering (ELA-ES 2015)

145

Colaboração e Cooperação em Equipes Ágeis: uma

investigação baseada na simulação de agentes

Adriana Neves dos Reis
1, 2

1
Instituto de Ciências Exatas e Tecnológicas – Universidade Feevale

Novo Hamburgo – RS – Brasil

2
Programa de Pós-Graduação em Engenharia de Produção e Sistemas – UNISINOS

São Leopoldo – RS – Brasil

adriananr@feevale.br

Abstract. Agile software development teams have their productivity linked to

interpersonal collaboration mechanisms. In practice, however, this feature is

not always observed, compromising the team's results, and even continued to

maintain agility as base value of your process. Whereas collaboration it is a

social behavior, dependent people, the proposed research presented in this

paper aims to apply a model based on agents to understand the relationships

between profiles and people in agile teams. To this end, we intend to

investigate scenarios for analysis of actions that contribute to the increase in

the degree of collaboration and cooperation between the actors of the process,

and to evaluate the influence of context on these behaviors.

Resumo. As equipes ágeis de desenvolvimento de software têm sua

produtividade atrelada aos mecanismos de colaboração interpessoal. Na

prática, entretanto, nem sempre esta característica é observada,

comprometendo os resultados da equipe, e até mesmo a continuidade de

manter a agilidade como valor base de seu processo. Considerando que

colaboração trata-se de um comportamento social, dependente das pessoas, a

proposta de pesquisa apresentada neste artigo tem como objetivo a aplicação

de um modelo baseado em agentes para compreender as relações entre perfis

e pessoas em equipes ágeis. Para tanto, pretende-se investigar cenários para

a análise de ações que contribuam para o aumento do grau de colaboração e

cooperação entre os atores do processo, bem como avaliar a influência do

contexto nestes comportamentos.

1. Introdução

Os métodos ágeis de desenvolvimento de software têm sua produtividade atrelada ao

trabalho em equipe, visto que um de seus pilares é a interação entre os indivíduos em

substituição à intensa documentação para fins de comunicação entre os mesmos nos

modelos de processo tradicionais. Contudo, apesar de mais de dez anos de adoção no

mercado, sabe-se empiricamente que nem toda equipe consegue apresentar os níveis de

produtividade esperados na abordagem ágil.

II Latin American School on Software Engineering (ELA-ES 2015)

146

 Entre as razões mencionadas no dia-a-dia das empresas de software para o

insucesso das práticas ágeis estão: a não adequação da cultura organizacional à filosofia

ágil, a não adoção das práticas ágeis no contexto previsto (como tamanho de equipe,

papéis, etc), a falta de maturidade técnica da equipe, a falta de compreensão do que é

agilidade, entre outros. Porém, além desses, observa-se uma dificuldade dos

desenvolvedores em assumir uma postura de colaboração, de a comunicação pessoal ser

uma constante, e de cooperação, ou seja, de conseguir construir software e resolver

problemas em conjunto.

 Tal contexto de colaboração versus cooperação gera evidências de que, além do

contexto organizacional, é necessário entender como os indivíduos da equipe se aderem

à prática ágil, o que parece ser influenciado pelo seu perfil em diferentes aspectos:

profissional, técnico, social, entre outros. Dessa forma, é preciso considerar que cada

membro da equipe possui suas crenças, competências, e objetivos, os quais são fatores

de interferência no direcionamento das ações a favor de traçar e alcançar o objetivo do

grupo. Além disso, a interação entre eles e o ambiente da empresa podem contribuir ou

atrapalhar a execução das práticas ágeis.

 Uma estratégia para abstrair esse fenômeno é a Modelagem e Simulação baseada

em Agentes, por ser uma técnica que opera no nível micro individual [1]. Um agente é a

representação de um indivíduo com características específicas, o qual interage com

outros agentes em um contexto compartilhado. Logo, o modelo descreve um sistema

reativo que exibe certa autonomia para decidir quão bem deve executar uma tarefa a ele

delegada [2].

 Assim, o objetivo desta pesquisa é investigar quais os efeitos das características

dos desenvolvedores para o comportamento da equipe ágil em relação aos aspectos de

colaboração e cooperação. Para tanto, a proposta é, a partir de dados coletados em

equipes reais, investigar a dinâmica da equipe ágil, a partir da investigação in silico,

utilizando modelagem e simulação baseada em agentes.

2. Agenda de Pesquisa
Em um sistema adaptativo, “agentes representam as unidades básicas do processo da

tomada de decisão” [3] (p. 55). Um modelo baseado em agentes utiliza uma abstração

bottom up, baseada em agentes com funções simples.

II Latin American School on Software Engineering (ELA-ES 2015)

147

Figura 1. Framework da pesquisa proposta. Fonte: o autor.

Além disso, quando estes indivíduos interagem, considerando suas funções,

alguns comportamentos específicos emergem [2]. Dessa forma, neste contexto, é

relevante associar simulação para investigar propriedades da dinâmica do processo

estudado.

 A abordagem baseada em agentes tem sido adotada em estudos para permitir a

definição de modelos, os quais analisados em cenários reais, consequentemente, servem

de base para a proposição de recomendações de ação nestes contextos [1].

 Assim, na Figura 1 é apresentado o framework da pesquisa proposta, organizado

em níveis de abstração, de forma esquemática.

3. Potencialidades do Estudo
De forma empírica, mesmo com a disseminação das práticas ágeis e o maior

grau de sua adoção, ainda são comuns relatos sobre a dificuldade de obtenção de

melhorias significativas em relação à produtividade das equipes que praticam agilidade.

Assim, compreender o comportamento dos atores em uma equipe ágil e seus critérios

para comportamento em relação à colaboração e cooperação é um desafio na

perspectiva de estudos que abordam os aspectos sociais em Engenharia de Software.

O modelo proposto evidencia que Modelagem e Simulação baseada em

Agentes possuem características potenciais como ferramenta de investigação do

ambiente de TI (Tecnologia da Informação) e, consequentemente, oferece suporte para

tomada de decisão que estimule este tipo de prática com resultados de produtividade

satisfatórios.

II Latin American School on Software Engineering (ELA-ES 2015)

148

Referências

[1] E. Kiesling, M. Günther, C. Stummer, and L. M. Wakolbinger, “Agent-based

simulation of innovation diffusion: A review,” Cent. Eur. J. Oper. Res., vol. 20,

no. 2, pp. 183–230, 2012.

[2] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-agent

systems in AgentSpeak using Jason, vol. 8. John Wiley & Sons, 2007.

[3] N. Nan, R. Zmud, and E. Yetgin, “A complex adaptive systems perspective of

innovation diffusion: an integrated theory and validated virtual laboratory,”

Comput. Math. Organ. Theory, vol. 20, no. 1, pp. 52–88, 2013.

II Latin American School on Software Engineering (ELA-ES 2015)

149

Meta-Aprendizado Aplicado à Estimativa de Esforço em
Projetos de Desenvolvimento de Software

Silvia Nunes das Dôres1, Duncan Ruiz1

1Faculdade de Informática – Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS)
Caixa Postal 1429 – 90.619-900 – Porto Alegre – RS – Brasil

silvia.dores@acad.pucrs.br, duncan.ruiz@pucrs.br

Abstract. Effort estimation is one of the cores of a software development pro-
ject due to its influence in many management tasks, such as cost and schedule
estimate. Given the importance of this area, there is a great deal of effort to
propose new techniques and improve the accuracy of estimates. Among these
approaches there are techniques based on Machine Learning (ML). Although
there is a large number of ML approaches aimed at predicting effort, there is
no rule of thumb to choose the most appropriate algorithm for a given organi-
zational context. Thus, this paper aims to present a proposal for meta-learning
use to recommend ML algorithms on estimating effort in software development
projects.

Resumo. Estimativa de esforço é um dos cernes de um projeto de desenvolvi-
mento de software uma vez que ela influencia diversas tarefas gerenciais, tais
como, estimativa de custo, cronograma e prazo. Dada a relevância da área,
existem diversas pesquisas voltadas para a proposta de novas técnicas para
melhorar a precisão das estimativas. Dentre essas abordagens destacam-se as
técnicas de baseadas em Aprendizado de Máquina (AM). Embora exista um
grande número de abordagens de AM voltadas para predição de esforço, faltam
métodos que auxiliem na escolha do algoritmo mais apropriado para um dado
contexto organizacional. Neste sentido, este trabalho tem o objetivo apresentar
uma proposta para utilização de meta-aprendizado na recomendação de algo-
ritmos de AM para estimar esforço em projetos de desenvolvimento de software.

1. Introdução

Uma boa estimativa de esforço é essencial para ajudar os gerentes de projeto a alocar
recursos e controlar os custos e o cronograma de seus projetos, o que por sua vez permite
que os projetos sejam finalizados no tempo e dentro do orçamento [Mendes 2014]. Porém,
estimar esforço não é uma tarefa fácil, uma vez que diversos fatores como complexidade
do projeto, tamanho e grau de incerteza podem afetar a confiabilidade destas estimativas
levando a superestimação ou subestimação do esforço dos mesmos [Pressman 2011].

Dentre as soluções existentes para apoio a esta atividade destacam-se as soluções
baseadas em Aprendizado de Máquina (AM), que visam predizer o esforço para um pro-
jeto novo baseado em dados históricos de projetos anteriores. Dentre as técnicas de AM
aplicadas a estimativa de esforço podemos destacar: Árvores de Regressão e Classificação
[Basgalupp et al. 2013]; Lógica Fuzzy [Ziauddin et al. 2013]; Redes Neurais Artificiais

II Latin American School on Software Engineering (ELA-ES 2015)

150

[Attarzadeh and Ow 2010]; Algoritmos Genéticos [Benala et al. 2012] e Estimativa por
Analogia [Mendes and Counsell 2000].

Apesar de ser crescente o número de soluções desenvolvidas utilizando AM para
apoio a estimativa de esforço, tais soluções ainda não são utilizadas na prática, ou seja,
pelas empresas de desenvolvimento de software [Jørgensen 2004]. Uma possı́vel justifi-
cativa para isto é o fato de que os modelos de estimativa baseados em AM geralmente são
gerados com base em um conjunto de amostra de projetos e tem sua eficácia demonstrada
para esta amostra. Porém, ao serem empregados em contextos diferentes daqueles nos
quais foram baseados, estes modelos nem sempre se mostram satisfatórios.

Estudos como [Mendes et al. 2014] investigam as vantagens e desvantagens de
se projetar modelos “personalizados” para um determinado contexto, ou seja, construir
modelos de estimativa para uma organização utilizando os dados daquela organização.
A vantagem óbvia neste caso será o alinhamento deste modelo à realidade organizacional
para o qual foi projetado, o que leva a uma maior precisão das estimativas. Por outro lado,
construir modelos com base em dados de uma única organização tem como desvantagens,
ou impedimentos, fatores como: (i) o tempo que levaria para uma organização construir
uma base de dados de projetos (dataset) suficientemente grande para ser útil na construção
de um modelo; (2) durante esse tempo, a organização poderia mudar algum aspecto (como
as tecnologias empregadas), o que tornaria os projetos antigos pouco relevantes para as
novas práticas.

Com base no contexto apresentado, verifica-se que um desafio cientı́fico atual
no desenvolvimento de soluções de estimativa de esforço baseadas em AM não seria
a construção de um algoritmo que se adapte a todos os contextos de desenvolvimento
possı́veis, mas sim “como atribuir um algoritmo mais adequado para um determinado
problema”, dada a existência de diversos algoritmos que se mostram satisfatórios para
variadas situações.

Assim, visando apoiar a resolução deste desafio, este trabalho propõe a utilização
de meta-aprendizado para a seleção de algoritmos de estimativa de esforço baseados em
AM, de acordo com a base de dados organizacional. De maneira genérica, o meta-
aprendizado estuda como sistemas de aprendizado podem aumentar sua eficiência através
da experiência. O objetivo é entender como a própria aprendizagem pode se tornar
flexı́vel de acordo com o domı́nio ou tarefa em estudo [Vilalta and Drissi 2002]. Com
isso, pretende-se determinar sob quais condições cada algoritmo é mais apropriado, pos-
sivelmente ampliando o entendimento do mesmo e levando a sugestões de uso mais ade-
quadas [de Souza 2010].

O restante desde documento está dividido da seguinte maneira: na Seção 2 é apre-
sentada uma visão geral da proposta e na Seção 3 são apresentadas as considerações finais
do trabalho.

2. Visão Geral da Proposta
Na Figura 1, adaptada de [de Souza 2010], é apresentado o processo genérico de meta-
aprendizado que será aplicado nesta pesquisa:

Inicialmente são adquiridas as Bases de Dados (B) de projetos de desenvolvi-
mento de software, cujos dados contenham métricas significativas para a estimativa de

II Latin American School on Software Engineering (ELA-ES 2015)

151

Bases	
 de	
 Dados	
 (B)	

Avaliação	
 (A)	

Algoritmo	
 1	

Algoritmo	
 2	

Algoritmo	
 3	

Caracterização	

dos	
 Dados	
 (C)	

Meta-­‐Base	

Desempenho	

dos	

algoritmos	

Meta-­‐
atributos	

Meta-­‐
Aprendizado	

Modelo	
 de	

Recomendação	

de	
 Algoritmos	

Parte	
 1	
 Parte	
 2	
 Parte	
 3	

Figura 1. Visão Geral da Proposta

esforço. Essas bases podem ser tanto oriundas de repositórios públicos de dados (tais
como PROMISE[T. Menzies and Turhan 2012] e ISBSG[ISBSG 2015]), quanto de em-
presas de desenvolvimento de software que desejem colaborar com a pesquisa (Parte 1).

Em um segundo momento (Parte 2), duas etapas são aplicadas para cada elemento
de (B): a avaliação dos algoritmos, em (A), e a extração de caracterı́sticas, em (C). Os
algoritmos de AM a serem utilizados devem ser selecionados a partir da realização de
uma revisão sistemática da literatura, onde serão identificadas e analisadas as soluções
de AM já aplicadas para estimar esforço em desenvolvimento de software. Esta revisão
também tem como objetivo identificar Medidas de Avaliação, tais medidas são utilizadas
para avaliar o desempenho dos algoritmos e, a partir deste desempenho, determinar qual
algoritmo deve-se utilizar para um determinado conjunto de dados. A caracterização do
conjunto de dados procura extrair caracterı́sticas presentes nos dados que possam influ-
enciar o desempenho dos algoritmos de AM. Posteriormente, tais caracterı́sticas serão
utilizadas para recomendar os algoritmos de AM mais promissores para um conjunto de
dados com tais caracterı́sticas.

A terceira etapa (Parte 3) prevê a associação da Avaliação (A) com a
Caracterização (C) para cada Base de Dados (B). São obtidos meta-exemplos, forma-
dos por meta-atributos de entrada e meta-atributos alvo. O conjunto de meta-exemplos é
denominado meta-base. Para induzir então o mapeamento entre meta-atributos de entrada
e meta-atributos alvo, aplica-se um algoritmo de AM, referido como meta-aprendiz. Por
meio dele, pode-se utilizar o meta-conhecimento obtido do processo de aprendizagem e
realizar, por fim, a recomendação de algoritmos no contexto de meta-aprendizado.

Em relação à metodologia aplicada na pesquisa, além da revisão sistemática já
mencionada, serão realizados exaustivos experimentos in-silico para validação da solução
de meta-aprendizado proposta, onde a solução será testada em relação ao seu desempenho
individualmente e comparativamente a outras soluções de apoio à Estimativa de Esforço.
Por fim, espera-se também realizar a avaliação da solução proposta, a partir da realização
de um estudo de caso em uma organização de desenvolvimento de software.

3. Conclusão

Este artigo apresentou a proposta de uma solução de meta-aprendizado para realização de
estimativa de esforço em desenvolvimento de software. Esta solução visa recomendar o

melhor algoritmo de AM para uma determinada base de dados, possibilitando, com isso,
a adequação da solução a um determinado contexto organizacional.

Como resultado, pretende-se que a pesquisa desenvolvida contribua não apenas
para a ampliação do conhecimento cientı́fico referente à meta-aprendizado no contexto de
Engenharia de Software, mas também estimule seu uso no contexto real de desenvolvi-
mento de software para estimar esforço.

Referências
Attarzadeh, I. and Ow, S. H. (2010). Proposing a novel artificial neural network prediction

model to improve the precision of software effort estimation. In Bio-Inspired Models
of Network, Information, and Computing Systems, pages 334–342.

Basgalupp, M. P., Barros, R. C., da Silva, T. S., and de Carvalho, A. C. (2013). Software
effort prediction: A hyper-heuristic decision-tree based approach. In Proceedings of
the 28th Annual ACM Symposium on Applied Computing, pages 1109–1116. ACM.

Benala, T., Dehuri, S., Satapathy, S., and Madhurakshara, S. (2012). Genetic algorithm
for optimizing functional link artificial neural network based software cost estimation.
In Proceedings of the International Conference on Information Systems Design and
Intelligent Applications, volume 132 of Advances in Intelligent and Soft Computing,
pages 75–82. Springer Berlin Heidelberg.

de Souza, B. F. (2010). Meta-aprendizagem aplicada à classificação de dados de ex-
pressão gênica. PhD thesis, Instituto de Ciências Matemáticas e de Computação –
USP, São Carlos, SP, Brasil.

ISBSG (2015). International software benchmark and standards group.

Jørgensen, M. (2004). A review of studies on expert estimation of software development
effort. Journal of Systems and Software, 70(1):37–60.

Mendes, E. (2014). Practitioner’s Knowledge Representation: A Pathway to Improve
Software Effort Estimation. Springer Publishing Company, Incorporated.

Mendes, E. and Counsell, S. (2000). Web development effort estimation using analogy.
In Software Engineering Conference, 2000. Proceedings. 2000 Australian, pages 203–
212. IEEE.

Mendes, E., Kalinowski, M., Martins, D., Ferrucci, F., and Sarro, F. (2014). Cross- vs.
within-company cost estimation studies revisited: An extended systematic review. In
Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, EASE ’14, pages 12:1–12:10, New York, NY, USA. ACM.

Pressman, R. S. (2011). Engenharia de Software. McGraw-Hill, São Paulo, 7 edition.

T. Menzies, B. Caglayan, E. K. J. K. F. P. and Turhan, B. (2012). The promise repository
of empirical software engineering data.

Vilalta, R. and Drissi, Y. (2002). A perspective view and survey of meta-learning. Artifi-
cial Intelligence Review, 18(2):77–95.

Ziauddin, S. K., Khan, S., and Nasir, J. A. (2013). A fuzzy logic based software cost
estimation model. International Journal of Software Engineering and Its Applications,
7(2):7–18.

II Latin American School on Software Engineering (ELA-ES 2015)

153

Sistema de Recomendação de APIs na Engenharia de Software

Luisa Hernández, Heitor Costa

Departamento de Ciência da Computação - Universidade Federal de Lavras - MG - Brasil

luisahernandezr@dcc.ufla.br,heitor@dcc.ufla.br

Resumo. A maioria dos projetos de software depende de bibliotecas externas

para alcançar seus objetivos. Essas bibliotecas são conhecidas como

Application Programming Interfaces (APIs). Neste estudo, é apresentada uma

metodologia que permitirá realizar uma análise empírica de Sistemas de

Software quanto à utilização de APIs e apoiar o desenvolvimento de sistemas

de software com qualidade. Essa metodologia permitirá a recomendação de

APIs em sistemas que utilizem APIs. Recomendações para desenvolvedores na

fase inicial do projeto também serão consideradas.

Abstract. Most software projects depend on external libraries to achieve their

goals. These libraries are known as Application Programming Interfaces

(APIs). In this study, we present a methodology to reach empirical analysis

software systems on the use of APIs and thus support the development of

software systems with quality. This methodology will let to recommend APIs in

systems using APIs. Recommendations to developers in the initial phase of the

project will be also considered.

1. Introdução

Desenvolvimento de software não é uma tarefa fácil. Prova disso é a existência de

várias propostas metodológicas que afetam componentes e aspectos do processo de

desenvolvimento [Canós et al., 2003]. Entre os diferentes componentes, encontram-se

as bibliotecas de software conhecidas como Interfaces de Programação de Aplicativos

(Application Programming Interfaces - APIs). Uma API é a interface para uma entidade

de software reutilizável utilizada por vários clientes e que pode ser distribuída

separadamente do código ambiente [Robillard et al., 2013].

 Quase todos os sistemas de software dependem de funções reutilizáveis

fornecidas pelas APIs e o desenvolvimento de software moderno é inseparável desse

reúso [Duala-Ekoko; Robillard, 2012]. Entre as principais vantagens de utilizar APIs

está o fato de prevenir que os desenvolvedores reconstruam recursos existentes [Teyton

et al., 2013], proporcionando uma forma rentável para construir sistemas de software

com melhora na (1) produtividade dos programadores, fornecendo variedade de funções

desejadas e (2) qualidade de software, porque são geralmente "bem-testadas" e

utilizadas por grande quantidade de usuários (desenvolvedores) [Sun et al., 2011].

 No entanto, para Engenheiros de Software, é difícil selecionar de forma eficaz as

APIs durante o desenvolvimento e verificar a utilização correta depois da construção do

sistema. Por causa do aumento do tamanho e da quantidade de APIs, os

desenvolvedores devem frequentemente aprender como usar as APIs desconhecidas

[Acharya et al., 2007]. Isso significa que, antes de aproveitar os benefícios de uma API

para determinadas tarefas, um desenvolvedor deve descobrir e entender o

II Latin American School on Software Engineering (ELA-ES 2015)

154

comportamento e as relações entre os elementos de uma API [Duala-Ekoko; Robillard

2012]. Para ajudar os desenvolvedores, foi proposto LIBTIC, um motor automático de

busca de desenvolvedores especialistas em APIs Java utilizando mineração no

repositório de software GitHub [Teyton et al., 2013a]. No entanto, contratar

especialistas em APIs requer investimento, disponibilidade e recursos humanos que

podem não estar dentro do escopo do projeto de desenvolvimento. Por outro lado, para

analisar as APIs utilizadas por um conjunto de sistemas de software e sugerir APIs para

desenvolvedores (sistema alvo da recomendação deve utilizar APIs), foi apresentada

uma metodologia que combina técnicas de Mineração de Regras de Associação e de

Filtragem Colaborativa [Thung et al., 2013].

 Neste estudo, o objetivo é apresentar uma metodologia de recomendação de

APIs para desenvolvedores com sistemas em estado inicial (podem ou não ter código,

mas se tiver, não usam APIs) e com sistemas em desenvolvimento que usam APIs. Este

artigo está organizado da seguinte forma. Breve apresentação de técnicas para sistemas

de recomendação está na Seção 2. A metodologia proposta e adotada para o

desenvolvimento de um sistema de recomendação é discutida na Seção 3.

Considerações finais são apresentadas na Seção 4.

2. Sistemas de Recomendação

Sistemas de recomendação para Engenharia de Software (Recommendation Systems for

Software Engineering - RSSEs) fornecem itens de informação valiosos para tarefas de

engenharia de software em determinados contextos. Maior parte desses sistemas surge

para ajudar desenvolvedores em diversas atividades, desde reúso de código a escrever

relatórios eficazes de bugs [Robillard et al., 2010]. Hoje em dia, mais esforços são

necessários para realizar essas atividades por causa de novas tecnologias, componentes

e ideias que desenvolvedores são continuamente introduzidos [Robillard et al., 2014].

 Entre as vantagens do uso de RSSEs, podem ser citadas diminuição do esforço,

aumento da produtividade nas tarefas da engenharia de software e auxílio nas tomadas

de decisões [Robillard et al., 2014]. Para desenvolver esses sistemas, são comumente

utilizadas diferentes técnicas que dependem do contexto do problema e dos itens a

serem recomendados: i) Filtragem Baseada no Conteúdo: fundamentada nas

características ou palavras-chave dos itens e nas preferências do usuário; e ii) Filtragem

Colaborativa: utilizada para recomendar itens baseando-se em outros usuários que

interagem com o sistema. A Filtragem Colaborativa será utilizada neste estudo e há dois

principais métodos [Breese et al., 1998]: i) Baseado na Memória, utiliza uma base de

dados inteira para fazer recomendações; e ii) Baseado no Modelo, utiliza uma parte da

base de dados para aprender um modelo e predizer as preferências dos usuários.

3. Metodologia

Como parte dos requisitos para elaboração de uma metodologia para auxiliar

desenvolvedores e engenheiros de software com a recomendação de APIs necessárias,

serão utilizados, pelo menos, 1.000 sistemas de software (repositório P). A relação entre

esses sistemas e as categorias de aplicação será identificada, portanto precisam ser

consideradas categorias estabelecidas pelo próprio repositório com a finalidade de evitar

critérios de classificação subjetivos. Desse modo, SourceForge1 foi selecionado por

1 http://sourceforge.net

II Latin American School on Software Engineering (ELA-ES 2015)

155

sugerir 10 categorias principais. Os sistemas selecionados seguem os critérios: i) ser

desenvolvido em Java; ii) pertencer a uma categoria de aplicação do SourceForge; iii)

ter, pelo menos, 10.000 linhas de código; e iv) ter status2 "Produção/Estável" ou

"Maduro". Na Figura 1, é apresentada uma metodologia para recomendar APIs, com

duas fases: Fase A) Recomendação de APIs para os desenvolvedores iniciando o

desenvolvimento de um sistema de software (podem ou não ter código, mas se tiver, não

usam APIs) e consideram uma categoria de aplicação; e Fase B) Recomendação de

APIs para os sistemas de software em desenvolvimento que utilizam APIs e que podem

ser classificados em uma categoria de aplicação.

Figura 1. Metodologia Proposta para Sistema de Recomendação de APIs

 Por causa do contexto do problema deste estudo e das necessidades da Fase A,

técnicas de recomendação não são uma boa escolha, pois não têm APIs para relacionar.

No entanto, há a possibilidade de recomendar APIs aos desenvolvedores determinando a

popularidade e identificando APIs mais frequentes para cada categoria do repositório P

e relacionando esses resultados às categorias consideradas pelo desenvolvedor alvo de

recomendação. Quanto à Fase B, será utilizada a filtragem colaborativa baseada em

memória. Isso implica que a similaridade será estabelecida entre os projetos do

repositório P e o sistema alvo de recomendação (considerando categorias), obtendo os

sistemas mais próximos. Em seguida, será estabelecida a similaridade entre as APIs do

sistema alvo e as APIs dos sistemas mais próximos, gerando uma lista de APIs a

recomendar. Nessa fase, poderá ser feita a união entre a lista gerada por itens mais

frequentes e a lista gerada pela técnica de filtragem colaborativa.

 Para avaliar os resultados, serão criados dois repositórios de teste (Teste A - TA e

Teste B - TB) com os sistemas alvo de recomendação segundo as necessidades de cada

fase. Para simular o cenário da Fase A, serão selecionados n sistemas de software do

repositório principal. Para esses sistemas, serão retiradas as APIs guardando essas

informações para aplicar as medidas de avaliação (Precision, Recall e Fallout) entre

essa lista e as APIs geradas após a execução do sistema de recomendação. Quanto à

simulação do cenário da Fase B, serão coletados os sistemas de teste dentro do

repositório TB. Para isso, será necessário selecionar n sistemas de software do

repositório principal e retirar algumas APIs, obtendo mesma quantidade de APIs para

cada sistema de software. Essa quantidade estará limitada segundo o sistema de

software com menor uso de APIs. As informações sobre as APIs removidas serão

guardadas para aplicar as medidas de avaliação (Precisão, Recall e Fallout) entre essa

lista e as APIs geradas após a execução do sistema de recomendação.

2 Status - Estado do sistema fornecido pelo repositório SourceForge que indica se ele está inativo, estável, em versão Beta, etc.

II Latin American School on Software Engineering (ELA-ES 2015)

156

4. Considerações Finais

Os Sistemas de Recomendação têm sido estudados e desenvolvidos com mais

frequência na área Engenharia de Software para apoiar os engenheiros na tomada de

decisões de tarefas, componentes, pessoal, código, etc. Esses sistemas permitem o

incremento da produtividade nas atividades de desenvolvimento e fornecem suporte aos

desenvolvedores. Por outro lado, um componente indispensável no desenvolvimento de

software é a API. As APIs são funções reutilizáveis em sistemas de software que

permitem melhorar a produtividade e a qualidade do software desde que sejam

escolhidas de forma correta para suprir as necessidades, mas a escolha de APIs é uma

tarefa difícil para os desenvolvedores.

 Como resultado deste trabalho, é apresentada uma proposta da metodologia de

recomendação automatizada de APIs para sistemas de software em desenvolvimento

que usam APIs e para desenvolvedores que apenas consideram as categorias de

aplicação correspondentes. Entre os benefícios, espera-se apoiar os Engenheiros de

Software na tomada de decisões sobre quais APIs utilizar em seus projetos. Assim,

espera-se ter: i) aumento na produtividade dos desenvolvedores, pois serão reutilizadas

funções, evitando a reconstrução e, consequentemente, minimização do tempo de

desenvolvimento; e ii) aumento na qualidade do software, pois o uso de APIs populares

é um indicador da qualidade das APIs e da qualidade dos sistemas de software.

Finalmente, espera-se divulgar os avanços da pesquisa em futuras publicações.

Referências
Acharya, M.; Xie, T.; Pei, J.; Xu, J. (2007). Mining API Patterns as Partial Orders from Source

Code : From Usage Scenarios to Specifications. In: Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering. pp. 25-34.

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms

for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in

artificial intelligence. Vol. 40, pp. 43-52.

Canós, J. H.; Letelier, P.; Penadés, C. (2003). Métodologías Ágiles en el Desarrollo de

Software. In: DSIC Universidad Politécnica De Valencia. pp. 1-8.

Duala-Ekoko, E.; Robillard, M. P. (2012). Asking and Answering Questions about Unfamiliar

APIs: An Exploratory Study. In: International Conference on Software Engineering. pp. 266-

276.

Robillard, M., & Walker, R. (2014). An Introduction to Recommendation Systems in Software

Engineering. In Robillard, M., Maalej, W., Walker, R., & Zimmermann, T. (Eds.),

Recommendation Systems in Software Engineering, (pp. 1-11). Berlin, Heidelberg: Springer.

Robillard, M. P., Walker, R. J., & Zimmernann, T. (2010). Recommendation Systems for

Software Engineering. IEEE Software, pp.80-86.

Robillard, M. P.; Bodden, E.; Kawrykow, D.; Mezini, M.; Ratchford, T. (2013). Automated API

Property Inference Techniques. In: IEEE Transactions on Software Engineering, 39(5), pp.

613-637.

Sun, C.; Khoo, S.; Zhang, S. J. (2011). Graph-Based Detection of Library API Imitations. In:

International Conference on Software Maintenance. pp. 183-192.

Teyton, C.; Falleri, J.-R.; Palyart, M.; Blanc, X. (2013). A Study of Library Migration in Java

Software. The Computing Research Repository (CoRR). pp. 1-20.

Teyton, C.; Falleri, J.-R.; Morandat, F.; Blanc, X. (2013a). Find your Library Experts. In:

Working Conference on Reverse Engineering. pp. 202-211.

Thung, F.; Lo, D.; Lawall, J. (2013). Automated Library Recommendation. In: Working

Conference on Reverse Engineering. pp. 182-191.

II Latin American School on Software Engineering (ELA-ES 2015)

157

An Automatic Approach to Detect
Unusual Events in Software Repositories

Larissa Leite, Christoph Treude, Fernando Figueira Filho

1 Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte (UFRN) – Natal, RN – Brazil

{larissaleite,ctreude,fmarquesfilho}@gmail.com

Abstract. This work presents an automatic approach to detect unusual events in
software repositories. The approach collects data from source code repositories
and analyzes new commits based on historical data in order to detect unusual
events that are displayed to developers and managers in an awareness tool.

1. Introduction
Software development teams use source control repositories and issue trackers to support
their development processes and activities. Managers can use information extracted from
such tools to become aware of the team productivity, and plan the cost and time of fu-
ture releases [Weiss et al. 2007], while developers are fed with insight into workspaces
of other developers [Treude and Storey 2010]. Such insight is usually provided by aware-
ness tools. Awareness is defined as “an understanding of the activities of others, which
provide context for your own activity’’ [Dourish and Bellotti 1992]. Since the success of
software projects largely depends on the effectiveness of communication and coordina-
tion, software development teams need to maintain awareness of different aspects ranging
from overall project status and process bottlenecks to current tasks and incoming artifacts
[Treude and Storey 2010].

Despite the large amount of previous work on awareness, no tool or approach has
specifically focused on awareness of unusual events in a software repository. Being aware
of unusual events can be useful in preventing errors, but also in alerting developers and
managers of events that may require justification or that can affect the work of other devel-
opers, especially when they relate to significant changes to the project. The motivation of
this work comes not only from input from fellow developers, but also from a recent survey
with 156 GitHub users [Treude et al. 2015], in which developers reported the need to be
aware of unusual events: “Commits that take particularly long might be interesting. If a
developer hasn’t committed anything in a while, his first commit after a long silence could
be particularly interesting, for example, because it took him a long time to fix a bug. Also,
important commits might have unusual commit messages, [...] indicating that the devel-
oper was emotional about that particular commit”. Another developer added: “Changes
to files that haven’t been changed in a long time or changes to a large number of files, a
large number of deletions, etc.”. This work proposes a mechanism to automatically detect
such unusual events, and make managers and developers aware of them.

2. Method to Detect Unusual Events
To validate our proposal, we are using data from the software repository of Superin-
tendência de Informática (SINFO), a company that belongs to Universidade Federal do

II Latin American School on Software Engineering (ELA-ES 2015)

158

Rio Grande do Norte (UFRN). SINFO is responsible for the development and mainte-
nance of all information systems used by employees, students, and faculties at the uni-
versity. There are more than 75 developers, testers, and requirement analysts working at
SINFO, using Apache Subversion (SVN) as their source control repository.

Unusual – or unexpected – events are, by definition, events that are not in con-
formance with normality. The first step to detect such events is to determine what is
normal, which, of course, depends on the context being analyzed. In our work, this is
done by gathering historical data from software repositories, which is usually associated
with commits, tasks, and issues or bugs. At the current step, our work relies mainly on
commit-related data to investigate unusual events.

What is unusual depends on the development context, team size, work dynamics,
software process, development cycle, domain, product size and criticality, as well as the
development model (community-based open source or industry). Although this work is
being conducted in the context of a specific software development team, we believe that
the unusual events discussed in this work can be generalized to other contexts since we
have chosen events that are likely to occur in any software project that uses source control.
Future work needs to investigate this further. In the following, we describe different rules
we use to detect unusual events in source control repositories.

Long time between commits. Time between commits is considered an indicator
of project activity [Kolassa et al. 2013]. One or two working days without any commits
from the whole team might be caused by infrastructure problems. From the developer
point of view, time between commits can be a measurement of how difficult a task is or
how challenging it was to fix a bug. In some cases, long time between commits may also
be a potential cause of conflict when trying to incorporate changes from a local work-
ing copy to the current version of the project. We determine whether the time between
commits is “long” in a given development context by calculating the mean time between
commits in a project and by considering all those times that are longer than the mean plus
two standard deviations.

Large number of files touched (added, modified, deleted) in the same commit.
The number of files touched in a commit is especially important when inspecting added
or deleted files, since modifying existing files is much more common than their creation
or removal. Adding or deleting a considerable amount of files might be an indicator of
changes to the software architecture and it is probably a sign of a refactoring or work on
a disruptive task, i.e., a task that changes a lot and “disrupts” the current code. Again, we
use the historical mean and standard deviation to define “large”.

Large number of code modifications (LOC, methods, code complexity). Com-
mits with a notably large number of changes to lines of code (LOC), methods, or code
complexity may represent significant modifications to the code base, similar to what hap-
pens when many files are added, modified, or deleted in a single commit. Thus, it is
important to notify the development team of such changes.

Modification in files without their related files. It is very common to
have strongly coupled files that are often changed together in software development.
ROSE [Zimmermann et al. 2005] is a tool for Eclipse aiming to: (i) suggest and
predict likely changes; (ii) prevent errors due to incomplete changes; and (iii) de-

II Latin American School on Software Engineering (ELA-ES 2015)

159

tect coupling undetectable by program analysis. ROSE uses the Apriori Algorithm
[Agrawal and Srikant 1994] to compute association rules. Unlikely ROSE, the approach
used in this work does not try to predict changes or prevent errors, but rather to notify
developers of a possibly incomplete change after the commit.

Modification in files changed by many different developers. Files created
and/or changed by many developers are more bug-prone than files only maintained by
one or two developers, which was evidenced by a tool called Seesoft [Balsiger 2010]. In
the security domain, source code files changed by many developers are also more likely
to have at least one post-release security vulnerability [Meneely 2011]. Therefore, modi-
fications to these specific files are worth mentioning to the development team. Similar to
the rules presented above, we use the historical mean and standard deviation to determine
what is “many” in a given development context.

Modification in files that had many modifications. The number of modifications
made to a file during the lifetime of the project is a commonly analyzed factor in the area
of software maintenance. [Graves et al. 2000] state that the number of times that the code
has been changed is a good indication of how many faults it will contain. Although this
work does not aim to predict defects, a modification to a file that has already been changed
many times can be an indicator for instability in the code, and, thus, it is considered an
important notification to the development team.

Modification in files not modified in a long time. Files that have not been mod-
ified in a long period of time can indicate two things: either the code is stable or it has
been “forgotten” and it is not up to date with the current version/status of the project
(architecture, requirements, etc).

Our approach stores data about unusual events in a database and presents it to man-
agers and developers using a web application. The Data Extraction process is supported
by a Java project called UEMiner, which consists of three main components: (i) Miner,
(ii) DataCollector, and (iii) DataAnalyzer. Miner is responsible for accessing a source
code repository and for communicating with the database in order to save the retrieved
data. The DataCollector component consists of an infrastructure to collect and prepare
data to allow the identification of unusual events. Since the data related to each event is
different, there is one collector for each type of unusual event. To store the relevant data,
the DataCollector component creates spreadsheets, along with a few related statistics –
especially mean and standard deviation. The DataAnalyzer component analyzes the data
collected and prepared by DataCollector aiming to identify unusual events by: (i) getting
statistical information about the historical data from the spreadsheets, and (ii) comparing
such information with data of the current commit being analyzed. If an outlier is identi-
fied, the event is saved to the database, allowing it to be accessed by the web application.
The DataAnalyzer component constantly monitors the repository for new commits, but
the analysis process can be triggered by other factors, such as specific days of the week.
The whole process is illustrated in Figure 1.

3. Future Work
The next steps for this work involve the evaluation of the proposed approach. Events are
displayed to developers and managers in an awareness tool called UEDashboard, which
shows the events in a notification feed. Managers and developers can provide feedback

II Latin American School on Software Engineering (ELA-ES 2015)

160

Figure 1. Process for Data Extraction and Analysis.

by classifying the event as useful or not useful, and they can write comments about each
notification. In future work it might be possible for the tool to learn from these inputs to
understand what is relevant for the development team and provide better notifications. We
also intend to interview development teams to deeply understand what is behind unusual
events. Additionally, we aim to apply our method to different development teams, since
teams with different characteristics – team size, project age, development process – may
require different analysis and could bring up various other types of unusual events. We
also plan to extend our work beyond version control systems by additionally analyzing
data from issue trackers, communication channels, and release management systems.

References
Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large

databases. In Proc. of the 20th Intl. Conf. on Very Large Data Bases, pages 487–499.

Balsiger, M. (2010). Representing software features in the Eclipse IDE. Univ. of Bern.

Dourish, P. and Bellotti, V. (1992). Awareness and coordination in shared workspaces. In
Proc. of the Conf. on Computer-supported Cooperative Work, pages 107–114.

Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. (2000). Predicting fault incidence
using software change history. IEEE Trans. on Software Engineering, 26(7):653–661.

Kolassa, C., Riehle, D., and Salim, M. A. (2013). The empirical commit frequency distri-
bution of open source projects. In Proc. of the 9th Intl. Symp. on Open Collaboration,
pages 18:1–18:8.

Meneely, A. (2011). Investigating the Relationship Between Developer Collaboration
and Software Security. PhD thesis. North Carolina State Univ.

Treude, C., Figueira Filho, F., and Kulesza, U. (2015). Summarizing and measuring
development activity. Submitted to Symp. on the Foundations of Software Engineering.

Treude, C. and Storey, M.-A. (2010). Awareness 2.0: staying aware of projects, develop-
ers and tasks using dashboards and feeds. In Proc. of the 32nd Intl. Conf. on Software
Engineering, pages 365–374.

Weiss, C., Premraj, R., Zimmermann, T., and Zeller, A. (2007). How long will it take
to fix this bug? In Proc. of the 4th Intl. Workshop on Mining Software Repositories,
page 1.

Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S. (2005). Mining version histo-
ries to guide software changes. IEEE Trans. on Software Engineering, 31(6):429–445.

II Latin American School on Software Engineering (ELA-ES 2015)

161

An Evaluation Model for Software Ecosystem Practice
Improvement

Simone da Silva Amorim1, John D. McGregor2, Eduardo Santana de Almeida3,
Christina von Flach G. Chavez3

11Departamento de Informtica - Instituto Federal da Bahia (IFBA)
CEP 40301-015 - Salvador - BA - Brazil

2Department of Computer Science - Clemson University
Clemson – USA

3Departamento de Computação
Universidade Federal da Bahia (UFBA) - Salvador, BA - Brazil

simone.amorim@ifba.edu.br, johnmc@clemson.edu, {esa,flach}@dcc.ufba.br

Abstract. Many software ecosystems have achieved success in recent years.
However, there is not an accepted quality process model which evaluates the
essential practices that are commonly used in a software ecosystem. This paper
presents the outline of a Ph.D. research aimed at developing an improvement
model for software ecosystems. It summarizes a representation of the steps of
the model and the identification of key factors that are relevant to the practices.
The model is based on the practices and activities that can improve various
facets of the ecosystem, modeled by three views of the ecosystem: community,
business and technical. We also propose a research plan for developing such a
model.

1. Introduction
Software ecosystems are composed of one or more platforms and a set of applications
built on top of these platforms, developed and used by a community. The community
encompasses users, domain experts, sponsors and a set of internal and external developers
all of whom interact in a shared market for software and services [Jansen et al. 2009].
In spite of the growing body of software ecosystem research, existing research does not
address how and why they evolve over time. Empirical research is necessary to understand
how different software ecosystems face the challenges of software evolution. Through
this research, models can be defined and calibrated to use measurements to successfully
guide the evolution processes in a software ecosystem. Such models would be useful to
strategic decision makers within the context of software ecosystems, as a way of providing
feedback to ecosystem managers.

Ecosystems evolve as the result of numerous forces acting on the organizations
within the ecosystem. Evolution brings changes in the health of the ecosystem, in the
quality of the products and practices in the ecosystem, and in the attractiveness of the
ecosystems products and product development environment. We are investigating how
these changes affect the quality of the ecosystem. By quality we mean the degree to which
the practices meet the needs of process designers and the expectations of the organizations
for the ecosystem to achieve its full potential.

II Latin American School on Software Engineering (ELA-ES 2015)

162

This work presents an ongoing Ph.D. investigation on how to build a model of
practice improvement for Software Ecosystems. We introduce the Evaluation Model for
Software Ecosystems Practice Improvement (EMSEPI) and its three views on ecosystems:
community, business and technical. These views represent different but overlapping as-
pects of the elements of a software ecosystem and their relationships.

2. Research Questions
The goal of this research can be stated as follows: to develop a model to evaluate the
practice improvement in software ecosystems and to guide the evolution of these prac-
tices, giving support to all phases of the lifecycle.

Based on this goal, we state key questions to drive the research design. These are
next detailed, together with a sketch on how we intend to address them.

RQ1. How do ecosystems evolve as they grow more successful? We intend to
understand which issues have important influence on the evolution of software ecosys-
tems. We investigate this question by means of the identification, description, and classi-
fication of evolution characteristics of software ecosystems, based on a detailed analysis
on existing literature, and also based on the analysis of data from real-world projects.

RQ2. How can the practices responsible for evolution be compared and evalu-
ated in software ecosystems? By analyzing the issues that impact on software ecosystem
evolution, we develop a model to evaluate the improvement practices and to guide these
practices during its evolution. This approach will focus to evaluate key factors consid-
ering the development process for the three ecosystems views: community, business and
technical. To make such a model useful for practitioners, we intend to develop a tool to
aid stakeholders to classify their ecosystem practices.

RQ3. How can goals and recommended useful actions be established for soft-
ware ecosystems? Based on the classification of the practices improvement, we intend to
build guidelines for the ecosystem to evolve their practices and achieve new levels of the
practices improvement.

3. Evaluation Model for Software Ecosystem Practice Improvement
In this section, we present the Evaluation Model for Software Ecosystem Practice Im-
provement (EMSEPI). It is an attempt to evaluate a set of factors that influence the qual-
ity of practices for software ecosystems of all sizes and granularities. This model uses
a key factors approach, based on progressive phases, which ecosystems can follow to
achieve success. The key factors are classified considering the three ecosystems perspec-
tives: community, business and technical. It is important for software ecosystem models
to consider interactions among these views, since one of the more important ecosystem
characteristics is the influence that each element exerts on other elements inside of the
environment. Quantitative measures to define each progressive level of a key factor do
not currently exist.

EMSEPI is organized in two steps that should be performed for each software
ecosystem view and each key factor. In the First step, all activities related to key factor
are identified. In the second step, the ecosystem is classified in accordance with PCT. The
steps that analyze the key factors were defined through a literature review. Key factors

II Latin American School on Software Engineering (ELA-ES 2015)

163

are organized in accordance with the ecosystem view. For example, in the community
view, we present the following key factors: coordination, communication, interactions,
experience of developers, and so on. For business view, we introduce: cost management,
taking decisions, market share, return on investment, and so on. Lastly, for technical view,
we introduce: change management, quality attributes, documentation, and so on. They
cover several practices that are part of the dynamics ecosystem evolution.

In addition, EMSEPI uses a Phase Classification Template (PCT). The PCT shows
a natural improvement progression for each key factor. They are sequentially ordered.
The stages in the progression are named: minimal, low, medium and high. An ecosystem
is evaluated against each key factor and placed along the progression for that factor. The
classifications indicate how the organization can anticipate future changes. Due to space
limitations, Figure 1 shows only an example of three key factors on the PCT for each view
of this model: interactions, business decisions and design decisions.

Figure 1. PCT - Phase Classification Template

4. Research Approach

We are developing EMSEPI by starting with the framework proposed by De Bruin et al.
[De Bruin et al. 2005]. They introduced a methodology and outline the main phases of
generic model development for a maturity model. However, this methodology will be
adjusted to develop an improvement model. The model of De Bruin is composed of six
phases of development: scope, design, populate, test, deploy and maintain.

During scoping, the stakeholders for the ecosystem determine the coverage of the
desired model. The design phase defines the model architecture and aims to answer ques-
tions such as: why and how to apply the model, who should be engaged in the application
of the model and what can be gained from the success of the model. The populate phase
identifies key factors and a progressive series of improving levels for each. During this
phase measures for each key factor are also determined. During the test phase, the model

II Latin American School on Software Engineering (ELA-ES 2015)

164

is validated. The deploy phase applies an initial organizational application to verify that
the model is sufficiently generalizable. Finally, the maintain phase manages the growth
of the model and use.

During our initial scoping phase, we have identified twenty-one practices from
our previous work that are important to a successful ecosystem [Amorim et al. 2013,
Amorim et al. 2014a, Amorim et al. 2014b]. The model should be applied to software
ecosystems that engage in platform-based software development, by providing a software
platform to internal and external developers who are in service to a community of users
and domain experts. Currently, we are iterating within the population phase of model
development.

5. Conclusion and Future Work
We presented a high-level view on our PhD work. Our research objectives were moti-
vated by the lack of models that evaluate the essential practices that are commonly used
in a software ecosystem. A large number of quality models have been developed in the
last years. However, none of them addressed the quality of the practices needed in a soft-
ware ecosystem. In our research, we propose a model for software ecosystems practice
improvement that can help consolidate knowledge and contribute to an ecosystem devel-
opment. This allows stakeholders to model various aspects of software evolution within
the context of software ecosystems and community, business, and technical views of that
ecosystem. In this context, we formulated research questions and designed a research
methodology based on studies about ecosystem evolution.

We hope this work will widen the understanding of the ecosystem practices im-
provement. We believe that our findings have practical implications to ecosystem man-
agement and development, as well as of a tool support. Moreover, we are going to develop
this model in further detail by identifying more key practices. We plan to apply this model
to real-world ecosystems for validation and, at the same time, extract relevant knowledge
about the changes software ecosystems experience over time.

References
Amorim, S. d. S., de Almeida, E. S., and McGregor, J. D. (2013). Extensibility in ecosys-

tem architectures: An initial study. In Proceedings of the 2013 International Workshop
on Ecosystem Architectures, WEA 2013, pages 11–15.

Amorim, S. d. S., de Almeida, E. S., and McGregor, J. D. (2014a). Scalability of ecosys-
tem architectures. In Proceedings of the 11th Working IEEE/IFIP Conference on Soft-
ware Architecture, WICSA ’14, pages 49–52.

Amorim, S. d. S., de Almeida, E. S., McGregor, J. D., and Chavez, C. v. F. G. (2014b).
Flexibility in ecosystem architectures. In Proceedings of the 2014 European Confer-
ence on Software Architecture Workshops, ECSAW ’14, pages 14:1–14:6.

De Bruin, T., Freeze, R., Kaulkarni, U., and Rosemann, M. (2005). Understanding the
main phases of developing a maturity assessment model. In Proceedings of the 16th
Australasian Conference on Information Systems, ACIS ’05.

Jansen, S., Finkelstein, A., and Brinkkemper, S. (2009). A sense of community: A re-
search agenda for software ecosystems. In Proceedings of the 31st International Con-
ference on Software Engineering: Companion Volume, ICSE ’09, pages 187–190.

II Latin American School on Software Engineering (ELA-ES 2015)

165

Melhoria da Qualidade Interna de Software Orientado a

Objetos Usando Medidas de Acoplamento e de Coesão

Danilo Santos, Antônio Resende, Heitor Costa

Departamento de Ciência da Computação - Universidade Federal de Lavras - MG - Brasil

danilobatista@posgrad.ufla.br, {tonio,heitor}@dcc.ufla.br

Resumo. A manutenção é uma fase onerosa do ciclo de vida do software por

serem realizadas sucessivas manutenções não planejadas, deteriorando a

qualidade do software mais rapidamente. Dentre as causas da deterioração,

as mudanças arquiteturais forçam a perda de coesão e o aumento do

acoplamento afetando a qualidade de sistemas de software. Neste artigo, o

objetivo é desenvolver uma metodologia para rearranjar a arquitetura de

software pela movimentação de classes entre pacotes e determinar a "melhor"

organização arquitetural para aumentar a qualidade interna e externa do

software. Para suportar e avaliar a metodologia proposta, um apoio

computacional (plug-in para Eclipse) será desenvolvido.

Abstract. Maintenance is a costly phase of the software life cycle due to

perform successive unplanned maintenance, deteriorating software quality.

Among the causes of deterioration, architectural changes force the loss of

cohesion and increased coupling affecting the software quality. In this paper,

aim is to develop a methodology to rearrange the software architecture for

handling classes among packages and determining "best" architectural

organization to increase internal and external software quality. To support

and evaluate the proposed methodology, computational support will be

developed (plug-in for Eclipse).

1. Introdução

Engenheiros de Software esforçam-se para agregar qualidade a sistemas de software,

propondo soluções de projeto adequadas ou identificando pontos no projeto que podem

ter a qualidade aprimorada [Al Dallal, 2013]. Embora sistemas de software sejam

desenvolvidos empregando as melhores práticas de desenvolvimento e provendo

qualidade desde o início do seu ciclo de vida, eles podem deteriorar-se em decorrência

de sucessivas manutenções [Stephen et al., 2001].

Portanto mesmo que um software, no início de seu ciclo de vida, atenda aos

requisitos de qualidade perceptíveis aos usuários, com o passar do tempo ele precisa

evoluir, para atender as novas necessidades do usuário e do ambiente, respeitando a lei

da mudança contínua [Pressman; Maxim, 2014]. Caso isso não ocorra, ele será superado

em qualidade e substituído por um concorrente existente no mercado [Parnas, 1994].

Para evitar essa deterioração na qualidade executa-se o processo de manutenção,

entretanto não basta simplesmente executa-lo, existe a necessidade de realizá-lo

seguindo padrões de projeto, para manter a qualidade inicial ou melhorá-la.

II Latin American School on Software Engineering (ELA-ES 2015)

166

Não aplicar esses padrões pode ocasionar deterioração na qualidade do software,

denominada erosão de software [Parnas, 1994]. Por isso a manutenção deve ser

realizada de forma planejada e não estruturada, evitando-se corrigir erros ou inserir

funções sem considerar fatores de qualidade ou padrões de projeto inicialmente

utilizados. Manutenções não planejadas e não estruturadas tornam o código

desorganizado, ilegível e propenso a falhas [Erdil et al., 2003]. Isso afeta atributos

internos primordiais que conferem qualidade ao software (e.g., acoplamento e coesão)

[Martin; McClure, 1983]. Acoplamento e coesão são atributos internos de software

[Morasca, 2009] que podem ser afetados por uma manutenção mal feita.

Diversos autores concordam que pacotes de um sistema de software devem

possuir baixo acoplamento e alta coesão, para obter um software com qualidade [Chen

et al., 2002; Bavota et al., 2013; Al Dallal, 2013]. Como a manutenção afeta

diretamente o acoplamento e coesão [Lanza e Marinescu, 2006], caso ela não seja

executada seguindo padrões de projeto, tem-se redução na qualidade do software.

Assim, uma reestruturação da arquitetura do software torna-se necessária, por exemplo,

divisão/combinação de pacotes.

Neste trabalho, a reestruturação consistirá na movimentação de classes entre

pacotes. Optou-se por essa abordagem em nível de pacotes, pois aperfeiçoando a

estrutura dos pacotes pode-se reduzir os prejuízos ocasionados pela degradação de

qualidade, reestabelecendo a “melhor” estrutura possível para o projeto. Essa

degradação também pode ser notada nos valores de acoplamento e coesão, onde em

decorrência da manutenção tem-se aumento da coesão diminuição do acoplamento

[Lanza e Marinescu, 2006]. Uma estratégia a ser utilizada na reestruturação de

movimentação de classes será buscar uma arquitetura, cujas medidas favoreçam baixo

acoplamento e alta coesão entre pacotes. Assim, pode-se ter aumento/diminuição da

quantidade de classes de um pacote e a possibilidade de acrescentar pacotes ao sistema.

Para dar apoio a essa reestruturação algoritmos/técnicas de Inteligência Artificial

(IA) serão utilizados para buscar uma solução boa, não necessariamente ótima,

automatizando a solução. Espera-se que esta automatização reduza a subjetividade da

existente na tomada de decisão se uma reestruturação deve ser feita. Além disso, a

avaliação por um humano é mais propensa a falhas e tornaria o processo menos

eficiente, visto que demandaria mais tempo para ser executada e geraria menor

quantidade de possíveis configurações de arquiteturas em comparação com as

técnicas/heurísticas de IA.

2. Metodologia

A metodologia de desenvolvimento é apresentada na Figura 1. Inicialmente, será

realizada uma Revisão Sistemática de Literatura (RSL), com o objetivo de saber quais

são as medidas de software existentes na literatura. O resultado dessa RSL fornecerá

bases sólidas para determinar as medidas a serem utilizadas na metodologia proposta, as

quais avaliarão os atributos de acoplamento e coesão de sistemas de software.

Em seguida, serão estudadas técnicas/heurísticas de IA (Simulated Annealing,

Redes Neurais Artificiais, Lógica Fuzzy, etc) para identificar qual é a mais apropriada

para ser utilizada na metodologia proposta. Essas técnicas/heurísticas de IA possuem

papel fundamental nessa metodologia, pois permitirão que as “melhores decisões” sejam

II Latin American School on Software Engineering (ELA-ES 2015)

167

tomadas a cada passo, maximizando as chances de sucesso e diminuindo o tempo de

execução.

Com as técnicas/heurísticas de IA e as medidas de acoplamento e de coesão

definidas, um plug-in para Eclipse será desenvolvido. Esse plug-in irá utilizar uma

técnica/heurística de IA e, com base nos valores de acoplamento e coesão dos pacotes de

software, alterará a arquitetura do software, tendo como saída uma sugestão de

arquitetura de software melhorada.

Figura 1. Metodologia de Desenvolvimento

3. Trabalhos Relacionados

Grande esforço tem sido dedicado por diversos autores para realizar trabalhos que

contribuam na melhoria da qualidade de software, deteriorada durante a manutenção,

por meio de alterações estruturais no projeto do software. Uma técnica para

remodelagem dos pacotes utilizando medidas estruturais e semânticas para decompor o

pacote em unidades menores e mais coesas foi proposta [Bavota, 2013]. Com a

utilização dessa técnica, melhorias podem ocorrer na coesão dos pacotes do software

sem deterioração do acoplamento, tendo sido validada por meio de um estudo empírico.

Em outro trabalho [Abdeen, 2009], foi implementada uma técnica e um

algoritmo baseados em uma heurística de busca para otimizar a conectividade

interpacotes de sistemas de software orientados a objetos. Nessa heuristica, pacotes são

decompostos, a partir do conhecimento do acoplamento e da coesão, minimizando a

conectividade ciclomática entre os pacotes. Uma análise foi realizada para verificar

como o refatoramento afeta o acoplamento e a coesão [Du Bois et al., 2004]. A partir

dessa análise, foram sugeridas orientações de como identificar oportunidades para

aplicar o refatoramento de software. Concluiu-se que a utilização de técnicas de

refatoramento, por exemplo, substituição/movimentação de métodos em conjunto de

classes sob análise de acoplamento e de coesão, possibilita atingir melhorias na

qualidade.

Diferentemente dos trabalhos citados anteriormente, nesta investigação pretende-

se utilizar o acoplamento e a coesão de software como medidas norteadoras das

melhorias da arquitetura, apoiada em técnicas/heuristicas de IA. As classes serão

Arquitetura Atual Arquitetura Sugerida

Software' Software'

Técnicas/Heurísticas

de Inteligência

Artificial

Medidas de

Acoplamento

e de Coesão

Utilizar

Implementar Técnicas
Inteligência Artificial

Recuperar a
Arquitetura

Propor a
Arquitetura

II Latin American School on Software Engineering (ELA-ES 2015)

168

movidas automaticamente entre os pacotes, enquanto a coesão e o acoplamento serão

medidos e acompanhados para se identificar a melhor configuração de arquitetura.

4. Resultados Esperados

Espera-se que a metodologia proposta seja útil para aumentar a qualidade interna de

sistemas de software (diminuir acoplamento e aumentar coesão). Para realizar a

avaliação da metodologia proposta, será utilizado um conjunto de medidas de

acoplamento e coesão diferente do conjunto de medidas utilizado para a condução do

processo de reestruturação.

Essa reestruturação será aplicada em sistemas de software presentes em

repositórios de sistemas open-source, pois há necessidade de ter acesso ao código fonte.

Os sistemas a serem analisados deverão atender alguns critérios, por exemplo,

quantidade de classes, quantidade de linhas de código, sistemas atuais (2014 em diante),

aceito pela indústria e constantemente atualizado.

5. Referências
Abdeen, H.; Ducasse, S.; Sahraoui, H.; Sahraoui, H. Automatic Package Coupling and Cycle

Minimization. In: WCRE. pp. 103-112, 2009.

Al Dallal, J. Object-Oriented Class Maintainability Prediction Using Internal Quality

Attributes. I: Information and Software Technology. pp. 2028-2048, 2013.

Bavota, G.; Lucia, A.; Marcus, A.; Oliveto, R. Using Structural and Semantic Measures to

Improve Software Modularization. In: Emp. Softw. Engineering. pp.901-932.2013.

Chen, Z.; Zhou, Y.; Xu, B.; Zhao, J.; Yang, H. A Novel Approach to Measuring Class Cohesion

Based on Dependence Analysis. In: International Conference on Software Maintenance. pp.

377-384, 2002.

Du Bois, B.; Demeyer, S.; J. Verelst. Refactoring-Improving Coupling and Cohesion of

Existing Code. In: Working Conference on Reverse Engineering. 2004.

Erdil, K.; Finn, E.; Keating, K.; Meattle, J.; Park, S. Software Maintenance as Part of the

Software Life Cycle. Department of Computer Science, Tufits University: Comp180:

Software Engineering Project, 2003.

Lanza M., e Marinescu R. Object-oriented metrics in practice: using software metrics to

characterize, evaluate, and improve the design of object-oriented systems. Springer Science

& Business Media, 2006.

Martin, J.; McClure, C. L. Software Maintenance: The Problem and Its Solutions. Englewood

Cliffs, NJ.: Prentice Hall Professional Technical Reference, 1983.

Morasca, S. A Probability-based Approach for Measuring External Attributes of Software

Artifacts. In: International Symposium on Empirical Software Engineering and

Measurement, pp. 44-55, 2009.

Parnas, D. L. Software Aging. In: ICSE. pp. 279-287, 1994.

Pressman, R.; Maxim, B. Software Engineering: A Practitioner's Approach. 976p. 2014.

Stephen, E. G.; Graves, A. F.; Marron, J. S.; Mockus, A. Does Code Decay? Assessing the

Evidence from Change Management Data. In: Transactions on Software Engineering. pp. 1-

12, 2001.

II Latin American School on Software Engineering (ELA-ES 2015)

169

Promoted by

Diamond Sponsor

Gold Sponsors:

Support:

Realization

2nd Latin-American School on Software Engineering
Campus do Vale - Instituto de Informática - UFRGS

Av. Bento Gonçalves 9500 Bl. IV - Porto Alegre - Brazil - CEP: 91501-970

	capa
	front-matter - proceedings
	content
	Talk
	Tutorial 1
	Tutorial 2
	Tutorial 3
	Tutorial 4
	Tutorial 5
	Tutorial 6
	Tutorial 7
	Panel 1
	Panel 2
	Panel 3
	Panel 4
	Mini-curso 1
	Mini-curso 2
	paper 18
	paper 20
	paper 22
	Introdução
	Background
	Controle de Versão
	Integração Contínua
	Conformidade Arquitetural

	Solução Proposta
	Linguagem DCL
	Jenkins

	Ferramenta ArchCI
	Avaliação
	Conclusão

	paper 31
	paper 5
	paper 11
	Introduction
	Motivating Example

	ContractOk
	Case Study
	Conclusions

	paper 14
	paper 15
	paper 16
	paper 17
	paper 19
	paper 21
	Introdução
	Background
	Proposta de Pesquisa
	Considerações Finais

	paper 24
	paper 26
	paper 28
	paper 29
	paper 30
	paper 32
	paper 34
	paper 35
	paper 36
	paper 37
	paper 38
	paper 39
	paper 4
	paper 6
	paper 7
	paper 8
	paper 9

	contra

