LLA-E

2nd Latin-Americaq Schooll on
Software Engineering

30/Jun - 03/Jul

Vale Campus, UFRGS, Porto Alegre, BR

i

F

N

—
g |
'-,
4 N
\

i =
H

¥

ELA-ES 2015

Il Latin-American School on Software Engineering

Ingrid Nunes and Francisco Dantas de Medeiros Neto

June 30" to July 3", 2015
Porto Alegre/RS — Brazil

Volume 01

PROCEEDINGS ion

ISBN: 978-85-88425-14-9

General Chairs
Ingrid Nunes
Francisco Dantas de Medeiros Neto

Realization
Instituto de Informatica, Universidade Federal do Rio Grande do Sul (UFRGS)

Promoted by
Sociedade Brasileira de Computacgdo (SBC)

Sponsors
Diamond sponsor: HP
Gold sponsors: ADP Labs, Dell, GE Research and Google

Support
CAPES, GE Research, UERN, PPGC-UFRGS, PROREXT-UFRGS, PROPG-UFRGS, PROPESQ-UFRGS

Publisher
UFRGS - Instituto de Informatica

DADOS INTERNACIONAIS DE CATALOGAQAO—NA—PUBLICAQAO
(Porto Alegre, Brasil)

ELA-ES 2015 : Il Latin-American School on Software Engineering (1. : 2015 :
Porto Alegre, Rio Grande do Sul).

ELA-ES 2015 : [anais da] Il Escola Latino Americana de Engenharia de
Software [de] Ingrid Nunes e Francisco Dantas de Medeiros Neto — Porto
Alegre: UFRGS - Instituto de Informatica, 2015.

180 p.; 21 cm.

Instituto de Informatica, Universidade Federal do Rio Grande do Sul,
Sociedade Brasileira de Computacgao.

Publicagdo composta por 1 volume, sendo este o volume 1.

ISBN : 978-85-88425-14-9.

1. Engenharia de software. I. coord. Ingrid Nunes. Il. Francisco Dantas de
Medeiros Neto. Ill. Anais.

CDD 620

Foreword

This proceedings records the contributions presented at the Second Latin American School on Software Engineering —
ELA-ES, which took place in Porto Alegre, Rio Grande do Sul, from June 30" to July 3rd, 2015.

This second edition of the ELA-ES builds on the success of the previous event in this series, which took place in Rio de
Janeiro (2013). ELA-ES provides intensive and exciting four-days of lectures on both basic and state-of-the-art themes
of software engineering covering a wide range of topics, including software architecture, modularity, software testing,
experimental software engineering. The school brings together undergraduate students, Master and PhD students and
lecturers as well as other researchers and practitioners who are interested in software engineering and specifically the
topics named above. The tutorials are given by renowned representatives of each domain of expertise. Each tutorial
combines foundations, examples and advanced topics and some of them will present hands-on sessions when
appropriate. Moreover, the event includes an industry panel, with discussions on applied research and the
opportunities that are emerging in Latin America, with the creation of the Parque Cientifico e Tecnolégico of UFRGS.

The program of the Latin American school also features lectures and activities that will address complementary issues
that are relevant to young researchers: How to plan my research agenda in Software Engineering? What has been the
evolution of Software Engineering in Latin America? What are the possible academic and industry careers after my
studies?

The current edition of the workshop received a range of contributions. We received 10 technical paper submissions,
from which we accepted 5 papers (50%). In addition, 3 of these papers were accepted as position papers (30%). We
also received 28 position paper submissions, from which we accepted 22 papers (78.5%).

The success of ELA-ES 2015 was only possible because of the dedication and enthusiasm of many people. First, we
would like to thank the authors for submitting their papers. We would also like to express our gratitude to the
following people: the TPC members, for their dedication and great work when reviewing the submitted papers; the
Organizing Committee, for their great help in giving shape to the event. In particular, we would like to thank the staff at
Sociedade Brasileira de Computagdo (SBC), for their support.

We would also like to thank the invited speakers — Prof. Dr. Claudia Werner (UFRJ, BR), Prof. Dr. Simone Barbosa (PUC-
Rio, BR), Prof. Dr. Antdnia Lopes (Universidade de Lisboa, PT), Prof. Dr. David Garlan (Carnegie Mellon University, USA),
Prof. Dr. Don Batory (University of Texas, USA), Prof. Dr. Gail Murphy (University of British Columbia, CA), Prof. Dr.
Gregor Engels (Universitdt Paderborn, DE), Prof. Dr. Guenther Ruhe (University of Calgary, CA) and Prof. Dr. Sebastian
Uchitel (Universidad de Buenos Aires, AR and Imperial College London, UK) — and panelists for their valuable
contribution to the event. Finally, we acknowledge CAPES and UFRGS for the financial support.

We hope ELA-ES goes ahead as a long-lasting school, thereby allowing a growing and inspiring sense of community and
collaboration amongst researchers from Software Engineering community.

Porto Alegre, July 2015.
Ingrid Nunes
Francisco Dantas de Medeiros Neto
ELA-ES 2015 General Chairs

ELA-ES 2015 Chairs Short Biographies

Ingrid Nunes is a Professor Adjunto (Associate Professor) of the Instituto de Informatica at the Federal University of Rio
Grande do Sul (UFRGS), Porto Alegre, Brazil, and the head of the Prosoft research group. She completed her
undergraduate studies in Computer Science at UFRGS (2006), obtained her Master's degree in Informatics at the
Pontifical Catholic University of Rio de Janeiro (2009), and obtained her Doctor's degree in Informatics at the Pontifical
Catholic University of Rio de Janeiro (2012). Her phd was in cooperation with King's College London (UK), under a
sandwich Ph.D. programme of one year, and with University of Waterloo (Canada), with three three-month research
visits. She was also a post-doc researcher at PUC-Rio in the Software Engineering Laboratory (LES) (2012), and has
experience in the industry, where she worked as a software developer from 2005 to 2007. She is a section editor of the
Scientific Initiation Magazine (REIC). Her main research areas are software engineering and artificial intelligence.

Francisco Dantas de Medeiros Neto is Professor Adjunto (Associate Professor) in the Computing Department at State
University of Rio Grande do Norte, Brazil. He received his B.Sc. (2001) and M.Sc. (2004) degrees in Computer Science
from Federal University of Rio Grande do Norte, Brazil. In 2013, he received the D.Sc. degree in Informatics from the
Pontifical Catholic University of Rio de Janeiro, Brazil. His doctorate was developed in cooperation with Lancaster
University (UK), under a sandwich Ph.D. programme of one year. Dantas’ research interests include Advanced
Techniques for Modular Programming, Product Lines, Software Metrics, Empirical Software Engineering and Software
Architecture.

Technical Committees

General Chairs
Ingrid Nunes (UFRGS)
Francisco Dantas de Medeiros Neto (UERN)

Organizing Team
Daniela Brauner (UFPel)
Daltro Nunes (UFRGS)
Carlos Lucena (PUC-Rio)

Local Organizers

Fernando dos Santos (UFRGS)

Jacob de Quadros Stein (UFRGS)
Jhonny Marcos Acordi Mertz (UFRGS)
Jodo Guilherme Faccin (UFRGS)

Lucas Lazzari Tomasi (UFRGS)
Matheus Medeiros Dias (UFRGS)
Vanius Zapalowski (UFRGS)

Program Committee

Adenilso Simao (USP, Brazil)

Alejandra Garrido (Universidad Nacional de la Plata, Argentina)
Alvaro Moreira (UFRGS, Brazil)

Ana Paula Terra Bacelo (PUC-RS, Brazil)

Baldoino Santos Neto (UFAL, Brazil)

Beatriz Marin (Universidad Diego Portales, Chile)
Claudia Pons (Universidad Nacional de La Plata, Argentina)
Claudia Werner (UFRJ, Brazil)

Claudio Sant’Anna (UFBA, Brazil)

Daniel Lucrédio (UFSCar, Brazil)

Daniela Godoy (ISISTAN Research Institute, Argentina)
Diego Vallespir (Universidad de la Republica, Uruguay)
Edson A. Oliveira Junior (UEM, Brazil)

Eduardo Almeida (UFBA, Brazil)

Eduardo Figueiredo (UFMG, Brazil)

Eduardo Guerra (INPE, Brazil)

Eduardo Piveta (UFSM, Brazil)

Elder Cirilo (UFSJ, Brazil)

Erika Cota (UFRGS, Brazil)

Eugenio Scalise (UCV, Venezuela)

Fabiano Ferrari (UFSCar, Brazil)

Fabio Silveira (UNIFESP, Brazil)

Fernando Castor (UFPE, Brazil)

Gaston Mousques (Universidad ORT, Uruguay)
Guilherme Travassos (UFRJ, Brazil)

Gustavo Rossi (LIFIA, Argentina)

Herndn Astudillo (Universidad Técnica Federico Santa Maria, Chile)
Isela Bertran (GE Global Research Center, Brazil)

Jair Leite (UFRN, Brazil)

Jean Cheiran (UNIPAMPA, Brazil)

Juan Pablo Carvallo (Universidad del Azuay, Ecuador)

Judith Barrios (ULA, Venezuela)

Leandro Wives (UFRGS, Brazil)

Leila Ribeiro (UFRGS, Brazil)

Leopoldo Teixeira (UFPE, Brazil)

Lucineia Thom (UFRGS, Brazil)

Lucio Duarte (UFRGS, Brazil)

Luis Lamb (UFRGS, Brazil)

Marcelo Pimenta (UFRGS, Brazil)

Marco Tulio Valente (UFMG, Brazil)

Maria Cecilia Bastarrica (Universidad de Chile, Chile)
Nelio Cacho (UFRN, Brazil)

Norah Villegas (Icesi, Colombia)

Paulo Masiero (USP, Brazil)

Ricardo Choren (IME/RJ, Brazil)

Ricardo Terra (UFLA, Brazil)

Ricardo Soto (Pontificia Univ. Catdlica de Valparaiso, Chile)
Rodrigo Bonifacio (UnB, Brazil)

Rodrigo Paes (UFAL, Brazil)

Romain Robbes (University of Chile, Chile)
Rosangela Penteado (UFSCar, Brazil)

Roxana Giandini (Universidad Nacional de la Plata, Argentina)
Thais Batista (UFRN, Brazil)

Tiago Massoni (UFCG, Brazil)

Toacy Oliveira (UFRJ, Brazil)

Uira Kulesza (UFRN, Brazil)

Valter Camargo (UFSCar, Brazil)

Vinicius Garcia (UFPE, Brazil)

Additional Reviewers
Alcemir Santos

Boris Almonacid

Carolina Valverde

Daniel Perovich

Italo Silva

Kattiana Constantino

Luiz Paulo Coelho Ferreira
Rodrigo Olivares

Vi

Table of Contents
Talks and Tutorials

A Tentative Agenda and Perspectives for Software Engineering Young Researchers
Cldudia Werner 1

Tutorial 1: Formal Aspects of Software Architecture
Anténia Lopes 2

Tutorial 2: A Theory of Modularity for Automated Software Design
Don Batory 3

Tutorial 3: Model-driven Development
Gregor Engels 4

Tutorial 4: Abstractions for Validation
Sebastian Uchitel 5

Tutorial 5: Experimental Software Engineering — The Pathway for Achieving Evidence
Guenther Ruhe 6

Tutorial 6: Self-Adaptive Systems
David Garlan 7

Tutorial 7: Recommender Systems for Software Engineering
Gail Murphy 8

Panels

Why, When, and How to Write up Your Research Work
Simone Barbosa 9

Software Engineering Research at UFRGS

10
Perspectives, Opportunities and Challenges of Software Engineering in the Industry
13
Software Engineer: Industry or Academia?
15
Mini-courses
Introducgdo ao Planejamento e a Analise Estatistica de Experimentos em Engenharia de Software
Lisiane Selau 17
Vivencial da Metodologia Agil SCRUM
Pablo Schoeffel 18

vii

Technical Papers

Duplicidade de Informagado e Ferramentas para Limpeza dos Dados
Carlos Eduardo O. Santos and Sergio Martins Fernandes

Conceptual Framework to Support Sampling Activities in Software Engineering Surveys
Rafael M. de Mello and Guilherme H. Travassos

Processo de Conformidade Arquitetural em Integragdo Continua
Arthur F. Pinto and Ricardo Terra

AtlasSPL - A Web-Based Tool for Feature Modeling
Marcelo S. Laser, Elder M. Rodrigues, Cristiano M. Martins and Fldvio Oliveira

Engenharia de Software Orientada a Agentes: Um Estudo Comparativo entre Metodologias que Suportam o
Processo de Desenvolvimento de Sistemas Multiagente
Rafhael R. Cunha, Diana F. Adamatti and Cléo Z. Billa

Position Papers

Avaliagdo Experimental da Relagdo de Coesdo e Acoplamento com o Esfor¢co de Compreensao de Software
Elienai B. Batista and Claudio Sant’Anna

Estabelecimento de uma Arquitetura de Referéncia para Ferramentas de Gerenciamento de Variabilidades
Ana Paula Allian, Edson OliveiraJr and Elisa Y. Nakagawa

SMartyComponents: Um Método para Especificagdo de Arquiteturas de Linhas de Produtos de Software
Componentizadas
Marcio H. G. Bera, Edson OliveiraJr and Thelma E. Colanzi

SMartyMetrics: uma Proposta de Framework de Métricas para Arquiteturas de Linha de Produto de
Software
André Felipe Ribeiro Cordeiro and Edson Oliveiralr

Estudo de Caracterizacdo de Bugs de Projetos de Cédigo Aberto
Guilherme A. de Oliveira and Humberto T. Marques-Neto

Andlises Estruturais para ldentificacdo de Falso-Positivos em RecomendacGes de Refatoracdo
Rafael S. Lima and Ricardo Terra

Formacdo de Equipes de Alto Desempenho para Desenvolvimento de Software
Alessandra C. S. Dutra and Rafael Prikladnicki

Software Crowdsourcing: Barriers Faced by the Crowd
Leticia Santos Machado and Rafael Prikladnicki

Decisdes sobre arquitetura de software em projetos que utilizam métodos ageis
Andrey Baumhardt Ramos and Raquel Aparecida Pegoraro

Sistema Multiplataforma para o Controle de Denuncias: modelagem para implantacdo em drgdos publicos
de fiscalizacdo
Lucas S. Rodrigues and Fernando M. Federson

19

30

42

54

66

78

82

86

90

94

98

102

106

110

114

viii

Abordagem de TBM para Automatizar Testes GUI no Contexto de AplicagGes Moveis
Silvia Meireles and Arilo Dias-Neto

Discovery and Usage of Computing Devices in loT Environments
Willian Lunardi, Sabrina Marczak, Leonardo Amaral and Fabiano Hessel

Andlise da adogdo de processo de medi¢do no desenvolvimento agil de software
Luis Paulo Correa and Raquel Aparecida Pegoraro

On the Transformation to Agile in a Large-Complex Globally Distributed Company: A Research Plan to
Define Guidelines
Greice Roman, Sabrina Marczak and Alessandra Dutra

Guidelines for Modularizing the Monitor Component when Refactoring Adaptive Systems
Marcel Serikawa, Bento Siqueira, Fabiano Ferrari, Ricardo Menotti and Valter V. de Camargo

Furthering Knowledge on How Behavior-Driven Development Can Support Requirements Elicitation
Lauriane Correa, Sabrina Marczak and Cleidson R. B. de Souza

What challenges project managers face in software crowdsourcing?
Graziela Basilio Pereira, Alexandre Lazaretti Zanatta and Rafael Prikladnicki

Colaboragdo e Cooperacgdo em Equipes Ageis: uma investigacdo baseada na simulac3o de agentes
Adriana Neves dos Reis

Meta-Aprendizado Aplicado a Estimativa de Esfor¢co em Orojetos de Desenvolvimento de Software
Silvia Nunes das Déres and Duncan Ruiz

Sistema de Recomendacgado de APIs na Engenharia de Software
Luisa Herndndez and Heitor Costa

An Automatic Approach to Detect Unusual Events in Software Repositories
Larissa Leite, Christoph Treude and Fernando Figueira Filho

An Evaluation Model for Software Ecosystem Practice Improvement
Simone S. Amorim, John D. McGregor, Eduardo S. de Almeida and Christina von Flach G. Chavez

Melhoria da Qualidade Interna de Software Orientado a Objetos Usando Medidas de Acoplamento e de
Coesao
Danilo Santos and Anténio Resende, Heitor Costa

118

122

126

130

134

138

142

146

150

154

158

162

166

Il Latin American School on Software Engineering (ELA-ES 2015)

A Tentative Agenda and Perspectives for Software
Engineering Young Researchers

Claudia Werner!

'Federal University of Rio de Janeiro (UFRJ), BR

werner@cos.ufrj.br

1. Abstract

Becoming a new professor at a university or a researcher at an industrial research lab is
a challenge. They are typically under tremendous pressure to teach/train new software
engineers, supervise graduate students/subordinates, collaborate with
industry/academia, raise research funds, be leaders in their field, and/or publish
journal/conference papers/technical reports. Moreover, there is a tremendous shortage
of Software Engineering (SE) faculty/professionals in many countries around the world.
In Latin American the situation is not different. Thus, it is important to help young
software engineering researchers survive in academia or industry in their early careers.
Questions such as: “How to plan a research agenda in SE?”, “What has been the
evolution of SE in Latin America?”’, “What are the possible academic and industry
careers after the studies?” and “How to balance career and personal life?” need to be
handled. This talk aims to discuss a tentative agenda and perspectives for SE young
researchers, providing ideas on practical guidelines for having a successful and fulfilling
academic/industry career. We also present the trajectory of research in Brazil/Latin
America and some challenges to overcome in this field.

2. Short bio

Claudia Maria Lima Werner received her D.Sc. from COPPE/UFRJ (1992) (the
Graduate School of Engineering of the Federal University of Rio de Janeiro, Brazil) and
since 1994 is a Professor of the Computer Science Department, being the leader of the
Software Engineering group, at COPPE/UFRJ. She is also a CNPq and FAPERJ
(Cientista do Nosso Estado) researcher, having experience in Software Engineering for
more than 20 year, with emphasis in Software Reuse, Software Engineering Education,
Software Visualization and Ecosystems. She has over 200 technical papers published in
national and international conferences and journals, besides book chapters. She is a
member of the Brazilian Society of Computer Science (SBC) and the program
committee of various national and international conferences, and also co-editor-in-chief
of the Springer Journal of Software Engineering Research and Development (JSERD).

Il Latin American School on Software Engineering (ELA-ES 2015)

Tutorial 1: Formal Aspects of Software Architecture
Anténia Lopes'

'Universidade de Lisboa, PT
mal@di.fc.ul.pt

1. Abstract

In the last two decades, Software Architecture has become an important sub-discipline
of Software Engineering. Architecture is now a widely-accepted conceptual basis for the
development of large and complex software systems, the importance of architectural
decisions in the ability of a system to meet its non-functional requirements being widely
recognised. At an architectural level, the design of a system involves deciding on how
the system is to be structured in terms of components and connectors. Representing
those decisions, even if using informal box-and-line drawings, contributes to
understanding the system and to reasoning about runtime quality attributes such as
performance, reliability, availability and security. Such architectural descriptions
become more useful and relevant when expressed in a formal notation equipped with a
semantics that enables formal analysis. In this talk I will discuss the role of software
architecture, and describe the progress that has been made in formal modelling and
analysis of software architectures as well as on formal foundations of software
architecture.

2. Short bio

Anténia Lopes is Associate Professor in the Department of Informatics of the
University of Lisbon, Faculty of Science, Portugal, since March 2006. She received a
Ph.D. in Informatics at the University of Lisbon in 1999. Her research interests are in
the area of formal methods for software engineering. These include mathematically
based techniques for the specification, modelling and analysis of various types of
software intensive systems, namely service-oriented systems and self-adaptive systems.
She was the program committee co-chair of Fundamental Approaches to Software
Engineering 2007 (FASE 2007) and 11th IFIP WG 6.1 International Conference on
Formal Techniques for Distributed Systems (FMOODS/FORTE 2009) and ASAAS
2011 (First Workshop on Assurances for Self-Adaptive Systems). She is member of the
Editorial Board of Academic Editors for Peer] Computer Science.

Il Latin American School on Software Engineering (ELA-ES 2015)

Tutorial 2: A Theory of Modularity for Automated
Software Design

Don Batory'

'University of Texas, USA

dsb@cs.utexas.edu

1. Abstract

Automated Software Development (ASD) uses technologies to develop customized
programs automatically and compositionally from modules. The foundations of ASD
are domain-specific algebras, where each program in the target domain maps to a
unique expression, and modules are expression terms. Programs are optimized
automatically using algebraic identities among module compositions. This tutorial
traces the history of ASD and presents a general theory of modularity for ASD that
follows from its tenets.

2. Short bio

Don Batory holds the David Bruton Centennial Professorship in the Department of
Computer Science at The University of Texas at Austin. He received a B.S. (1975) and
M.Sc. (1977) degrees from Case Institute of Technology, and a Ph.D. (1980) from the
University of Toronto. He was a faculty member at the University of Florida in 1981
before he joined the University of Texas in 1983. He was Associate Editor of IEEE
Transactions on Software Engineering (1999-2002), Associate Editor of ACM
Transactions on Database Systems (1986-1992), member of the ACM Software Systems
Award Committee (1989-1993; Committee Chairman in 1992), Program Co-Chair for
the 2002 Generative Programming and Component Engineering Conference. He is a
proponent of Feature Oriented Software Development (FOSD) and with colleagues (and
former students) has recently authored a textbook on the topic. Since 1993, he and his
students have written 11 Award Papers for their work in automated program
development. He and Lance Tokuda were awarded the Automated Software
Engineering 2013 Most Influential Paper Award on their work on program refactorings.

Il Latin American School on Software Engineering (ELA-ES 2015)

Tutorial 3: Model-driven Development
Gregor Engels '

'Universitit Paderborn, DE

engels@uni-paderborn.de

1. Abstract

Model-driven resp. model-based approaches have become the de facto standard to
develop, to evolve, to migrate, or to modernize complex software systems. In order to
do so, modeling languages are used, which might be general-purpose modeling
languages (as e.g. UML) or domain-specific modeling languages (DSML). The syntax
of those modeling languages is defined by meta-modelling techniques, while the
semantics is defined directly by transformation techniques or indirectly by translating
models into appropriate semantic domains. During the construction process, models are
stepwise refined. This can be done manually by a modeler or automatically by model
transformations. These are formally specified by using a (domain-specific) model
transformation language (as e.g. QVT, ATL). High quality of models can be achieved
by e.g. deploying design patterns during a forward construction process, by mining
techniques during a backward construction process, or by model checking techniques
during an afterwards analytical process. The talk gives an overview on the state-of-the-
art of model-driven development, its industrial acceptance as well as an overview on
open research questions.

2. Short bio

Gregor Engels received his PhD in Computer Science in 1986 from the University of
Osnabriick, Germany. Between 1991 and 1997 he held the position of Chair of Software
Engineering and Information Systems at the University of Leiden, The Netherlands.
Since 1997, he is Professor of Informatics at the University of Paderborn, Germany.
Currently, he is also director of two technology transfer labs at the University of
Paderborn, the C-LAB, a joint venture together with ATOS, and the s-lab — Software
Quality Lab, where overall more than 50 PhD students do joint research with industrial
partners. His research interests are in the area of model-driven software development,
software architecture, and software quality assurance. He has published more than 200
papers in scientific journals, as book contributions or articles at international
conferences and workshops. He teaches in Bachelor, Master and PhD programmes since
more than 30 years. He also gives regularly tutorials and seminars on recent technology
topics at scientific conferences and industrial events.

Il Latin American School on Software Engineering (ELA-ES 2015)

Tutorial 4: Abstractions for Validation
Sebastidn Uchitel !
'Universidad de Buenos Aires, AR and Imperial College London, UK

*Department of Computer Science — University of Durham
Durham, U K.

suchitel@dc.uba.ar

1. Abstract

Validating (as opposed to verifying) software artefacts is notoriously difficult. In this
talk I will discuss the general problem of validation and then focus on a specific kind of
artefacts, those that define a set of operations and impose restrictions to the ordering on
which they have to be invoked. I will discuss Enabledness Preserving Abstractions
(EPAs) and show that they are a concise representations of the behaviour space for such
artefacts. I will also show how these abstractions can be built and how they may be used
to support some programming tasks. Finally, I will discuss limitations of these
abstractions and opportunities for improvement.

2. Short bio

Sebastian Uchitel is a professor at University of Buenos Aires and Imperial College
London. He currently also sits on the board of the national argentine oil company, YPF.
He received his undergraduate computer science degree from University of Buenos
Aires and his Phd in Computing from Imperial College London. His research interests
are in behaviour modelling, analysis and synthesis of requirements and design for
software-intensive systems. He was associate editor of IEEE Transactions on Software
Engineering and is currently associate editor of the Requirements Engineering Journal
and the Science of Computer Programming Journal. He was program co-chair of the
32nd IEEE/ACM International Conference on Software Engineering (ICSE 2010) and
will be general chair of the same conference in 2017, when it will be held in Buenos
Aires, Argentina.

Il Latin American School on Software Engineering (ELA-ES 2015)

Tutorial S: Experimental Software Engineering — The
Pathway for Achieving Evidence

Guenther Ruhe!

' University of Calgary, CA

ruhe@ucalgary.ca

1. Abstract

As for any technology, the same is also true for software engineering technologies
(tools, techniques, processes): When and where is it applicable and when and where is it
not? How good does it work? and how much time and effort is needed to run it? There
is no easy way to accumulate this knowledge. In this mini-tutorial, the empirical
research paradigm is motivated and explained as a means to answer the above questions.
Key steps of conducting experiments are described: (i) experimental context, (ii)
experimental design, (iii) run the experiment, (iv) analysis of results, (v) presentation
and (vi) interpretation of results. As series of examples is given to illustrate the value
added for researchers and users of an empirically validated software technology.

2. Short bio

Giinther Ruhe is a Professor at the University of Calgary in Canada. He received a
doctorate rer. nat. degree in Mathematics with emphasis on Operations Research from
Freiberg University and a doctorate habil. nat. degree (Computer Science) from
University of Kaiserslautern (Germany). From 1996 until 2001, he was the deputy
director of the Fraunhofer Institute for Experimental Software Engineering Fh IESE.
Since 2007, he serves as an Associate Editor of the Journal of Information and Software
Technology, published by Elsevier. His main research interests are in the areas of
Product and Project Management, Data Analytics, Decision Support in Requirements
Engineering and Empirical Software Engineering. Giinther is the Founder and CEO of
Expert Decisions Inc., a University of Calgary spin-off company created in 2003.

Il Latin American School on Software Engineering (ELA-ES 2015)

Tutorial 6: Self-Adaptive Systems
David Garlan'

' Carnegie Mellon University, USA

garlan@cs.cmu.edu

1. Abstract

The increasing use of computing systems in every facet of our everyday lives raises a
number of challenges for software engineering. In particular, one of the most important
requirements for today’s systems is high availability — even in the presence of faults,
changing environmental conditions, and attacks. To address these requirements we need
to be able to build systems that take more control over their own dependability, security,
and usefulness — automating many of the tasks that now lead to system failures and that
require computing experts and administrators to manage. This has led to a new sub-field
of software engineering and systems design, sometimes termed Autonomic Computing,
Self-healing Systems, or Self-Adaptive Systems. In this talk I describe this emerging
field and recent advances that allow us to address various engineering challenges,
including (a) the ability to support self-healing through architectural models and
automated repair, (b) new techniques for diagnosing faults at run-time with applications
to manufacturing control systems, (c) the ability to support self-securing systems, and
(d) the ability to reason about human-in-the loop systems.

2. Short bio

David Garlan is a Professor of Computer Science and Director of Software Engineering
Professional Programs in the School of Computer Science at Carnegie Mellon
University. His interests include software architecture, self-adaptive systems, formal
methods, and cyber-physical systems. He is considered to be one of the founders of the
field of software architecture, and, in particular, formal representation and analysis of
architectural designs. He is a co-author of two books on software architecture:
“Software Architecture: Perspectives on an Emerging Discipline”, and “Documenting
Software Architecture: Views and Beyond.” In 2005 he received a Stevens Award
Citation for “fundamental contributions to the development and understanding of
software architecture as a discipline in software engineering.” In 2011 he received the
Outstanding Research award from ACM SIGSOFT for “significant and lasting software
engineering research”. He is a Fellow of the Association for Computing Machinery
(ACM) and the Institute of Electrical and Electronic Engineers (IEEE).

Il Latin American School on Software Engineering (ELA-ES 2015)

Tutorial 7: Recommender Systems for Software
Engineering

Gail Murphy'

'University of British Columbia, CA

murphy@cs.ubc.ca

1. Abstract

Software developers must interact with large amounts of different types of information
and perform many different activities to build a software system. To ease the finding of
information and hone workflows, there has been growing interest in building
recommenders that are intended to help software developers work more effectively.
Building an effective recommender requires a deep understanding of the problem that is
the target of a recommender, analysis of different aspects of the approach taken to
perform the recommendations and design and evaluation of the mechanisms used to
deliver recommendations to a developer. In this lecture, I will discuss these steps using
case studies of recommendation systems to support software engineering activities.

2. Short bio

Gail Murphy is a Professor in the Department of Computer Science and an Associate
Dean (Research & Graduate Studies) in the Faculty of Science at the University of
British Columbia. She is also a co-founder and currently Chief Science Offer at Tasktop
Technologies. She received a B.Sc. from the University of Alberta and M.Sc. and Ph.D.
degrees from the University of Washington. Her current research interests are in
reducing the information overload and improving the work days of knowledge workers,
including software developers.

Il Latin American School on Software Engineering (ELA-ES 2015)

Why, When, and How to Write up Your Research Work

Simone Barbosa'

' Pontifical Catholic University of Rio de Janeiro (PUC-Rio), BR

simone@inf.puc-rio.br

1. Abstract

Academia communicates its advances through scientific publications. It is through those
papers that we learn who is doing what, why, and how, i.e., the scientific discussions
revolving around important societal and technological issues. It is essential for all
researchers to participate in this discussion, and the prime means to do so is by writing
scientific papers. In today’s fast-paced world, we strive to find balance between rushing
to write half-baked ideas and alienating ourselves from the scientific discussions for too
long because we have not yet achieved the desired results. In this event, I will present
some thoughts on academic writing from prominent scholars to promote discussions on
why and how to write up your work before, during, and after you conduct your research.

2. Short bio

Simone Diniz Junqueira Barbosa is Associate Professor of the Department of
Informatics of the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), where
she teaches, advises and conducts research on Human-Computer Interaction (HCI).
Since 2012, she has taught a graduate course on Research Design and Academic
Writing. Level 2 researcher in CNPq (National Council for Scientific and Technological
Development in Brazil), she has obtained research funding from several national and
international agencies, such as CNPq, FAPERJ, Microsoft Research, and Hewlett-
Packard. She has coordinated or participated in the program committee of both national
and international conferences, including CHI, INTERACT, EICS, and IHC. She was the
Brazilian Computer Society’s representative in IFIP TC 13 from 2008 to 2013, when
she became an expert member and later Vice-chair for Working Groups and Special
Interest Groups. In 2009 she has joined the Editorial Board of Interacting with
Computers (formerly published by Elsevier, now by Oxford University Press); in 2011
the Advisory Board of IXD&A; in 2012 the editorial boards of Springer’s HCI and
CCIS book series; and in 2013 the editorial board of Springer’s OpenAccess Journal of
Interaction Science. Since 2014 she is the chair of the Special Commission for HCI of
the Brazilian Computer Society. She has authored, together with Bruno Santana da Silva
(UFRN), the book “Interagdo Humano-Computador,” published by Elsevier in the
Brazilian Computer Society series.

Il Latin American School on Software Engineering (ELA-ES 2015)

Software Engineering Research at UFRGS

1. Abstract

In this panel, groups of professors of the Graduate Program in Computer Science
(PPGC) at UFRGS that work on Software Engineering will present an overview of their
current research work and discuss views on the future needs in their fields. Also,
indirectly, it serves as a mean for students to gain more detailed knowledge of a set of
software engineering topics, such as software architecture, software visualization,
software verification, formal methods, business process management, and agent-
oriented software engineering. Prof. Dr. Daltro Nunes

2. Panelists

Daltro José Nunes is the head of the Secretariat of Institutional Assessment (SAI) and
an invited professor at UFRGS. He has a doctor degree in Informatic from Institut fiir
Informatik, Universitit Stuttgart, Germany, a M.Sc. degree in Informatics from PUC,
Rio de Janeiro, Brazil, and graduated in Electric Engineering at Escola de Engenharia,
UFRGS, Porto Alegre, Brazil. His main research areas are formal methods and theory of
computation.

Erika Cota is an associate professor in the Computer Science Department at Federal
University of Rio Grande do Sul (UFRGS). Her research interests include software
testing, testing and design for test of embedded systems, and hardware testing. Dr. Cota
has a BS in computer science from the Federal University of Minas Gerais (UFMG),
and an MS and a PhD in computer science from Federal University of Rio Grande do
Sul.

Ingrid Nunes is a Professor Adjunto (Associate Professor) of the Instituto de
Informatica at the Federal University of Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil, and the head of the Prosoft research group. She completed her undergraduate
studies in Computer Science at UFRGS (2006), obtained her Master’s degree in
Informatics at the Pontifical Catholic University of Rio de Janeiro (2009), and obtained
her Doctor’s degree in Informatics at the Pontifical Catholic University of Rio de
Janeiro (2012). Her phd was in cooperation with King’s College London (UK), under a
sandwich Ph.D. programme of one year, and with University of Waterloo (Canada),
with three three-month research visits. She was also a post-doc researcher at PUC-Rio
in the Software Engineering Laboratory (LES) (2012), and has experience in the
industry, where she worked as a software developer from 2005 to 2007. She is a section
editor of the Scientific Initiation Magazine (REIC). Her main research areas are
software architecture, agent-oriented Software Engineering, and model-driven
Development.

Leandro Krug Wives — Associate professor at Federal University of Rio Grande do Sul
(UFRGS), where he develops research in the fields of information retrieval,
recommender systems, (semantic) web services discovery, integration and
matchmaking. Leandro is particularly interested in Architectures and Frameworks for
Web 2.0 Application Development. He got a Ph.D degree in Computer Science from

10

Il Latin American School on Software Engineering (ELA-ES 2015)

(UFRGsS). He participated in many research projects in collaboration with France, Spain
and Portugal, the most recent involving Context-Awareness, Business Process
Management, Ontology, Web services and Cloud Computing.

Leila Ribeiro is a Full Professor at the Department of Theoretical Informatics of
INF/UFRGS. She received the Bachelor 1988 and MSc Degrees in Computer Science at
UFRGS in 1888 and 1991, respectively, and the PhD Degree in Computer Science at the
Technical University of Berlin in 1996. She coordinated several scientific projects
involving research institutions from Brazil and abroad, and is the leader of the VeriTeS
Group (Group on Verification, Validation and Test of Computational Systems). She is a
member of the IFIP Working Group 1.3 (Foundations of System Specification).

Her main research interests are modelling and analysis of complex systems, models of
computation, formal specification and verification, concurrent systems and
bioinformatics.

Lucinéia Heloisa Thom is an associate professor with Informatics Institute at Federal
University of Rio Grande do Sul, UFRGS (Brazil). From 2010 to 2011 she was a
visiting Scientist at the University of Grenoble. Before, she was a visiting Scientist at
the University of Ulm (2007-2009). She received her Bachelor’s in Computer Science
from the University of Santa Cruz do Sul, Brazil (1999); her Master’s in Computer
Science from UFRGS (2002); and her PhD in Computer Science from UFRGS (2006).
She developed part of her thesis research at the Institute for Parallel and Distributed
Systems of the University of Stuttgart (2004-2005). Her research interests are in the area
of Business Process Management and workflow with a special focus on workflow
patterns, process design, IT support for healthcare processes and ontology. In these
fields she has many published papers and is involved in several PCs. She has also
participated in the organization of several events such as the Brazilian largest workshop
in Business Process Management (WBPM 2013) and the 5th International Workshop on
Process Model Collections: Management and Reuse (PMC-MR’14) from the most
important conference in Process Management the BPM 2013. She is co-chair of the
First Latin American School on Business Process Management (LAS-BPM 2015).

Lucio Mauro Duarte is a Senior Lecturer at the Department of Theoretical Computer
Science of the Institute of Informatics of the Federal University of Rio Grande do Sul
(UFRGS), where he teachs Algorithms and Software Verification. He holds a Ph.D.
degree in Computing (Imperial College London, University of London) and his main
research areas are Validation and Verification of Systems, Software Testing, and
Software Modelling. His web page is www.inf.ufrgs.br/~Imduarte.

Luis Lamb is Professor and Dean of the Institute of Informatics (2011-2015), Federal
University of Rio Grande do Sul. He was Deputy Dean of the Institute of Informatics at
UFRGS from August 2006 to October 2011. He holds a Ph.D. in Computing Science
from Imperial College London (2000), the Diploma of the Imperial College, MSc by
research (1995) and BSc in Computer Science (1992) from the Federal University of
Rio Grande do Sul, Brazil. In 2010 he received the MIT Executive Certificate in
Strategy and Innovation and in 2014 he received the MIT Executive Certificate in
Management and Leadership. He is Honorary Visiting Fellow at the Department of
Computing, City University London and was Visiting Research Fellow, Abductive
Systems Group, Department of Philosophy, University of British Columbia. His

11

Il Latin American School on Software Engineering (ELA-ES 2015)

research interests include Logic in Computer Science, Social Computing and Formal
Methods in Embedded Software.

Marcelo S. Pimenta is an Associate Professor at Institute of Informatics, Federal
University of Rio Grande do Sul (UFRGS), in Brazil. He received his PhD in
Informatique at Université Toulouse 1, France, in 1997 and the bachelor and master’s
degree in Computer Science at UFRGS in 1988 and 1991, respectively. Since 1998, he
is member of a multidisciplinary research group at UFRGS working with topics in
Human-Computer Interaction, Software Engineering, and Computer Music with
emphasis in the integration of these areas. Member and founder of the Ubiquitous Music
Group (g-ubimus), currently his research focuses on ubiquitous music, collaborative
design, adaptive interfaces, digital governance and user-centered software engineering.

Rodrigo Machado is a Professor Adjunto at the Institute of Informatics of the Federal
University of Rio Grande do Sul since 2012. Rodrigo received its Doctorate from the
Postgraduate Program in Computer Science / UFRGS. His research interests include
functional programming, semantics of programming languages, type systems and
formal methods in software development, in particular algebraic graph rewriting. He is
currently interested in the development of theory and tools to specify software
evolution, in particular for rule-based software models.

12

Il Latin American School on Software Engineering (ELA-ES 2015)

Perspectives, Opportunities and Challenges of Software
Engineering in the Industry

1. Abstract

The development of modern software systems is a challenging task, given that software
is nowadays everywhere and its complexity never stops growing. In this panel,
representatives of internationally recognised companies that produce software and face
software engineering challenges will share their view in this context, discussing
challenges and opportunities. Attendees will learn about the current state of software
industry, including technologies, challenges, and best practices.

2. Panelists

Antonio Gomes (Chief Architect, HP Brazil R&D) is Chief Architect at HP Brazil
R&D, with 33+ years of experience in R&D and Consulting, where he is responsible to
provide overall technical leadership and promoting innovation across the organization.
He received the Electrical Engineering degree from Universidade Federal do Rio
Grande do Sul (UFRGS) and an Executive MBA, General Business Management, from
ESPM Porto Alegre.

Diego Nobre (Software Architect, ADP Labs): Software Architect at ADP Labs with 18
years of experience developing enterprise-scale systems in varied industries such as
Banking, Communications, Media, Computer Manufacture and HCM. Bachelor’s
degree, Computational and Applied Mathematics — Universidade Federal do Rio Grande
do Sul / UFRGS.

Marcelo Blois (CoE leader, GE Research) has over 18 years of experience on research
in different aspects of software engineering, including software process improvement,
software architectures and middleware, software engineering for multi-agent systems,
and software reuse. He joined GRC Rio in December 2011 as CoE leader, helping the
startup of the new technology center in the area of Systems Integration. Marcelo woked
as a professor in Pontifical Catholic University of Rio Grande do Sul (PUCRS) for 10
years where he coordinated the Intelligent Systems Engineering Research group and the
Systems Engineering Research Center. During this time Marcelo advised over 20
Master students and 3 PhD students. He managed different research initiatives with
local and global companies being responsible for budgeting negotiation and project
management. From 2002 to 2011 Marcelo worked in applied research projects with Dell
Computers helping the company in different process improvement initiatives in its
Software Development Facility in Brazil. Prior to that Marcelo had a software
development company in Rio where he played the role of Executive Director. He
received his PhD and MS in computer science from the Pontifical Catholic University
of Rio de Janeiro (PUC-Rio) and his BS in computer science from the Federal
University of Rio de Janeiro (UFRJ).

Roberto Petry (IT Director, Dell) works as IT Director at Dell where he is globally
responsible for Infrastructure Management Project Delivery leading a team distributed
in several countries. He has Master Degree in Computer Science at UFRGS, with 25+

13

Il Latin American School on Software Engineering (ELA-ES 2015)

years’ experience in IT with focus in Database, Project Management, Software
Development and IT Governance. He is PMP and ITIL Foundations certified. He
teaches at Graduation and Post-Degree courses at Unilasalle, Ulbra and PUC
University. He was the former President of the Open Technology Committee at
American Chamber of Commerce in Porto Alegre and past Regional and National
President of User Association Group (SUCESU), acting now as council at PMI-RS &
SUCESU-RS.

14

Il Latin American School on Software Engineering (ELA-ES 2015)

Software Engineer: Industry or Academia?

1. Abstract

Students interested in software engineering have many alternatives in their professional
careers. They can work in the industry after they get a bachelor degree in Computer
Science (or related courses). They can pursue a Master or Doctorate degree. They can
become research scientists in leading companies or professors at universities. In this
panel, panelists will discuss about these different alternatives, and what is required for
each of them. Examples of questions to be discussed are: is a Bachelor degree enough to
work in the Industry? Those who get a Master or Doctorate degree should stay in
academia or there are positions available in Latin America where research can be
conducted?

2. Panelists

Daniel Wobeto (TRE-RS): CIO at the Tribunal Regional Eleitoral do Rio Grande do
Sul since 2007, Computer Science Bachelor at UFRGS in 1993, Law Bachelor in 2001,
TI Administration MBA in 2009, member of Urna Eletronica’s Ecosystem Workgroup,
responsible for requirements specification of systems related to voting process in
Brazilian elections.

Eduardo Arruda (VP of ASSESPRO-RS) received the BSc and MSc degrees in
Computer Science at the Universidade Federal do Rio Grande do Sul (UFRGS). He is
CEO of Bluetterfly, which is company dedicated to develop innovative business.
Nowadays it is involved with the conception of a cloud services plataform with a focus
on secure storage of digital content. He is a professor at the Faculty of Informatics of
PUC-RS since 1994. He was an associated and Director of Bussines Development of
uMov.me, a company of mobile technology considered one of the five most innovative
of Brazil by Gartner Group. He was also CIO of Justice Law Departament of Rio
Grande do Sul, coordinating the project of infomatization of this court, the first in the
country to use digital certification in the signment of judgments. Nowadays, he is Vice-
President of Articulation of ASSESPRO-RS, President of the Deliberative Board of
SUCESU-RS, Director of Market Relationship of SEPRORGS and member of the
Administrative Board of SOFTSUL. He is also dedicated to actions to encourage
innovative entrepreneurship.

Luigi Carro (Head of the Graduation Program in Computer Science (PPGC), UFRGS,
BR) was born in Porto Alegre, Brazil, in 1962. He received the Electrical Engineering
and the MSc degrees from Universidade Federal do Rio Grande do Sul (UFRGS),
Brazil, in 1985 and 1989, respectively. From 1989 to 1991 he worked at ST-
Microelectronics, Agrate, Italy, in the R&D group. In 1996 he received the Dr. degree
in the area of Computer Science from Universidade Federal do Rio Grande do Sul
(UFRGS), Brazil. He is presently a full professor at the Applied Informatics Department
at the Informatics Institute of UFRGS, in charge of Computer Architecture and
Organization courses at the undergraduate levels. He is also a member of the Graduation
Program in Computer Science at UFRGS, where he is co-responsible for courses on

15

Il Latin American School on Software Engineering (ELA-ES 2015)

Embedded Systems, Digital signal Processing, and VLSI Design. His primary research
interests include embedded systems design, validation, automation and test, fault
tolerance for future technologies and rapid system prototyping. He has advised more
than 20 graduate students, and has published more than 150 technical papers on those
topics. He has authored the book Digital systems Design and Prototyping (2001-in
Portuguese) and is the co-author of Fault-Tolerance Techniques for SRAM-based
FPGAs (2006-Springer), Dynamic Reconfigurable Architectures and Transparent
optimization Techniques (2010-Springer) and Adaptive Systems (Springer 2012). In
2007 he received the prize FAPERGS — Researcher of the year in Computer Science.
His most updated resume is located in http://lattes.cnpq.br/8544491643812450.

Luis Lamb (Dean of the Institute of Informatics, UFRGS, BR) is Professor and Dean of
the Institute of Informatics (2011-2015), Federal University of Rio Grande do Sul. He
was Deputy Dean of the Institute of Informatics at UFRGS from August 2006 to
October 2011. He holds a Ph.D. in Computing Science from Imperial College London
(2000), the Diploma of the Imperial College, MSc by research (1995) and BSc in
Computer Science (1992) from the Federal University of Rio Grande do Sul, Brazil. In
2010 he received the MIT Executive Certificate in Strategy and Innovation and in 2014
he received the MIT Executive Certificate in Management and Leadership. He is
Honorary Visiting Fellow at the Department of Computing, City University London and
was Visiting Research Fellow, Abductive Systems Group, Department of Philosophy,
University of British Columbia. His research interests include Logic in Computer
Science, Social Computing and Formal Methods in Embedded Software.

Marcelo Blois (CoE leader, GE Research) has over 18 years of experience on research
in different aspects of software engineering, including software process improvement,
software architectures and middleware, software engineering for multi-agent systems,
and software reuse. He joined GRC Rio in December 2011 as CoE leader, helping the
startup of the new technology center in the area of Systems Integration. Marcelo woked
as a professor in Pontifical Catholic University of Rio Grande do Sul (PUCRS) for 10
years where he coordinated the Intelligent Systems Engineering Research group and the
Systems Engineering Research Center. During this time Marcelo advised over 20
Master students and 3 PhD students. He managed different research initiatives with
local and global companies being responsible for budgeting negotiation and project
management. From 2002 to 2011 Marcelo worked in applied research projects with Dell
Computers helping the company in different process improvement initiatives in its
Software Development Facility in Brazil. Prior to that Marcelo had a software
development company in Rio where he played the role of Executive Director. He
received his PhD and MS in computer science from the Pontifical Catholic University
of Rio de Janeiro (PUC-Rio) and his BS in computer science from the Federal
University of Rio de Janeiro (UFRJ).

16

Il Latin American School on Software Engineering (ELA-ES 2015)

Introducao ao Planejamento e a Analise Estatistica de
Experimentos em Engenharia de Software

Lisiane Selau’

' Departamento de Estatistica, Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre, BR

lisianeselau@gmail.com

1. Resumo

Grande parte do conhecimento cientifico é desenvolvido por meio de evidéncias
empiricas. Tais evidéncias, em geral, s3o oriundas dos resultados de experimentos
devidamente planejados e analisados. Experimento é uma pesquisa planejada em que
mudangas relevantes sdo feitas nas varidveis de entrada de um processo de modo a
identificar as razdes para mudancas na resposta (saida do processo), tendo por objetivo
tomar decisoes (fazer uma recomendacdo). Para um experimento ser o mais eficiente
possivel, um procedimento cientifico para planeja-lo deve ser empregado. Ao planejar
um experimento o pesquisador tem que ter bem claro quais s@o os objetivos da pesquisa,
as questdes a serem respondidas, e as hipdteses a serem testadas. Nesse sentido, devem
ser empregados procedimentos estatisticos de andlise de dados apropriados aos
objetivos do experimento, que sejam consistentes e coerentes com o planejamento
experimental adotado e com o correspondente modelo estatistico estabelecido.

2. Biografia Resumida

Professora Adjunta do Departamento de Estatistica da Universidade Federal do Rio
Grande do Sul (UFRGS). Também é professora convidada do Programa de Pds-
Graduagdo em Fitotecnia da UFRGS. E Bacharel em Estatistica pela UFRGS (2000),
Licenciada em Estatistica pela UFRGS (2002), Mestre em Engenharia de Produgédo pela
UFRGS (2008) e Doutora em Administragdo na area de Sistema de Informacdo e Apoio
a Decisao pela UFRGS (2012). Tem experiéncia na area de Modelagem para Gestdo do
Risco de Crédito, Planejamento e Andlise de Experimentos e Educacdo Estatistica.

17

Il Latin American School on Software Engineering (ELA-ES 2015)

Vivencial da Metodologia Agil SCRUM
Pablo Schoeffel !

' Departamento de Sistemas de Informacio, Universidade do Estado de
Santa Catarina (UDESC), BR

pablo.schoeffel@udesc.br

1. Resumo

O mini curso tem o objetivo de demonstrar os principios e valores dgeis, aplicando o
processo e técnicas da metodologia SCRUM. Com isso, os participantes poderdo, além
de conhecer os conceitos, vivencid-los em dindmicas e praticas para compreendé-los
melhor.

2. Biografia Resumida

Pablo Schoeffel, ¢ mestre em Computacdo Aplicada na UNIVALI (SC) na drea de
Engenharia de Software. Possui graduagdo em Ciéncias da Computacdo (FURB) e
Especializacdo em Desenvolvimento Web e E-Commerce (ICPG). Atua desde 2002 na
area de desenvolvimento de software, como: programador, analista de sistemas, analista
de negdcio, gerente de projetos e coordenador de equipe. Atua como professor em
cursos de tecnologia desde 2007. Atualmente € professor efetivo do Departamento de
Engenharia de Software da Universidade do Estado de Santa Catarina (UDESC) e
consultor na drea de Engenharia de Software e Geréncia de Projetos. Incentivou e
iniciou a utilizacdo de processos ageis, e atuou como SCRUM Master em algumas
empresas em que trabalhou. Leciona a disciplina de Métodos Ageis para cursos de pés-
graduagao desde 2011.

18

[l Latin American School on Software Engineering (ELA-ES 2015)

DUPLICIDADE DE INFORMACAO E FERRAMENTAS
PARA LIMPEZA DOS DADOS

Carlos Eduardo O. Santos', Sergio Martins Fernandes'

'Departamento de Sistemas e Computagéo - Universidade Salvador —
(UNIFACS) — Salvador — BA - Brasil

eduardo.maceio@yahoo.com.br, sergio.martins@pro.unifacs.br

Abstract. The purpose of this paper is to discuss about the quality of
information stored in databases, regarding the issue of duplicates. To
promote quality assurance of information, some techniques and tools are
created from criteria, characteristics and attributes that direct the obtaining
of this quality. This dimension will be the non-duplicated data, exposing the
solutions found for the data cleaning process. Thus it is proposed
deduplication technique and some existing tools that perform this process in
cleaning and organization of data, aiming to improve the quality of
information.

Resumo. O objetivo deste artigo é discutir sobre a qualidade da
informag¢do armazenada em bancos de dados, referente a questdo das
duplicidades. Para promover a garantia da qualidade da informagao,
algumas técnicas e ferramentas sdao criadas a partir de dimensoes, critérios,
caracteristicas e atributos que direcionam a obteng¢do dessa qualidade. A
dimensao tratada neste trabalho sera a de nao duplicidade de dados, expondo
solugoes encontradas para o processo de limpeza dos dados. Para tal é
proposto a técnica de deduplicagdo e algumas ferramentas existentes que
realizam este processo na limpeza e organiza¢do dos dados, objetivando a
melhoria da qualidade da informagao.

1. INTRODUCAO

Os problemas na aquisicdo da informacdo podem gerar danos irreparaveis. Faz-
se necessario para 0s ambientes corporativos ter um conhecimento aprofundado da
importancia do gerenciamento deste conteldo e das tecnologias disponiveis que
minimizam essa suscetibilidade de erros, de forma que a qualidade da informacéo que
circula no seu ambiente, ndo seja passivel de vulnerabilidades, visto que afeta
diretamente no processo de tomada de decisdo, como também no gerenciamento da
qualidade do servico oferecido por essa organizacao.

Questdes envolvendo a qualidade de dados e informacBes podem variar desde
dificuldades de natureza técnica, por exemplo, integracdo de fontes de dados diferentes,
até dificuldades ndo técnicas, por exemplo, a falta de uma estratégia integrada em toda a
organizagdo para assegurar o direito das partes interessadas de acessar a informagéo
certa, no formato certo, na hora e lugar certo (MADNICK et al, 2009).

19

[l Latin American School on Software Engineering (ELA-ES 2015)

Os dados sdo os elementos que servem de base para a formagdo de juizos ou
servem para a resolucdo de problemas. Um dado é apenas um indice, um registro, uma
manifestacdo objetiva, passivel de uma andlise subjetiva, isto €, existe a interpretacéo da
pessoa para a sua manipulagdo. Em si, os dados tém pouco valor. Todavia, quando
classificados, armazenados e relacionados entre si, 0os dados permitem a obtencdo da
informacao.

A informacdo ndo é simplesmente um dado, sequéncias de nimeros, listas de
enderecos, ou resultados de testes armazenados num computador. A informacdo é o
produto de processos de organizagdo dos dados. Assim, segundo Chiavenato (2008), os
dados isolados ndo séo significativos e ndo constituem informacdo. Ja a Informacéo,
apresenta significado e intencionalidade, aspectos que a diferenciam do conceito de
dado.

A informagdo é um ativo (NBR ISO/IEC 27002, 2005) que, como qualquer
outro é essencial para 0s negocios da organizacdo e, consequentemente, necessita ser
adequadamente protegida, ser refinada e analisada para que decisées importantes sejam
tomadas, por todos que a utilizem, nos mais diversos niveis da hierarquia da empresa.
Entende-se por ativos de informacéo, todos os tipos de informacdo que uma empresa
possui, como arquivos e sistemas, que possuam valor, demandando necessidades em
termos de protecdo (NBR ISO/IEC 27002, 2005).

Para promover a garantia da qualidade da informacdo, algumas técnicas e
ferramentas sdo criadas a partir de critérios, caracteristicas e atributos que dimensionam
a obtencdo dessa qualidade. A ideia a ser exposta nesse artigo esta direcionada a uma
questdo especifica que € a duplicidade dos dados.

Para tal € apresentado na segunda secdo uma exposi¢do mais abrangente sobre a
qualidade da informacdo (QI), problemas causado pela ma qualidade, dando énfase a
necessidade da limpeza dos dados, mais especificadamente nas ocorréncias de
duplicidade. A terceira secdo traz a abordagem da técnica de deduplicacéo, introduzindo
algumas ferramentas existentes que realizam o processo de limpeza e organizacdo dos
dados, objetivando a melhoria da QI.

2. QUALIDADE DA INFORMACAO

A informacdo pode ser vista como um bem, com dimensfes (atributos) de
qualidade que podem ser medidas. Conforme Wand e Wang (1996), a qualidade da
informacdo é um conceito multidimensional, e assim como um produto fisico tem
dimensdes de qualidade associadas, um produto de informacdo também tem dimensdes
de qualidade da informacdo. Uma vez identificados os atributos, a qualidade da
informacao pode ser gerenciada (MILLER, 2001).

Inimeras classificacdes referentes as dimensbes de qualidade, sdo encontradas
na literatura. E possivel apontar um conjunto comum a todos das dimensdes de
qualidade da informacdo (QI), incluindo acuracidade (acuracy), integridade
(completeness), consisténcia (consistency) e temporalidade (timeliness), que constituem
o foco da maioria dos autores(CATARCI AND SCANNAPIECO, 2002). Entretanto ndo
existe qualquer consenso geral sobre qual conjunto de dimensdes definem a QI, ou
sobre o significado exato de cada dimensdo. Dentre estas, a referéncia adotada é
colocada pelos autores WANG(1996), PIPINO(2002), BATINI(2009) e

20

[l Latin American School on Software Engineering (ELA-ES 2015)

GAMBLE(2011), que utilizam as dimensdes de Acurécia, Credibilidade (ou
Confiabilidade), Completude, Temporalidade, Atualidade, Precisdo, Auséncia de Dados
Duplicados e Facilidade de Acesso, para propiciar a medicdo da qualidade da
informacdo utilizada nos bancos de dados. Mais especificadamente ao interesse deste
trabalho, a dimensdo tratada sera a de ndo duplicidade de dados. Este foco nédo
desfavorece as outras dimensdes, nem tampouco sua escolha se justifica por nivel de
importancia, mas se torna relevante a continuidade da pesquisa do mestrado que tem
como objetivo a deduplicacdo de dados, entende-se também, que mesmo restringindo a
sO esta dimensdo, outras estdo implicadas no processo. Dessa forma vamos expor
consideracbes referentes a duplicidade de informacdo e ferramentas existentes no
processo de limpeza dos dados.

2.1. Problemas da Qualidade da Informacéo

Problemas relacionados a qualidade da informacdo de uma organizacdo, nédo
necessariamente estéo ligados a particularidades dos sistemas ou ao tempo de uso, como
também a linguagem utilizada. Eles podem ser causados pelos proprios usuarios,
quando da insercdo dos dados, como tambem em processos de analises mal sucedidas
que sdo realizadas a partir de dados repetidos. Mesmo que esses erros sejam
perceptiveis pelos usuarios que lidam com o sistema, € dificil perceber a dimenséo dessa
problematica e, por conseguinte até que ponto isto afeta a organizacao, tanto no carater
financeiro, como em sua credibilidade. Esses problemas sdo indicativos da ma
qualidade dos dados.

Para ter dados precisos € necessario um programa formal de garantia da
qualidade de dados com um componente especifico dedicado a precisdo(OLSON,
2003). Normalmente, isso envolve processos de atualizacéo, padronizacdo, deteccédo e
limpeza dos registros, por meio de ferramentas especificas, para criar uma visdo unica
dos dados, mesmo se ele estiver armazenado em varios sistemas distintos.

2.2. Limpeza dos dados

N&o importa o qudo eficiente seja o processo de entrada de dados, os erros ainda
irdo ocorrer e, por conseguinte, os dados sobre validacdo e correcdo ndo podem ser
ignorados. A deteccdo de erros, validacdo e limpeza desempenham papéis importantes,
especialmente com dados legados®. E, portanto, a prevencéo de erros e limpeza de dados
deve ser incorporada em uma politica de gestdo de dados.

Um ponto importante de limpeza de dados é a identificacdo das causas
fundamentais dos erros detectados e usar essa informacao para melhorar o processo de
entrada de dados para evitar novas recorréncias desses erros(RAHM and DO, 2000).

Uma abordagem de limpeza de dados deve satisfazer varias exigéncias. Em
primeiro lugar, deve detectar e remover todos grandes erros e inconsisténcias, tanto em
fontes de dados individuais e ao integrar multiplas fontes.

A ocorréncia dos problemas com a qualidade dos dados se da tanto no nivel de
esquema como no nivel de instancia. Quanto ao nivel de esquema, 0s problemas sdo

! Dados armazenados ao longo do tempo.

21

[l Latin American School on Software Engineering (ELA-ES 2015)

decorrentes da falta de um modelo adequado ou da aplicacdo de restricbes de
integridade especificas, como por exemplo as limitacdes do modelo de dados ou a ma
concepcdo do esquema. Quanto ao nivel de instdncia dizem respeito aos erros e
inconsisténcias que ndo podem ser prevenidos no nivel de esquema como, por exemplo,
erros de escrita, falta de valores, referéncias incorretas, entre outros. Fica exposto desta
forma, a existéncia da necessidade de correcdo e limpeza destes dados em diversas
tabelas dos bancos de dados, inclusive as tabelas da area financeira.

2.3. Duplicagéo de dados.

Lwin(2010) descreve a deteccdo de duplicagdo, como uma sub-tarefa importante
de limpeza de dados, sendo, portanto, a tarefa de identificar maltiplas representacées de
um mesmo objeto do mundo real e necessario para melhorar a qualidade dos dados.
Dessa forma entendemos por duplicidade como sendo uma medida de duplicacdo
indesejada existentes num ou em varios sistemas para um determinado campo, registro
ou conjunto de dados, gerados por erro de armazenamento da informacéo, ocasionando
a existéncia da baixa qualidade dos dados.

Ha muitos custos ocultos associados com registros duplicados. Assim, dados de
mé qualidade custam aos negdcios de varias formas: desperdicio e retrabalho, perda de
oportunidades de receita, perda de negdcios, etc.

Essa duplicacdo provoca sérios problemas na evolucdo do sistema como um
todo, tais como, incoeréncia de uma mesma informacdo armazenada por dados
duplicados, passiveis de ser alterados individualmente, o que pode provocar uma
inconsisténcia entre 0s mesmos, € 0 custo de manutencdo, que aumenta devido ao fato
de uma mesma tarefa estar sendo realizada em dois ou mais processos distintos.

Este problema de detectar e remover entradas duplicadas em repositorios de
dados é conhecido como deduplicacédo de registros (KOUDAS et al, 2006), mas também
é denominado na literatura de limpeza de dados® (CHAUDHURI et al, 2003),
pareamento de registros® (BHATTACHARYA, 2004); (FELLEGI and SUNTER,
1969); (KOUDAS et al, 2006), e casamento de registros* (VERYKIOS, 2003).

Cecchin (2010) traz as denominac@es deduplicacdo, resolucdo de referéncias e
reconciliacdo. Mais especificamente, a deduplicacdo de registros em repositorios de
dados consiste na identificacdo e remocdo de registros que se referem ao mesmo objeto
ou entidade do mundo real, ainda que apresentem estilos de escrita, grafias, tipos de
dados ou esquemas diferentes.

A importancia desse processo fica clara ao analisar o processo de integracdo de
dados, este consiste em combinar diferentes representacdes de um objeto do mundo real
em uma representacdo Unica, neste caso, a garantia da ndo duplicidade dos dados, é
fator relevante.

A deteccdo de duplicidade é um problema dificil e ndo pode ser resolvido
usando apenas casamentos exatos de atributos, pois hd o problema de identificacéo,

% Do inglés Data cleasing.
® Do inglés Record linkage.
* Do inglés Record matching.

22

[l Latin American School on Software Engineering (ELA-ES 2015)

onde diferentes representaces referem-se & mesma entidade. Desse modo, vamos
utilizar o termo deduplicacdo para abordar essa técnica de limpeza de dados.

3. DEDUPLICACAO DE DADOS

Esta técnica tem evoluido durante esta década recente, recebendo uma atencéao
ampla da academia e da indUstria. Algumas pesquisas se concentram na abordagem pela
qual dados redundantes possam ser mais reduzidos e outras investigam como fazer a
deduplicacdo de dados em alta velocidade. A técnica consiste em eliminar dados
duplicados, reduzir o espaco utilizado pelas réplicas durante o armazenamento dos
dados, das clpias de dados para armazenamento secundario, ou no contexto de
armazenamento de dados, melhorando, assim, a qualidade dos dados e a integragé&o.

O termo deduplicacéo foi criado ha varios anos pelos administradores de banco
de dados, como uma maneira de descrever o processo de remocdo de registros
duplicados de um banco de dados, apds a unido de dois bancos de dados. Segundo
Tavares (2003), a deduplicacdo de dados significa identificar registros duplicados em
uma base de dados. Apds a identificacido desses registros é possivel eliminar ou marcar
0 dado duplicado para controle. Para Dbdireto (2011) a deduplicacdo € um processo
para a verificacdo, marcacdo e exclusdo de registros com valores iguais em um banco de
dados.

3.1. Técnicas de deduplicacdo

A primeira técnica utilizada de deduplicacdo executava em apenas uma Unica
instancia, por isso ficou conhecida como SIS (Single-Instance Storage), como objetivo
dessa técnica é diminuir a quantidade de dados repetidos e melhorar o desempenho das
aplicacOes, ela parte da ideia de manter apenas uma instancia do arquivo e criar
ponteiros para ser acessado pelos demais usuarios sem que seja necessario ter uma copia
do arquivo para um usuério distinto, porém tal tecnologia possuia limitacdes, ja que se 0
arquivo fosse modificado iria exigir que outro arquivo fosse armazenado com a
alteracdo realizada, j& que, essa tecnologia apenas é executada em nivel de arquivo
(DORNALA et al, 2010).

O algoritmo de deduplicacdo passou por uma evolucdo e comecou a trabalhar
com os dados em nivel de blocos de dados, como pode ser visualizado na Figura 1, e
ndo mais em nivel de arquivo. A comparacdo feita em nivel de blocos é mais especifica
do que a feita em nivel de arquivos, pois tem a possibilidade de analisar uma sequéncia
de dados em baixo nivel, podendo encontrar sequéncias idénticas, sendo capaz de
eliminar varios gigabytes de dados repetidos do sistema de armazenamento.

A eliminacdo permite que o usuario execute o sistema mais rapido e mais
eficiente ja que ndo estard sobrecarregado com dados extras. Além de uma melhora
perceptivel relacionada ao trafego de dados do sistema e consequentemente o aumento
de espago livre.

Os sistemas de grande porte se beneficiam dessa técnica para a limpeza e
reducdo de espago de armazenamento, ja que possuem um crescimento no percentual de
dados ndo estruturados gerados por aplicativos de colaboracdo, virtualizacdo de
servidores, imagens e demais aplicativos. Com o crescimento dos dados nédo

23

[l Latin American School on Software Engineering (ELA-ES 2015)

estruturados em ritmo exponencial o tempo necessario para uma ampliagdo do sistema
de armazenamento é reduzido, assim como 0s custos de armazenagem aumentam. Por
esse motivo, é notado o crescimento da utilizagdo do algoritmo de deduplicacdo em
ambientes corporativos.

Dessa forma, a deduplicacdo pode ser resumida em um processo de segmentagédo
de cada pedaco dos dados que é processado, cada segmento é identificado e confrontado
com os dados que ja estdo no sistema, caso o dado seja Unico entdo ele é armazenado
em um disco, caso o dado esteja duplicado uma referéncia é criada em seu lugar
apontando para o primeiro dado idéntico a este que teve entrada no sistema. Muitas
vezes, 0s mesmos dados podem ser armazenados em mais de 50 locais diferentes em um
sistema de armazenamento. Se cada dado tiver um byte de espaco, a deduplicacdo ird
reduzir o espago no armazenamento de cinquenta bytes para apenas um byte.

Banco de Dados

Registro

—

Padronizagdo Blocagem —_—

| —

S

Classificagdo

| —

Resultado

| —

S

Comparagéo de Par

 —

/N

Néo Possiveis P
- P Réplicas
Réplicas Réplicas

Figura 1: Processo de deduplicacéo

3.2. FERRAMENTAS DE DEDUPLICACAO DE DADOS

Algumas ferramentas que realizam o processo de deduplicacdo de dados foram
selecionadas e expostas abaixo. Ndo reduzindo com isso a existéncia de muitas outras
solucdes. As ferramentas apontadas sdo referenciadas nas fontes bibliograficas com uma
maior frequéncia e também funcionam como indicativos para a construcdo de novas
solugdes. Também estd demonstrado na Tabelal um comparativo de visdo geral destas
ferramentas.

3.2.1. FRIL

O Fine-grained Record Integration and Linkage (FRIL) (JURCZYK et al, 2008)
é uma ferramenta de Record Linkage, desenvolvida pela Universidade de Emory
(Emory University)®, localizada no estado da Geérgia (EUA). Essa ferramenta de
cddigo aberto (open source) tem como proposta associar técnicas tradicionais de Record
Linkage com um rico e configuravel conjunto de parametros.

® http://www.emory.edu/home/index.html

24

[l Latin American School on Software Engineering (ELA-ES 2015)

3.2.2. BIGMATCH

O programa BigMatch (YANCEY, 2004, 2007) é um Record Linkage
desenvolvido pelo departamento de censo dos Estados Unidos (U.S. Bureau of
Census)®, cujo objetivo é extrair combinagdes plausiveis de fontes de dados de grande
volume. Ele permite que sejam configurados diferentes critérios de blocagem. Esse
software também € utilizado para descobrir duplicagcbes em um arquivo Unico.

3.2.3 PARALLEL FEBRL

Febrl” - Freely Extensible Biomedical Record Linkage (CHRISTEN, 2008) é
uma das mais completas ferramentas de deduplicacdo disponiveis como software livre.
Ferramenta de open-source para o0 data cleaning, que usa as seguintes métricas para a
deteccdo de duplicados: edit distance e g-gram distance. Para a deteccdo de nomes
aproximadamente duplicados é usada a codificacdo fonética (Soundex e Double
Metaphone);

E importante notar que novas funcionalidades podem ser anexadas ao Febrl sem
alteracbes em sua estrutura, criando uma plataforma ideal para novos experimentos em
deduplicacéo de dados.

3.2.4. FERAPARDA/ PAREIA

FERAPARDA é uma ferramenta de relacionamento probabilistico capaz de
detectar com sucesso réplicas em grande conjuntos de dados sintéticos com agilidade,
por meio de algoritmo de deduplicacdo paralela, objetivando limitar o nimero de
comparagdes. Inicialmente a ferramenta foi denominada por Feraparda e posteriormente
recebeu o nome de Pareia. Santos et al (2007) descreve a ferramenta Feraparda, que €
baseada no conceito de filtros-fluxo, implementada sobre a plataforma Anthill
(FERREIRA et al, 2005).

3.2.5. SWOOSH

Resolucdo de entidade (ER)® é um problema que surge em muitas aplicaces de
integracdo de informacdes. ER (também conhecido como deduplicagdo ou merge-purge)
usa duas func@es, combinar e fundir. O Processo de ER identifica registros duplicados
que se referem a mesma entidade do mundo real (processo de correspondéncia), e deriva
informacao consolidada sobre a entidade (processo de fuséo). Além disso, o registro
mesclado pode coincidir com outros registros de forma recursiva.

Foram propostos varios sistemas paralelos de deduplicacdo para melhorar o
desempenho, desenvolvidos a partir do modelo ER. Os algoritmos da familia Swoosh
desenvolvido pelo grupo Infolab (TALBURT, 2008), se encontram nesse modelo. O
algoritmo D-Swoosh (BENJELLOUN et al, 2006) para arquiteturas de processadores
distribuidos e o algoritmo P-Swoosh (KAWAI et al, 2006) para arquiteturas paralelas.

3.2.6. PROGRAMACAO GENETICA

A programacdo genética faz parte de uma area denominada “computacdo
evolutiva”, que tem como base de inspiracdo a Teoria da Evolucdo de Charles Darwin.
E uma area recente, surgida nos anos 50, fazendo parte das pesquisas de Inteligéncia

® http://www.census.gov/
" http://sourceforge.n«t/projects/febrl
8 Entity Resolution

25

[l Latin American School on Software Engineering (ELA-ES 2015)

artificial (1A). Porém JOHN KOZA (1992), se tornou o responsavel pela sua
popularizacdo, seu algoritmo de Programacdo Genética, foi aplicado a uma grande
variedade de problemas incluindo controle, robética, games, classificadores, etc.

Os individuos que serdo evoluidos, na Programacdo Genética, sdo 0s programas
de computador, representados por estruturas de &rvores sintaticas. Estas arvores
possuem fungdes e terminais, que determinam suas caracteristicas e definem seu
comportamento no ambiente. Cada funcdo é um ramo da arvore, e cada terminal é uma
folha. As funcGes podem ser, por exemplo, operacGes l6gicas ou matematicas, ou
funcGes que provocam iteracdo, e 0s terminais podem ser variaveis, constantes, ou
funcbes que ndo recebem argumentos

A linguagem LISP foi originalmente utilizada para implementar os algoritmos
da programacdo genética, por ter caracteristicas que facilitam a implementacdo de
arvores. A linguagem utiliza o principio da prefixacdo, o que faz com que as expressoes
simbodlicas representem a arvore do programa. Atualmente as implementacdes em
programacéo genética sdo desenvolvidas em linguagem C.

Carvalho et al. (2008) apresentaram uma abordagem inovadora para a
identificacdo de registros duplicados em repositorios de dados, recorrendo a
Programacao Genética. Através dessa abordagem, registros séo deduplicados utilizando-
se evidéncias extraidas do conteudo dos dados para criar fungdes de similaridade,
genericamente denominadas de funcbGes de deduplicacdo, capazes de apontar quais
registros do repositorio sdo réplicas.

Tabela 1: Quadro comparativo de ferramentas de deduplicacéo

SOLUCAO ANO | DISPONIBILIDADE NA | LINGUAGEM DE | SISTEMA MODELO
WEB PROGRAMAGAO | OPERACIONAL
FONTES MANUAL
FRILL 2008 | ABERTO _ JAVA GRAFO
BIGMATCH 2004, | Disponivel | SIM -1 C Windows, UNIX
2007 | por Web e VAX
solicitacdo
FEBRL 2004 | ABERTO Python+ MPI MASTER /
SLAVE
FERAPARDA /| 2007 | ABERTO C++/PV M PIPELINE
PAREIA
D-SWOOSH 2006 JAVA GRAFO /
P-SWOOSH 2006 TAREFA
MASTER /
SLAVE
PROGRAMACAO 1992 LISP ARVORES
GENETICA E GRAFOS

4. CONSIDERACOES FINAIS

O volume de dados que séo operados nos sistemas computacionais hoje, seja na
exploragdo, armazenamento ou integracdo de sistemas legados, oferece uma vasta
oportunidade para extrair novos conhecimentos e, a0 mesmo tempo, impulsiona a
demanda por novas solucoes.

26

[l Latin American School on Software Engineering (ELA-ES 2015)

Para atingir tais objetivos, as informacgdes devem estar armazenadas em fontes
de dados concisas e sem erros, ou seja, com uma boa qualidade. No entanto, muitas
fontes de dados sofrem da baixa qualidade devido a anomalias ou impurezas
ocasionadas principalmente pela insercdo despadronizada destes dados. No contexto da
deduplicacdo, os principais desafios giram em torno dos métodos para detectar defeitos
que comprometem os critérios de avaliacdo da qualidade da informacdo. Dados
imprecisos e inconsistentes sdo fontes de problemas e impulsionam os esforgos de
desenvolvimento das técnicas de deduplicacéo.

Dentre as ferramentas pesquisadas, pode-se inferir que algumas técnicas estdo
voltadas para caracteristicas distintas que dao validacdo a qualidade dos dados, nota-se
também a existéncia de técnicas voltadas para grandes volumes de dados, e técnicas
voltadas para pequenos conjuntos de dados, explorando caracteristicas distintas no
contexto da deduplicagéo.

5. REFERENCIAS

Associacdo Brasileira de Normas Técnicas - ABNT. Norma ABNT NBR ISO/IEC
27002, 2005.

BATINI, C., CAPPIELLO, C., FRANCALANCI, C., & MAURINO, A. Methodologies
for data quality assessment and improvement. ACM Computing Surveys (CSUR). 2009

BENJELLOUN, O. GARCIA-MOLINA, H. KAWAI, H. LARSON, T. MENESTRA,
D. THAVISOMBOON, S. D-Swoosh: A Family of Algorithms for Generic, Distributed
Entity Resolution. Stanford University Technical Report, 2006.

BHATTACHARYA I. AND L. GETOOR, “Iterative Record Linkage for Cleaning and
Integration,” Proc. Ninth ACM SIGMOD Workshop Research Issues in Data Mining
and Knowledge Discovery, pp. 11-18, 2004.

CARVALHO, M.G. DE, LAENDER, A.H.F, GONC,ALVES, M.A. AND SILVA, AS.
DA, “Replica Identification Using Genetic Programming,” Proc. 23rd Ann. ACM
Symp. Applied Computing (SAC), pp. 1801-1806, 2008.

CATARCI, T., AND SCANNAPIECO, M. Data quality under the computer science
perspective. Archivi Computer 2. 2002.

CECCHIN, F. UM MODELO PARA RESOLUCAO DE CONFLITOS SOBRE
REPOSITORIO DE DADOS XML. Dissertacdo de Mestrado do Programa de POs-
Graduacao em Informaética, UFPr, Curitiba. 2010.

CHAUDHURI, S. GANJAM, K. GANTI, V AND MOTWANI, R. “Robust and
Efficient Fuzzy Match for Online Data Cleaning,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 313-324, 2003

CHIAVENATO, Idalberto. Gestdo de Pessoas. 3? edicdo, Editora Elsevier — Campus,
2008.

27

[l Latin American School on Software Engineering (ELA-ES 2015)

CHRISTEN P. Febrl: A freely available record linkage system with a graphical user
interface. http://crpit.com/confpapers/CRPITV80Christen.pdf, 2008. [Acessado em 19-
07-2014].

DBDIRETO. Higienizagdo de Banco de Dados, 2011. Disponivel em: <
dbdireto.com.br/Higienizacao-de-dados.html>. Acesso em 16 out. 2014,

DORNALA, R. AKINGBEHIN, K. YOON, D. Data De-duplication in Storage
Management. Int'l Conf. Internet Computing and Big Data - ICOMP'13. p. 10 — 14,
2013.

FERREIRA, R. MEIRA JR, W. GUEDES, D. DRUMMOND, L. COUTINHO, B.
TEODORO, G. TAVARES, T. ARAUJO, R. FERREIRA, G. “Anthill: A scalable run-
time environment for data mining applications”. In Proc. of the 17th International
Symposium on Computer Architecture and High Performance Computing, Rio de
Janeiro, RJ, 2005.

FELLEGI, I.P. AND SUNTER, A.B. “A Theory for Record Linkage,” J. Am.
Statistical Assoc., vol. 66, no. 1, pp. 1183-1210, 19609.

GAMBLE M.; GOBLE C. “Quality, Trust, and Utility of Scientific Data on the Web:
Towards a Joint Model”. ACM International Conference on Web Science, pp. 1-8,
2011.

JURCZYK, P., LU, J., XIONG, L., CRAGAN, J., & CORREA, A. FRIL: A tool for
comparative record linkage. In Proceedings of the American Medical Informatics
Association Conference (AMIA 2008). 2008

KAWAI, H. GARCIA-MOLINA, H. BENJELLOUN, O. MENESTRINA, D. WHANG,
E. AND GONG. H. “Pswoosh: Parallel algorithm for generic entity resolution”.
Technical Report, Stanford Info-Lab, 2006.

KOUDAS, N. SARAWAGI, S. AND SRIVASTAVA, D. “Record Linkage: Similarity
Measures and Algorithms,” Proc. ACM SIGMOD Int’1 Conf. Management of Data, pp.
802-803, 2006

KOZA, J.R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

LWIN, T & NYUNT, T. T. S. An Efficient Duplicate Detection System for XML
Documents. 2nd International Conference on Computer Engineering and Applications.
IEEE. 2010.

MADNICK, S.E., WANG, R.Y., LEE, Y.W. AND ZHU, H. Overview and Framework
for Data and Information Quality Research. ACM Journal of Data and Information
Quiality 1, 1, Article #2. 2009.

MILLER, B., et al. Towards a framework for managing the information environment.
Information and Knowledge Systems Management, v. 2. 2001.

28

[l Latin American School on Software Engineering (ELA-ES 2015)

OLSON, J. E. Data Quality — The accuracy dimension. San Francisco, CA: Morgan
Kaufmann Publishers, 2003. ISBN: 1-55860-891-5

PIPINO, L. L.; LEE, Y. W.; WANG, R. Y. Data quality assessment. Communications
of the ACM, New York, v. 45, n. 4, p. 68-73, Apr. 2002.

RAHM, E.; AND DO, H. H. “Data Cleaning: Problems and Current Approaches,”
Bulletin of the Technical Committe on Data Engineering — Special Issue on Data
Cleaning, vol. 23, no. 4, pp. 3-13, 2000.

SANTOS. W, TEIXEIRA, T. MACHADO, C. MEIRA, W. SILVA, A. FERREIRA, R.
GUEDES, D. “A Scalable Parallel Deduplication Algorithm”. In 19th International
Symposium on Computer Architecture and High Performance Computing 2007.

TALBURT, John R. Entity resolution and information quality. Elsevier, 2011.

TAVARES, Rossano Soares. Bancos de Dados Qualificados Podem Reduzir Perdas e
Aumentar os Ganhos em CRM, 82 pg. (Monografia (MBA) — Pontificia Universidade
Catolica de S&o Paulo, Séo Paulo. 2003.

VERYKIOS, V.S. MOUSTAKIDES, G.V. AND ELFEKY, M.G. “A Bayesian
Decision Model for Cost Optimal Record Matching,” The Very Large Databases J., vol.
12, no. 1, pp. 28-40, 2003.

WAND, Y.; WANG, R. Anchoring data quality dimensions in ontological foundations.
Communications of the ACM, v. 39, n. 11. 1996.

YANCEY, W.E. An adaptive string comparator for record linkage RR 2004-02, US
Bureau of the Census, February. 2004.

YANCEY, W.E. BigMatch: A Program for Extracting Probable Matches from a Large
File. www.census.gov/srd/papers/pdf/rrc2007-01.pdf, 2007. [Acessado em 19-07-2014].

29

[l Latin American School on Software Engineering (ELA-ES 2015)

Conceptual Framework to Support Sampling Activities in
Software Engineering Surveys

Rafael M. de Mello, Guilherme H. Travassos

Programa de Engenharia de Sistemas e Computacao (PESC), COPPE/UFRJ
Universidade Federal do Rio de Janeiro

Caixa Postal 68.511 —21.9451-970 — Rio de Janeiro — RJ — Brasil

{rmaiani, ght}@cos.ufrj.br

Abstract. Although questionnaire-based surveys have been frequently applied
in Software Engineering research, specialized literature shows many issues on
establishing representative samples. Consequently, it is hard to generalize or
even to interpret the survey results. The lack of sources for establishing
adequate sampling frames and the lack of systematic activities to support
sampling in Sofiware Engineering surveys contribute to this adverse scenario.
This paper presents an ongoing research aiming at establishing a conceptual
framework to support researchers on conducting sampling activities in
Software Engineering surveys. Based on the lessons learned through the
conduction of preliminary studies, a first version of the conceptual framework
was designed. Then the framework was evolved, with the inclusion of a set of
activities and evidence based recommendations for supporting its use.

1. Introduction

Surveys (questionnaire-based surveys) are one of the most frequently research methods
used in Software Engineering (SE) research, allowing researches to perform descriptive
large-scale investigations without the rigorous control level requested by controlled
(quasi) experiments. Surveys are primary studies that shall support repetition through
several executions and allow the aggregation of observed results. In this context, SE
literature often presents surveys in which their research plans are clearly designed in
many aspects but having sampling frames typically established by convenience [de
Mello and Travassos, 2015]. Consequently, even after exhaustive effort on recruitment,
the interpretation of the survey results is significantly limited since the sampling process
could not be repeated in further replications.

In comparison with another research areas (i.e. social sciences, nursing,
medicine,...), identifying representative sources of population available in SE research
is a great challenge, motivating researchers to work with alternative sources, such as
logs from open-source projects [Bettenburg et al., 2008], discussion groups [Nugroho
and Chaudon, 2008] and social networks [Franc¢a e da Silva, 2009; Martinez-Fernandez
et al., 2010]. However, the ad hoc use of such technologies per se for increasing sample
sizes is not sufficient to evolve the samples quality, since sample size is just one part of
samples’ representativeness challenge [Kruskal and Mosteller, 1979]. In the context of
our research, a representative sample consists on subset of units of analysis, randomly
retrieved from a heterogeneous population from the point view of the survey target
audience. Such heterogeneity can be measured through the attributes used in a study for
characterizing each unit [de Mello et al., 2015-2]. For instance, in a survey having

30

[l Latin American School on Software Engineering (ELA-ES 2015)

Brazilian SE research groups as target audience, the unit of analysis is the research
group and a representative population could be retrieved through the research group
directory from CNPq (http://lattes.cnpq.br/web/dgp). In addition, it is also important to
emphasize that establishing representative samples may be not sufficient if their
individuals (unit of observation) do not effectively participate. In this context, Smith et
al. (2013) argue that individual participation may be stimulated through persuasive
factors applied in the survey recruitment. Thus, the following research questions
emerge:

e How to identify and assess potentially relevant sources of population for
conducting surveys in SE?

e How to deal with the limitations on retrieving relevant information from the
source of population available for a survey?

e How to stimulate the participation of individuals out from the convenience
samples in SE surveys?

e How to systematize the whole sampling process in order to make it reusable?

In order to answer the presented questions, it has been observed that surveys
guidelines available in SE literature do not provide enough guidance [Pfleeger and
Kitchenham, 2001; Kasunic, 2005; Pfleeger and Kitchenhan, 2008]. Thus, this paper
presents the ongoing research in the context of a Doctoral Thesis aiming at establishing
a conceptual framework for supporting researchers on establishing representative
samples in SE surveys. Such framework includes a set of activities and evidence-based
recommendations in order to guide the use of its concepts.

Section 2 discusses the related works. Section 3 presents the research proposal,
delimitating its scope and describing the expected contributions to SE research. Section
4 presents the research progress and related publications, including each step performed
until the submission of this paper. Section 5 presents the conclusions.

2. Related Works

Kasunic [2005] presents a hands-on set of guidelines for conducting SE surveys,
describing the survey process through seven steps. Four of these steps are composed by
planning activities (Figure 1), being the second and the third steps directly related with
the research presented in this paper. In this context, it was observed that challenges and
issues regarding the establishment of the target audience and the sampling design in SE
surveys are barely discussed. Also, no discussion is presented regarding how to
stimulate the participation in SE surveys.

In a series of five short papers discussing the design of SE surveys, Pfleeger and
Kitchenham [Pfleeger and Kitchenham, 2001] devotes one paper for presenting
population and sampling concepts in general. Again specifically issues and
recommendations for SE issues were not observed, which is also observed in a more
recent work [Pfleeger and Kitchenham, 2008].

In addition, specialized literature presents a couple of papers can be considered
as guidelines due to the initiative of their authors on detailed reporting their own
experiences on conducting large-scale surveys in SE [Ciolkowski et al., 2003; Conradi
et al., 2005]. Ciolkowski et al. [2003] present a comprehensive work reporting the

31

[l Latin American School on Software Engineering (ELA-ES 2015)

authors’ experience on conducting three SE surveys. However, although they present
the composition of each survey sample, sampling issues in SE are barely discussed.
Conradi et al. [2005] reported in depth how they established the target audience for an
international survey and how they obtained a representative sample through an
exhaustive process of gathering organizations’ data from three countries. The authors
also describe a relevant set of attributes collected for characterizing each respondent and
how they applied such attributes for better interpreting the survey results. This survey
was replicated by Li et al. [2008] having organizations from a fourth country as
sampling frame. In both studies, the authors discuss the challenges and the limitations
on establishing representative populations for SE surveys. However, no proposal or
even guidelines for overcome such challenges was identified.

Tdentify the [dentify 2ad Design the Design and
Characterize . ==
Research Tarset Sampling Write
Objectives A s Plan Questionnaire
Audience

Figure 1. Activities for survey planning [Kasunic, 2005].

Regarding the quality of surveys reports, Stavru [2014] introduced a set of
criteria of thoroughness to evaluate the quality of industrial surveys on agile method
usage, which includes the need of survey papers specifying the target audience (target
population), sampling frame and sample size, among others. In Savru approach, one or
more of the following trustworthiness attributes should be applied for evaluating each
criterion: neutrality, consistency, truth value and applicability. The author observed that
eight from the nine studies analyzed present insufficient thoroughness and subsequently
low trustworthiness. Then, the author presents as set of recommendations to improve
this scenario, including that “special provisions should be taken to increase the
objectivity of surveys on agile method usage in order to ensure that their findings are

’

not biased by the individuals or organizations conducting them”.

3. Research Proposal

The research proposal consists on establishing a framework composed by a set of
concepts and activities for supporting researchers on designing representative samples
for surveys in Software Engineering. The research plan has been adapted from the
evidence-based approach for introducing new SE technologies used by the Experimental
Software Engineering group (ESE Group) at COPPE/UFRJ [Dias-Neto et al., 2010].
Figure 1 presents the proposed research methodology, which includes the following
main activities:

1. Conceptual characterization of the technology, presenting relevant concepts for
providing systematized support for sampling in SE surveys;

2. Conduction of Preliminary studies, applying the result of the previous activity
on replicating surveys from diverse SE researches conducted by ESE group;

32

[l Latin American School on Software Engineering (ELA-ES 2015)

3. Framework development: concepts, applying the lessons learned in the
preliminary studies for reviewing the proposed concepts and organize then into a
conceptual framework;

4. Framework development: activities, aggregating activities and evidence-based
recommendations to the conceptual framework;

5. Feasibility study- planned to have, at least, SE researchers from a post-
graduation class applying and evaluating the proposed framework.

Conceptual

characterization of
the technology

Conduction of

Preliminary studies

Framework
development-
concepts

Framework
development-
processes

Feasibility study

Doesthe technology

is feasible?

Figure 1. The research methodology proposed.

As the main contribution of this research, it is expected the evolution of quality on
planning and replicating SE surveys. In addition, it is expected to contribute with the
following SE research topics:

e Characterization of context in SE research [Petersen e Wholin et al., 2009];

e Identification and establishment of alternative sources of population in SE
surveys [de Mello et al., 2014].

e Persuasive factors and Participation in SE surveys [Smith et al., 2013];

e Improvement of sampling in large-scale experiments [de Mello et al., 2015].

4. Research Progress and Publications

A conceptual characterization of the technology was designed based on surveys’
knowledge available in the technical literature, the lessons learned by the ESE Group on

33

[l Latin American School on Software Engineering (ELA-ES 2015)

conducting questionnaire-based surveys and the specific challenges observed in SE
research on characterizing populations and aggregating results from aggregated
experiments [de Mello et al., 2013]. These concepts were applied to perform a first
preliminary study [de Mello et al., 2013-2], in which was designed a recruitment plan
for replicating a survey on requirements effort estimation. Through a comparison
between convenience sampling and the planned sample, it was observed evidence that
applying a recruitment plan over a professional social network (LinkedIn) contributed
for delivering more heterogeneous samples without less in confidence level (experience)
of the subjects. A second preliminary study on simulation-based studies in Software
Engineering was also replicated [Franga and Travassos, 2014]. However, due to the
specificity of the study, an insufficient effective sample size was retrieved for testing
any hypothesis regarding the samples’ quality.

Then, a new recruitment plan was designed to support a third preliminary study,
regarding a replication of a survey on Agility in Software Processes [Abrantes and
Travassos, 2012]. The use of the recruitment plan allowed the recruitment of a
representative sample composed by 7,745 distinct individuals, members from a set of 19
groups of interest (grouped into eight strata) systematically selected from the
professional social network LinkedIn (www.linkedin.com) [de Mello et al., 2014-2].
After analyzing the answers from the respondents regarding their main SE skills the
original eight strata were reorganized into five groups [de Mello et al., 2014-3]. As
evidenced in the first preliminary study, it was also observed in this third study that the
recruitment process delivered a more heterogeneous sample without losing in
confidence, when compared with the previous two survey executions [Abrantes and
Travassos, 2013]. Such heterogeneity was essential to support the identification of
relevant opinion divergences between groups regarding the research context, to
reinforce some results observed in the previous executions and to put another ones in
doubt [de Mello et al., 2014-4].

Thus, based mainly on the experience obtained conducting the aforementioned
studies, the first version of the conceptual framework was designed [de Mello et al.,
2014], including new concepts for dealing with challenges observed on SE surveys.
Then, part of the conceptual framework was applied to evaluate nine possible
alternative sources available in the Web for establishing representative populations in
SE surveys, including professional social networks, crowdsourcing tools and
freelancing tools [de Mello et al., 2014]. The use of the conceptual framework was also
exemplified in the context of a real survey [de Mello et al., 2015-2].

After the establishment of the first version of the conceptual framework, a
structured review over the proceedings of the two most relevant Empirical Software
Engineering Conferences (ESEM and EASE) was undertaken aiming at investigating
the state of practice on characterizing sampling frames in SE surveys [de Mello and
Travassos, 2015]. As a result, 56 surveys were identified in which was observed that
only seven reported efforts on designing representative samples. From these, four
surveys were designed having SE researchers as their target audience, accessed through
the list of authors of papers retrieved from a SLR (systematic literature review)
previously conducted for each research context [Dias Neto and Travassos, 2008; Santos
and da Silva, 2013; Carver et al., 2013; Guzman et al., 2014]. The survey conducted by
Rodriguez et al. [2012], demonstrates the benefits on accessing a national database
composed by Finnish software professionals and organizations (FIPA). As a result,

34

[l Latin American School on Software Engineering (ELA-ES 2015)

4,450 SE practitioners from Finland could be recruited and 408 answers were obtained.
Other two surveys [de Mello and Travassos, 2013-2; de Mello et al., 2014-3] consists on
already presented survey replications conducted in the context of this research.

After the conduction of the mentioned structured review, it was observed the
need of evolving the framework concepts and then activities and recommendations to
support the framework use were designed. The results of the review allowed us to
include a set of recommendations for applying the framework activities. Following
subsections presents, respectively, the new version of the framework concepts and
exemplify one of the framework activities.

4.1 Framework Development- Concepts

Following subsection briefly presents the new version of the framework concepts.
Figure 2 presents such concepts associated to deliverables from survey planning and
execution.

Survey
Questionnaire

H
|

H

:

:

:

E

H

' Source of Target Research
! 2¢ % A
: ! Objective
H < H

i :

i b i

i E Survey Population
H Population S

H Search Plan |

H i Survey
! 1

|

; .

1

1

H

|

H

|

1

' Sample
Sampling ! >
Strategy H

Effective

Sample
Recruitment

Strategy

Figure 2. The relationship between the main concepts of the framework.

4.3.1 Target Audience

A survey target audience characterizes who can best provide the information needed in
order to achieve the research objective [Kasunic, 2005]. In our framework, this concept
is extended to a formal characterization of the survey unit of observation and unit of
analysis. In questionnaire based surveys, data is always collected from units of
observation represented by the individual (respondent). However, the survey’s target
audience may demand a higher level of analysis (unit of analysis). In a recent structured
review conducted to characterizing sampling frames in SE surveys, it was observed that
15 from the 56 surveys since 2005 established specific groups of individuals as their
unit of analysis, including organizational units, organizations and project teams [de
Mello and Travassos, 2015].

4.3.2 Source of Population

A survey population consists on the set of accessible units of analysis from the target
audience [Thompson, 2010]. Thus, a source of population consists on a database

35

[l Latin American School on Software Engineering (ELA-ES 2015)

(automated or not) in which a valid population for a specific target audience can be
systematically retrieved. As a consequence, if a source of population can be considered
valid for supporting a specific research context, it can be concluded that adequate
sampling frames can be established from it for the same research context.

In the context of a source of population, its search unit characterizes the entity
from which one or more units of analysis can be retrieved from a specific source of
population. In an ideal scenario, it is expected that both unit of analysis and search unit
are the same thing. However, SE literature presents some examples in which these units
are different. For instance, Conradi et al. [2005] aimed at investigating the opinion of
software project teams (unit of analysis), but accessed them keeping in touch with
organizations (search unit) from three distinct countries. Dias Neto and Travassos
[2008] opted to survey the authors (unit of analysis) of each paper (search unit)
retrieved from the results of specifics SLRs conducted for each research context.

Figure 3 exemplified the concepts of source of population (SoP) and search unit
(SU) with the concepts of target audience (TA), population (POP) and unit of analysis
(UA). One can see that not necessarily all instance of search unit from a source of
population can be used to compose a specific population. To be considered valid, a
source of population should satisfy, at least, the following essential requirements (ER):

o [ERI. A source of population should not intentionally represent a segregated
subset from the target audience, i.e., for a target population audience “X”, it is
not adequate to search for units from a source intentionally designed to
compose a specific subset of “X".

o FER2. A source of population should not present any bias on including on its
database preferentially only subsets from the target audience. Unequal criteria
for including search units mean unequal sampling opportunities.

e ER3. All source of population’ search units, their units of analysis (and their
units of observation) must be identified by a logical or numerical id.

o ER4. All source of population’ search units must be accessible. If there are
hidden search units, it is not possible to contextualize the population.

SU UA

Figure 3. Population obtained from a source of population and its units.

36

[l Latin American School on Software Engineering (ELA-ES 2015)

There are still also nine desirable requirements (DR), three concerned with the
samples’ accuracy (ADR), two concerned with clearness (CDR) and four regarding
sample’s completeness (CoDR). The first version of such requirements can be observed
in [de Mello et al., 2014].

4.3.3 Characterization Questionnaire

Attributes needed for characterizing each individual are frequently unavailable in the
sources of population. Thus, such attributes data are commonly retrieved based on
subjects’ answers to one or more survey questions. For instance, Dias Neto and
Travassos [2008] collected from each subject the set of attributes needed to support
their research since the source of population/search unit used (digital libraries/ papers)
do not retrieve another information regarding the subjects than their names and e-mails.
The characterization questionnaire is typically included at the beginning or at the end of
the survey questionnaire and should avoid ask any information already available (and
updated) in the source.

4.3.4 Search Plan

A search plan describes how search units will be systematically retrieved from a source
of population and evaluated in order to deliver the study population, being composed by
the following elements:

o Search string- a set of search expressions connected through logical operators
that can be applied to a source of population in order to retrieve adequate search
units.

e Search algorithm- describes each step, automated or not, that must be followed
in order to filter the search units in a source of population, including how to
apply the planned search string.

e Exclusion criteria- describes a set of restrictions that must be applied in order to
exclude undesirable search units retrieved from the search plan execution.
Exclusion criteria can be especially helpful when the source of population is
significantly generic and the use of search string are limited, such as in the case
of the professional social networks [de Mello et al., 2013; de Mello et al., 2014-
2] and yellow pages [Conradi et al., 2005].

4.3.5 Sampling Strategy

A sampling strategy establishes criteria for composing the survey sampling frame and
describes the survey sampling design. While the sampling frame is the source from
which a sample can be retrieved [Thompson, 2012], the sampling design describes the
criteria for extracting samples from the sampling frame, i.e. which individuals (from
which unit of analysis) will be invited to answer the survey.

4.3.6 Recruitment Strategy

The recruitment strategy characterizes how the individuals from the survey sample will
be recruited. It includes the invitation message and the following factors that can
influence subjects’ participation [Smith, 2013]: execution esteemed time, invitation
method, period available, reminding method and Reward method rewards may be, but is
not limited to include payments, raffles, gifts and donations for NGOs.

37

[l Latin American School on Software Engineering (ELA-ES 2015)

4.4 Framework Development- Activities

Six activities and 17 tasks were developed to support SE researchers on applying the
conceptual framework presented in Section 3. Each task is supported by one or more
recommendations, totalizing 27. Such recommendations was developed based on
evidence observed in the specialized literature on conducting SE surveys, specially
identified in the structured review [de Mello and Travassos, 2015]. As mentioned in the
Section 3, the conceptual framework was developed to support only population and
sampling issues in SE surveys. Thus, Figure 4 presents through a BPMN model how the
framework activities are inserted in the survey planning steps presented in the Section 2.
Shadowed activities are out from the framework scope. One can see that the framework
introduces new steps between the characterization of the target audience and the design
the sampling design presented by Kasunic [2005]. The proposed framework also
devotes specific activities for designing the characterization questionnaire and designing
the recruitment strategy.

Tdentify the
Research
Ohjectives

Identify and

characterze
target andience

Select the
Source of
Population
Design the
Fopulation
Search Flan Design the
Characterization
Questionnare
Design the
Sampling
Strategy

Design and
wWrite
questionnaire

Degion the
Recruitment
Strategy
1
Y

Figure 4. The framework activities inserted in the survey planning process.

38

[l Latin American School on Software Engineering (ELA-ES 2015)

Since the research objectives were identified, a target audience must be
established, and an accessible population should be found, which will be supported by
applying a population search plan over the selected source of population. Then, a
compatible sampling strategy should be applied in order to deliver the sample of the
survey trial. Finally, the recruitment strategy should be designed focusing on
stimulating the participation in the survey. Due to the limitation of space, the
description of all 17 tasks and the 27 recommendations are not displayed in this paper.
Figure 5 exemplifies the third task of the activity “Identify and Characterize the Target
Audience” (TA03) and its respective recommendations (R02, R03 and R04).

TAO03. Establish the unit of analysis attributes. First, establish the set of control
attributes and their respective values that will restrict the unit of analysis. Then,
enumerate the other attributes that should be collected from each unit and define how
to measure each one.

RO02. Individuals are commonly characterized in SE through the following attributes:
experience in the research context, experience in SE, current professional role,
country and higher academic degree.

RO03. Organizations are commonly characterized in SE through the following
attributes: size (scale typically based in the number of employees), industry segment
(software factory, avionics, finance, health, telecommunications, etc.), country and
organization type (government, private company, university, etc.).

RO04. Project teams can be characterized through attributes such as project size; team
size, client/product professional segment (avionics, finance, health,
telecommunications, etc.) and their physical distribution.

Figure 5. The framework activities inserted in the survey planning process.

5. Conclusion

This paper presented an on-going Doctoral research to develop a conceptual framework
to support sampling in SE surveys. Most of the planned research steps were performed.
As immediate next step, the second version of the conceptual framework will be
submitted to a feasibility study having Doctoral and Master students from an
Experimental Software Engineering class as subjects. Within the results of such study,
the framework will be improved to be presented in the context of the Doctoral Thesis.
Future steps include the conduction of additional studies for evaluating the conceptual
framework and expanding the use of the framework concepts to support large scale
experiments in SE. It is also expected that new evidence observed in future SE surveys
could be used to improve and add new recommendations to the framework.

Acknowledgement

We would like to thank to Dr. Per Runeson (Lund University, Sweden) to the external
supervision during the sandwich doctorate program and to Pedro Correa
(COPPE/UFRIJ) to the support in the research activities. We also thanks to Dr. Martin
Host (Lund University), Dr. Carolyn Seaman (UMBC, EUA), Dr. Alessandro Garcia
(PUC-RJ, Brazil) and Dr. Marcio Barros (UNIRIO, Brazil) by the relevant contributions
for the research. Finally, we thanks to CAPES to the support on the external scholarship
program at Lund University.

39

[l Latin American School on Software Engineering (ELA-ES 2015)

Referéncias Bibliograficas

A. C. Dias Neto, G. H. Travassos. Surveying Model Based Testing Approaches
Characterization Attributes. In: Proc. 2nd ACM/IEEE ESEM, pp. 324-326, 2008.

A. C. Dias-Neto, R. O. Spinola and G. H. Travassos. “Developing software technologies
through experimentation: experiences from the battlefield,” Proceedings of
Conferencia Ibero-Americana en Software Engineering, pp. 107-121, 2010.

A. Nugroho and M. R. V. Chaudon. A survey into the rigor of UML use and its
perceived impact on quality and productivity. Proceedings of the Second ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 90-99. ACM, 2008.

C. C. Franca, F. Q. B. da Silva. An Empirical Study on Software Engineers
Motivational Factors. Proc. Third ACM/IEEE ESEM, pp. 405-409. IEEE, 2009.

E. Smith et al. Improving developer participation rates in surveys. 6th Intl. Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE), IEEE, 2013.

B. B. N. Franga and G. H. Travassos. Simulation Based Studies in Software
Engineering: A Matter of Validity. CLEI Elet. Journal vol. 18.1, Article No. 4, 2014.

J. C. Carver, E. Hassler, E. Hernandes, N. A. Kraft. Identifying Barriers to the
Systematic Literature Review Process. In: Proc. 7th ACM/IEEE ESEM, pp. 203—
212,2013.

J. F. Abrantes and G. H. Travassos. Towards Pertinent Characteristics of Agility and
Agile Practices for Software Processes. CLEI Electronic Journal 16.1, No. 5, 2013.

J. L. Martinez-Fernandez et al. Using Surveys to Evaluate a Business Rules Based
Development Approach. Business Information Systems, pp. 132-143. Springer
Berlin Heidelberg, 2010.

K. Petersen and C. Wohlin. Context in industrial software engineering research.
Proceedings of the Third ACM/IEEE ESEM. IEEE, 2009.

L. Guzman, C. Lampasona, C. Seaman, D. Rombach. Survey on Research Synthesis in
Software Engineering. In: Proc. 18th EASE, pp. 2:1-2:10, 2014.

M. Ciolkowski, O. Laitenberger, S. Vegas, S. Biffl. Practical experiences in the design
and conduct of surveys in empirical software engineering. In: Conradi R, Wang Al
(eds). Empirical Methods and Studies in Software Engineering- Experiences from
ESERNET, pp. 104-128. Springer Berlin Heidelberg, 2003.

M. Kasunic. Designing an Effective Survey. TR CMU/SEI-2005-HB-004, Carnegie
Mellon University, 2005.

N. Bettenburg et al. What Makes a Good Bug Report? Proceedings of the 16th ACM
SIGSOFT Intl. Symp. on Foundations of Soft. Eng., pp. 308-318. ACM, 2008.

P. Rodriguez et al. “Survey on agile and lean usage in finnish software industry,”
Proceedings of Proceedings of 6" ACM/IEEE ESEM. ACM, 2012.

R. Conradi et al. Reflections on conducting an international survey of Software
Engineering. Proceedings of ESEM, pp. 10, 2005.

40

[l Latin American School on Software Engineering (ELA-ES 2015)

R. E. S. Santos, F. Q. B. Da Silva. Motivation to Perform Systematic Reviews and their
Im-pact on Software Engineering Practice. In: Proc. 7th ACM/IEEE ESEM, pp. 292—
295, 2013.

R. M. de Mello and G. H. Travassos. An ecological perspective towards the evolution of
quantitative studies in software engineering. Proceedings of the 17th International
Conf. on Evaluation and Assessment in Software Engineering (EASE). ACM, 2013.

R. M. de Mello and G. H. Travassos. Would Sociable Software Engineers Observe
Better? In Proceedings of 7th ESEM, IEEE, 2013-2.

R. M. de Mello, P. C. da Silva, P. Runeson, G. H. Travassos Towards a framework to
support large scale sampling in software engineering surveys. Proceedings of the 8th
ACM/IEEE ESEM, pp. 48-52. ACM, 2014.

R. M. de Mello, P. C. da Silva, G. H. Travassos. Investigating Probabilistic Sampling
Approaches for Large-Scale Surveys in Software Engineering. Proceedings of 11th
Workshop on Experimental Software Engineering (ESELAW), Pucon, Chile, 2014-2

R. M. Mello, P. C. da Silva, G. H. Travassos Sampling improvement in software
engineering surveys. Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pp. 13-17. ACM, 2014-3.

R. M. de Mello, P. C. Silva, G. H. Travassos. Agilidade em Processos de Software:
Evidéncias Sobre Caracteristicas de Agilidade e Praticas Ageis. In: XIII Brazilian
Symposium on Sofware Quality, Blumenau, Brazil, 2014-4. (in Portuguese)

R. M. de Mello and G. H. Travassos, GH. Characterizing Sampling Frames in Software
Engineering Surveys. In: Proceedings of 18th ESELAW, Lima, Peru, 2015.

R. M. Mello, K. T. Stolee, G. H. Travassos. Investigating Samples Representativeness
for Online Experiments in Java Code Search. ESEM 2015. (submitted)

R. M. de Mello, P. C. da Silva, G. H. Travassos. Investigating Probabilistic Sampling
Approaches for Large-Scale Surveys in Software Engineering. Journal of Software
Engineering Research and Development (JSERD), 2015-2. (accepted)

S. K. Thompson SK. Sampling. John Wiley & Sons, 3 ed. 2012.

S. L. Pfleeger and B. A. Kitchenham. Principles of survey research: part 1: turning
lemons into lemonade. ACM SIGSOFT Soft. Eng. Notes 26.6, pp. 16-18, 2001.

S. L. Pfleeger and B. A. Kitchenham. Personal Opinion Surveys. Guide to Advanced
Empirical Software Engineering, pp 63-92. Springer London, 2008.

S. Stavru. A critical examination of recent industrial surveys on agile method usage.
Journal of Systems and Software 94, pp: 87-97. 2014.

W. Kruskal and F. Mosteller. Representative Sampling III: The Current Statistical
Literature. International Statistical Review / Revue Internationale de Statistique, Vol.
47, No. 3, pp. 245-265, 1979.

41

[l Latin American School on Software Engineering (ELA-ES 2015)

Processo de Conformidade Arquitetural
em Integracao Continua

Arthur F. Pinto, Ricardo Terra

Departamento de Ciéncia da Computagdo,
Universidade Federal de Lavras (UFLA), Brasil

arthurfp@sistemas.ufla.br, terral@dcc.ufla.br

Abstract. As software evolves, developers usually introduce deviations from the
planned architecture, due to unawareness, conflicting requirements, technical
difficulties, deadlines, etc. Although architectural compliance processes identify
architectural violations, (i) these tools are underused and (ii) detected violati-
ons are rarely corrected. To address these shortcomings, this paper proposes a
solution of architectural compliance into continuous integration. Thus, the ar-
chitectural compliance process is triggered by every code integration, and when
no violations are detected, the code is integrated into the repository. In addi-
tion, this paper presents the ArchCI tool—that implements the proposed solution
using DCL as underlying conformance technique and Jenkins as the CI server—
and a controlled evaluation that demonstrates the applicability of the solution.

Resumo. No decorrer de um projeto de software, desenvolvedores normalmente
introduzem desvios em relacdo a arquitetura planejada, seja por desconheci-
mento, requisitos conflitantes, dificuldades técnicas, prazos curtos, etc. Embora
processos de conformidade arquitetural identifiqguem violacoes arquiteturais,
(i) essas ferramentas sdo subutilizadas e (ii) violacoes detectadas sdo raramente
corrigidas. Diante disso, este artigo propoe uma solugcdo de conformidade ar-
quitetural em integracdo continua. Isso implica que o processo de conformidade
arquitetural é ativado a cada integragdo de codigo e, quando violacoes ndo fo-
rem detectadas, o codigo poderd ser integrado ao repositorio. Além disso, este
artigo apresenta a ferramenta ArchCI — que implementa a solugcdo proposta
usando DCL como técnica de conformidade e Jenkins como servidor de CI — e
uma avaliagdo controlada que demonstra a aplicabilidade da solugdo.

1. Introducao

No decorrer de um projeto de software, desenvolvedores normalmente introduzem
desvios em relacdo a arquitetura planejada, seja por desconhecimento, requisitos
conflitantes, dificuldades técnicas, prazos curtos, etc. [14, [13, [19]. Isso se agrava em
projetos com vdrios desenvolvedores uma vez que o acumulo dos possiveis desvios
arquiteturais que podem ocorrer durante sua implementagdo, sdo potencializados pelo
aumento do nimero de desenvolvedores em um projeto, levando ao fendmeno conhecido
como erosdo arquitetural [11} 6]. Mais importante, esses desvios arquiteturais impactam
negativamente o projeto, podendo anular caracteristicas essenciais de um sistema, como

manutenibilidade, reusabilidade, escalabilidade, portabilidade, etc. [[13}20]].

42

[l Latin American School on Software Engineering (ELA-ES 2015)

Embora processos de conformidade arquitetural identifiquem violagdes arquite-
turais, (i) essas ferramentas sio subutilizadas e (ii) violagdes detectadas sdo raramente
corrigidas. Diante disso, este artigo propde uma solu¢do de conformidade arquitetural em
integragcdo continua. Isso implica que o processo de conformidade arquitetural € ativado a
cada integracdo de cdédigo e, quando viola¢des nao forem detectadas, o cddigo poderd ser
integrado ao repositdrio, o que soluciona os problemas (i) e (ii). Além disso, este artigo
apresenta a ferramenta ArchCI — que implementa a solucio proposta usando DCL (Depen-
dency Constraint Language) como técnica de conformidade [19] e Jenkins como servidor
de CI [[16] — e uma avaliacdo controlada que demonstra a aplicabilidade da solugao.

O restante deste artigo estd organizado como a seguir. A Seg¢do [2]introduz concei-
tos fundamentais ao estudo. A Secao[3|descreve a solugdo proposta que evita os problemas
decorrentes de um processo de erosdo arquitetural. A Secdo 4| detalha a implementagdo
da ferramenta ArchCI. A Secdo [5]avalia a aplicabilidade da solugdo proposta. Por fim, a
Segdo [0] apresenta as consideragdes finais e trabalhos futuros.

2. Background

2.1. Controle de Versao

Um sistema de controle de versdao (Version Control System, VCS) é um software com
a finalidade de gerenciar diferentes versdes no desenvolvimento de artefatos de um pro-
jeto [17, [18]]. Como principal contribui¢do, oferece rastreabilidade das alteracdes, como
o responsavel pelas mudancas, hora e data, diferencas das versdes, etc.

Os sistemas podem ser centralizados ou distribuidos [9]. VCSs centralizados apre-
sentam repositorios de cddigos, onde o acesso e a escrita de dados estdo restritos a um
grupo de desenvolvedores [2]. VCSs distribuidos, por outro lado, trabalham com a arqui-
tetura peer-to-peer, de forma que cada cépia de um projeto contém todo o histérico e os
metadados do projeto, garantindo aos desenvolvedores a capacidade de compartilhar as
mudancas da forma que mais se adeque as suas necessidades [12]. Dentre as principais
ferramentas de controle de versao — CVS, SVN, Git e Mercurial — escolheu-se, para o
desenvolvimento deste projeto, o Gitﬂ por oferecer a possibilidade de se desenvolver de
maneira centralizada e distribuida, além de ser um dos mais utilizados atualmente [[12]].

Neste artigo, € importante a contextualizagdo com os seguintes conceitos [17, [18]:
(i) tag, nome simbdlico atribuido a uma versao especifica; (ii) branch, um conjunto de
versdes de arquivos fontes que € identificado por uma fag; (iii) commit, comando que
integra as alteracoes de um desenvolvedor a um branch do repositério local; e (iv) push,
comando que integra uma série de commits de um desenvolvedor a um branch do reposi-
tério remoto.

2.2. Integracio Continua

Integragdo Continua (Continuous Integration, CI) trata-se da prética de desenvolvimento
de software, onde membros de uma equipe incorporam certas mudancas ao software,
aplicando processos de compilagado e testes que asseguram a integridade do projeto [8]].
Essa prética facilita na detecc¢do de erros e problemas nas fases anteriores a conclusdo do
software, visando um menor custo de reparo [3]. A solu¢do proposta neste artigo objetiva

Thttp://git-scm.com/

43

http://git-scm.com/

[l Latin American School on Software Engineering (ELA-ES 2015)

complementar esse processo de integracdo, provendo meios de verificar a arquitetura do
sistema de software.

Servidores de CI podem ser configurados para verificarem sempre que mudan-
cas sao realizadas em um repositério [7]. Assim, recupera as versdes mais recentes das
classes, compila o cédigo, e, em seguida, executa os testes para integragcdo, exibindo os
resultados aos desenvolvedores [4]. Dentre os servidores de CI mais relevantes — Jen-
kins, TeamCity e CruiseControl — o J enkinsﬂ conseguiu um alcance maior na comunidade
open-source, tendo assim, certa vantagem para a identificagdo e corre¢ao de bugs, bem
como certas melhorias, se tornando o servidor mais recomendado para este projeto [16]].

2.3. Conformidade Arquitetural

Conforme um projeto de software é desenvolvido, sua arquitetura esta sempre evoluindo a
medida que seu sistema também evolui. Portanto, sdo necessarios meios de rastrear essas
evolugdes e outros aspectos implicitos do sistema de software. Esse processo é chamado
de architectural monitoring [11]. Torna-se, assim, imprescindivel para um sistema de
software garantir a conformidade entre a arquitetura planejada e sua implementacao atual.
Contudo, ¢ comum o acumulo de violagdes arquiteturais ao longo do tempo, levando ao
fendmeno conhecido como erosdo arquitetural [[14]].

Define-se como erosdo arquitetural o fendbmeno que ocorre quando a arquitetura
implementada de um sistema de software diverge de sua arquitetura planejada [6]]. Exis-
tem diversas técnicas para evitar a erosao arquitetural, bem como para se realizar o pro-
cesso de architectural monitoring. Dentre as principais técnicas, pode-se citar: Modelos
de Reflexdo [10], Matrizes de Dependéncias Estruturais [15], Source Code Query Lan-
guages [21], ArchJava [1], Testes de Desenho [J]], e Linguagens de Restricio Arquite-
turais [[19]. Dessas técnicas, a que serd utilizada neste projeto serd a linguagem DCL,
devido ao seu facil uso e ao fato da mesma apresentar uma alta expressividade na forma
de se tratar o problema de erosao arquitetural.

DCL € uma linguagem declarativa de dominio especifico, que apoia a defini¢do
de restri¢Oes estruturais entre mddulos em sistemas orientados a objetos, tendo como ob-
jetivo principal, restringir a organiza¢cdo modular de um sistema de software, em vez de
seu comportamento [[19]. Através da definicdo de restri¢des estruturais por meio do DCL,
torna-se possivel capturar dois tipos de violagdes arquiteturais: divergéncias (quando uma
dependéncia observada no cddigo fonte nio estd de acordo com o modelo arquitetural do
sistema) e auséncias (dependéncia inexistente no cddigo fonte, mas que é obrigatéria de
acordo com o modelo arquitetural). Essencialmente, esse modelo abrange qualquer forma
de relacdo entre classes que podem ser verificadas estaticamente. Através da combinagdo
de uma linguagem simples e autoexplicativa com uma ferramenta de suporte publica-
mente disponivel, acredita-se que DCL possa auxiliar na prevencao da erosdo arquitetural.

3. Solucao Proposta

Embora processos de conformidade arquitetural identifiquem viola¢Oes arquiteturais,
(1) essas ferramentas sdo subutilizadas e (ii) violagdes detectadas sdo raramente corri-
gidas. Diante disso, esta se¢do descreve uma solu¢do de conformidade arquitetural em
integracdo continua, conforme ilustrada na Figural]

Zhttp://jenkins-ci.org/

44

http://jenkins-ci.org/

[l Latin American School on Software Engineering (ELA-ES 2015)

Servidor de
Integragéo Continua

commit ush
R =3 2

Desenvolvedor 2

-.- commit

o

Desenvolvedor 3

Mensagem

Validagéo

Tarefa 01
Sucesso
Tarefa 02
Sucesso

Alivada

de erro

Tarefa 03
Falha

Tarefa N

Figura 1. Funcionamento do ArchCl

O processo de conformidade arquitetural € ativado a cada integracdao de codigo
e, quando violagdes nao forem detectadas, o cddigo poderd ser integrado ao repositorio.
Isso visa a integridade da arquitetura do software, uma vez que mantém o cédigo-fonte
sempre convergente com a arquitetura planejada. Assim, a solu¢io proposta garante que:

e O processo de verificagdo de conformidade arquitetural seja realizado em toda
integracdo de codigo sem a necessidade de instalagcdes em mdaquinas de desen-
volvedores, apenas no servidor de CI. Isso visa solucionar o problema (i) de
subutilizacdo de ferramentas de conformidade arquitetural.

e Como o processo de conformidade arquitetural é ativado a cada integracdo de
cddigo, € possivel permitir a integracdo de codigo ao repositorio apenas quando
violagdes arquiteturais nao forem detectadas. Isso visa solucionar o problema (i)
de violacdes detectadas serem raramente corrigidas.

E importante observar que a integracdo da solu¢io proposta em processos reais
de desenvolvimento de software contribuird diretamente com a qualidade arquitetural do
sistema de software, uma vez que a arquitetura implementada (como implementada no
codigo fonte) estard sempre em conformidade com a arquitetura planejada.

3.1. Linguagem DCL

A solugdo proposta requer uma técnica de conformidade arquitetural subjacente. Para
demonstrar a aplicabilidade da solucdo, utiliza-se DCL para definir as restricdes arquite-
turais de um projeto. Nessa técnica, define-se mdodulos que sdo conjunto de classes e, em
seguida, restrigdes arquiteturais entre os moédulos definidos, conforme Figura[2]

only can ’/,/'access declaré\\
M ’ handle M
o can .. extend implement “”70n|y”70
8 [derive | 8
LI cannot ----1 create throw - L
0 i useannotation 0

musi depend

Figura 2. Sintaxe DCL

45

[l Latin American School on Software Engineering (ELA-ES 2015)

O exemplo a seguir demonstra a definicdo e o funcionamento de tais restricdes
estruturais entre médulos:

only Factory can-create Product
Util can-depend-only $java, Util
View cannot-access Model

Product must-implement Serializable

Sw N

A restri¢do da linha 1 especifica que somente classes do médulo Factory podem
criar objetos de classes no modulo Product. A restri¢cdo da linha 2 especifica que que
as classes do médulo Util podem estabelecer dependéncias somente com o proprio moé-
dulo Util e a biblioteca padrdao da linguagem Java. J4 a restricdo da linha 3 especifica
que as classes do médulo View ndo podem acessar as classes do médulo Model. Por ul-
timo, a restricao da linha 4 especifica que todas as classes no médulo Product devem
implementar a interface Serializable.

Como pode ser observado, é de suma importancia a definicao de restricdes arqui-
teturais. DCL prové quatro tipos de restricdes: cannot, can only, only can e must. Assuma
os médulos M4 e Mp de um sistema. Assuma também que A e B representem duas clas-
ses aleatdrias do sistema e que M4 representa o complemento de M 4, assim como Mp
representa o complemento de M. Por fim, assuma que dep corresponde as possiveis de-
pendéncias que podem ser especificadas por meio do DCL, como create, access, declare,
handle, etc. Dessa forma, € possivel estipular a seguinte semantica vinculada ao tipo de
restricdo cannot:

JAGB[A€M, A BEMg A dep(A,B)]

Assim, para os tipos de restricdo can only e only can, as semanticas podem ser
estipuladas em fungdo da restri¢do cannot:

only M, can-dep Mg = M, cannot-dep Mg
M, can-only-dep Mg = M, cannot-dep Mg
Por fim, a semantica vinculada ao tipo de restri¢ao must:

JA-IB[A€ M, AN BE My A dep(4,B)]

3.2. Jenkins

A solugdo proposta requer um servidor de CI subjacente. Para demostrar a aplicabili-
dade da solucdo, utiliza-se o servidor Jenkins para programacdo das tarefas que garantam
a conformidade arquitetural das integracdes realizadas pelos desenvolvedores. Cada ta-
refa inclusa no Jenkins refere-se a um projeto de software especifico, ou mesmo suas
ramificacdes (seus diferentes branches). Sendo assim, cada integracdo (push) realizada
ao repositorio, dispara um gatilho no servidor, que daré inicio a tarefa especifica do refe-
rente projeto, onde esta, por sua vez, validard somente as classes alteradas na determinada
integracao.

46

[l Latin American School on Software Engineering (ELA-ES 2015)

Caso o processo de conformidade arquitetural ndo detecte violagdes, as alteracdes
serdo integradas ao repositorio com sucesso. No entanto, caso violacdes sejam detec-
tadas, a tentativa de integracdo serd negada, informando ao desenvolvedor que acionou
a tarefa, as violagdes encontradas. Desse modo, a ferramenta garante a propriedade de
atomicidade, assegurando que somente as integragdes que estejam em total acordo com
as restri¢cdes de dependéncia estabelecidas sejam aceitas pelo servidor, rejeitando, assim,
alteracdes que estejam em desacordo ou parcial acordo, mesmo que as mesmas sejam
uma série de integracOes realizadas ao servidor local (commits) antes da requisicdo de
integracdo ao servidor remoto (push).

4. Ferramenta ArchCI

A ferramenta ArchCI implementa a solucdo proposta, tendo sua concep¢do voltada para o
uso da linguagem DCL como técnica subjacente de conformidade arquitetural e o Jenkins
como servidor de CI. Primeiramente, foi necessario criar uma implementacgao standalone
de DCL que dependesse apenas de uma biblioteca de manipulacdo de AST (Eclipse JDT,
Java Development Tools). Dessa forma, tornou-se possivel sua integracdo ao Jenkins, o
que implica que a ferramenta nao requeira qualquer instalacio em mdaquina cliente. Além
disso, a verificacdo de conformidade arquitetural das integracdes no servidor remoto € re-
alizada de forma individual, verificando cada arquivo separadamente e, mais importante,
apenas aqueles que sofreram alguma modificacao.

Conforme ilustrado na Figura[3] a implementagdo de ArchCI segue uma arquite-
tura com cinco médulos principais:

2|

ArchCl

Dependencies Parser Auxiliary/Runctions

+ findClassPath(project)
+ findSourcePathiproject)
+ getJavaFiles(project)

s

+ getDependenciesiproject)
+ getDependencyType(dependecy)

a3y

Constraints Parser

+ parseiModules(dclFile)
+ parseConstraints(dcIFile)
i

Dependencies Validation Integration Functions

+ checkConstraints(dependecy) + jenkinsCustomBuild()
+ getViolationMessage() + getBuildWorkspace()
+

+

Figura 3. Arquitetura do ArchCl

e Dependencies Parser: Mddulo responsdvel pela obtencao das dependéncias de
um projeto, assim como a manipulacio das mesmas. Apresenta fungdes que
analisam cada elemento das classes a serem validadas, analisando o tipo de
dependéncia ao qual o determinado elemento se refere.

e Constraints Parser: Modulo encarregado da andlise e decomposi¢cdo do arquivo
contendo os mddulos do projeto e as restrigdes de dependéncia estabelecidas para
a arquitetura do sistema.

47

[l Latin American School on Software Engineering (ELA-ES 2015)

e Dependencies Validation: Moddulo envolvendo fungdes para garantir a confor-
midade arquitetural do projeto por meio da verificagdo e validagdo de desvios
arquiteturais com base nas restricdes de dependéncia previamente estabelecidas.

o Auxiliary Functions: Mdédulo

responsavel por fornecer fungdes que auxiliem as

tarefas do ArchCI de modo geral, tais como localizar o caminho das bibliotecas e
dos arquivos necessdrios para a resolucdo das dependéncias, identificar o tipo de

projeto, etc.

e [Integration Functions: Mddulo contendo as fun¢des relacionadas as praticas de
CI, assim como fungdes necessdrias para integrar o c6digo ao servidor Jenkins.
Esse, por sua vez, engloba funcdes para a customizagdo do build, obtengdo do

workspace com o cédigo a ser
das, etc.

integrado, identificac@o das classes a serem valida-

Por fim, apds a conformidade arquitetural realizada durante a integracdo continua,
o ArchClI fornece como retorno uma mensagem de erro juntamente com as violacdes
encontradas nas classes alteradas da integracdo, caso as mesmas existam. A interface da
mensagem e sua representagdo ¢ demonstrada na Figura[4(c)] tendo como base o exemplo

de restricdo de dependéncia da Figura

4(a)le a violagdo da Figura 4(b)

package project.main;

module Main: project.main.x

Main cannot-depend java.lang.Math

public class Main {
public static void main (String[] args) {
System.out.println (Math.pow (2, 5));

}

(a) Exemplo de Restri¢do de Dependéncia

eCe

(b) Exemplo de Violacao

% git add .

% git commit -m "Integration Changes"

ldev a57ceb7] Integration Changes
1 file changed, 4 insertions(+),
% git push

FAILURE
VIOLATION 1: 'project.main.Main’

4 deletions(-)

contains the method 'main' that statically invo

kes the method 'pow' of an object of 'java.lang.Math'

(c) Relatério apds

a tentativa de integracao de c6digo

Figura 4. Interface ArchCl

5. Avaliacao

Para demonstrar a aplicabilidade da solugdo proposta, foi conduzida uma avalia¢do con-
trolada envolvendo a aplicacdo myAppointments [13], um sistema de gerenciamento de
informacao pessoal simples implementado para ilustrar técnicas de conformidade arqui-
tetural. O sistema possui funcionalidades primédrias aos usudrios, como criar, recuperar,
atualizar e excluir contatos pessoais. Apesar de seu tamanho e sua complexidade serem
simplificados, seu conjunto de restricdes de dependéncia sdo provavelmente utilizados em
muitos casos de conformidade arquitetural de projetos reais.

48

[l Latin American School on Software Engineering (ELA-ES 2015)

A arquitetura do myAppointments segue um padrio bastante conhecido chamado
Model-View-Controller (MVC), fornecendo uma nitida divisdo entre seus componentes.
O componente Model encapsula o estado da aplicag@o, enquanto o componente View estda
associado a objetos da interface. O componente Controller, por sua vez, faz a mediagcao
de todas as interacdes entre o Model e o View. Internamente ao componente Model, estao
contidos Domain Objects, que representam entidades de dominio, e Data Access Objects
(DAOs), que encapsulam o framework de persisténcia da aplicagdo. Tal arquitetura é
ilustrada pelo diagrama da Figura [5}

View

A

Controller

AN
/ Model \

. . Data Access Objects
Domain Objects (DAO)

I 3

Figura 5. Arquitetura MVC do MyAppointments

Embora simplificado, o sistema do myAppointments trabalha com as principais
restri¢des de dependéncia envolvendo o modelo MVC. Sua implementagdo usa as seguin-
tes restri¢des arquiteturais (RA):

(RA1) Somente a camada View pode depender dos componentes providos pelo
AWT/Swing.

(RA2) Somente os DAOs da camada Model podem depender dos servigos de banco
de dados. Uma exce¢do € concedida para a classe model.DB, responsdvel por
controlar as conexdes do banco de dados.

(RA3) A camada View pode depender apenas dos servigcos providos por ela mesma, pela
camada Controller e pelo pacote Util (por exemplo, para dissociar a apresentacao
dos dados do acesso aos dados, componentes do View ndo podem acessar
componentes do Model diretamente).

(RA4) Domain Objects ndao devem depender dos mddulos DAO, Controller e View.

(RAS) Classes DAO podem depender somente de Domain Objects, das classes Model
autorizadas a utilizar os servigos de banco de dados (como o model.DB), quanto
do pacote Util.

(RA6) O pacote Util nao pode depender de nenhuma classe especifica do cédigo fonte
do sistema.

49

[l Latin American School on Software Engineering (ELA-ES 2015)

Para utilizagdo da solucdo proposta, a defini¢cdo das restricdes arquiteturais em

DCL ¢ demonstrado na Figura[6]

$Médulos

module Controller: myappointments.controller.x
module View: myappointments.view.

module Model: myappointments.model. xx
module Domain: myappointments.model.domain.
module Util: myappointments.util.*

module DB: myappointments.model.DB
module DAO: "myappointments.model. [a-zA-Z0-9/.]*DAO"
module JavaAwtSwing: Java.awt.x*, javax.swing.xx*
module JavaSql: java.sqgl.x*

%$Restricgdes

only View can-depend JavaAwtSwing

only DAO, DB can-depend JavaSql

View cannot-depend Model

Domain can-depend-only $java

DAO can-depend-only Domain, Util, javaSqgl

Util cannot-depend $system

Figura 6. Restricoes Arquiteturais DCL do MyAppointments

Para avaliar o funcionamento da solu¢do proposta, foram intencionalmente criadas
seis violagOes arquiteturais, uma para cada restri¢do de dependéncia do myAppointments,

conforme ilustrado na Figura[7]

package myappointments.model.domain;
import java.util.Date; [...]
public class Appointment {

public Appointment () throws Exception({
javax.swing.JOptionPane dialog;
Date date = new java.sqgl.Date (2015,

04, 19);

myappointments.controller.AgendaController ac;

package myappointments.view;
import myappointments.model.AgendaDAO; [...]

public class AppointmentView extends
AbstractAppointmentView {
public AppointmentView
(AppointmentController controller)
throws Exception {
this.controller = controller ;
this.appForm = new AppointmentForm() ;
Object aDAO = AgendaDAO.getInstance () ;
initComponents () ;

[...]

(a) Violagdes RA1, RA2 e RA4

package myappointments.model;
import myappointments.view.AppointmentView; [...]
public class AgendaDAO extends AbstractAgendaDAO {

private static AgendaDAO agendaDAO
= new AgendaDAO();

private static AppointmentView av;
[...]

(c) Violagao RAS

(b) Violacdo RA3

package myappointments.util;
import myappointments.view.AppointmentView; [...]

public class DateUtils {

public static final String HOUR_FMT = "HH:mm";
public static final String SHORT_DATE_FMT =
"MM/dd/yyyy";

public static final String LONG_DATE_FMT =
"MM/dd/yyyy HH:mm";

private static AppointmentView av;
[..]

(d) Violagcdo RA6

Figura 7. Violacoes introduzidas no MyAppointments

(RA1) Um varidvel do tipo javax.swing.JOptionPane foi declarada dentro da classe

Appointment que pertence a camada Domain.

Isso representa uma violacdo

na restricdo (RA1) que indica que somente a camada View pode depender dos
componentes providos pelo AWT /Swing (vide Figura(7(a)).

50

[l Latin American School on Software Engineering (ELA-ES 2015)

(RA2) Foi instanciado um objeto do tipo java.sql.Date na classe Appointment da
camada Domain, violando a restricdo (RA2) de que somente os DAOs da camada
Model podem depender dos servigos de banco de dados (vide Figura[7(a)).

(RA3) O método getInstance() do objeto AgendaDAQ, pertencente a camada DAO foi
invocado pela classe AppointmentView da camada View, violando a restri¢do
(RA3) de que a camada View pode depender apenas dos servicos providos por
ela mesma, pela camada Controller e pelo pacote Util (vide Figura[7(b)).

(RA4) A classe Appointment da camada Domain instancia a varidvel ac do tipo
AgendaController (pertencente a camada Controller), violando a restricdo
(RA4) de que Domain Objects ndo devem depender dos modulos DAO, Controller
e View (vide Figura|/(a)).

(RAS5) A classe AgendaDAO presente na camada DAO contém o campo av do tipo
AppointmentView (pertencente a camada View), violando a restricio (RAS5)
de que classes DAO podem depender somente de Domain Objects, das classes
Model autorizadas a utilizar os servigos de banco de dados, quanto do pacote

Util (vide Figura[7(c)).

(RA6) Assim como na violagdo anterior, a classe DateUtils presente na camada Util
contém o campo av do tipo AppointmentView (pertencente a camada View), vio-
lando a restri¢do (R6) de que o pacote Util ndo pode depender de nenhuma classe
especifica do cddigo fonte do sistema (vide Figura|/(d)).

Dessa forma, foi realizada a avaliacdo do sistema para verificar se a ferramenta
proposta é capaz de realizar o processo de conformidade arquitetural corretamente, detec-
tando todas as violagdes criadas. O resultado da aplicagdo da ferramenta é demonstrado
na Figura [§] Conforme observado, o ArchClI foi capaz de encontrar todas as violagdes
criadas para esta avaliacdo com sucesso, cancelando o processo de integracdo (push) e
informando as referentes viola¢des ao desenvolvedor, cumprindo assim, seu propdsito.

% git add .

$ git commit -m "MyAppointments Changes"

[dev B976437] MyAppointments Changes

23 files changed, 2188 insertions{+), 39 deletions({-)
% git push

FAILURE

VIOLATION 1: 'myappointments.model.domain.Appointment' contains the local variable 'dialeg' 1
n method 'Appointment' whose type is 'javax.swing.JOptionPane'

VIDLATION 2: 'myappointments.model.domain.Appointment' contains the method 'Appointment' that
creates an object of 'java.sql.Date'

VIOLATION 3: 'myappointments.model.domain.Appointment' contains the local variable 'ac' in me
thod 'Appointment' whose type is 'myappointments.controller.AgendaController’

VIDLATION 4: 'myappointments.view.AppointmentView' contains the method 'AppointmentView' that
statically inwvokes the method 'getInstance' of an object of 'myappointments.model.AgendaDAD’

VIDLATION 5: 'myappointments.model.AgendaDAQ0' contains the field 'av' whose type is 'myappoin
tments.view.AppointmentView'

VIOLATION &: 'myappointments.util.DateUtils' contains the field 'av' whose type is 'myappoint
ments.view.AppointmentView'

Figura 8. Violacoes detectadas pelo ArchCl no MyAppointments

51

[l Latin American School on Software Engineering (ELA-ES 2015)

Limitacoes: A avaliacdo foi realizada em um ambiente controlado — um sistema de pe-
queno porte, um unico desenvolvedor, poucas integracdes de cddigo € um pequeno con-
junto de violagdes. Entretanto, o objetivo da avaliacdo de se verificar a aplicabilidade da
solucdo proposta foi atingido ao se demonstrar que € sim possivel integrar um processo
de conformidade arquitetural em Integracdo Continua.

6. Conclusao

E de suma importincia para a engenharia de software garantir a conformidade arquite-
tural de um sistema, principalmente no desenvolvimento de software em conjunto, onde
problemas como a erosdo arquitetural tornam-se mais comuns, causando a anulacdo de
caracteristicas como manutenibilidade, reusabilidade, escalabilidade, portabilidade, etc.

Este artigo apresenta uma solucgao para a verificagdo da conformidade arquitetural
de um projeto de software — com base em restri¢des arquiteturais entre médulos — incor-
poradas em um servidor de Integracdo Continua. Como principal contribui¢do, a solu¢io
proposta evita os problemas decorrentes de um processo de erosdo arquitetural através
de um processo de conformidade arquitetural mais rigido, e.g., integracdes de codigo s6
ocorrem quando ndo foram detectadas violagdes arquiteturais.

Como trabalho futuro, pretende-se: (i) aplicar a solu¢@o proposta em cendrios reais
de desenvolvimento a fim de avaliar sua expressividade, aplicabilidade e desempenho;
(i1) avaliar a usabilidade da ferramenta, e.g., melhor forma de se realizar a verificagdo,
melhor forma de se apresentar as violacdes, além das caracteristicas mais importantes
para aceitagdo dos desenvolvedores, considerando distintas abordagens para o reporte
de violagdes, e.g., exibicdo de warnings ou envio de e-mails, ao invés de bloquear a
integracdo de cddigo; (iii) analisar como fatores humanos influenciam as violagdes para
propor novas funcionalidades; e (iv) realizar melhorias na implementagdo da ferramenta.

Agradecimentos

Este trabalho foi apoiado pela FAPEMIG, CAPES e CNPq.

Referéncias

[1] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting software
architecture to implementation. In 24th International Conference on Software Engi-
neering (ICSE), pages 187-197, 2002.

[2] Brian De Alwis and Jonathan Sillito. Why are software projects moving from centralized
to decentralized version control systems? In 2nd Cooperative and Human Aspects
on Software Engineering (CHASE), pages 36-39, 2009.

[3] Alan Berg. Jenkins Continuous Integration Cookbook. Packt Publishing, Birmingham,
2012.

[4] Jon Bowyer and Janet Hughes. Assessing undergraduate experience of continuous inte-
gration and test-driven development. In 28th International Conference on Software
Engineering (ICSE), pages 691-694, 2006.

[l Latin American School on Software Engineering (ELA-ES 2015)

[5] Jodo Brunet, Dalton Serey, and Jorge Figueiredo. Structural conformance checking with
design tests: An evaluation of usability and scalability. In 27th International Confe-
rence on Software Maintenance (ICSM), pages 143—-152, 2011.

[6] Lakshitha de Silva and Dharini Balasubramaniam. Controlling software architecture ero-
sion: A survey. Journal of Systems and Software, 85(1):132-151, 2012.

[7] Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Improving
Software Quality and Reducing Risk. Pearson Education, Boston, 2007.

[8] Martin Fowler and Matthew Foemmel. Continuous integration. Technical report,
Thought-Works, 2006.

[9] Konrad Hinsen, Konstantin Laufer, and George K. Thiruvathukal. Essential tools: Version
control systems. Computing in Science & Engineering, 11(6):84-91, 2009.

[10] G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the gap
between source and high-level models. In 3rd Symposium on Foundations of Soft-
ware Engineering (FSE), pages 18-28, 1995.

[11] Oscar Nierstrasz and Mircea Lungu. Agile software assessment. In 20th International
Conference on Program Comprehension (ICPC), pages 3—10, 2012.

[12] Bryan O’Sullivan. Making sense of revision-control systems. Queue, 7(7):30—40, 2009.

[13] Leonardo Passos, Ricardo Terra, Renato Diniz, Marco Tulio Valente, and Nabor Men-
donca. Static architecture conformance checking: An illustrative overview. IEEE
Software, 27(5):132-151, 2010.

[14] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. Software
Engineering Notes, 17(4):40-52, 1992.

[15] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency models
to manage complex software architecture. In 20th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 167-176,
2005.

[16] John Ferguson Smart. Jenkins: The Definitive Guide. O’Reilly Media, Inc, Sebastopol,
2011.

[17] Diomidis Spinellis. Version control, part 1. IEEE Software, 22(5):107-107, 2005.
[18] Diomidis Spinellis. Version control, part 2. IEEE Software, 22(6):c3—c3, 2005.

[19] Ricardo Terra and Marco Tulio Valente. A dependency constraint language to ma-
nage object-oriented software architectures. Software: Practice and Experience,
39(12):1073-1094, 2009.

[20] Ricardo Terra and Marco Tulio Valente. Defini¢cao de padrdes arquiteturais e seu impacto
em atividades de manutencdo de software. In VII Workshop de Manutencao de
Software Moderna (WMSWM), pages 1-8, 2010.

[21] Mathieu Verbaere, Michael W. Godfrey, and Tudor Girba. Query technologies and ap-
plications for program comprehension. In /6th IEEE International Conference on
Program Comprehension, pages 285-288, 2008.

53

[l Latin American School on Software Engineering (ELA-ES 2015)

AtlasSPL - A Web-Based Tool for Feature Modeling

Marcelo Schmitt Laser', Elder Macedo Rodrigues', Cristiano Moreira Martins',
Flavio Oliveira'

1School of Computer Science (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Postal Code 90.619-900 — Porto Alegre — RS — Brazil

{marcelo.laser, cristiano.martins}@acad.pucrs.br
{elder.rodrigues, flavio.oliveira}@pucrs.br

Abstract. This paper presents a graphical web-based feature modeling tool
called AtlasSPL that aims to facilitate the training of new professionals in basic
Software Product Line design concepts. AtlasSPL provides an intuitive graph-
ical interface for the construction and visualization of feature models, is an
accessible solution, gives access to a repository of previously-validated feature
models, and supports five different feature model notations. We believe that
these qualities define it as a highly accessible solution for both educational and
small-scale industrial settings.

1. Introduction

Software Product Line Engineering (SPLE) is a technique that has grown considerably in
recent years. Due to allowing for a great degree of systematic reuse, as well as decreasing
long-term costs and time-to-market, it has proven itself as a valuable technique in the
design, development and management of software where a core of commonalities can be
identified between different products [Clements and Northrop 2001] [Pohl et al. 2005]. A
key concept of a Software Product Line (SPL) is the definition of variability, this being the
characteristics (or features) that vary from one product to another within a single family
of software products.

The clear and expressive representation of variability during the design of
an SPL is invaluable to its continued success [Pohletal. 2005]. While there
are different techniques to aid in this task, Feature Modeling [Kang et al. 1990]
[Czarnecki and Eisenecker 2000] is one of the most widely used [Berger et al. 2013], al-
lowing for a graphical representation of variability that is recognisable by all stakeholders.
Although there are several tools that aid in feature modeling, none of them meet our us-
ability and availability requirements.

Various notations have been proposed to represent Feature Models, most of
them based on FODA [Kang et al. 1990]. Some of the most notable ones in the litera-
ture are the Czarnecki-Eisenecker base [Czarnecki and Eisenecker 2000] and extended
[Czarnecki et al. 2005] notations, the FeatuRSEB notation [Griss et al. 1998] and the
Gurp-Bosch-Svahnberg notation [van Gurp et al. 2001]. Despite having important dif-
ferences in presentation, they share a common set of semantics that can be exploited in
the construction of a feature modeling tool.

Over the course of our work, we have often run into difficulties when having to
build and present feature models, for reasons ranging from lack of knowledge from our

54

[l Latin American School on Software Engineering (ELA-ES 2015)

collaborators to lack of support in the tools available to us. To resolve this issue, we have
defined a set of requirements, based on our expertise in this field, for a tool to support
feature modeling with the purpose of basic education in software variability and feature
modeling, as well as facilitating the collaboration between professionals who may not be
acquainted with abstract structures such as trees.

In this paper we present AtlasSPL, a web-based feature modeling tool built to
meet these requirements. AtlasSPL was created with the primary purpose of training our
collaborators in the use of feature models, and should therefore be a suitable tool for
educational environments. We believe that it is also sufficiently complete to allow for the
basic feature modeling activities of managing SPL variability, and is therefore suitable for
small-scale industrial use.

The rest of this paper is organized as follows: Section 2 presents some background
information regarding feature models and their applicability in Software Engineering, as
well as some tools that aid in the feature modeling process; Section 3 presents our in-
house feature modeling tool (AtlasSPL), along with a summary of the requirements on
which this tool’s design is based and an example of its application through the modeling
of a pedagogical SPL; Section 4 presents some lessons learned from the development of
these tools as well as some proposals of future work; Section 5 presents a summary of our
conclusions based on the material presented in this paper.

2. Background

In this section we briefly present the basic concepts of feature modeling. This is followed
by the descriptions of four tools that support the feature modeling process, along with
the merits and flaws that we have perceived in them. Finally, we provide a contextualiza-
tion of our own experiences in this field of research, along with the motivations for the
development of a new feature modeling tool.

According to [Czarnecki and Eisenecker 2000], “a feature is an important prop-
erty of a concept instance”, representing any commonality or difference between the
different products of an SPL. A model that groups the representation and relationships
between the features of an SPL is called a Feature Model, which can be comprised of
one or more Feature Diagrams. Feature Models are commonly used for the representa-
tion of variability in SPLs, both for their simplicity and expressiveness, and for the ease
with which they can be explained to stakeholders, specially those from outside the field
of Software Engineering.

A feature model is typically comprised of a root feature, representing the domain
of the SPL, and several child features representing variation points of this domain. These
variation points may in turn have child features of their own, either to further subdivide
them into smaller variation points or to represent variants available to the SPL.

2.1. Related Feature Modeling Tools

Although a number of tools exist that aid in the feature modeling process, the better
portion of them appears to be experimental or incomplete. Prior to our decision to develop
a tool of our own, as well as to guide us in its design, we have identified three major
tools that stand out as being in a more mature stage. We have also used a tool previously

95

[l Latin American School on Software Engineering (ELA-ES 2015)

designed by our own research group during previous projects as a basis for the conception
of our work.

FeaturelDE is a framework based on Eclipse and developed to support Feature-
Oriented Software Development (FOSD) [Thiim et al. 2014]. Although FeatureIDE is
undeniably a powerful tool, used primarily for the purposes of teaching and research, its
target user is a professional who already has a certain knowledge of feature modeling
and SPL concepts. Conversely, our target users are students and professionals who are
entirely unacquainted with these concepts, and our target activities include the design and
visualization of SPL features.

FeaturePlugin is a feature modeling plug-in for the Eclipse IDE, and proposes
to integrate feature modeling with a complete and established development environment
[Antkiewicz and Czarnecki 2004]. It provides support to feature modeling through the
use of tree structures and logical statements, and integrates feature modeling and feature-
based configuration. Though it is a complete solution to feature modeling, it is restricted
to a single environment (Eclipse) and does not provide a graphical editor, while we seek
greater intuitiveness and compatibility.

The Software Product Line Online Tools (S.P.L.O.T.) are a collection of web-
based tools that include a feature model editor with advanced constraint definition and
validation techniques [Mendonga et al. 2009]. S.P.L.O.T. contains a vast repository of
models which are available to the public, making it a substantial information base for
feature modeling practices. The tool does not, however, offer any means of graphical
construction of feature models, being based instead on a tree structure. The use of this
kind of structure could be inadequate for presentation purposes where the audience is
unacquainted with certain basics of Computer Theory, such as tree structures.

PlugSPL, the in-house tool on which AtlasSPL is largely based has been described
extensively elsewhere [de M. Rodrigues et al. 2014]. Regardless, it is important to assert
those characteristics of it that are specific to the SPL Design activity, both in regards to
what is being adopted from it as to what components had to be developed or adapted
for reuse. It is also important to highlight that PlugSPL is a stand-alone tool that supports
several phases of the SPL development cycle, and was therefore built around very different
requirements from AtlasSPL.

Our previous approach to the development of the SPL Design module, and indeed
for the entire tool, had been to develop an extensible plugin-based tool written in C#
and run directly from the user’s machine. Our experience with this previous project has
shown us that for the purposes of accessibility and ease of collaboration, it would be
advantageous to turn instead to a web-based User Interface (UI). Though the original
architecture had been made in a modular manner, such a drastic change to the mode of
input/output creates certain issues that have to be addressed.

Another important difference between PlugSPL and AtlasSPL is the decision to
have native support of a number of feature model notations, allowing each user to decide
at the time of a model’s creation which one to base it on. We believe that this allows
for greater accessibility, as well as enabling the user to learn about the more common
notations found in the literature.

Finally, we have chosen to reuse some of the assets created for PlugSPL, viz. the

56

[l Latin American School on Software Engineering (ELA-ES 2015)

persistence structures and the validation code executed in their construction. Adapting
these structures for use in a broader scope (more than one notation) and to operate with
web-based technologies was yet another challenge in the design and development of our
new tool.

2.2. Context

Over the course of our group’s research into Software Testing!, we have developed a
family of Software Testing Tools by use of SPL practices [de M. Rodrigues et al. 2010]
[Silveira et al. 2011] [Costa et al. 2012]. Given the volatile nature of our research envi-
ronment, we have had to repeat certain processes several times, particularly in what relates
to product configuration, product generation [de M. Rodrigues et al. 2014].

In order to eliminate these repeated efforts, we have proposed and developed
an in-house tool (PlugSPL) that supports several phases of the SPL development cycle
[de M. Rodrigues et al. 2014]. Among the requirements of that tool we identified the sup-
port for graphical-based notation for designing feature models. Though the resulting tool
was satisfactory in resolving the requirements we had at the time, it was made primarily
for use by a core group of the research team that already had experience with feature
modeling. Over the course of the following years, we have found that PlugSPL could be
difficult to use by new collaborators, particularly in what refers to the SPL Design activity.

Given that feature modeling is a crucial activity during SPL design, we sought
out means by which to train our collaborators in their use. Furthermore, it is widely
accepted that feature models are of easier presentation to stakeholders who are not versed
in variability analysis than other similar representations [de M. Rodrigues et al. 2014].
For this reason, we also sought tools that would allow collaboration during the design of
feature models.

Despite their merits, the results that we turned up in regards to actual tools were
scarce. Some major qualities that were lacking in these tools were simplicity, ease of
use and accessibility, which rendered them inadequate to our needs in feature modeling
practices. We also found the existing tools lacking in terms of presentation due to their
complexity. In order to facilitate the understanding of variability management, as well as
to provide a shared and collaborative environment for feature modeling, we decided to
create an in-house web-based tool for graphical feature modeling.

3. AtlasSPL - Feature Model Editor Web-Tool

AtlasSPL is a web-based feature modeling tool that was designed and developed with
the qualities of ease-of-use and versatility at the forefront of our team’s goals. It is the
culmination of six years of study and experience with SPL design, working with a volatile
team whose members were constantly being shifted in and out of projects, with new
members coming into the team often without any knowledge of SPL or feature modeling
concepts. With AtlasSPL, we hope to greatly facilitate the training of new professionals
in feature modeling and design, as well as basic notions of Software Product Lines.

This section presents: the design decisions taken for the development of AtlasSPL,
as well as the requirements that drove them; a complete description of the functionalities

"www.cepes.pucrs.br

57

[l Latin American School on Software Engineering (ELA-ES 2015)

of the tool as well as the ways to access it; a brief description of the feature model no-
tations supported by the tool, and; an explanation of the validation process applied by
AtlasSPLL.

3.1. Requirements and Design Decisions

In order to present the current state of our studies in feature modeling practices, as well
as the needs we perceived for the training of our collaborators, we have defined some
requirements that must be addressed by a feature modeling tool. These requirements
refer primarily to the usability and functionality of the tool, and do not largely concern
themselves with architectural or performance constraints.

In our context, the first and most important requirement is ease of access and porta-
bility. If the tool is dependent on a particular machine configuration, operating system,
language, development environment or framework, or if it requires prior installation and
preparation, it could be limited in its applicability. This requirement has been the driving
reason to our decision of making a web-based tool, resolving all of these dependencies so
long as the client machine has a connection to the Internet.

Another requirement is the availability of multiple feature modeling notations,
which is particularly important for processes of training and collaborative work. We judge
that training in more than one feature model notation is essential to the comprehension
of the basic feature model semantics, enabling the trained professional to design more
complete and expressive models. Furthermore, the collaborative nature of SPLs demands
that professionals be able to apply different views of the same concept in order for a better
exchange of ideas to be reached.

The tool must also possess an intuitive user interface based on the graphical repre-
sentation of feature modeling objects. Given that feature models are ultimately a graphical
artifact, we find it important for the user to be given a “canvas” with which to represent
them, rather than depending on textual input and tree structures for their design.

It is valuable, particularly in a tool directed at training and education, that there
be feature model validation functionalities. Given that our aim is to provide the very
first steps of training in feature modeling practices, we have opted to provide support to
structural validation. To achieve this we have largely reused one of our research team’s
previous assets.

Finally, we believe it advantageous to have an easily accessible repository of ref-
erence models. We have opted to give the user access to previously-validated models, as
well as the option to add new models to the public repository. The repository also has
the option of allowing users to create private access groups, permitting the collaboration
between closed teams without the support of file-sharing solutions.

3.2. Tool Functionalities

AtlasSPL provides the user with the most basic operations required for feature model-
ing, these being: adding, moving and removing features and relationships; setting feature
properties; renaming features; creating, saving and loading feature models, and; validat-
ing feature models. These functions were built into the tool in the way the authors judged
to be the most intuitive for the user. Figure 1 shows the user interface for AtlasSPL and

58

[l Latin American School on Software Engineering (ELA-ES 2015)

presents an example feature model in construction, drawn from the Arcade Game Maker
Pedagogical Product Line (AGM) and using the FODA notation.

O New | B Save | @ Open @ validate | : | @ | @ | : AGM-FEATURE : | FODA * | & username
Arcade Game Maker (AGM)
e
]
services rules configuration action

A

| / N

l A hY

L d o o

play pause save brickles pong bowling movement collision

CePES - 2015

Figure 1. AtlasSPL Webtool - AGM Feature Model using FODA

Upon clicking the “New” button, a dialogue menu is opened (see Figure 2) where
the user may name the new feature model and select the feature model notation to be used
(refer to Subsection 3.3 for the available notations).

[[O New H B Save H @ Open ” & validate l @ # -UNDEFINED : [FODA | vl i username l
Create new Project ®
Froject name:
Model lFODA | - ‘

notation:

% Cancel Select Notation
FeatuRSEB
GP
CB
GBS

Figure 2. New feature model dialogue menu

There are three ways for the user to add a new feature to the model, allowing
for greater efficiency. The user may click the “+” button and then click anywhere inside
the canvas. The user may also right-click anywhere inside the canvas and select “New
Feature” from the context menu. Finally, the user may double-click anywhere inside the

99

[l Latin American School on Software Engineering (ELA-ES 2015)

canvas. Any of these actions will result in a feature object being created at the current
cursor position and a dialogue menu being opened to name it.

To remove a feature, the user must right-click on that feature and select “Remove
Feature” from the context menu. In future versions of AtlasSPL, it will also be possible
to select a feature by clicking it and then deleting the selected feature. To move a feature,
the user may click it and drag it over the canvas. To rename it, the user must right-click
the feature and select “Feature Name” from the context menu.

O New B Save | @ Open & validate | : | @ | @ | : AGM-FEATURE : FeatuRSEB * | & username

Arcade Game Maker (AGM)

services rules configuration action

play pause save brickles pong bowling movement collision

CePES - 2015

Figure 3. AtlasSPL Webtool - AGM Feature Model using FeatuRSEB

To add a relationship, the user must click anywhere upon the lower edge of the
desired parent feature (the area will be highlighted when moused over) and drag the cursor
towards the child feature. By clicking on an existing relationship and dragging the cursor
over to another feature, the relationship’s child feature may be changed. By clicking
on an existing relationship and dragging the cursor to an empty area of the canvas, the
relationship is removed.

The appearance of a relationship is dependent on the properties of its child feature
and the selected feature model notation. For example, Figure 1 shows the alternative
relationship between the subfeature rules and its variants brickles, pong and bowling as a
semi-circle, in accordance to the FODA notation. Meanwhile, Figure 3 represents this as
an XOR relationship by using the unfilled diamond shape and straight lines, in accordance
with FeatuRSEB.

To set a feature’s properties one must right-click it and select the desired relation-
ship type from the context menu. The available relationship types vary according to the
feature model notation in use.

Finally, to conduct the structural validation of a feature model, the user must click
the “Validate” button, which will attempt to reconstruct the diagram currently on the
canvas. After the validation process is completed, a dialogue box will open to present the
results, either stating “Valid Diagram” or “Invalid Diagram”. Figure 4 shows an example

60

[l Latin American School on Software Engineering (ELA-ES 2015)

of the tool declaring a feature model as invalid.

0 MNew | B Save | @ Open | @ Validate | i @ | @ | : AGM-FE FODA o Tl
— _ Diagram validation
I

valid Diagram

Arcade Game Maker (AGM)

services rules configuration action

-,
™ U PN
| AN ., A ",
| ™, ™, / .
|) Is) ™ o) A S

play pause save brickles pong bowling movement collision

CePES - 2015

Figure 4. Validation dialogue box

For a more thorough validation, presenting data such as the number of valid con-
figurations that may be derived from the feature model and the number of dead features
within that model, AtlasSPL allows the user to export a feature model in the S.P.L.O.T.
native XML format.

3.3. Adopted Feature Model Notations

We have selected five feature model notations for which to provide native support. This
selection was based on our own experience, as well as brief literature searches by the
authors into surveys of and comparisons between feature model notations. The selected
notations are:

e FODA [Kang et al. 1990];

Czarnecki-Eisenecker Base Notation [Czarnecki and Eisenecker 2000];
Czarnecki-Eisenecker Extended Notation [Czarnecki et al. 2005];
FeatuRSEB [Griss et al. 1998];

Gurp-Bosch-Svahnberg Notation [van Gurp et al. 2001].

The Feature-Oriented Domain Analysis notation (FODA), which is the original
feature modeling notation, can be used as a basis for the study of feature model semantics.
It presents all of the main components of a feature model, these being features themselves,
relationships, the notions of mandatory (must be present in all product configurations) and
optional (may or may not be present in a product configuration) features, and the notion
of alternative (mutually exclusive) features.

The Czarnecki-Eisenecker Base notation (also known as the Generative Program-
ming notation, hereby referred to as GP) has been broadly used as the primary reference
notation for feature models. Building on FODA, GP permits all of the original com-
ponents of its predecessor using different graphical representations, and proposes new

61

[l Latin American School on Software Engineering (ELA-ES 2015)

components to allow for greater expressiveness. The alternative features are now called
an XOR feature group, to differentiate them from the new OR feature group (one or more
may be present in a product configuration).

The Czarnecki-Eisenecker Extended notation (also known as the Cardinality-
based notation, hereby referred to as CB) is an extension of the GP notation, presenting
a new and more precise form by which to graphically represent relationships between
features. By allowing the user to define a specific cardinality for each relationship, it is
possible to precisely determine the occurrence of features in product configurations.

FeatuRSEB proposes to integrate FODA with Reuse-Driven Software Engineering
Business (RSEB), an UML-based process, and presents feature models primarily from
the point of view of the developer, or “reuser”. FeatuRSEB deals with binding time
directly by specifying whether an alternative relationship is resolved statically (XOR) or
dynamically (OR).

The Gurp-Bosch-Svahnberg notation (GBS) proposes a framework to organize
the approaches that existed at the time into. This notation is also primarily characterized
by the definition of binding time within relationships, as well as presenting the idea of
external features, features that are provided by a certain configuration’s target platform
and are therefore important to that configuration, but which are not part of the system
itself.

3.4. Feature Model Validation

AtlasSPL provides structural validation of feature models by use of a number of proce-
dures that check the consistency of a model by reconstructing it in the form of a restrictive
data structure. This data structure was designed to only allow the instantiation of feature
models if they are built in accordance to the guidelines of a given notation. Any structural
inconsistencies in a feature model will result in a failure to instantiate this data structure,
which AtlasSPL responds to by declaring the feature model as invalid.

While the algorithms by which this structural validation is executed are beyond
the scope of this work, we present now the particular inconsistencies that are validated by
AtlasSPL.

e There must be only one root feature within a feature diagram. Should there be
more than one root feature in a single diagram, the feature model is declared in-
valid.

e All features must be connected by relationships. Should there be any features that
have not been connected to the rest of the diagram, the feature model is declared
invalid.

e All features must be reachable from the root feature through a single set of rela-
tionships. If AtlasSPL identifies more than one path from the root feature to any
other given feature, the feature model is declared invalid.

e All features must be given a name (label) and all names must be different from one
another. Should any two features share the same name, or should any one feature
have the empty string for a name, the feature model is declared invalid.

62

[l Latin American School on Software Engineering (ELA-ES 2015)

4. Future Work

This section presents the lessons learned during the development of this research, as well
as prospects for future research based on them.

e Given the successful application of feature modeling concepts within a web envi-
ronment that was achieved by this project, the authors believe it would be advan-
tageous to expand upon this initiative and build modules to support other parts of
the SPL development cycle. While feature modeling has proven to be one of the
most difficult topics in training new collaborators, it is also important to acquaint
them with other SPL concepts.

e The extension of AtlasSPL to deal with the design and validation of logical con-
straints may prove useful for more advanced training. Furthermore, it would en-
able the tool to fully support the SPL Design activity within a production setting.

e The creation of a common data structure for multiple feature model notations may
enable AtlasSPL to serve as a centralizing tool for feature modeling. It is likely
that we may approach this matter through the analysis of semantic commonalities
between notations, as well as the creation of parsers for existing feature modeling
tools.

e We are aware that the tool must be improved to meet the requirements of different
environments, especially in regards to providing better support for Feature Model
analysis and validation. Moreover, the tool must provide detailed feedback to the
user regarding any modeling mistakes so as to be usable by inexperienced users
without the presence of an experienced tutor.

e Studies to empirically evaluate the success of AtlasSPL in achieving its proposed
goals would solidify it as an educational tool. The authors are particularly inter-
ested in studying the intuitiveness of its UI, as well as the degree by which it aids
in the teaching of basic feature modeling concepts.

5. Conclusion

AtlasSPL is a feature modeling web-tool proposed for the purpose of easing the training
of professionals entirely unacquainted with feature model and SPL concepts. It aims
to achieve this goal by providing a simple and accessible interface, based on graphical
components to aid in the construction of feature models as well as their visualization.
Furthermore, AtlasSPL was designed to be sufficiently complete so as to serve as an
initial tool for the inception and presentation of new SPLs.

The tool offers native support to five different feature modeling notations, these
being the Feature-Oriented Domain Analysis notation, the Czarnecki-Eisenecker base and
extended notations, the FeatuRSEB notation and the Gurp-Bosch-Svahnberg notation. By
allowing the user to choose between these notations, AtlasSPL enables different degrees
of precision and simplicity, as well as different semantics to facilitate collaboration be-
tween users familiar with different notations.

Acknowledgements

Study partially developed by the Research Group of the PDTI 001/2012, financed by Dell
Computers of Brazil Ltd. with resources from Law 8.248/91. We thank Dell for the
support in the development of this work.

63

[l Latin American School on Software Engineering (ELA-ES 2015)

References

Antkiewicz, M. and Czarnecki, K. (2004). FeaturePlugin: Feature Modeling Plug-in
for Eclipse. In Proceedings of the 2004 OOPSLA Workshop on Eclipse Technology
eXchange, pages 67-72, New York, NY, USA. ACM.

Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czarnecki, K., and Wasowski,
A. (2013). A survey of variability modeling in industrial practice. In Proceedings
of the Seventh International Workshop on Variability Modelling of Software-intensive
Systems, New York, NY, USA. ACM.

Clements, P. C. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
SEI Series in Software Engineering. Addison-Wesley.

Costa, L. T., Czekster, R., Oliveira, F. M., Rodrigues, E. M., Silveira, M. B., and Zorzo,
A. F. (2012). Generating Performance Test Scripts and Scenarios Based on Abstract
Intermediate Models. In 24th International Conference on Software Engineering and
Knowledge Engineering, pages 112—117.

Czarnecki, K. and Eisenecker, U. (2000). Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Boston, MA.

Czarnecki, K., Helsen, S., and Eisenecker, U. (2005). Staged configuration through spe-
cialization and multi-level configuration of feature models. In Software Process Im-
provement and Practice.

de M. Rodrigues, E., Passos, L., Teixeira, F., Zorzo, A. F., and Saad, R. (2014). On
the Requirements and Design Decisions of an In-House Component-based SPL Auto-
mated Environment. In 26th International Conference on Software Engineering and
Knowledge Engineering, pages 483—488.

de M. Rodrigues, E., Viccari, L. D., Zorzo, A. F., and Gimenes, I. M. (2010). PLeTs-
Test Automation using Software Product Lines and Model Based Testing. In 22nd
International Conference on Software Engineering and Knowledge Engineering, pages
483-488.

Griss, M., Favaro, J., and d’Alessandro, M. (1998). Integrating feature modeling with
the RSEB. In Proceedings. Fifth International Conference on Software Reuse, pages
76-85.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (1990). Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

Mendonga, M., Branco, M., and Cowan, D. D. (2009). S.P.L.O.T.: software product lines
online tools. In Arora, S. and Leavens, G. T., editors, OOPSLA Companion, pages
761-762. ACM.

Pohl, K., Bockle, G., and van der Linden, F. J. (2005). Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer, 1 edition.

Silveira, M. B., Rodrigues, E. M., Zorzo, A. F., Vieira, H., and Oliveira, F. (2011). Model-
Based Automatic Generation of Performance Test Scripts. In 23rd International Con-
ference on Software Engineering and Knowledge Engineering, pages 1-6, Miami, FL,
USA. Knowledge Systems Institute Graduate School.

64

[l Latin American School on Software Engineering (ELA-ES 2015)

Thiim, T., Kistner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014). Fea-
tureIDE: An Extensible Framework for Feature-oriented Software Development. Sci-
ence of Computer Programming, 79:70-85.

van Gurp, J., Bosch, J., and Svahnberg, M. (2001). On the notion of variability in software
product lines. In Proceedings Working IEEE/IFIP Conference on Software Architec-
ture, pages 45-54.

65

[l Latin American School on Software Engineering (ELA-ES 2015)

Engenharia de Software Orientada a Agentes: Um Estudo
Comparativo entre Metodologias que Suportam o Processo de
Desenvolvimento de Sistemas Multiagente

Rafhael R. Cunha !, Diana F. Adamatti', Cléo Z. Billa'

!Centro de Ciéncias Computacionais — Universidade Federal do Rio Grande (FURG)
Av. Italia km 8 — Bairro Carreiros — Rio Grande - RS - Brasil

{rcrafhaelrc, dianaada, cleo. billa}@gmail .com

Resumo. Este artigo pertence ao dominio da Agent Oriented Software Engine-
ering (AOSE) e Sistemas MultiAgente (SMA). O trabalho apresenta brevemente
as metodologias Prometheus, Tropos e MaSE, elencando suas etapas e carac-
teristicas de desenvolvimento. O objetivo deste trabalho é analisar as meto-
dologias exploradas, através da comparagdo dos artefatos que delas resultam.
Ao final deste trabalho, conclui-se que cada uma das metodologias analisadas
possui enfoques distintos, atribuindo ao projetista a tarefa de escolher a que
melhor se adeque as suas necessidades.

1. Introducao

No decorrer dos anos, a drea de engenharia de software (ES) tem procurado definir proces-
sos de desenvolvimento de software e linguagens de modelagem que visem estabelecer
etapas bem definidas para a construcdao de um software. Este fato tem como propdsito
tornar a producdo de um software mais robusta, rapida, organizada, confidvel e de facil
manutencdo e reutilizacdo [Guedes 2012].

Na area de inteligéncia artificial, o paradigma orientado a agentes tem sido pes-
quisado e utilizado para minimizar a complexidade e aumentar a eficiéncia de softwares
distribuidos [Jayatilleke et al. 2007] [Rodriguez et al. 2011]. Esta pratica tem se mos-
trado eficiente para a constru¢cdo de softwares com essas caracteristicas, viabilizando um
aumento no desenvolvimento de sistemas multiagente (SMA) [Guedes 2012].

Entretanto, devido a complexidade e distribui¢ao desse tipo de sistema, novos de-
safios para a area de ES tradicional foram encontrados. Esses desafios ocorreram em
virtude de linguagens conceituadas para se fazer modelagem na drea, como Unified Mo-
delling Language (UML), ndo suprirem as caracteristicas presentes neste grupo de siste-
mas conforme [Cunha et al. 2015]. Essa auséncia levou ao surgimento de uma subdivisao
da 4rea que mescla conceitos de engenharia de software e inteligéncia artificial, chamada
de Agent Oriented Software Engineering (AOSE) ou Engenharia de Software Orientada a
Agentes. Seus objetivos principais sao propor métodos e linguagens/notagdes para proje-
tar e modelar softwares orientados a agentes [Guedes 2012].

Dentro desse contexto, diversas metodologias foram propostas buscando suprir a
demanda de softwares orientados a agentes [Bergenti et al. 2004]. Essas metodologias
foram criadas pelos mais variados motivos. Algumas, basearam-se em melhorias nos
diagramas presentes na UML, outras, criaram seus proprios meta-modelos e notacdes
para seu uso.

66

[l Latin American School on Software Engineering (ELA-ES 2015)

Este trabalho tem como motivacdo apresentar uma revisao de algumas metodo-
logias para construcdo de sistemas multiagente, mostrando as etapas presentes nessas
metodologias e os artefatos utilizados para apoiar essas etapas. Por fim, como objetivo
principal na realizacao deste trabalho, pretende-se fazer uma anélise comparativa, especi-
ficando a similaridade/disparidade dos artefatos gerados pelas metodologias estudadas.

2. Metodologias AOSE

Segundo [Brandao 2014], as metodologias existentes até o presente momento para mo-
delar SMA sobre a perspectiva da engenharia de software sdo as apresentadas na Figura
1. Nesta figura, os retingulos azuis indicam metodologias e processos OO; magentos
com tragos cheios indicam metodologias AO que estendem OO; magentas pontilhadas
indicam metodologias AO que estendem outras AO; magentas tracejadas usam principios
00, mas ndo estendem metodologias existente; violetas indicam que estende OO mas
usam também técnicas de IA/ eng. de conhecimento; e Tropos que tem como base a
analise de requisitos usando a*.

MAS-CommomKADS | OMasE

(+AI/KE) o
e
| INeEs |
| Message | | Adelfe | [Gaia | |Agentoren |
- AAI

rup | [omT | Fusion | [open |
AOR \ 7 /
00 Legenda:

R — .:,/\,l ——————— 1 Metodologias estudadas:
1 PASSI Prometheusfy Funco [

Figura 1. Metodologias AOSE [Brandao 2014]

A escolha das metodologias a serem estudadas neste trabalho, baseou-se na ten-
tativa de explorar ao menos uma metodologia derivada de cada uma das metodologias
classicas, como RUP, OMT, Fusion e Open. Entretanto, Open foi excluida devido a
inexisténcia de documentacdes que pudessem levar ao seu entendimento. Além disso,
procurou-se selecionar uma metodologia que nao apresentava nenhuma derivagao, foi o
caso de Prometheus; também buscou-se uma metodologia que ndo herdasse caracteristicas
do paradigma OO, como Tropos. Ingenias foi excluida deste trabalho em razdo de sua ex-
tensividade, porém, uma extensao deste trabalho é encontrado em [Cunha et al. 2014].

2.1. Prometheus

Segundo [Padgham and Winikoff 2005] e [Khallouf and Winikoff 2009] Prometheus ¢é
uma metodologia que consiste em trés fases: a fase de especificacdo do sistema; a fase
de projeto arquitetural; e a fase de projeto detalhado. A primeira fase € composta por
duas etapas: Determinar o ambiente do sistema (percepgdes e acdes) e determinar os ob-
jetivos e funcionalidades do sistema (objetivos e cendrios de casos de uso). Na fase de

67

[l Latin American School on Software Engineering (ELA-ES 2015)

projeto arquitetural sdo definidos quais agentes devem existir no sistema a ser modelado
[Padgham and Winikoff 2002]. O objetivo final dessa etapa da metodologia é especificar
completamente a interagdo entre os agentes. A ultima fase, projeto detalhado, foca no
desenvolvimento da estrutura interna de cada um dos agentes e como 0s mesmos irdo
realizar suas tarefas dentro do sistema modelado.

2.2. Tropos

Segundo [Bresciani et al. 2004], a metodologia Tropos tem como propdsito apoiar to-
das as atividades de anélise e projeto do desenvolvimento de software orientado a agen-
tes. Tropos € composto por cinco fases distintas no seu processo de desenvolvimento,
sendo: Requisitos Iniciais; Requisitos Finais; Projeto Arquitetural; Projeto Detalhado e
Implementacdo. Na primeira fase de andlise dos requisitos, o usudrio da metodologia
identifica os agentes de dominio e modela-os como atores sociais, que dependem uns dos
outros para atingirem os objetivos, planos e compartilharem dos mesmos recursos. Na
segunda fase, o modelo conceitual é estendido de modo a incluir um novo ator, o qual
representa o sistema, além de uma série de dependéncias com outros atores do ambiente.
Nas proximas fases, projeto arquitetural e as fases de projeto detalhado, se concentram
na especificacdo do sistema, em maneiras de garantir as exigéncias resultantes das fases
anteriores. A etapa de implementacao segue em passos, baseando-se na especificacdao do
projeto detalhado com base no mapeamento estabelecido entre as construcdes da plata-
forma de execugdo e as nogdes do projeto detalhado [Bresciani et al. 2004].

2.3. MaSE

A metodologia Multiagent Systems Engineering (MaSE) € composta de duas fases prin-
cipais. A primeira fase inclui trés etapas: captura de objetivos, aplicagao de casos de uso
e refinamento de papéis. A segunda fase é composta por quatro etapas: criacdo de classes
de agentes, constru¢do das conversagdes, montagem das classes dos agentes e o projeto
do sistema. A finalidade da primeira etapa da fase de andlise é capturar os objetivos do
sistema, extraindo-os da especificacdo inicial do sistema. Na etapa de aplicagao de casos
de uso, o analista transforma os objetivos e sub-objetivos em casos de uso. A terceira
etapa tem como propdsito garantir que foram identificados todos os papéis necessarios no
sistema e desenvolver as tarefas que definem o comportamento dos papéis e os padroes
de comunicacdo. Na segunda fase, a primeira etapa identifica as classes de agentes a
partir dos papéis refinados. A préxima fase € a construcdo de conversagdes. O objetivo
desta etapa € definir os detalhes dessas conversas, baseados nos detalhes internos de ta-
refas simultaneas. Os elementos internos dos agentes sdo projetados durante a etapa de
montagem das classes dos agentes, que inclui duas sub-etapas: a defini¢do da arquitetura
de agentes e a definicdo dos componentes da arquitetura. Projeto do sistema € o dltimo
passo da metodologia MaSE. Nessa etapa € utilizado o diagrama de implantacdo para
demonstrar os nlimeros, tipos e locais das instancias dos agentes no sistema.

3. Similaridades encontradas nos artefatos das metodologias exploradas

A comparacao proposta neste trabalho consiste na verificagao dos artefatos similares pre-
sentes nas metodologias exploradas. Para isso, nas subsecoes seguintes, foram explanados
os detalhes que explicam essas similaridades. Nas tabelas ilustradas nessas subse¢des, o
simbolo -, significa a ndo existéncia de artefatos que sejam semelhantes. O simbolo *,
corresponde ao encontro de artefato semelhante, porém com restri¢des.

68

[l Latin American School on Software Engineering (ELA-ES 2015)

3.1. Similaridades dos artefatos da metodologia Prometheus

Tabela 1. Similaridade dos artefatos da metodologia Prometheus com as demais

metodologias

Prometheus Tropos MaSE
Diag. de Cenérios - -
Diag. Visao Geral Objetivos Diag. de Objetivos D1a.g.‘ de Hierarquia de
Objetivos
Diag. Papéis do Sistema - D1a% de Modelo de
Papéis
Diag. Familiaridade de Agentes | Diag. de Ator Diag. de Classe de
Agentes
Formulério Descritor de Agentes | - -
Diag. de Acoplamento de Dados | - -
Diag. de Ligacdo de Papel com | Diag. de Modelo de
Agente Papéis
Diag. de Visdo geral do Sistema | - -
Diag. de Interagcao Diag. de Interagcao Diag. . de~ Classe de
Comunicagdo
. - | Diag. de Interacdo | Diag. de Classe de
Diag. de Protocolos de Interacdo (AUML) Comunicaciio
Diag. de Visao Geral de Agentes | - -
Diag. Capacidades contendo |)
Planos
Formuléario Descritor de Planos | - -

A visualiza¢do das similaridades presentes na metodologia Prometheus com as
demais, é apresentada na tabela 1. Abaixo sdo listados os principais artefatos da meto-
dologia Prometheus, explicando suas fun¢des e comparando com os artefatos de outras
metodologias.

e Diagrama de Cendrios: Este diagrama tem a fun¢do de disponibilizar uma visao
generalizada acerca do sistema [Padgham and Winikoff 2002]. Contudo, as de-
mais metodologias ndo pensaram em um diagrama para demonstrar a seu usuario
esse tipo de visdo. Todas propdem diagramas que entram em detalhes mais es-
pecificos do SMA. Por esse motivo, ndo existe nenhum outro diagrama das meto-
dologias estudadas que poderia se equiparar a esse.

e Digrama de Visdo Geral de Objetivos: Segundo [Padgham and Winikoff 2002],
os objetivos de um sistema sdo representados por meio de um diagrama de visao
geral de objetivos.

— Diagrama de Objetivos
[Padgham and Thangarajah 2004], os objetivos representam os in-
teresses estratégicos dos autores. Para modelar esses objetivos, na
metodologia Tropos usa-se o diagrama de objetivos. Embora os conceitos
possam parecer semelhantes, ocorre uma diferenciacdo entre a semantica
da palavra objetivo nas duas metodologias. Para Prometheus, objetivos do
sistema vao além dos interesses dos agentes, 0 que ndo ocorre em Tropos.

(Tropos): Conforme

69

[l Latin American School on Software Engineering (ELA-ES 2015)

— Diagrama de Hierarquia de Objetivos (MaSE): Em MaSE, existe uma fase
especifica na sua metodologia para a captura de objetivos. O conceito
de objetivos dessa metodologia € idéntico ao apresentado na metodologia
Prometheus, por esse motivo os dois diagramas apresentam similaridade
em sua notacao grafica.

e Diagrama de Papéis do Sistema: Este diagrama serve para ligar as percepgoes,
objetivos e acdes aos papéis identificados.

— Tropos: A metodologia Tropos ndo possui nenhum diagrama que ex-
presse os conceitos envolvidos no diagrama de papéis da metodologia Pro-
metheus, pois trabalha com alguns conceitos diferentes. Por exemplo, em
Tropos os papéis do sistema estdo implicitos na modelagem de atores, o
mesmo ndo ocorre em Prometheus. Por esse razdo, ndo existe um diagrama
para expressar fielmente tal representagao.

— Diagrama de Modelo de Papéis (MaSE): Na metodologia MaSE, o dia-
grama de modelo de papéis, tem finalidade semelhante, com exce¢do da
falta de expressividade em relagdo as percepgdes. Entretanto, MaSE acres-
centa em seu diagrama os protocolos de interagdo entre os papéis, o que
ndo € visto no diagrama de papéis da metodologia Prometheus. Para este
fim, Prometheus possui o diagrama de protocolos de interacao.

e Diagrama de Familiaridade de Agentes: O objetivo do diagrama de familiaridade
de agentes presente na metodologia Prometheus € ligar um agente com os agentes
que ele possui algum tipo de interagdao [Padgham and Winikoff 2002].

— Diagrama de Ator (Tropos): Na metodologia Tropos, o diagrama de atores
faz esse papel com exceléncia, e ainda acrescenta outros conceitos como:
objetivos, subobjetivos, entre outros.

— Diagrama de Classes de Agentes (MaSE): A metodologia MaSE dispde do
diagrama de classes de agentes para representar essa interacao entre dife-
rentes tipos de agentes no sistema. Ela modela as interacdes em um nivel
hierarquico mais alto, ou seja, entre os papéis. A metodologia Prometheus
modela sobre os agentes, ndo importando-se com os papéis. Na verdade
a metodologia Prometheus utiliza desse diagrama justamente para identi-
ficar quais agentes do sistema podem ser agrupados e assim identificar os
papéis.

e Formulario Descritor de Agentes: Nenhuma outra metodologia propde algum
método para descrever informagdes de alto nivel acerca dos agentes utilizando
linguagem natural.

e Diagrama de Acoplamento de Dados: Nenhuma outra metodologia propde algum
método para representar a necessidade de dados que devem ser guardados no sis-
tema.

e Diagrama de Ligacdo de Papel com Agente: Este diagrama tem a finali-
dade de fazer a ligacdo dos agentes com os papéis que eles desempenhardo
[Padgham and Winikoff 2002].

— Tropos: Esta metodologia ndo lida com o conceito de papéis, pois os
papéis estdo implicitos na modelagem dos atores.

— Diagrama de Modelo de Papéis (MaSE): MaSE possui um diagrama cha-
mado de modelo de papéis que tem como propdsito garantir que foram

70

[l Latin American School on Software Engineering (ELA-ES 2015)

identificados todos os papéis necessdrios no sistema e desenvolver as tare-
fas que definem o comportamento dos papéis e os padrdes de comunicacao
[Henderson-Sellers and Giorgini 2005]. Observa-se que esse diagrama
além de suprir a informagao presente no diagrama de ligacdo de papel
com agente da metodologia Prometheus, acrescenta também informagdes
dos protocolos de comunicagdo desses papéis e as funcionalidades que de-
vem ser executadas por esses papéis.

e Diagrama de Visdo Geral do Sistema: Conforme [Padgham and Winikoff 2002],
o diagrama de visdo geral do sistema € o artefato crucial na fase de processo
arquitetural do Prometheus. Este diagrama enlaca agentes, percepgdes, dados,
acoes, mensagens. Pode-se dizer que ele ¢ uma mesclagem de todos os diagramas
desenvolvidos anteriormente. Em virtude disso, nenhuma outra metodologia €
capaz de agrupar essa quantidade de informagdes em um unico artefato. Contudo,
nao significa que as metodologias nao tem esse poder de expressividade, e sim que
elas necessitam de mais diagramas para pode chegar a esse nivel de detalhamento.

e Diagrama de Interacdo: Conforme [Padgham and Winikoff 2002], o diagrama de
interacao serve para especificar completamente a interagdo com os agentes.

— Diagrama de Interacdo (Tropos): Esta metodologia dispde um diagrama
de interacdo semelhante ao encontrado na metodologia Prometheus. Am-
bos tem o mesmo propdsito. Portanto, é possivel utilizar o presente na
metodologia Tropos sem perda de sentido.

— Diagrama de Classe de Comunicacdao (MaSE): A metodologia MaSE
contém um diagrama chamado de diagrama de classes de comunicagao
que também especifica as interacdes entre os agentes. Entretanto, esse dia-
grama € um pouco mais refinado, pois nele € possivel definir um protocolo
de coordenacdo entre dois agentes [Henderson-Sellers and Giorgini 2005].

e Diagrama de Protocolo de Interacdo: Segundo [Padgham and Winikoff 2002],
o objetivo do diagrama de protocolo de interacdo € definir precisamente quais
sequéncias de interacdes sao validas dentro do sistema.

— Diagrama de Interacdo (Tropos): A metodologia Tropos utiliza do di-
agrama de interagio da Agent Unified Modeling Language (AUML) '.
Através desse diagrama € possivel satisfazer essas condicdes e expressar
de forma exata as mesmas informagdes presentes no diagrama de proto-
colo de interagdo da metodologia Prometheus.

— Diagrama de Classe de Comunicac¢ao (MaSE): MaSE possui um diagrama
chamado de diagrama de classe de comunica¢do que tem como finali-
dade definir os detalhes internos das conversas entre os agentes. Portanto,
através desse diagrama, € possivel transcrever o diagrama de Protocolo de
Interacdo, sem perda de informacdes.

e Diagrama de Visdo Geral de Agente: O diagrama de Visdao Geral de Agente pre-
sente na metodologia Prometheus, demonstra capacidades, acdes, mensagens, da-
dos e percepg¢des acerca dos agentes. Por ser um diagrama que contém um nimero
considerdvel de informagdes, ndo existe nenhum outro artefato dnico nas demais
metodologias que consigam expressar tantas informacgdes juntas. Por esse razo,

'AUML ¢é uma adaptagiio da UML que buscou suprir as caracteristicas do ambito de agentes .

71

[l Latin American School on Software Engineering (ELA-ES 2015)

esse diagrama sé € possivel ser transpassado através da juncdo de dois ou trés
diagramas das outras metodologias.
e Diagrama de Capacidade contendo Planos: Este diagrama tem o poder de expres-
sar as percepgoes, dados, acdes, mensagens e planos que compdem os agentes. As
outras metodologias ndo tem o poder de representar em um unico diagrama todas
as informacodes que o diagrama de capacidade contendo planos possui.
e Formulario Descritor de Planos: Conforme acontece com o outro formulério de
descritor de agentes, nenhuma outra metodologia tem em seu processo um artefato
que possibilite que seu usudrio descreva em linguagem natural um formulario com
a descricao dos planos do SMA.

3.2. Similaridades dos artefatos da metodologia Tropos

A visualizacdo das similaridades presentes na metodologia Tropos com as demais é apre-

sentada na tabela 2. Abaixo sdo listados os principais artefatos da metodologia Tropos,

explicando suas funcdes e comparando com os artefatos de outras metodologias.

Tabela 2. Similaridade dos artefatos da metodologia Tropos com as demais me-

todologias

Tropos

Prometheus

MaSE

Diag. de Ator

Diag. Geral de Objeti-
vos*

Diag. de Hierarquia de
Objetivos™

Diag. de Objetivos

Plano

Diag. de Objetivos para Modelar

Diag. de Capacidade

Diag. de Visao Geral de
Agente

Diag. de Interagdo

Diag. de Interagao

Diag. de Classe de
Comunicagao

e Diagrama de Ator: Este diagrama € utilizado para modelar os atores, seus objeti-

vos concretos e nebulosos.

— Diagrama Geral de Objetivos (Prometheus): A metodologia Prometheus
pensa em objetivos de maneira diferente a apresentada na metodologia
Tropos. Para Tropos, os objetivos e subobjetivos sao ligados diretamente
aos agentes. Em Prometheus, esses objetivos fazem parte do sistema, onde
sdo definidos papéis, que posteriormente sao assumidos por agentes, para
que futuramente esses objetivos sejam satisfeitos pelos agentes. Um dia-
grama parecido na metodologia Prometheus é o diagrama geral de objeti-
vos. Entretanto, neste diagrama € somente possivel modelar os objetivos e
subobjetivos. Nao existe nenhuma relacdo com os agentes € ndo € possivel
expressar as dependéncias entre os objetos da mesma forma que € contem-
plado no diagrama de Ator da metodologia Tropos.

Diagrama de Hierarquia de Objetivos (MaSE): Na metodologia MaSE
ocorre 0 mesmo problema exemplificado em Prometheus. Contudo, MaSE
também apresenta um diagrama para modelar objetivos, intitulado dia-
grama de hierarquia de objetivos. Porém, também ndo € possivel trans-
crever o diagrama de ator de Tropos para esse diagrama sem perda de
conteudo.

72

[l Latin American School on Software Engineering (ELA-ES 2015)

e Diagrama de Objetivos: Este diagrama tem por finalidade modelar objetivos, pla-
nos, e a ligacdo de composi¢ao/decomposicao além da contribui¢do entre planos
e objetivos.

— Prometheus: A metodologia Prometheus trabalha com o conceito de ob-
jetivos associado ao SMA, ao invés dos agentes. Além disso, o diagrama
de objetivos da metodologia Tropos modela alguns outros conceitos. Por-
tanto, nio existe nenhum diagrama da metodologia Prometheus que con-
siga suprir essa demanda de informacoes.

— MaSE: Esta metodologia € semelhante a do Prometheus em referéncia ao
conceito de Objetivos. Portanto, também ndo existe um diagrama para
expressar tais informagdes na metodologia MaSE.

e Diagrama de Objetivos para Modelar Planos: Funciona de forma semelhante ao
diagrama de objetivos, pois a notacdo gréfica desse diagrama € semelhante, mu-
dando apenas o contetido do que se deseja expressar.

e Diagrama de Capacidade: Este diagrama € utilizado para modelar as capacidades
dos agentes, percepgoes, dados, acOes e mensagens [Bresciani et al. 2004].

— Diagrama de Visdo Geral de Agentes (Prometheus): Esta metodologia
disponibiliza de um diagrama chamando de Diagrama de Visdo Geral de
Agentes. Através desse diagrama, € possivel modelar o diagrama de capa-
cidades utilizado na metodologia Tropos sem perda de expressividade.

— MaSE: Esta metodologia ndo suporta o conceito de capacidade estipulada
na metodologia Tropos. Por essa razdo, ndo possui diagramas para mode-
lar essa informacao.

e Diagrama de Interacio: Este diagrama serve para modelar as interacdes que ocor-
rem entre os agentes que compdem o sistema.

— Diagrama de Interacdo (Prometheus): A metodologia Prometheus possui
um diagrama de interacao semelhante ao encontrado na metodologia Tro-
pos. Pode-se transcrever as informacdes de um para o outro sem perda de
informacao.

— Diagrama de Classe de Comunicagdo (MaSE): Esta metodologia dispde do
diagrama de classe de comunica¢ao que consegue desempenhar o papel do
digrama de interacdo sem devaneios. Contudo, no diagrama da metodolo-
gia MaSE ainda € possivel especificar um protocolo de comunicagado entre
agentes.

3.3. Similaridades dos artefatos da metodologia MaSE

A visualizacdo das similaridades presentes na metodologia MaSE com as demais € apre-
sentada na tabela 3. Abaixo sdo listados os principais artefatos da metodologia MaSE,
explicando suas fungdes e comparando com os artefatos de outras metodologias.

e Diagrama de Hierarquia de Objetivos: Segundo
[Henderson-Sellers and Giorgini 2005], a captura de objetivos é a primeira
finalidade da etapa da andlise de requisitos. Depois dessa captura, os objetivos
sdo organizados conforme sua importancia.

— Diagrama de Visao Geral de Objetivos (Prometheus): A metodologia Pro-
metheus possui o diagrama de visdo geral de objetivos, que possui o
mesmo grau de representatividade. Portanto, € possivel transcrever um
no outro sem perda de informagdes.

73

[l Latin American School on Software Engineering (ELA-ES 2015)

Tabela 3. Similaridade dos artefatos da metodologia MaSE com as demais meto-

dologias

MaSE

Prometheus

Tropos

Diag. de Hierarquia de Objeti-
\(S

Diag. de Visdo Geral de
Objetivos

Diag. de Objetivos

Diag. de Sequéncia

Diag. de Familiaridade
de Agentes

Diag.
(AUML)

de Interacdo

Diag. de Modelo de Papéis

Diag. de Ligacao de Pa-
pel com Agente*

Diag. de Tarefas Concorrentes

Diag. de Protocolo de
Interacao

Diag. de Classes de Agentes

Diag. de Cenarios™

Diag. de Classe de

Comunicagao

Diag. de Protocolo de
Interacao

Diag. de Arquitetura de Agentes

Diag. de Implantacao

— Diagrama de Objetivos (Tropos): Existe uma diferenga no significado da

palavra objetivo perante as duas metodologias. Em Tropos, os objetivos
sao modelados de acordo com os atores.
transcrever o diagrama de Hierarquia de Objetivos de Mase para Tropos.

Porém, o processo inverso nao € viavel.

Por esse motivo, € possivel

e Diagrama de Sequéncia: O objetivo do diagrama de sequéncia na metodologia
MaSE € representar sequéncias de eventos entre os papéis.

— Diagrama de Familiaridade de Agentes (Prometheus): Na metodologia

Prometheus, o diagrama de Familiaridade de Agentes desempenha papel
semelhante ao diagrama de sequéncia. Neste diagrama, € possivel mode-
lar a troca de eventos entre os agentes, ou seja, em um nivel hierdrquico
mais baixo se comparado ao diagrama de sequéncias de MaSE, que mo-
dela a troca de eventos entre papéis. Se forem especificados todos os agen-
tes que compdem os papéis do sistema, € possivel transcrever o diagrama
de sequéncias de MaSE no diagrama de familiaridade de agentes de Pro-
metheus sem perda de expressividade.

Diagrama de Interacdo (Tropos): A metodologia Tropos utiliza do dia-
grama de interacdo da AUML para especificar a troca de eventos entre
agentes/papéis de um SMA. Por esse motivo, € possivel utiliza-lo para re-
presentar os mesmos conceitos envolvidos no diagrama de sequéncia da
metodologia MaSE.

e Diagrama de Modelo de Papéis: Este diagrama tem como propdsito representar
papéis, tarefas e protocolos de interacdes [Henderson-Sellers and Giorgini 2005].

— Diagrama de Ligacdo de Papel de Agente (Prometheus): O diagrama de
ligacdo de papel de agente da metodologia Prometheus possui propdsito
semelhante ao diagrama de modelo de papéis. Entretanto, neste diagrama
nao € possivel representar as tarefas e nem os protocolos de interacdo. A
transcricdo das informacdes do diagrama de modelo de papéis de MaSE

74

[l Latin American School on Software Engineering (ELA-ES 2015)

para o diagrama de ligacdo de papéis de Prometheus acarretaria na perda
de informacgoes.

— Tropos: Nao trabalha com o conceito de papéis. Para a metodologia, os
papéis estdo implicitos nos agentes. Por esse motivo, ndo existem diagra-
mas para essa representacdo na metodologia Tropos.

e Diagrama de Tarefas Concorrentes: O proposito deste diagrama € definir protoco-
los de interagdo complexos e de alto nivel que necessitem de coordenagao entre
agentes multiplos [Henderson-Sellers and Giorgini 2005].

— Diagrama de Protocolo de Interagdo (Prometheus): A metodologia Pro-
metheus detém do diagrama de protocolo de interagdo que tem carac-
teristicas semelhantes ao diagrama de tarefas concorrentes. Entretanto,
neste diagrama o foco € validar essas interagdes. Contudo, em linhas ge-
rais, ambos tem o mesmo objetivo, que € demonstrar e validar as interagdes
entre os agentes.

— Tropos: A metodologia Tropos, embora trabalhe com o conceito de
interacdes entre os agentes, nao utiliza uma abstragdo maior, como proto-
colos. Por esse motivo, ndo existe um diagrama que seja possivel modelar
tal finalidade nesta metodologia.

e Diagrama de Classes de Agentes: O objetivo deste diagrama é retratar a
organizacao geral dos agentes no sistema [Henderson-Sellers and Giorgini 2005].
Além disso, as ligacdes entre essas classes representam as conversacoes que de-
vem existir entre elas.

— Diagrama de Cendrios (Prometheus): Prometheus, possui um diagrama
que tem finalidade semelhante ao diagrama de classe de agentes, chamado
de diagrama de cendrios. Entretanto, o diagrama de cendrios tem como
propésito oferecer uma visdo geral do sistema sob o ponto de vista de
cendrios, e ndo agentes, como € o caso de diagrama de classes de Agentes.
Além disso, no diagrama de cendrios da metodologia Prometheus nao é
possivel estipular conversas entre os cendrios. Portanto, embora que com
0 mesmo propdsito, ambos os diagramas apresentam visdes diferentes do
sistema.

— Tropos: A metodologia Tropos ndo dispde de nenhum diagrama que con-
siga demonstrar as conversagdes entre as classes de agentes e uma visao
generalizada das classes que representam os agentes.

e Diagrama de Classe de Comunicagcdo: O objetivo do diagrama de classe

de comunicagdo € expressar o protocolo de conversa entre os agentes
[Henderson-Sellers and Giorgini 2005].

— Diagrama de Protocolo de Interacdo: Em Prometheus, existe o diagrama
de protocolo de interacdo que tem finalidade semelhante ao diagrama ed
classe de comunicagdo. Ele pode expressar as mesmas informagdes sem
perda de sentido.

— Tropos: Similar as demais explicacdes sobre protocolos em Tropos, sabe-
se que esta metodologia ndo suporta esse conceito. Por esse motivo, ndo
contém diagramas para tal finalidade.

75

[l Latin American School on Software Engineering (ELA-ES 2015)

e Diagrama de Arquitetura de Agentes: Este diagrama tem como finali-
dade demonstrar a interagdo entre os componentes da arquitetura de agentes
[Henderson-Sellers and Giorgini 2005]. Além disso, através desse diagrama é
possivel demonstrar a visibilidade entre os componentes € a conexdes externas
destes para recursos, como agentes, sensores, processadores de efeitos e banco de
dados.

— Prometheus: A metodologia Prometheus ndo trabalha com o conceito da
arquitetura de agentes. Para Prometheus, os agentes sd@o baseados na ar-
quitetura Believe-Desire-Intention (BDI) [Rao and Georgeff 1991]. Ou-
tro ponto importante, consiste na falta de modelagem do Prometheus em
relacdo aos componentes externos que o SMA pode utilizar. Por esse mo-
tivo, ndo existem diagramas na metodologia Prometheus para representar
as informacdes contidas no diagrama de Arquitetura de Agentes.

— Tropos: A metodologia Tropos também ndo trabalha com o conceito de
arquitetura de agentes e nem com a possibilidade de representar os compo-
nentes que podem interagir com o ambiente. Portanto, ndo existe diagrama
para tal finalidade nesta metodologia.

e Diagrama de Implantacdo: O diagrama de implantacio da metodologia MaSE
demonstra os ndmeros, tipos e locais das instancias dos agentes no sistema
[Henderson-Sellers and Giorgini 2005]. Nenhuma metodologia das exploradas
disponibiliza uma forma de representagdo semelhante a encontrada no diagrama
de implantacdo da metodologia MaSE. Algumas, chegam no ponto de especificar
as interacdes dos agentes com o ambiente. Entretanto, ndo apresentam o maior
nivel de todos, que é demonstrar onde esses agentes estdo instalados no sistema.

4. Conclusoes e trabalhos futuros

Este trabalho teve como objetivo apresentar uma revisdo de algumas metodologias para
modelagem de sistemas multiagente. Também foi realizado um estudo comparativo entre
as metodologias estudadas (Prometheus, Tropos e MaSE) de forma a apresentar similari-
dades e diferencas entre as metodologias.

Com base esse estudo, percebe-se que cada metodologia uma possui enfoque em
caracteristicas distintas. Enquanto Prometheus e Tropos focam sua modelagem no ambito
de agentes, MaSE possui conceitos que propiciam também a modelagem de recursos e ar-
quiteturas alternativas de agentes. Percebe-se também que nenhuma metodologia explo-
rada € capaz de suprir os conceitos envolvidos no paradigma multiagente, apresentando
disparidade de objetivos, fato que enfraquece a normalizagdo da érea.

Desta forma, conclui-se que a drea de AOSE deve progredir para atingir uma
padronizacdo. Sugere-se que seja feito um mapeamento dos requisitos necessarios
para desenvolver qualquer tipo de SMA. Posteriormente, deve-se desenvolver notagdes
gréificas que corresponderdo a conceitos relacionados a todas as caracteristicas mapeadas
anteriormente. Através dessas ac¢des, consegue-se definir uma linguagem de modelagem,
semelhante a UML, porém, que atenda a requisitos provenientes dos SMA.

5. Agradecimentos

Os autores agradecem a Universidade Federal do Rio Grande - FURG e a Fundagdo de
Amparo a Pesquisa do Estado do Rio Grande do Sul - FAPERGS pelo suporte financeiro

76

[l Latin American School on Software Engineering (ELA-ES 2015)

na realizacdo do presente trabalho.

Referéncias

Bergenti, F., Gleizes, M.-P., and Zambonelli, F. (2004). Methodologies and software
engineering for agent systems: the agent-oriented software engineering handbook,
volume 11. Springer.

Brandiao, A. A. F. (2014). Apresentacdo de oficina no wesaac 2014 - engenha-
ria de software orientada a agente. Enviado por e-mail pela autora (anarosabran-
dao@gmail.com), em 17 julho 2014.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J. (2004). Tropos:
An agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems, 8(3):203-236.

Cunha, R. R., Adamatti, F. D., and Billa, Z. C. (2014). Engenharia de software orientada a
agentes: Um estudo sobre metodologias que suportam o processo de desenvolvimento
de sistemas multiagente. Universidade Federal do Rio Grande - Trabalho Individual
apresentado ao programa de P6s Graduacdo em Engenharia de Computacdo (PPG-
COMP).

Cunha, R. R., Adamatti, F. D., and Billa, Z. C. (2015). Engenharia de software orientada a
agentes: Um estudo comparativo entre uml e metodologias que suportam o processo de
desenvolvimento de sistemas multiagente. Workshop-Escola de Sistemas de Agentes,
seus Ambientes e apliCacoes, to appear.

Guedes, G. T. A. (2012). Um metamodelo UML para a modelagem de requisitos em
projetos de sistemas multiagentes. PhD thesis, Universidade Federal do Rio Grande do
Sul.

Henderson-Sellers, B. and Giorgini, P. (2005). Agent-oriented methodologies. 1GI Global.

Jayatilleke, G. B., Padgham, L., and Winikoff, M. (2007). Evaluating a model driven
development toolkit for domain experts to modify agent based systems. In Agent-
Oriented Software Engineering VII, pages 190-207. Springer.

Khallouf, J. and Winikoff, M. (2009). The goal-oriented design of agent systems: a
refinement of prometheus and its evaluation. International Journal of Agent-Oriented
Software Engineering, 3(1):88—112.

Padgham, L. and Thangarajah, J. (2004). Tutorial ~ prometheus.
http://www.cs.rmit.edu.au/agents/pdt/docs/Tutorial.pdf.

Padgham, L. and Winikoff, M. (2002). Prometheus: A methodology for developing intel-
ligent agents. John Wiley & Sons.

Padgham, L. and Winikoff, M. (2005). Developing intelligent agent systems: A practical
guide, volume 13. John Wiley & Sons.

Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within a bdi-architecture.
KR, 91:473-484.

Rodriguez, L., Insfran, E., and Cernuzzi, L. (2011). Requirements Modeling for Multi-
Agent Systems. INTECH Open Access Publisher.

77

Il Latin American School on Software Engineering (ELA-ES 2015)

Avaliacao Experimental da Relaciao de Coesao e
Acoplamento com o Esforco de Compreensao de Software

Elienai B. Batista', Claudio Sant’ Anna’

'Departamento de Ciéncia da Computagio — Universidade Federal da Bahia (UFBA) —
Salvador — BA - Brasil

elienaibittencourt@gmail.com, santanna@dcc.ufba.br

Abstract. Coupling and cohesion are well-known software design quality
attributes. They are believed to directly influence the comprehensibility of a
system. It is claimed that the greater the cohesion and the lower the coupling
of a module the easier it is to understand it. However very few studies have
been conducted to analyze the relation of values of cohesion and coupling,
quantified by means of metrics, with the effort for comprehending source code.
In this context, we propose two quasi-experiments that aim to empirically
evaluate in which extent the degrees of cohesion and coupling of software
modules are related to the effort for understanding their source code.

Resumo. Acoplamento e coesdo sdo atributos de qualidade do design de
software bem conhecidos. Acredita-se que eles podem influenciar diretamente
a compreensibilidade de um sistema. Afirma-se que, quanto maior a coesdo e
menor o acoplamento de um modulo, mais fdcil é sua compreensdo.
Entretanto, poucos estudos foram realizados para analisar qual é a relacdo
entre os valores de coesdo e acoplamento, quantificados por meio de métricas,
com o esforco de compreensdo do codigo fonte. Diante disso, propomos a
realizacdo de dois quase-experimentos para de avaliar empiricamente em que
nivel o grau de coesdo e de acoplamento de modulos de software estdo
relacionados ao esforco para compreender seus codigos fontes.

1. Introducao

Acoplamento e coesdo sdo dois conceitos bem conhecidos e usados como
atributos de qualidade do design de software [Pflegger & Atlee, 2010]. A coesdo de um
modulo € o grau pelo qual aquele médulo estd focado em implementar apenas uma
responsabilidade do sistema. Acoplamento ¢ uma indicacdo da quantidade e forca das
dependéncias entre os médulos que compdem um sistema [Pflegger & Atlee, 2010].
Afirma-se que um software bem projetado € aquele cujos moédulos sdo bem coesos e
fracamente acoplados entre si.

Uma série de métricas tem sido propostas para quantificar coesio e acoplamento
de sistemas orientados a objetos [Chidamber & Kemerer 1994], [Henderson- Sellers et
al., 1996], [Briand et al., 1998], [Briand et al., 1999], [Silva et al., 2011]. A maioria
dessas métricas quantifica coesdo e acoplamento de cada uma das classes que compdem
o cddigo fonte do sistema. Existem métricas de dois tipos: estruturais e conceituais. As
métricas estruturais consideram caracteristicas sintdticas do cddigo e avaliam as
relacdes de dependéncia estrutural: (i) entre os métodos de uma classe, para quantificar

78

Il Latin American School on Software Engineering (ELA-ES 2015)

coesdo, e (ii) entre as classes do sistema, para quantificar acoplamento [Briand et al.,
1998], [Briand et al., 1999]. Métricas conceituais consideram aspectos semanticos do
codigo fonte para calcular coesdo e acoplamento. A maioria delas se baseia em técnicas
de mineracdo de textos para determinar elementos do cddigo fonte semanticamente
relacionados entre si [Marcus & Poshyvanyk, 2005], [Silva et al., 2012].

Acredita-se que, quanto maior for coesdo e menor for o acoplamento dos
modulos do sistema, menor € o esforco para se compreender o sistema [Henderson-
Sellers et al., 1996], [Briand et al., 1999]. Modulos com baixa coesao sdo, teoricamente,
mais dificeis de compreender, pois possuem codigo relativo a diferentes
responsabilidades, o que pode atrapalhar o entendimento de cada uma delas. Mdédulos
com alto acoplamento também sdo, teoricamente, mais dificeis de compreender, pois
para entendé-los pode ser necessdrio entender os modulos dos quais ele depende.

Compreensdo de software consiste da realizacdo de atividades para se obter
conhecimento geral sobre um software, sobre suas funcionalidades, sua organizagdo e
seu proposito [Bois et al., 2006]. Estima-se que desenvolvedores dediquem em média
mais da metade do esfor¢co de manuten¢do de software com atividades de compreensao.
Além disso, parte substancial do esforco de compreensdo de software estd relacionada a
compreensdo do cédigo fonte. Apesar da importancia do processo de compreensdo e da
grande quantidade de métricas de acoplamento e coesdo existentes, poucos estudos
foram realizados para avaliar empiricamente qual € a relacdo entre coesdo e
acoplamento, quantificados por meio de métricas, e o esforco para se compreender o
codigo fonte de sistemas de software.

Os trabalhos relacionados a esse tema ou estudam como outras caracteristicas do
codigo fonte estdo relacionadas a compreensdo dos sistemas, ou estudam a relacdo de
coesdo e/ou acoplamento com outros atributos externos, como propensao a defeitos ou
propensdo a mudancgas. Por exemplo, Bois et al. (2006) estudam se refatoracdes para
eliminar um anomalia especifica de design melhoram a compreensibilidade do cédigo
fonte. Silva et al. (2012), por sua vez, estudam a relacdo entre medicdes de coesdo e
acoplamento com a propensdo que classes tem de sofrer mudancas. Nao conhecemos
trabalhos que avaliem como medicdes de coesdo ou acoplamento, de forma isolada,
estdo relacionadas ao esfor¢o para se compreender o cédigo fonte de sistemas.

2. Proposta

Diante desse contexto, o trabalho aqui proposto tem o objetivo de avaliar empiricamente
em que nivel o grau de coesdo e de acoplamento de médulos de sistemas de software
estdo relacionados ao esfor¢o para compreender seu codigo fonte. Pretendemos também
avaliar se os diferentes tipos de métricas — estrutural e conceitual — tem relacdo
diferente com o esforco de compreensdo. Para atingir esses objetivos, pretendemos
realizar dois quase-experimentos: (i) um no qual participantes executem tarefas de
compreensdo do codigo fonte de classes com diferentes graus de coesdo conceitual e
estrutural, quantificados por meio de métricas de cddigo fonte e (ii) outro no qual os
participantes executem tarefas de compreensdo do cddigo fonte de classes com
diferentes graus de acoplamento, quantificados por meio de métricas de cédigo fonte.

O primeiro experimento visa responder as seguintes questdes de pesquisa: (i) A
coesdao de uma classe tem influéncia sobre o esforco para compreender seu cdodigo
fonte? (ii) Existe diferenca entre a relacdo de coesdo estrutural e coesdao conceitual com

79

Il Latin American School on Software Engineering (ELA-ES 2015)

o esfor¢o de compreensdo do cédigo fonte? O segundo estudo visa responder a seguinte
questdo de pesquisa: O acoplamento de uma classe tem influéncia sobre o esfor¢o para
compreender seu cédigo fonte?

De forma resumida, os experimentos serdo configurados da seguinte forma: No
laboratério, participantes realizardo atividades que demandardo a compreensdo do
codigo fonte de um conjunto de classes. A realizacdao dessas atividades permitird que
seja medido o esfor¢o desprendido por cada participante para compreender cada classe.
As classes devem apresentar diferentes valores de coesdo e acoplamento para que
possamos comparé-los com o esfor¢co de compreensao.

Medicao do esforco de compreensao. Para quantificarmos o esfor¢o necessario
para compreender o cédigo fonte de cada classe, usaremos duas métricas: (i) o tempo
necessdrio para o participante responder um conjunto de perguntas sobre cada uma das
classes, e (ii) o nimero de perguntas com respostas erradas. As perguntas sdo do tipo
que exigem a simulacdo mental do cédigo fonte, tais como “Dado que determinado
método recebe um conjunto especifico de argumentos, qual serd seu retorno?” Essa
estratégia estd alinhada com o que se € recomendado na literatura para medir esforco de
compreensao de codigo fonte [Bois et al., 2006].

Métricas: Pretendemos usar a métrica de coesdo conceitual Lack of Concern-
Based Cohesion (LCbC) [Silva et al., 2008], pois ela ja vem sendo usada em outros
estudos de comparacdo com métricas estruturais [Silva et al., 2012], [Silva et al., 2014].
Pretendemos usar a métrica de coesdo estrutural Lack of Cohesion on Methods 5
(LCOMS) [Henderson-Sellers et al., 1996]. Essa métrica representa a versdo mais atual
da tradicional métrica de coesdao LCOM, de Chidamber e Kemerer (1994). Além disso,
ha ferramentas disponiveis que automatizam sua aplicacdo. Para quantificar
acoplamento, planejamos usar a métrica Coupling Between Object Classes (CBO)
[Chidamber & Kemerer, 1994]. CBO é uma das métricas de acoplamento mais
referenciadas na literatura e tem sua aplicagdo automatizada por algumas ferramentas.

Selecao de Classes: Esse ¢ um ponto critico e ndo trivial da preparacdo dos
estudos. Ao selecionar as classes temos que procurar minimizar ao maximo a influéncia
de fatores de confusdo. Nosso plano é, portanto, selecionar classes: (i) de tamanhos
semelhantes em termo de nimero de linha de cddigo, (ii) de dominios simples e
acessiveis a todos os participantes, (iii) com nomes de identificadores com qualidade
semelhantes e (iv) sem comentdrios. Além disso, no estudo sobre coesdo, as classes
devem apresentar valores similares de acoplamento e vice-versa. Selecionaremos
classes de diferentes sistemas de informacdo open source escritos em Java.

Participantes: Os participantes dos estudos serdo alunos de graduacdo e de pds-
graduagdo em Ciéncias da Computacdo da Universidade Federal da Bahia (UFBA). Os
participantes assinardo um termo de consentimento e responderdo a um questiondrio
para podermos caracterizar sua experiéncia em programacao orientada a objetos.

Ameacas a validade: Além dos fatores de confusdo relacionados a similaridade
do coédigo fonte das classes, pretendemos realizar estudo piloto para controlar outras
ameacas a validade, tais como, a possivel fadiga dos participantes e a falta de clareza
das perguntas sobre as classes. O questiondrio sobre o perfil dos participantes nos dard
informacdes para controlar possiveis discrepancias de nivel de experiéncia.

80

Il Latin American School on Software Engineering (ELA-ES 2015)

3. Andamento do Trabalho

Até o momento, ja realizamos um estudo preliminar para avaliar a relacdo entre coesao
(estrutural e conceitual) e compreensdo de cdédigo fonte. O estudo teve como
participantes 14 alunos de graduacdo e quatro alunos de pds-graduacdo. Cada
participante realizou atividades de compreensdo em quatro classes. Essas atividades
consistiram do participante responder quatro questdes sobre cada uma das classes.

Esse estudo se caracterizou como preliminar por envolver poucos participantes e
poucas classes. Além disso, inadvertidamente, deixamos de controlar um fator de
confusdo importante: o grau de acoplamento das classes. Como resultado, uma classe
com grau de acoplamento bem mais alto que as outras demandou muito mais esforco de
compreensdo. Esse resultado nos motivou a estudar também a relacdo entre
acoplamento e compreensdo. Um dos pontos positivos do estudo preliminar foi o fato da
estratégia usada para medir o esfor¢co de compreensao ter funcionado bem.

A partir da experiéncia com o estudo preliminar, pretendemos realizar os dois
experimentos propostos com um nimero maior de participantes e classes. Também
seremos mais rigorosos no controle dos fatores de confusdo. Atualmente, estamos
trabalhando no planejamento do novo estudo sobre coesdo: as classes estdo selecionadas
e questiondrios construidos. Sua execuc¢do se dard ainda no primeiro semestre desse ano.

Referéncias

Bois, B. D., Demeyer, S., Verelst, J., Ments, T. and Temmerman, M (2006). “Does God
Class Decomposition Affect Comprehensibility?” IASTED Conf. on Software
Engineering. Innsbruck, pp. 346-355.

Briand, L. C., Daly, J. W. and Wust, J. K. (1998). A Unified Framework for Cohesion
Measurement in Object-Oriented Systems, Empirical Software Engineering - An
International Journal, 3(1), pp. 65-117.

Briand, L. C., Daly, J. W. and Wust, J. K. (1999). “A Unified Framework for Coupling

Measurement in Object-Oriented Systems”. [EEE Transactions on Software
Engineering. 25(1), pp. 91-12.

Chidamber, S.; Kemerer, C. (1994) “A Metric Suite for Object Oriented Design”. IEEE
Transactions on Software Engineering, 20(6), pp. 476-493.

Henderson-Sellers, B., Constantine, L. and Graham, M. (1996) “Coupling and Cohesion
(Towards a valid metrics suite for object-oriented analysis and design)”. Object
Oriented Systems, vol 3, pp. 143-158.

Marcus, A. & Poshyvanyk, D. (2005) “The Conceptual Cohesion of Classes”. Intl’
Conference on Software Maintenance (ICSM ‘05). Washington, DC, pp. 133-142.

Pfleeger, S.; Atlee, J. (2010) “Software Engineering: theory and practice”, 4th ed,
Prentice Hall.

Silva, B., Sant’Anna, C., Chavez, C. and Garcia, A. (2012) “Concern-Based Cohesion:
Unveiling a Hidden Dimension of Cohesion Measurement”. [EEE International
Conference on Program Comprehension (ICPC 2012), Passau, pp. 103-112.

Silva, B., Sant’Anna, C., Chavez, C. “An Empirical Study on How Developers Reason
about Module Cohesion.” Int’l Conference on Modularity (Modularity 2014),
Lugano, pp. 121-132.

81

[l Latin American School on Software Engineering (ELA-ES 2015)

Estabelecimento de uma Arquitetura de Referéncia para
Ferramentas de Gerenciamento de Variabilidades

Ana Paula Allian', Edson OliveiraJr!, Elisa Y. Nakagawa?

'Universidade Estadual de Maringd (UEM) — Maringd, PR — Brazil
2Universidade de Sdo Paulo (USP) — Sdo Carlos, SP — Brazil

ana.allian@gmail.com, edson@din.uem.br, elisa@icmc.usp.br

Abstract. Variability management (VM) is one of the core activities for the suc-
cess of software reuse. Several VM tools have been proposed toward supporting
such an activity. In another context, reference architectures (RA), a special type
of software architecture, can contribute to the reuse of knowledge about VM and
standardization of tools for this pourpose. This paper presents an ongoing re-
search on VMTools-RA, a RA for VM tools. We intend this RA can contribute to
the development of new VM tools, besides providing support to integration and
reuse of projects experiences.

Resumo. Gerenciamento de variabilidades (GV) é uma das atividades essenci-
ais para o sucesso do retiso de software. Vdrias ferramentas de GV tém sido
propostas para apoiar tal atividade. Em outro contexto, arquiteturas de re-
feréncia (AR), um tipo especial de arquitetura de software, podem contribuir
para o retiso de conhecimento sobre GV e padronizagdo de ferramentas para tal
proposito. Este artigo apresenta a pesquisa em andamento sobre a VMTools-
RA, uma AR para ferramentas de GV. Espera-se que essa AR possa contribuir
para o desenvolvimento de novas ferramentas de GV, além de fornecer suporte
a integragdo e reuso de experiéncias em projetos.

1. Introducao

Variabilidade € o termo utilizado para representar como produtos de software podem se
diferenciar entre si. A variabilidade pode ser identificada mediante o conceito de feature,
uma caracteristica de um sistema que € relevante e visivel para o usudrio final. O conceito
de variabilidade se consolidou em diferentes abordagens, sobretudo em linha de produto
de software [Linden et al. 2007], tornando a atividade de Gerenciamento de Variabilida-
des (GV) essencial para o sucesso dessa estratégia de reuso de software sistematico.

Atualmente, existem diversas ferramentas de GV. Por causa da heterogeneidade de
ferramentas, a inddstria tem utilizado diferentes tipos de solucdes para gerenciar a varia-
bilidade, além de criar suas proprias ferramentas [Berger et al. 2013]. Além disso, essas
ferramentas ndo seguem um padrdo pré-definido para seu desenvolvimento. Portanto,
entende-se como uma oportunidade de pesquisa responder a seguinte questio:E possivel
propor uma padronizacdo em nivel arquitetural para ferramentas de GV ? Para respon-
der a tal questdo, pode-se explorar os conceitos relacionados as arquiteturas de referéncia.

Uma Arquitetura de Referéncia (AR) € considerada um padrado pré-definido pro-
jetado para um determinado contexto de negdcio. Tal conceito faz uso de ativos (assets),

82

[l Latin American School on Software Engineering (ELA-ES 2015)

muitas vezes, concebidos em projetos anteriores. Além disso, uma AR promove a
reutilizagdo de experiéncias e facilita o desenvolvimento, padronizacdo, qualidade e
evolucdo de sistemas de software [Angelov et al. 2009, Nakagawa et al. 2014].

2. Proposta de Solucao

Esta pesquisa tem como objetivo propor uma AR para ferramentas de GV seguindo o
processo ProSA-RA, que € iterativo e sistematiza as etapas para construir, representar e
avaliar ARs [Nakagawa et al. 2014]. ProSA-RA € composto de quatro etapas:

Investigacao das fontes de informacao:obtidas de pessoas, software, livros, mo-
delos de referéncia, ontologias, etc. Para o desenvolvimento dessa etapa, um estudo se-
cundério na forma de uma Revisdo Sistematica da Literatura(RSL) seguindo as diretrizes
propostas em [Kitchenham et al. 2009] foi realizado!. Foram identificadas 43 ferramentas
de GV. A maioria das ferramentas utilizam processos especificos para modelar as features
sendo que 13% apoiam o método Feature Oriented Domain Analisys(FODA). 41 % foram
desenvolvidas para modelagem de variabilidades e 23% dao suporte a configuracdo de
variabilidades. No que diz respeito a representacio grafica, 32% utilizam representagdes
hierarquicas em formato de arvore. Com relacdo a arquitetura, 46 % foram desenvolvidas
como plugins e 11% sdo baseados em arquiteturas multicamadas. Além disso, 27,9 %
tem um mecanismo de persisténcia em banco de dados e 55% dao suporte a arquivos
XML/XMI. A Figura 1 apresenta uma visdo conceitual da relacdo entre ferramentas de
GV e AR e resume a perspectiva da pesquisa sobre a criacio de AR. Observe que um
conjunto de ferramentas de GV pode ser utilizado para fornecer informagdes ao projeto
de uma AR. Tal AR serve como base para desenvolver novas ferramentas de GV.

o T Conjunto de Ferramentas de GV disponiveis
de GV #1 deGV#3 Ferramenta
E Y Ferramenta de GV #5 Ferramenta
de GV#2 1, deGVi#d de GV #in
i fonece Voo ; f
i informagdes
i v

| Arquitetura de Referéncia |

elementos [conceitos

% funcionalidades { i
Y Y 4 arquiteturais

= % B P "
usa . promove fornece ; aumenta / fornece compreensdo
informacdode . integragdo % interoperabilidade / reuso clara das decisdes

-famh(adesenvo\vlmentc/
Nova ferramenta de GV baseada evolugo de
na Arquitetura de Referéncia

Figura 1. Relacao entre Ferramentas de GV e AR

Somados as fontes de pesquisa anterior, pode-se destacar a RSL realizada
por [Lisboaetal. 2010] que abrange as principais funcionalidades das ferramentas
de GV. Tal estudo identificou 19 solugdes com funcionalidades e objetivos como:
i)Planejamento, responsavel por identificar informacdes para a definicdo do escopo do
dominio; ii)Modelagem, representa o escopo de dominio baseado em variabilidade,
features, regras de composi¢do, etc; e iii) Validacdo, funcionalidades responsdveis pela
validacdo do dominio.Outro estudo importante ¢ a RSL de [Pereira et al. 2015] que
identificou 41 ferramentas de GV. O estudo de [Pereira et al. 2015] utilizou a mesma
classificacdo de funcionalidades de [Lisboa et al. 2010], sendo que 73% necessitam
de suporte as atividades de planejamento; 81% dao suporte a derivagdo de produtos;
[Berger et al. 2013] realizou um estudo importante no qual apresentou os tipos de abor-
dagens e ferramentas de GV utilizados na industria. Tal estudo identificou que 38% sao
ferramentas de dominio especifico, 29,4% sao ferramentas de codigo aberto e 26,5 % sao
ferramentas comerciais. Tais estudos contribuiram para o projeto da VMTools-RA com

1Um artigo sobre a RSL est4 em fase de submissio ao periédico Information and Software Technology.

83

[l Latin American School on Software Engineering (ELA-ES 2015)

a identificacdo de funcionalidades, caracteristicas, tecnologias, conceitos sobre ferramen-
tas de GV. As funcionalidades identificadas foram elencadas e agrupadas. Como exemplo
pode-se citar: Modelo de feature, representa as variabilidades do produto; Rastreabili-
dade, relaciona features com requisitos; e Documentagdo.

Estabelecimento dos requisitos arquiteturais: Essa etapa visa elencar os requi-
sitos da AR proposta a partir das informacoes identificadas na Etapa 1. Neste projeto,
as funcionalidades encontradas serviram como base na identificagao dos requisitos de sis-
tema das ferramentas de GV. Como exemplo, para a funcionalidade Rastreabilidade temos
o seguinte requisito de sistema: Permitir rastreabilidade entre features e requisitos. ApOs
a identificacao dos requisitos do sistema de GV observou-se que os mesmos poderiam
ser agrupados em grupos mais abstratos identificando assim, os requisitos arquiteturais
da AR proposta. Como exemplo temos os seguintes requisitos de sistema: i) Permitir
rastreabilidade entre features e requisitos; ii) Permitir modelo de feature. Tais requisitos
de sistema foram mapeados ao requisito arquitetural: AR deve permitir modelagem de
feature.

Projeto arquitetural: os requisitos arquiteturais identificados serao utilizados
como base para realizar o projeto arquitetural da AR. Descri¢des textuais, fluxogramas ou
UML, por exemplo, podem ser utilizados para representar a AR em diferentes visdes ar-
quiteturais como estrutural, de implantacdo e de tempo de execugdo. A Figura 2 apresenta
uma visao geral da VMTools-RA em uma representacdo mais abstrata com os principais
elementos e suas relacoes. A VMTools-RA € baseada no estilo arquitetural em camadas:
i) camada de apresentagdo, refere-se a interface do usudrio; ii) camada de aplicacdo,
contém o modelo 16gico para gerenciar os diferentes elementos do GV; iii) camada de
persisténcia, para o armazenamento das informagdes. Além disso, essa AR estd divi-
dida em trés grupos: modelagem, representa os modelos de features e de variabilidade;
configuracdo, permite criar e editar configuracdes dos modelos de features garantindo
ao usudrio gerar configuracoes validas de um modelo de produto; e validagdo, verifica a
consisténcia dos produtos de software garantindo que funcionem corretamente.

WODELAGEW CONFIGURAGAO VALIDAGAO
‘ Editor do Modelo de Feature + 4 Editor de Configuragéo do Produto P AprossiiEiss)
= x

Tree View Hierarchical view

1

Elementos do Modelo de Feature B Efementos do Modelo - — ":"’”:agﬂ"’
= lementos de Validagao
(Feature) (Grupo de Feature) Elementos de Configuragao Produto
Amaiee do e ™ (Gbrigatério) jmmie (Configuragao de Produto) e C D) J
Regras de Composigdo fabili e (Veriicagdo de Cor)
*
PErsistencial
Banco de Dados -a-

XML
; {7 Grupoda Elementos da 5 s &
Legenda: {11 PNRS Biede [undommrdage D Persistndia = enire elementos

$ Somnias

Figura 2. Visao Geral da VMTools-RA: Proposta inicial.

Avaliacao arquitetural: Tal etapa estd descrita a seguir na Secdo 3.

3. Avaliacao da Solucao Proposta

A avaliacdo da AR tem por objetivo obter informacgdes para averiguar: (i) se a AR esta
adequadamente representada; (ii) se sdo considerados os atributos de qualidade para a
AR, tais como, integragcdo e seguranga; (iii) se a AR pode ser plenamente instanciada;
e (iv) o que pode ser alterado a fim de evoluir a AR. Para a avaliagdo desta pesquisa,
seréd realizado um estudo empirico e um estudo de caso. O estudo empirico envolverd

84

[l Latin American School on Software Engineering (ELA-ES 2015)

um estudo qualitativo e serd apoiado por procedimentos de Grounded Theory como, por
exemplo, Coding buscando codificar o conhecimento e respaldo dos especialistas sobre a
AR proposta. Neste projeto, um questiondrio serd elaborado e aplicado a especialistas em
AR e GV. Os resultados obtidos com base nas respostas serdo categorizados por meio da
técnica de (Coding) para contribuir com a avaliacdo da viabilidade da AR. J4 o estudo de
caso envolvera a implementaciao de uma ferramenta de GV.

4. Atividades Realizadas

Até o momento foi realizada uma RSL com o objetivo de identificar ferramentas de GV
existentes na académia e na indudstria, bem como analisar suas principais caracteristicas,
padrdes arquiteturais e funcionalidades. Somados a RSL, outros estudos citados na Secao
2 estdo sendo considerados para extrair as funcionalidades principais e definir os requisi-
tos essenciais da AR de ferramentas de GV. Além disso, um conjunto de requisitos ja foi
identificado e uma proposta inicial de uma visao geral da VMTools-RA foi estabelecida.

5. Conclusao

Neste artigo foram apresentadas as atividades que estdo sendo conduzidas para o esta-
belecimento da VMTools-RA, uma AR para ferramentas de GV. A partir da VMTools-
RA, objetiva-se padronizar o desenvolvimento de novas ferramentas de GV por meio
da identificacdo das principais funcionalidades, caracteristicas, requisitos, conceitos e
informacdes desse dominio. Espera-se com isso, contribuir com um maior retiso de ex-
periéncias em projetos, aumentando a produtividade durante a fase de desenvolvimento
dessas ferramentas, além de promover a integracdo e estabelecer as melhores praticas de
desenvolvimento de software.

Referéncias

Angelov, S., Grefen, P., and Greefhorst, D. (2009). A classification of software reference
architectures: Analyzing their success and effectiveness. In WICSA/ECSA, Cambridge,
UK, pages 141-150.

Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czarnecki, K., and Wsowski,
A. (2013). A survey of variability modeling in industrial practice. In VaMoS, Pisa,
Italy, pages 7:1-7:8.

Kitchenham, B., Pearl, B. O., Budgen, D., Turner, M., Bailey, J., and Linkman, S. (2009).
Systematic literature reviews in software engineering. Information and Software Tech-
nology, 51(1):7-15.

Linden, F. J. v. d., Schmid, K., and Rommes, E. (2007). Software product lines in action:
The best industrial practice in product line engineering. Springer-Verlag, New York.

Lisboa, L. B., Garcia, V. C., Lucrédio, D., Almeida, E. S., Meira, S. R. L., and Fortes, R.
P. M. (2010). A systematic review of domain analysis tools. Information and Software
Technology, 52(1):1-13.

Nakagawa, E. Y., Guessi, M., Maldonado, J. C., Feitosa, D., and Oquendo, F. (2014).
Consolidating a process for the design, representation, and evaluation of reference ar-
chitectures. In WICSA, Sydney, NSW, pages 143—152.

Pereira, J. A., Constantino, K., and Figueiredo, E. (2015). A systematic literature review
of software product line management tools. In ICSR, Miami, FL, USA, pages 73-89.

85

[l Latin American School on Software Engineering (ELA-ES 2015)

SMartyComponents: Um Método para Especificacao de
Arquiteturas de Linhas de Produtos de Software
Componentizadas

Marcio H. G. Bera, Edson OliveiraJr, Thelma E. Colanzi

'Programa de P6s-Graduagio em Ciéncias da Computagio (PCC) da
Universidade Estadual de Maringa (UEM).
Departamento de Informatica, Av. Colombo, 5790 - Zona 07
CEP 87020-900 - Maringa - PR - Brasil

marciobera@hotmail.com, edson@din.uem.br, thelma@din.uem.br

Abstract. Reuse is the key to productivity in software development. Approa-
ches such as Software Product Line (SPL) and Component Based Development
(CBD) support the reuse of artifacts and components. UML Components is a
CBD method that stands out for assisting the user to identify as early as pos-
sible components. Stereotype-based Management of Variability (SMarty) is an
approach used for identify and represent variabilities in UML models. Thus,
this proposal uses the SMarty concepts applied in the UML Components pro-
cess, allow this especify component-based SPLAs.

Resumo. Reiiso é a chave para a produtividade no desenvolvimento de soft-
ware. Abordagens como Linha de Produto de Software (LPS) e Desenvolvi-
mento Baseado em Componentes (DBC) apoiam o retiso de artefatos e compo-
nentes. O UML Components é um método de DBC que se destaca por auxiliar
o usudrio a identificar os componentes o mais cedo possivel. Stereotype-based
Management of Variability (SMarty) é uma abordagem utilizada para identificar
e representar variabilidades em modelos UML. Assim, esta proposta utiliza os
conceitos de SMarty aplicados ao processo do UML Components, permitindo
assim especificar ALPSs componentizadas.

Palavras-chave: Arquitetura de Linha de Produto de Software, Variabilidade, Desenvol-
vimento Baseado em Componentes, UML Components, SMarty.

1. O problema de pesquisa e motivacao

Com a crescente evolugdo da tecnologia nos ultimos anos, a industria de software busca
meios para maximizar a produtividade no desenvolvimento de software [Jensen 2015].
Recursos sdo investidos na criacdo de produtos para um mesmo dominio sem que 0s
artefatos destes produtos possam ser reutilizados.

Linha de Produto de Software (LPS) € uma abordagem que proporciona a
reutilizacdo dos artefatos, baseado em uma infraestrutura central denominada nicleo de
artefatos, que contém artefatos com similaridades e variabilidades [Linden et al. 2007].
Uma LPS pode gerar vérios produtos de uma mesma familia, o que indica a existéncia de
vérias arquiteturas diferentes, ou seja, uma para cada produto especifico. Uma abstragao
de todas estas arquiteturas ¢ denominada Arquitetura de LPS (ALPS).

86

[l Latin American School on Software Engineering (ELA-ES 2015)

O Desenvolvimento Baseado em Componentes (DBC) é uma abordagem muito
difundida na literatura, e que também visa o redso. Existem varias abordagems de DBC na
literatura, destaque para o UML Components [Cheesman and Daniels 2001], que permite
a identificacdo de componentes nos primeiros workflows.

A abordagem Stereotype-based Management of Variability (SMarty)
[Oliveiralr et al. 2010, Marcolino et al. 2013] ¢ formada por um perfil denominado
SMartyProfile, ¢ um processo denominado SMartyProcess. SMartyProfile possui um
conjunto de esteredtipos para representar variabilidades. SMartyProcess toma de entrada
os artefatos de saida de um processo, e por meio de um conjunto de diretrizes, guia os
stakeholders a identificar e representar variabilidades em tais artefatos.

2. Trabalhos relacionados

O estudo de Razavian e Khosravi [Razavian and Khosravi 2008] € uma abordagem anota-
tiva para representar variabilidades em arquiteturas baseadas em componentes nos niveis
de componentes, conectores e interfaces. Ja o estudo de Haber ef al. [Haber et al. 2011],
¢ uma abordagem transformacional para representar variabilidades, que combina a
representacdo modular das mudancgas entre variantes do sistema com meios expressivos
para capturar a influéncia das caracteristicas dos produtos. O estudo de Nakagawa et al.
[Nakagawa et al. 2013] apresenta um processo denominado ProSA-RA2PLA, que siste-
matiza a utilizagcao de arquiteturas de referéncia para a constru¢ao de ALPSs. No entanto,
nenhum destes trabalhos propde uma maneira de especificar ALPSs componentizadas.

3. O trabalho proposto

A combinagdo do método UML Components com a abordagem SMarty ja foi reali-
zada em trabalhos realizados anteriormente, e a sua efetividade foi comprovada em
[Contieri Junior et al. 2011]. Tal combinacao foi denominada SMartyComponents, porém
nao houve nenhuma formalizacao da mesma. SMarty 5.2 fornece gerenciamento de va-
riabilidades no relacionamento de componentes com portas e interfaces, relacionamento
de portas com interfaces, e relacionamento de interfaces com operacdes. A Figura 1
apresenta um exemplo da LPS Arcade Game Maker (AGM) com representacdo de vari-
abilidades SMarty em nivel de porta e interfaces. A porta pPlayGame é um ponto de
variacdo e possui trés interfaces <alternative_OR>>. Os esteredtipos SMarty em portas,
sdo anotados no compartimento do componente.

«alterngtive_OR»

IPI; wlin
«mandatory» aysowling

ISavelGame «alterfative_OR»
IPlayBrickles

«mandatory»

IExitGame
«mandatqry»

IUninstallGamge
«mandatohyy,
linstaliGame

«mandatory»
GameCtrl

«mandatory» pPlayGame : pPlayGame «mandatory»
IGamelnstallationMgt IGameBoardData

«variability »
name: "pPlayGame"
minSelection: 1

maxSelection : 3
phemative_OR» | i ing Time: DESIGN_TIME
IPlayPong _allowsAddingVar: true
_ - variants: [IPlayBowling,
_ - IPlayBrickles, IPlayPong]
-~ realizes+: {}

pPlayGame realizes-:{}

Figura 1. Exemplo de Representacao de Variabilidade com SMarty 5.2

De um modo geral, SMartyComponents explora os workflows de Requisitos e Es-
pecificacdo do UML Components. Assim, os artefatos resultantes de cada workflow, sao

87

[l Latin American School on Software Engineering (ELA-ES 2015)

tomados de entrada pelo SMartyProcess, que identifica e, por meio dos esteredtipos do
SMartyProfile, representa as variabilidades. A Figura 2 apresenta a visao geral de SMarty-
Components.

2 i
N «nesting» | | — =
dAnaIls’ta_s «nesting» ‘ Al—ﬁa@ tocal reo} "
e Negécios T «local replacement»
" .
I

Workflow de Requisitos ! ;(Workflow de Especificagdo

igd) %} Identificagdo de< «nesting» I%‘j
«requnsmle» «nesting» Modelo Conceitual Componente £ !
N Definicdo de de Negécio SMarty o L N Arquitetura SMarty |
. = Requisitos i1 |«nesting» «local contribution» Componentizada
[g\«responsmle» e —= A o <
CI‘\/t Requisitos local - I LTl
iente de Negécio «local replacement» | «nesting» . N . «loca replacement» ™~ . _
i «nesting» 1 %[; - AR
«respgnsible» i ' o o5
P «nesting» | I Interagéo de «local contribution»_, :
S — I Componente SMartyProcess «nesting» =P
A ¥ P T -
N I i / |
Especialistas SMartyProcess =" } | |[«nesting> «local contribution» cgns,:::;tes ‘
em Dominio ES) [— L /
Modelo de «local replacement»
«nesting» «nesting» CasosdeUso ! Especificagé<6 de
SMarty v Componente «nestingy =
3 wo
|1 | «nesting» «nestin: Interfaces
I g»
[%\ D A SMarty
Arquiteto de Linha N . .
de Produto [Arquiteto de Linha

de Produto

Figura 2. Visao Geral de SMartyComponents

Assim, ao término da ultima atividade do workflow de Especificacdo, serdo
gerados trés artefatos: (i) Arquitetura SMarty componentizada; (ii) Componentes
SMarty; e (iii) Interfaces SMarty. Um exemplo da atividade Iteracdo de Compo-
nente do workflow de Especificacdo pode ser visualizado na Figura 3. Neste exemplo,
os artefatos Interfaces do Sistema SMarty, Espec. de Componente
& Arquitetura SMarty e Interfaces de Negdcio SMarty sdo entradas
para as tarefas Descobrir Operagcdes de Negocio, Refinar Interfaces & Operacdes e Re-
finar Espec. de Componentes & Arquitetura. A tarefa Refinar Interfaces & Operacoes
gera o artefato Especificagdo de Interfaces e alimenta a tarefa Refinar Es-
pec. de Componente & Arquitetura. Esta, de acordo com os artefatos recebidos, refina o
artefato Espec. de Componente & Arquitetura SMarty. Os artefatos re-
sultantes destas tarefas sdo entradas para o SMartyProcess. Por fim, os artefatos de saida
do SMartyProcess contém as variabilidades identificadas e representadas.

Workflow de Especificagao

oS B =
Arquiteto de Diretr%s do O
Linha de Produto SMartyProcess SMartyProfile
i
Interagdo-de Componente SMartyProcess
«performs» = > =
= > = Fol anguts o Fel
= « O coutpyp - Delimitar «inputy < !
\ Eol performs» et E: de C it E: de C te |
. 7o} Rofinar Espec— ESPec: de Componente Variabilidades spec. de Componente |
| Interfaces do Sistema_ do Componentes || & Arauitetura SMarty B o & Arquitetura SMarty |
| & Arquitetura % . p |
St N 4 g
4 «input \L_\/ 4
=] & tput
| Eolp O cpgriorms» 1= oot
| Espec. de Componente Identificar e
| & Arquitetura SMarty Refinar Interfaces Variabilidades A
: oo e S Variabilidades R =
«input» A —~ — / r ~— K& :
F‘j woutputy |~ [l P 4 y «Putpub> Interfaces SMarty |
RO input» o Especificaca % & |
: Lo finpub L~ specificagao e T
 Interfaces de Negcio Descobrir Operagdes de Interfaces “P o ¢ performs»
de Negocio Rstrear e Controlar
ariabilidade:
perférms»
2
Arquiteto
de Linha de
Produto

Figura 3. Atividade: Interacdao de Componente do Workflow de Especificacao

88

[l Latin American School on Software Engineering (ELA-ES 2015)

4. Resultados

Em um Mapeamento Sistemdtico (MS) realizado, o estudo de Razavian e Khosravi
[Razavian and Khosravi 2008] se destacou representar variabilidades em uma quantidade
maior de elementos que demais estudos, por ser baseado em UML e por ser uma aborda-
gem anotativa. Além disso, o estudo possui um estudo de caso com uma LPS denominada
Virtual University. O estudo experimental comparou a efetividade de SMarty em relacao
a abordagem de Razavian e Khosravi. Os resultados obtidos neste estudo evidenciam a
efetividade de SMarty e compdem um artigo publicado na International Conference on
Enterprise Information Systems (ICEIS) [Bera et al. 2015]. A proposta de SMartyCom-
ponents foi definida e um estudo empirico qualitativo estd sendo preparado para avalii-la.

Referéncias

Bera, M. H. G., Oliveiralr, E., and Colanzi, T. E. (2015). Evidence-based SMarty Sup-
port for Variability Identification and Representation in Component Models. In Proc.
ICEIS, pages 295-302.

Cheesman, J. and Daniels, J. (2001). UML Components: A Simple Process for Specifying
Component-based Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition.

Contieri Junior, A. C., Correia, G. G., Colanzi, T. E., Gimenes, I. M. S., Oliveiralr, E.,
Ferrari, S., Masiero, P. C., and Garcia, A. F. (2011). Extending UML Components
to Develop Software Product-Line Architectures: Lessons Learned. In Proc. ECSA,
pages 130-138.

Haber, A., Rendel, H., Rumpe, B., and Schaefer, I. (2011). Delta Modeling for Software
Architectures. In Proc. MBEES, pages 1-10.

Jensen, R. W. (2015). Improving Software Development Productivity: Effective Lea-
dership and Quantitative Methods in Software Management. Pearson Education, Inc.,
Westford, Massachusetts, USA.

Linden, F. J., Schmid, K., and Rommes, E. (2007). Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

Marcolino, A., Oliveiralr, E., Gimenes, 1., and Maldonado, J. (2013). Towards the Ef-
fectiveness of a Variability Management Approach at Use Case Level. In Proc. SEKE,
pages 214-219.

Nakagawa, E. Y., Becker, M., and Maldonado, J. C. (2013). Towards a Process to Design
Product Line Architectures Based on Reference Architectures. In Proc. SPLC, pages
157-161. ACM.

Oliveiralr, E., Gimenes, 1., and Maldonado, J. (2010). Systematic Management of Varia-
bility in UML-based Software Product Lines. Journal of Universal Computer Science,
16(17):2374-2393.

Razavian, M. and Khosravi, R. (2008). Modeling Variability in the Component and Con-
nector View of Architecture Using UML. In Proc. AICCSA, pages 801-809.

89

[l Latin American School on Software Engineering (ELA-ES 2015)

SMartyMetrics: uma Proposta de Framework de Métricas
para Arquiteturas de Linha de Produto de Software

André Felipe Ribeiro Cordeiro, Edson OliveiraJr

'Departamento de Informatica — Universidade Estadual de Maringa (UEM)
CEP 87020-900 — Maringa-PR — Brasil

cordeiroandrefelipe@gmail .com, edson@din.uem.br

Abstract. This paper presents a research proposal of a metrics framework for
evaluating Software Product Line Architectures (SPLA), taking into account
the SMarty approach. Such an approach aims to managing variability
management in UML-based Software Product Lines. The metrics study
involves literature review, proposal and experimental validation of the metrics
and the framework, based on SMarty UML models. Among main expected
contributions from this work is the definition of a set of metrics to evaluate
SPLAs and a framework, as well as improving the state of the art with regard
to evaluation of SPLASs.

Resumo. Este artigo apresenta uma proposta de pesquisa no contexto de um
framework de métricas para avaliacdo de Arquiteturas de Linha de Produto
de Software (ALPS), considerando a abordagem SMarty. Tal abordagem
permite o gerenciamento de variabilidades em Linhas de Produto de Software
modeladas em UML. O estudo de métricas envolve a revisdo da literatura,
proposta e validacdo experimental das métricas e do framework,
considerando modelos UML SMarty. Entre as principais contribuicdes
esperadas para este trabalho estdo a definicdo de um conjunto de métricas
para avaliar ALPSs e de um framework, além do aprimoramento do estado da
arte com relacdo a avaliacao de ALPSs.

1. Introducao

Linha de Produto de Software (LPS) ¢ uma abordagem de desenvolvimento de software
baseada no reuso sistematico e organizado em um dominio especifico de atuacdo
[Linden et al. 2007]. Os artefatos de uma LPS sao classificados em artefatos comuns e
variaveis [Capilla et al. 2013]. Os artefatos comuns estdo presentes em todos os
produtos derivados da LPS e geralmente envolvem caracteristicas do dominio. Os
artefatos variaveis sdo aqueles que diferenciam os produtos derivados da LPS.

O conjunto de artefatos definidos para uma LPS ¢ armazenado em um
repositorio, conhecido como Nucleo de Artefatos [Linden et al. 2007]. Um dos artefatos

90

[l Latin American School on Software Engineering (ELA-ES 2015)

mais importantes do nucleo ¢ a arquitetura da LPS (ALPS). Tal artefato descreve os
detalhes arquiteturais, levando em consideracao as caracteristicas técnicas e de negdcio
da futura LPS.

Gerenciar esses artefatos torna-se relevante para o processo de adogdo e
manuten¢do de uma LPS. Entre as atividades de gerenciamento, estd a Avaliagdo de
LPS (AVLPS) [Oliveira Junior et al., 2013]. A partir da AVLPS, os arquitetos e
gerentes podem avaliar caracteristicas como complexidade dos produtos derivados e
Return On Investment (ROI) [Pohl et al. 2005]. Dada a complexidade do gerenciamento
de LPSs, alguns métodos de AVLPS tém sido propostos na literatura, com critérios e
processos sistematicos.

Entre os métodos de AVLPS propostos, esta o Systematic Evaluation Method for
UML-based Software Product Line Architectures (SystEM-PLA) [Oliveira Junior et al.
2013], para avaliacdo de ALPSs modeladas em UML. Este método permite a avaliagdo
de ALPSs nos estagios iniciais do processo de desenvolvimento, possibilitando que
alteragdes realizadas na LPS ndo sejam onerosas ao projeto. O SystEM-PLA utiliza a
abordagem Stereotype-based Management of Variability (SMarty) [Oliveira Junior et al.
2010] para realizar a(s) avaliagdo(¢des). SMarty fornece um conjunto de esteredtipos
denominado SMartyProfile e um conjunto de diretrizes denominado SMartyProcess. O
SMartyProfile permite a representagao de artefatos comuns e varidveis em modelos
UML da LPS e o SMartyProcess apresenta diretrizes para identificar e aplicar os
estereotipos em elementos variaveis da LPS.

A abordagem SMarty ¢ utilizada pelo método SystEM-PLA na geracdo de
artefatos, mais especificamente, de modelos UML representativos de LPS, que
permitem a realizacdo das atividades de avalia¢do definidas pelo método.

Este projeto apresenta a proposta de um framework de métricas para as
atividades de AVLPS. Tal framework deve incorporar as métricas ja suportadas pelo
SystEM-PLA [Oliveira Junior e Gimenes 2014; Marcolino et al. 2013], além de novas
métricas, que devem ser definidas e avaliadas experimentalmente. Essas novas métricas
sdo propostas com o objetivo de ampliar do escopo de AVLPS, considerando a
abordagem SMarty.

2. Métricas para Arquitetura de LPS existentes no SystEM-PLA

As métricas apresentadas em Oliveira Junior ¢ Gimenes (2014), Marcolino et al. (2013)
e Oliveira Junior et al. (2008), para avaliar ALPSs modeladas em UML estdo
organizadas em duas categorias: métricas basicas e métricas para atributos de qualidade.

As métricas basicas [Oliveira Junior et al. 2008] verificam as caracteristicas dos
elementos presentes no(s) modelo(s) UML da LPS. Tais elementos podem ser comuns
ou variaveis. Caso o elemento seja comum, € provavel que o mesmo esteja em todos os

91

[l Latin American School on Software Engineering (ELA-ES 2015)

produtos derivados. Caso seja variavel, a verificacdo de possiveis restricdes entre os
elementos do modelo ¢ necessaria.

As métricas para atributos de qualidade verificam a complexidade e
extensibilidade de uma LPS a partir de seus produtos derivados. Tais atributos de
qualidade foram adaptados ao contexto de LPS para auxiliarem na AVLPS. As métricas
de complexidade [Marcolino et al. 2013] consideram a Complexidade Ciclomatica (CC)
e o numero de Métodos Ponderados por Classe (Weighted Methods per Class — WMC),
existentes em cada elemento da LPS. As métricas de extensibilidade [Oliveira Junior e
Gimenes 2014] consideram a presenca de caracteristicas de heranca e classes abstratas.

3. SMartyMetrics: um Framework de Métricas para ALPS

De forma sucinta, este projeto tem o objetivo de construir um framework de métricas
para AVLPSs. Além das construgdo do framework, estdo previstas as definigdes e
validacdes experimentais de outras métricas para AVLPS.

O conjunto de métricas presentes no Framework deve contemplar as métricas
existentes no SYStEM-PLA, e o acréscimo de um novo conjunto de métricas, que devem
ser investigadas neste projeto. A proposta de novas métricas acontece com o objetivo de
ampliar o escopo das AVLPSs. A ampliagdo do escopo se faz necessaria por conta das
caracteristicas nao cobertas pelas métricas basicas e de atributos de qualidade
existentes. Por exemplo, entre as caracteristicas ndo cobertas, estdo o esforco de
manutengdo ¢ a estabilidade de classes[Alshayeb et al. 2011].

Algumas métricas, como a métrica para avaliar a estabilidade de classes ndo sdo
exclusivas de LPS. Neste caso, tais métricas devem ser adaptadas considerando as
informacodes relevantes para a AVLPS. Detalhes de possiveis adaptagdes ainda nao
estdo definidos, pois tal decisdo depende diretamente das métricas que forem
selecionadas para a incorporagdo ao framework. Com relacdo as métricas que devem ser
investigadas, ainda ndo se definiu o nimero de métricas, bem como quais caracteristicas
serdo priorizadas. O que se sabe até o momento ¢ que as futuras métricas deverdo
possibilitar analises significativas com a relagdo as LPSs modeladas em UML.

Para a constru¢do do Framework de Métricas, objetivo geral deste projeto, estdo
sendo considerados os seguintes objetivos especificos: Revisdo Sistematica de
Literatura (RSL) sobre as métricas, tanto de LPS, quanto de Orientacao a Objeto (OO),
que possam ser aplicadas em Modelos de LPS UML SMarty; Validacdo Tedrica e
Experimental de tais métricas selecionadas na RSL; Representagdo das métricas
adotando o Structured Metrics Metamodel (SMM) (SMM 2015), para possibilitar a
troca de dados entre projetos/ferramentas; Proposi¢ao e Modelagem do Framework de
Métricas e Valida¢do Experimental do Framework de Métricas.

92

[l Latin American School on Software Engineering (ELA-ES 2015)

4. Conclusao

Este artigo apresentou um projeto de pesquisa contendo as atividades
necessarias a construgdo de um Framework de métricas para AVLPSs, baseadas em
modelos UML SMarty. O SMartyMetrics deve conter as métricas ja suportadas pelo
método SystEM-PLA e novas métricas que serdo definidas e validadas. Ao final, espera-
se que o framework construido contribua para a evolug¢do do estado da arte na AVLPS,
possibilitando a expansdo da abordagem SMarty

Referéncias

Alshayeb, M.; Naji, M.; Elish, M. O.; Al-Ghamdi, J. Towards measuring object-
oriented class stability. IET Software, 2011, v. 05, p. 415-424, 2011.

Capilla, R.; Bosch, J.; Kang, K. Systems and Software Variability Management:
Concepts, Tools and Experiences. SpringerLink : Bucher. Springer, 2013.

Linden, F. J.; Schmid, K.; Rommes, E. Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

Marcolino, A. S.; Oliveira Junior E. A.; Gimenes I. M. S.; Conte, T. U. Towards
Validating Complexity-Based Metrics for Software Product Line Architectures. In:
SBCARS, 2013, Brasilia. 2013. v. 1. p. 69-94.

Oliveira Junior, E. A.; Gimenes, . M. S. Empirical Validation of Product-line
Architecture Extensibility Metrics. In: ICEIS, 2014, Lisbon. v. 2. p. 111-118.

Oliveira Junior, E. A.; Gimenes, I. M. S.; Maldonado, J. C.; Masiero, P. C.; Barroca, L.
Systematic Evaluation of Software Product Line Architectures. Journal of Universal
Computer Science, 2013, v. 19, p. 25-52, 2013.

Oliveira Junior, E. A.; Gimenes, I. M. S.; Maldonado, J. C. Systematic Management of
Variability in UML-based Software Product Lines. Journal of Universal Computer
Science (JUCS), 2010, v. 16, p. 2374-2393, 2010.

Oliveira Junior, E. A.; Gimenes, I. M. S.; Maldonado, J. C. A Metric Suite to Support
Software Product Line Architecture Evaluation. In: CLEI, 2008, Santa Fe. 2008. p.
489-498.

Pohl, K.; Bockle, G.; Linden, F. J. Software Product Line Engineering: Foundations,
Principles, and Techniques. Secaucus, NJ, USA: Springer-Verlag, 2005.

SMM. Structured Metrics Meta-Model. OMG Group. 2015. Disponivel em
http://www.omg.org/spec/SMM/. Acesso em 14/04/2015.

93

[l Latin American School on Software Engineering (ELA-ES 2015)

Estudo de Caracterizacao de Bugs
de Projetos de Codigo Aberto

Guilherme A. de Oliveira', Humberto T. Marques-Neto'

nstituto de Ciéncias Exatas e Informética
Pontificia Universidade Catdlica de Minas Gerais (PUC Minas)
30.535-901 — Belo Horizonte — MG — Brasil

Resumo. Em sistemas de codigo aberto populares, uma grande quantidade de
requisicoes de manuten¢do sdo reportados em sistemas de gerenciamento de
bugs. Por exemplo na fundagdo Mozilla, cerca de 250 bugs foram criados por
dia em 2012. Com certeza, entender melhor o processo de manutencdo pode
melhorar a produtividade dos desenvolvedores que resolvem bugs. Este traba-
lho realiza uma caracterizacdo de bugs de um sistema de codigo aberto, a partir
do ciclo de vida de um bug. Os resultados dessa caracteriza¢do apontam a ne-
cessidade de se investir no processo de aceitacdo de novos bugs e também no
controle de qualidade para verificacdo de bugs resolvidos.

1. Introducao

A manutencao € uma das fases mais importantes e custosas de um software [Erlikh 2000,
Mookerjee 2005]. Desenvolvedores de projetos de cédigo aberto, normalmente, traba-
lham nas requisi¢cdes de manutencao (i.e., bugs) assim que elas ficam disponiveis no sis-
tema de gerenciamento de bugs, e.g., Bugzilla, Jira [Mockus et al. 2002, Liu et al. 2012].

Entretanto, sistemas de codigo aberto populares podem possuir uma grande quan-
tidade de desenvolvedores e de bugs. Por exemplo, a fundagio Mozilla! possuia mais
de 280 mil bugs cadastrados entre 2009 e 2012. Nesse mesmo periodo de tempo, 5.045
desenvolvedores interagiram de alguma forma na resolucdo desses bugs. Somente em
2012, foram criados aproximadamente 7.500 bugs por més com 1.390 desenvolvedores
trabalhando ativamente na resolucdo destes bugs.

Essa enorme quantidade de bugs aliada ao trabalho ndo coordenado de muitos
desenvolvedores pode prejudicar a produtividade das tarefas de manutencao em grandes
sistemas de codigo aberto [Mockus et al. 2002, Tan and Mookerjee 2005]. Uma analise
do processo de manutencao poderia indicar pontos criticos a serem aperfeicoados para
melhorar esse cendrio. Este trabalho apresenta uma caracterizagdo de bugs do Mozilla,
realizada com o objetivo de ajudar no entendimento do processo de manutengao de siste-
mas de codigo aberto.

2. Estudo

Esta secdo descreve o estudo realizado com 283.971 bugs da fundacdao Mozilla, que pos-
sui bugs de diversos produtos como Firefox, Thunderbird, entre outros. Foram estudados
bugs criados entre 2009 e 2012, para caracterizar o processo de manutencdo. Esse pro-
cesso € referido como o ciclo de vida de um bug e mostra o fluxo de trabalho para a

'www.mozilla.org, acessado em 2015-04-01.

94

[l Latin American School on Software Engineering (ELA-ES 2015)

resolucdo de um bug [Anvik et al. 2006, Anvik and Murphy 2011]. A Figura 1 mostra o
ciclo de vida juntamente com as porcentagens de bugs analisados no estudo. Os valores
nas transi¢oes dessa figura mostram a porcentagem de bugs que sairam do estado de ori-
gem. O ndmero dentro de cada estado indica a porcentagem de bugs que permaneceram
naquele mesmo estado. Portanto, somando os valores dentro do estado juntamente com
as transi¢oes de saida, obtém-se 100%.

Bugis fled by a nonempowerad
user in a product where the
UNCONFIRMED state is enabled

69%

Eug determined
to be present

UNCONFIRMED

g CONFIRMED A A

(22%)
16%
; De veloper is working
3% on the bug
Developer stops A 4
work on bug i
IN_PROGRESS | 3% L.
(8%)
89%
Fix checked in
[Possible resolutions: 1%
FIXED : - A
QA not satisfied /
DUPLICATE . ; 62% ,
WONTFIX with the solution RESOLVED 1%
WORKSFORME : (76%) -« -
wvao [T I — ——— 61% Bugis net fixable

22%
QA verfies that
the solution works

2% A 4 Bug is reopenad,

: Fixturns out to be wrong VERIFIED 1% was never confrmed 2

HETT————— eyt TR e — -
(97%)

Figura 1. Ciclo de vida de um bug no Bugzilla

Durante o processo de manutencio, um bug pode caminhar por diversos estados
do ciclo de vida. Quando um novo bug € reportado no Bugzilla, ele pode ser registrado
como Unconfirmed ou Confirmed (respectivamente 31% e 69% dos bugs da base). Nor-
malmente, os bugs reportados por usudrios comuns sdo registrados como Unconfirmed,
e super-usudrios (i.e., usudrios com permissoes especiais) podem criar bugs Confirmed.
Entretanto, em certos projetos Mozilla, usuarios comuns também podem criar bugs Con-
firmed. Por isso a quantidade de bugs Confirmed (69%) neste estudo é maior que Uncon-
firmed (31%).

Bugs Unconfirmed podem mudar para Confirmed se receberem votos de outros
usudrios comuns confirmando a ocorréncia do problema, ou se algum super-usudrio de-
cidir mudar seu estado. Super-usudrios também podem mudar o estado de Unconfirmed
para Resolved, caso o bug reportado ndo possa ser corrigido (i.e., invalido, duplicado, etc.)
ou caso ndo era um problema de fato. Interessante notar que a maioria dos bugs Uncon-
firmed do estudo sdo resolvidos diretamente (61%) e apenas uma pequena parte (21%)
segue para o inicio do processo de manutencdo como Confirmed. Em poucas ocasides
(3%), um super-usudrio pode atribuir um bug Unconfirmed diretamente para um desen-
volvedor trabalhar nele, mudando assim seu estado para In_progress.

Quando um Confirmed bug é designado a um desenvolvedor, este bug assume o
estado de In_progress. Também € possivel que um Confirmed bug nao possa ser corri-

95

[l Latin American School on Software Engineering (ELA-ES 2015)

gido, nesse caso o bug € marcado como Resolved. Pode-se notar que a porcentagem de
Confirmed bugs que sdo marcados diretamente como resolvidos (62%) € bem préxima a
dos Unconfirmed que seguem o mesmo caminho (61%). Outra informacado inesperada é
que apenas 16% dos Confirmed bugs sao alocados para desenvolvedores trabalharem.

Um bug no estado In_progress indica que existe um desenvolvedor trabalhando
ativamente nele. Se o desenvolvedor enviar a resolu¢do do bug, o estado muda para
Resolved. Os dados do estudo indicam que a maioria dos bugs In_progress (89%) sao
resolvidos. Se o desenvolvedor parar de trabalhar no bug, este volta para o estado de
Confirmed. Segundo os bugs da base estudada, sdo ocorréncias incomuns um bug retornar
para Confirmed (3%).

O estado Resolved representa bugs que foram resolvidos ou fechados. Caso seja
necessario, um bug resolvido pode ser verificado por usudrios do controle de qualidade
(QA — Quality Assurance) para certificar que a resolucdo estd realmente correta. Nesse
caso, depois de ser aprovado pela verificacdo, o bug assume o estado de Verified. Como
mostrado na Figura 1, apenas 22% dos bugs estudados passaram por esse controle de
qualidade. Também € possivel que um bug dado como resolvido retorne ao estado de
Confirmed (1%) ou Uncofirmed (1%) se o controle de qualidade nao ficar satisfeito com a
solucdo. Entretanto, a maior parte dos bugs resolvidos (76%) permanecem como Resolved
e ndo sdo verificados pelo controle de qualidade.

Um bug verificado pode retornar aos estados iniciais do processo de manutencao
como Confirmed ou Unconfirmed. Entretanto, esse cendrio € bastante incomum ocorrendo
em 3% dos bugs estudados. Entao, 97% dos bugs verificados permanecem nesse estado.

A Tabela 1 apresenta a quantidade de bugs estudados que passaram, em algum
momento do seu ciclo de vida, por algum estado do processo de manutencao. Essa tabela
também mostra a porcentagem de bugs que passaram por aquele estado, de acordo com o
total de bugs criados entre 2009 e 2012 (283.971 bugs). Além disso, a Tabela 1 apresenta
o tempo de espera (em dias) de bugs nesse estado. Nesse tempo de espera, foram con-
siderados apenas os bugs que sairam do estado, i.e., esta informacao ignora os bugs que
permaneceram no mesmo estado porque neste caso o tempo de espera seria infinito.

Pode-se perceber que o estado em que se passaram a maior quantidade de bugs,
foi o Resolved, que foi também o estado que obteve a menor média de dias de espera. Os
estados Unconfirmed e Confirmed sao os que tem as maiores médias de tempo de espera.
A quantidade de bugs que caminharam pelo estado Unconfirmed foram bem menores
que Confirmed. A quantidade de bugs que passaram por In_progress ¢ a menor da base
estudada. Isso era esperado visto que grande parte dos bugs reportados sdo resolvidos
diretamente. Para o estado Verified a quantidade de bugs que passaram por esse estado e
a média de dias de trabalho sdo relativamente baixa, indicando que poucos testes podem
ser feitos em bugs resolvidos.

3. Conclusao

Este trabalho apresenta uma avaliacdo de 283.971 bugs da fundagao Mozilla. Analisando
estes bugs no processo de manutengdo, € possivel encontrar informacdes interessantes.
E importante evidenciar que os projetos Mozilla precisam de investimentos maiores no
processo de aceitacao de novos bugs. Isso se deve ao fato que mais de 60% (170 mil) dos

96

[l Latin American School on Software Engineering (ELA-ES 2015)

Tabela 1. Bugs Caminhando pelos Estados do Ciclo de Vida do Mozilla

Estado Bugs Tempo de Espera (dias)
Quantidade | % || Min | Max | Média | Desvio | Mediana
Unconfirmed 87.216 | 30,71 0 1360 93 184 1
Confirmed 214.996 | 75,71 0 | 1373 61 150 6
In_Progress 47.448 | 16,71 0 1312 33 95 5
Resolved 226.685 | 79,83 0 1259 2 45 6
Verified 49.573 | 17,46 0 1229 15 73 7
| Total | 283971100 [-] - | - | - | - |

bugs sao resolvidos logo apds sua criacdo. Estes bugs sdao fechados justamente porque
nao podem ser corrigidos (por exemplo, por serem invalidos ou duplicados).

Outro ponto importante é que apenas 22% dos bugs resolvidos sao verificados pelo
controle de qualidade do Mozilla. Uma andlise mais aprofundada € necessdria para des-
cobrir o motivo dessa ocorréncia. Isso pode indicar a necessidade de atrair mais pessoas
para a area de controle de qualidade da fundag¢ao Mozilla.

Como trabalhos futuros, pretende-se realizar um estudo em intervalos menores de
tempo da base de dados, para verificar se o comportamento analisado neste trabalho varia
em conformidade com o intervalo de tempo. Outra possibilidade seria usar algoritmos de
clusterizacdo para criar grupos mais coesos de bugs e analisar o processo de manutencao
para cada grupo. Finalmente, pode-se analisar a produtividade dos desenvolvedores em
relacdo aos tipos de bugs resolvidos.

Referéncias

Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who should fix this bug? In Proceedings
of the 28th International Conference on Software Engineering, ICSE 06, pages 361—
370, New York, NY, USA. ACM.

Anvik, J. and Murphy, G. C. (2011). Reducing the effort of bug report triage: Re-
commenders for development-oriented decisions. ACM Trans. Softw. Eng. Methodol.,
20(3):10:1-10:35.

Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IT Professional,
2(3):17-23.

Liu, K., Tan, H. B. K., and Chandramohan, M. (2012). Has this bug been reported? In
20th ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering (FSE), pages 28:1-28:4.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies of open source
software development: Apache and Mozilla. ACM Transactions on Software Enginee-
ring and Methodology, 11(3):309-346.

Mookerjee, R. (2005). Maintaining enterprise software applications. Communications of
the ACM, 48(11):75-79.

Tan, Y. and Mookerjee, V. (2005). Comparing uniform and flexible policies for soft-
ware maintenance and replacement. [EEE Transactions on Software Engineering,
31(3):238-255.

97

[l Latin American School on Software Engineering (ELA-ES 2015)

Anadlises Estruturais para Identificacio de Falso-Positivos em
Recomendacoes de Refatoracao

Rafael S. Lima, Ricardo Terra

Departamento de Ciéncia da Computagao,
Universidade Federal de Lavras (UFLA), Brasil

rafaelsplima@computacao.ufla.br,terraldcc.ufla.br

Resumo. Desenvolvedores — para atingir objetivos de curto prazo — reali-
zam alteracoes de codigo que se opoem a organizacdo estrutural existente.
Nesse cendrio, ferramentas de identificacdo de oportunidades de refatoracdo
sdo normalmente aplicadas no intuito de reverter tais alteracoes. O problema,
entretanto, consiste no fato de que tais ferramentas reportam uma parcela con-
siderdvel de falsos positivos. Diante disso, este estudo tem o intuito de prover
desenvolvedores com uma série de andlises que visam explicar o porqué o mé-
todo deve ser refatorado ou ndo. No estado atual da pesquisa, foram propostas
trés andlises aplicdveis em refatoracoes Extract Method e Move Method cujas
implementagoes estdo sendo realizadas no Ambiente Moose.

1. Introducao

Desenvolvedores — para atingir objetivos de curto prazo — realizam alteragdes de codigo
que se opdem a organizacdo estrutural existente [8]. Para reverter essas alteracdes, nor-
malmente sdo aplicadas refatoracdes que consistem no processo de alteracdo de um sis-
tema de software sem modificar seu comportamento no intuito de melhorar a estrutura e
o entendimento do cédigo [1} 4].

Diversas técnicas vém sendo propostas na literatura para a identificacdo de opor-
tunidades de refatoracdo, por exemplo, baseadas em Feature Envy bad smells [9], métri-
cas [2]], similaridade estrutural [6, 7], etc. O problema, entretanto, consiste no fato de
que normalmente essas ferramentas reportam diversas recomendagdes e que uma parcela
relevante consiste de falsos positivos, o que implica em uma baixa precisao.

Diante disso, este estudo — a partir de uma série de recomendagdes sugeridas por
outras ferramentas — tem o intuito de prover desenvolvedores com uma série de andlises
estruturais para identificac@o de falsos positivos, visando explicar o porqué o método deve
ser refatorado ou ndo. Por exemplo, assuma que o método m da classe C' depende dos
tipos {A, B} enquanto que todos os outros métodos de C' dependem de {X,Y}. Uma
ferramenta baseada em similaridade estrutural recomendaria mover m para uma outra
classe C' que seja mais similar.

No entanto, por mais coerente que se pare¢a, uma andlise da dependéncia em nivel
de pacotes poderia indicar que A, B, X e Y pertencem ao mesmo pacote p, o que poderia
levar a um questionamento por parte do desenvolvedor.

O restante deste artigo estd organizado conforme a seguir. A Secdo [2] introduz
conceitos fundamentais ao estudo. A Secdo [3] apresenta a proposta de pesquisa descre-
vendo um conjunto de andlises estruturais no auxilio de refatoragdes. E, por fim, a Se¢ao]
conclui descrevendo as contribui¢des esperadas.

98

[l Latin American School on Software Engineering (ELA-ES 2015)

2. Background

Similaridade Estrutural: Coeficiente de similaridade mede o grau de correspondéncia
entre duas entidades conforme um critério estabelecido [S]]. Assume-se que uma entidade
de cddigo fonte (e.g., um método) € representada pelo conjunto de tipos com quais ela es-
tabelece dependéncia. Desse modo, o célculo de similaridade entre duas entidades pode
ser realizado usando o coeficiente Jaccard, que considera a relagdo existente entre o nui-
mero de tipos comuns e o nimero de tipos encontrados em cada entidade, como a seguir:

a

Sim(El,EQ) = m

onde a = numero de tipos comuns, b = nimeros de tipos exclusivos a entidade F,
c = numeros de tipos exclusivos a entidade F5. Por exemplo, considere dois métodos
my = {B,C,D}emy ={C,D}. Comoa =2,b=1ec=0, sim(my, my) = 0.666.

Extract Method: Métodos longos que acumulam diversas responsabilidades — o que
implica em baixa coesdo e alto acoplamento no nivel de métodos — sd@o bad smells
comumente encontrados em sistemas de software. Por exemplo, assuma um método que
realize duas responsabilidades. Nesse cenario, desenvolvedores normalmente aplicam a
refatoracdo Extract Method que extrai um fragmento do método original para um novo
método. Essa refatoracdo, além de contribuir diretamente para a modularidade, promove
retiso e reduz duplicagdo de codigo [1, 4]].

Move Method: Métodos implementados em classes incorretas — o que implica em baixa
coesdo e alto acoplamento no nivel de classes — também sdo bad smells comumente
encontrados em sistemas de software. Nesse cendrio, desenvolvedores normalmente
aplicam a refatoracdo Move Method que move o método para uma classe mais apropriada.
Essa refatoracdo diminui o acoplamento e aumenta a coesao em nivel de classe, além de
promover a organizacao [[1, 4].

Moose: E um ambiente independente de linguagem para engenharia reversa e reenge-
nharia de sistemas de softwareﬂ Moose prové um conjunto de servicos que incluem um
meta-modelo comum, visualizac¢do e avaliacdo de métricas, repositorio de modelos e um
apoio visual para consulta, navegagdo e agrupamento [3]]. A Figura[l]ilustra um exemplo
de duas visualizacdes do Moose baseadas em similaridade estrutural: (a) uma que reporta
oportunidades de refatoracdo Extract Method que pode identificar um bloco no método
save que depende de tipos diferentes do restante do método; e (b) uma que reporta oportu-
nidades de refatoracdo Move Method que pode identificar que o método persist depende
de tipos diferentes dos demais métodos da classe ProductAction.

ProductAction

persist handle

ProductAction::save() -
pe»rslst(Prod_Jc'-:vold
SessionFactory,Session,
Transaction,Product}

(a) Rec. de Extract Method (b) Rec. de Move Method

Figura 1. Exemplo de visualizagcdes no Moose

"http://www.moosetechnology.org

99

http://www.moosetechnology.org

[l Latin American School on Software Engineering (ELA-ES 2015)

3. Proposta de Pesquisa

O objetivo do presente estudo € prover analises baseadas em similaridade estrutural que
validem ou invalidem recomendag¢des providas por ferramentas de identificacao de opor-
tunidades de refatoragdo. Conforme ilustrado na Figura[2] logo que uma ferramenta apon-
tar uma oportunidade de refatoracdo, disponibilizar-se-4 uma série de andlises que visam
explicar o porqué o método deve ser de fato refatorado ou ndo.

Rec. Extract Method H,
m, () bar() Dep = {A,B}
bar() ; {com.pkg1, com.pk2}
Moose
Rec. Move Method H, H,
c c, foo() Dep = {A,B,C} qux() Dep = {B,C}
foo() m, () {A.B}
> | {[B,54], [C.1]} 0.65
m, () qux() {A} - e -
{AB.D}

Figura 2. Proposta de Pesquisa

No estado atual desta pesquisa, foram propostas andlises — as quais sdo ilustradas na
Figura[2]— com o objetivo de verificar as seguintes hipdteses:

H,. Apenas um ou mais tipos sdo responsdveis pela baixa similaridade. Isso indi-
caria que uma sugestdo de refatoracdo ndo seria recomendada se o método ndo
dependesse de um certo tipo e/ou fosse adicionado um novo tipo. Por exemplo, o
método foo depende de {A, B, C'} e tem similaridade de 0.25 com a classe atual.
Se C fosse retirado e D adicionado, a similaridade subiria para 0.7.

H,. Embora os tipos sejam diferentes, a maioria pertence ao mesmo pacote. Isso
indicaria que uma sugestdo de refatoracdo ndo seria dada se a similaridade fosse
calculada no nivel de pacotes e ndo de tipos. Por exemplo, um bloco do método
bar depende de {A, B} e tem similaridade de 0.01 com o restante do método. Se
o conjunto considerado fosse o do pacote dos tipos — {com.pkgl, com.pkg2} — a
similaridade subiria para 1.0.

Hs. Os tipos que a entidade depende sdo largamente (no fator quantitativo) utilizados.
Isso indicaria que uma sugestdo de refatoracdo nao seria dada se a similaridade
fosse calculada considerando multiplicidade, i.e., o nimero de vezes que um
tipo é acessado. Por exemplo, o método qux depende de {B,C'} e tem simila-
ridade de 0.1 com a classe atual. Se o conjunto considerasse multiplicidade —
{[B,54],[C, 1]} — a similaridade subiria para 0.65.

As andlises supracitadas foram elaboradas a partir de justificativas de desenvolve-
dores para ndo acatarem certas recomendacgdes. Novas andlises serdo propostas por inves-
tigacOes qualitativas em repositorio de sistemas de codigo aberto. A avaliagdo, contudo,

100

[l Latin American School on Software Engineering (ELA-ES 2015)

serd realizada por meio de questiondrios. Serdo enviadas recomendagdes que casem com
alguma analise proposta, indagando o desenvolvedor se 0 mesmo a aplicaria ou ndo com
as devidas justificativas, as quais serdo utilizadas para aperfeigoar e corrigir as andlises.

4. Consideracoes Finais

Desenvolvedores — para atingir objetivos de curto prazo — realizam alteragdes de codigo
que se opdem a organizacao estrutural existente. Para reverter essas alteracdes, normal-
mente sdo aplicadas refatoracdes. Nesse cendrio, existem diversas ferramentas que iden-
tificam oportunidades de refatoracdo baseadas em Feature Envy bad smells, métricas,
similaridade estrutural, etc.

A maior contribuicdo desta pesquisa consiste em prover desenvolvedores com
uma série de andlises que visam explicar o porqué o método deve ser refatorado ou nio.
O estudo limita-se a refatoragdes Extract Method e Move Method e utiliza ferramentas
centradas em similaridade estrutural adaptadas para o ambiente Moose [0, [7]. No en-
tanto, € esperado que, com o decorrer da pesquisa, um maior numero de refatoracdes e
ferramentas sejam incorporadas ao estudo.

Agradecimentos
Este trabalho foi apoiado pela FAPEMIG, CAPES e CNPq.

Referéncias

[1] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley,
Boston, 1999.

[2] Radu Marinescu. Detection strategies: Metrics-based rules for detecting design flaws.
In 20th International Conference on Software Maintenance (ICSM), pages 350-359,
2004.

[3] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Girba. The story of Moose: An agile reen-

gineering environment. In /0th European Software Engineering Conference (ESEC),
pages 1-10, 2005.

[4] William Opdyke. Refactoring object-oriented frameworks. PhD thesis, University of
Ilinois at Urbana-Champaign, 1992.

[5] H. Charles Romesburg. Cluster Analysis for Researchers. Lulu Press, North Carolina,
2005.

[6] Vitor Sales, Ricardo Terra, Luis Fernanda Miranda, and Marco Tulio Valente. Recommen-
ding Move Method refactorings using dependency sets. In 20th Working Conference
on Reverse Engineering (WCRE), pages 232-241, 2013.

[7] Danilo Silva, Ricardo Terra, and Marco Tulio Valente. Recommending automated Extract
Method refactorings. In 22nd International Conference on Program Comprehension
(ICPC), pages 146-156, 2014.

[8] Ricardo Terra and Marco Tulio Valente. A dependency constraint language to ma-
nage object-oriented software architectures. Software: Practice and Experience,
32(12):1073-1094, 2009.

[9] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of Move Method re-
factoring opportunities. IEEE Transactions on Software Engineering, 99:347-367,
20009.

101

[l Latin American School on Software Engineering (ELA-ES 2015)

Formacao de Equipes de Alto Desempenho para
Desenvolvimento de Software

Alessandra C. S. Dutra, Rafael Prikladnicki

'Pontificia Universidade Catdlica do Rio Grande do Sul (PUCRS)
Av. Ipiranga, 6681 — 90619-900 — Porto Alegre — RS — Brazil

{alessandra.dutra, rafaelp}@pucrs.br

Resumo. Este artigo descreve o trabalho que tem sido desenvolvido para
analisar a formagdo de equipes de alto desempenho para desenvolvimento de
software frente as abordagens de capacitacdo existentes, avaliando a
oportunidade de propor uma abordagem metodologica de capacitagcdo
visando formar equipes de alto desempenho para o desenvolvimento de
software.

1. Introducao

O mercado de desenvolvimento de software opera em um ambiente global, com
mudangas rapidas, e precisam responder com agilidade a estas novas oportunidades e a
estes novos mercados [Sommerville 2011]. Conseguir agilidade, competitividade e
resultados sem uma equipe de desenvolvimento de software capacitada e de alto
desempenho é uma tarefa dificil e pode trazer resultados pouco competitivos.

Este contexto indica que a formacao qualificada e a capacitacdo de profissionais
sdo cada vez mais necessdrias na sociedade em que vivemos. Seja em cursos de curta
duracdo, graduacdo ou pds-graduacdo, formar bons profissionais faz parte do
compromisso das Instituicdes de Ensino Superior (IES) com a sociedade [Enricone
2006].

A qualidade da capacitacdo em ES pode contribuir significativamente a melhoria
do estado da arte do desenvolvimento de software e auxiliar a solu¢do de alguns
problemas tradicionais e crises relacionadas com as praticas da industria de software
[Gibbs 1994]. Hoje, a capacitagdo e o treinamento para formar profissionais de software
devem incluir ndo apenas conhecimentos basicos na drea de computagdo, mas também o
ensino de conceitos, processos e técnicas para definicdo, desenvolvimento e
manutenc¢do de software [Saiedian 1999] [ACM/IEEE 2013].

Neste sentido, o processo de ensino e aprendizagem de Engenharia de Software
tem passado por questionamentos acerca dos métodos utilizados nas atividades de
capacitagdo [Santos et al 2008]. Estudos recentes observam que estes métodos
envolvem estratégias tradicionais de ensino, tais como apresentacdo de teoria, aulas
expositivas e leituras complementares, fazendo com que os alunos encontrem na

inddstria um cendrio diferente do que € ensinado na academia [Santos et al 2008]
[Prikladnicki et al 2009].

Nesse contexto, faz-se necessdrio saber quais os resultados de investigacdes
cientificas em relacdo as caracteristicas da formagdo de equipes de alto desempenho em
desenvolvimento de software e as atuais abordagens de capacitacdo existentes e que de
alguma forma exploram algumas destas caracteristicas.

102

[l Latin American School on Software Engineering (ELA-ES 2015)

Este artigo tem como objetivo apresentar o trabalho que tem sido desenvolvido
nesta pesquisa, onde pretende-se analisar a formacdo de equipes de alto desempenho
para desenvolvimento de software frente as abordagens de capacitacdo existentes,
avaliando a oportunidade de propor uma abordagem metodoldgica de capacitagdo
visando formar equipes de alto desempenho para o desenvolvimento de software.

2. Referencial Teorico

A Engenharia de Software é uma disciplina preocupada com a aplicacdo de teoria,
conhecimento e pritica para o desenvolvimento efetivo e eficiente de sistemas de
software que satisfacam os requisitos dos usuarios [ACM/IEEE 2008]. Os profissionais
de ES [Conn 2002], estdo insatisfeitos com a falta de preparo dos estudantes
universitarios que ingressam no mercado de trabalho, o que leva a industria a ter que
complementar a sua educagdo com treinamentos. Este preparo pode envolver
profissionais ou equipes, incluindo equipes de alto desempenho.

Uma equipe de alto desempenho [Moscovici 2003], além de ter todos os
requisitos de uma equipe, tem seus membros comprometidos com o crescimento € o
sucesso pessoal de cada um dos membros da equipe. Esta equipe supera o desempenho
de todas as outras equipes, além de conseguir resultados além das expectativas.

3. Metodologia de Pesquisa

3.1. Desenho e Etapas da Pesquisa

Para o desenvolvimento desta pesquisa, serd utilizada a metodologia proposta por Mafra
[Mafra et al 2006], cujo desenho de pesquisa estd representado na Figura 1. Cada uma
das etapas desta metodologia é detalhada a seguir [Mafra et al 2006], [Shul et al 2001]:

* Estudos Secunddrios: essa etapa consiste na condu¢do de estudos secunddrios, tais
como revisdo sistemdtica da literatura, que tem como objetivo buscar evidéncias
primdrias na drea em estudo.

* Proposta Inicial: essa etapa consiste na produg¢do, com base no conhecimento
adquirido e nas evidéncias identificadas através da condugdo da revisdo sistemadtica, de
uma proposta inicial da tecnologia.

* Estudo de Viabilidade: essa etapa verifica, através de estudos empiricos e
experimentais, a viabilidade do processo ou tecnologia sendo analisada. Pesquisas
utilizando estudantes sdo aplicdveis nesta etapa.

* Estudo de Observagdo: essa etapa avalia todos os passos, em detalhes, que constituem
o processo de aplicacdao da nova tecnologia de forma a garantir que cada passo € efetivo
e € executado na ordem correta.

* Estudo de Caso com Ciclo de Vida Real: essa etapa consiste de um caso de estudo
avaliando o processo ou tecnologia em um ciclo de vida real de desenvolvimento de
software.

103

[l Latin American School on Software Engineering (ELA-ES 2015)

I ______ { Coleta de evidéncias na literatura 1
[Estudos Secundarios } """

y

[Proposta Inicial }

-I Criagdo da proposta inicial da tecnologia 1

MAFRA et al.
2006

v e | Os resultados sédo viaveis e o tempo é bem empregado? 1
Estudo de Viabilidade
d sm | Ospassosdoprocesso fazem sentido? |
Reprojeto

........ ; Adequado ao
: ciclo de vida?

Estudo de Caso
com Ciclo de Vida
Real

Adaptacédo e/ou
Treinamento

Adequado ©
ao ambiente
industrial?

Apri <

SHULL et al. 2001

Estudo de Caso
na Industria

Adaptagéo e/ou
Treinamento

Figura 1 - Metodologia Experimental — [Mafra et al 2006]

* Estudo de Caso na Industria: uma vez que nas etapas anteriores o processo ja foi
adaptado para ser executado em um ciclo de vida real e demonstrou ser eficaz, nesta
fase o processo ou tecnologia € avaliado em um ambiente de industria.

4. Resultados Preliminares

4.1. Revisao Sistematica

Como resultados preliminares foi executada uma Revisdo Sistemdtica da Literatura
onde identificamos algumas caracteristicas que as equipes de alto desempenho devem
ter no desenvolvimento de software. Identificamos caracteristicas organizacionais,
comportamentais e técnicas. As mais citadas foram comunicacido eficiente,
coordenacdo, trabalho em equipe, diversidade da equipe, lideranca, coesdao e motivagao.
Podemos sugerir que as equipes de alto desempenho (1) possuem uma comunica¢ao
eficaz, (2) apresentam uma diversidade que estimula a aprendizagem e a inovacao, (3)
possuem coesao, motivagdo, lideranga e coordenacao, a fim de alcancar seus objetivos.

Estes resultados geraram uma visdo inicial das caracteristicas esperadas para uma
equipe de alto desempenho. Estas equipes precisam ser capacitadas e desenvolver seus
pontos fortes, visando proporcionar um conjunto de competéncias que somente estas
equipes apresentam. A capacitacao neste caso €, portanto, um aspecto essencial para o
desenvolvimento destas equipes.

5. Préximos Passos da Pesquisa

Esta pesquisa tem como passo seguinte o planejamento e a execucdo de um estudo de
viabilidade. Este estudo terd como objetivo aprofundar a andlise nas caracteristicas das
equipes de alto desempenho, identificando suas praticas, bem como técnicas de
capacitagdo utilizadas pelas empresas para aprimorar estas priticas em seus projetos de
desenvolvimento de software.

104

[l Latin American School on Software Engineering (ELA-ES 2015)

A pesquisa serd exploratdria, qualitativa, e executada através de uma survey. As
pessoas entrevistadas serdo: gerentes de projetos, lideres de projetos e coordenadores
de projetos. A coleta de dados serd feita através de entrevistas semi-estruturadas com
questdes abertas e fechadas. A aplicacdo do Questiondrio serd com entrevistas pessoais.

A andlise de dados serd feita através de uma apresentacdo das contribui¢des do
estudo e uma andlise critica com relacdo a estes resultados. Nesta andlise serd
desenvolvida uma confrontacdo dos resultados obtidos com as teorias e estudos
relacionados e serd realizada uma andlise qualitativa dos dados coletados, através de um
mapeamento das respostas dos entrevistados.

Ap6s o estudo de viabilidade, serdo planejados e executados estudos de
observacdo e de estudos de caso com ciclo de vida real, visando avaliar as praticas de
alto desempenho e as técnicas de capacitacdo identificadas a partir das caracteristicas
destas equipes.

Referéncias Bibliograficas

Sommerville, 1. (2011) “Engenharia de Software” 9a edicdo. Sao Paulo: Pearson
Prentice Hall.

Enricone, D. (2006). “Ser Professor”, Sa edicao, EDIPUCRS.
Gibbs, W. (1994) “Software's chronic crisis”. Scientific American 2713, pp. 86-95.

Saiedian, H. (1999) “Software engineering education and training for the next
millennium, Journal of Systems and Software”, v.49,1.2-3,p. 113-115

ACM/IEEE. (2013) Computer Science Curriculum, Guidelines for Undergraduate
Degree Programs in Software Engineering.

Santos, R. P., Santos, P. S. M., Werner, C. M. L., Travassos, G. H. (2008) “Utilizando
Experimentacdo para Apoiar a Pesquisa em Educacdo em Engenharia de Software no
Brasil”, Forum de Educacao em Engenharia de Software.

Prikladnicki, R., Albuquerque, A., Wangenheim Santos et al 2008, e Cabral R., (2009)
“Ensino de Engenharia de Software: Desafios, Estratégias de Ensino e Licdes
Aprendidas,” no FEES.

Conn, R. (2002) “Developing Software Engineers at the C-130J Software Factory”.
IEEE Software,Los Alamitos, v. 19, n. 5, p. 25-29.

Moscovici, F. (2003) “Equipes dao certo: A multiplicagdo do Talento Humano”. Rio de
Janeiro: José Olympio, 8a edic¢do.

Mafra, S., Barcelos, R., Travassos, G. H. (2006) “Aplicando uma Metodologia Baseada
em Evidéncia na Definicdo de Novas Tecnologias de Software”. In: Proceedings of
the 20th Brazilian Symposium on Software Engineering (SBES 2006), v. 1, pp. 239 —
254, Florianopolis.

Shull, F., Carver, J., Travassos, G. H. (2001) “An empirical methodology for
introducing software processes”. SIGSOFT Softw. Eng. Notes, 26(5):288-296.

105

[l Latin American School on Software Engineering (ELA-ES 2015)

Software Crowdsourcing: Barriers Faced by the Crowd
Leticia Santos Machadol, Rafael Prikladnicki'

'Faculdade de Informatica— Pontificia Universidade Catélica do Rio Grande do
Sul (PUCRYS)
Av. Ipiranga, — 90.619-900 — Porto Alegre — RS — Brazil

leticia.smachado@gmail.com, rafaelp@pucrs.br

Abstract. Software Engineering has recently started to explore the
Crowdsourcing’s model in tasks of software development seeking collective
solutions to problems, ways to accelerate the time-to-market and reduce costs.
However, the crowd can face many challenges when contributing to a task in a
crowdsourcing context. The purpose of this research is to collect empirical
evidences in order to understand what are the barriers that hinder crowd
workers in software crowdsourcing projects, and propose a set of strategies
that can be used to support the crowd in software crowdsourcing projects.

1. Introduction

The evolution of global accessibility through Web 2.0 media technologies have created
opportunities that have transformed the collaborative format of the teams distributed
software development [Begel et al, 2012; Peng et al. 2014]. Soon, classical
organizations such as companies and open source communities will be replaced by
decentralization and interrelation of software ecosystem it employs crowdsourcing,
outsourcing, offshoring, spontaneous collaboration and social networking [Kaganer,
2013]. The introduction of collaboration ubiquitous tools already indicates changes in
the design, development, test, software product delivery or software system solutions.

Crowdsourcing is a distributed problem-solving model. The term
“crowdsourcing” was coined by Jeff Howe when discussing how businesses were
effectively using the Internet to outsource work to many individuals (Howe, 2008). In
this study we adopt the widely accepted definition, crowdsourcing is the act of an
organization outsourcing their work to an undefined, networked labor using an open call
for participation.

Crowdsourcing in software development derives from crowdsourcing more
generally. It means to engage a global pool of online workers that can be tapped on-
demand to provide software solutions or services [Lakhani, Garvin and Lonstein, 2010],
[Stol and Fitzgerald, 2014]. Small, atomized, tasks that can be completed and paid for in
small increments are unprecedented in the history of work. Software has been the
pioneer in all the large mega-trends of the last generation: in computer technology,
technological entrepreneurship, offshore outsourcing, and now—in crowdsourcing.

In order to effectively support software crowdsourcing, there are computational
platforms that handle the technical aspects of the crowdsourcing tasks including the
broadcasting of tasks to be performed, the selection of tasks, reception of results of the

1

106

[l Latin American School on Software Engineering (ELA-ES 2015)

tasks, and so on. Examples of these platforms include TopCoder [Lakhani, Garvin and
Lonstein, 2010], Utest and Amazon Mechanical Turk.

Thus there are three key components in a crowdsourcing project (Figure 1). The
platform is the middleman, i.e., it intermediates the communication between the two
other parties. Second, is the crowd—the workers who will effectively perform the tasks.
The crowd is a global dispersed and undefined crowd. Third, on the left, are the buyers
or requesters. These are the firms that place the requests for work (the tasks)
[Prikladnicki et al. 2014]. In this study we are interested to investigate the crowd

component.
8-
Crowdsourcing / >
. “ Platform <«—>Crowd as
(CSP) =

Figure 1. Basic model Crowdsourcing

An industry case study of crowdsourcing software development was presented
in [Stol and Fitzgerald, 2014]. In this related work, it discussed a number of challenges
that arise when software crowdsourcing process was adopted during a project of
software development, such as: lifecycle model, software development tasks
interdependencies, overhead in terms of company effort to prepare specifications and
answer crowdsourcing community queries and quality issues. The authors also
synthesized a set of six key concerns, which had relevance in a software development
context: task decomposition, coordination and communication, planning and scheduling,
quality assurance, knowledge and intellectual property and motivation and
remuneration.

The goal of our research is to explore the barriers faced by the crowd when
contributing to software crowdsourcing projects and analyzing which practices can be
used to support the crowd in the software development life cycle. In other words we
want to answer the following research question: “What are the barriers and the
approaches that can be used to support the crowd in software crowdsourcing projects?”
In order to answer these questions, a set of secondary research questions were defined:

e What are the barriers faced by the crowd when contributing to software
crowdsourcing projects?

e What are the aspects that influence the quality and delivery time of the
solutions provided by the crowd in software crowdsourcing projects?

e What are the approaches that can be used to help the crowd in developing
successful software crowdsourcing projects?

2. Research Design

Software Crowdsourcing is a relatively new and emergent phenomenon with limited
empirical research and theory. For this reason, this study uses an exploratory approach.
An initial ad hoc literature review was conducted with the purpose of sharing the basic
concepts and identifying the main challenges of software crowdsourcing. The research

107

[l Latin American School on Software Engineering (ELA-ES 2015)

design is composed of three phases, as presented in Figure 2 and, described as
following.

Warm up. This phase consists of the planning and execution of interviews
conducted with software developer professionals in order to explore their software
crowdsourcing experiences and to better understand the problem addressed by this
study.

Phase I — Find Barriers. This phase is composed of several empirical studies
that have as a goal to identify the barriers that hinder the crowd of contributing to
software crowdsourcing projects. We will first gather the barriers from the literature, by
means of systematic and snowballing literature review. We will then conduct interviews
with software crowdsourcing platforms users (the crowd). The results obtained in the
literature review and in the interviews will be analyzed in focus groups that will be
executed with a different set of crowd participants.

Phase II — Proposing practices to overcome barriers. In this phase, the goal is
to consolidate the barriers that hinder the crowd of contributing to software
crowdsourcing projects and propose a set of approaches that can be used to support the
crowd and overcome the identified barriers. We plan to propose the approaches based
on: (1) recommendations and empirical evidence that emerge during the Phase [; (i1) and
the practices and experiences that crowd workers have used and adopt in their software
crowdsourcing projects. In the Phase 2, we intend to design and conduct a controlled
experiment to assess the effectiveness of using the proposed solutions to the selected
barriers.

.
Exploratory study
Warmup *T——— Pl
~
™M
fAL\ Phase I:
Find Literature Review Interviews
) I— Focus Group
Barriers Empirical Studies
(N vy
N7
. Phase II:
Proposing A:;:':;S;D:ht:e Consolidate Barriers
Practices oractice Recommendations

Figure 2. Research Design

3. Preliminary Results

During the warm up phase we have conducted several interviews with crowd workers
from the Brazilian IT industry [Machado et al., 2014]. Preliminary findings showed that
software crowdsourcing has potential and could benefit both the companies and the
professionals. The main blockers about their experiences with software crowdsourcing
were summarized as it follows:

e Unavailability of documentation;

e Poor feedback;

e Scarce context project information;

108

[l Latin American School on Software Engineering (ELA-ES 2015)

e Specific knowledge of the technologies and business rules.

Based on these impressions found, we plan to talk about several crowd workers in
person, by voice, by video, and/or by email. We will keep on conducting semi-
structured interviews and analyzing these data, and additional data will focus on the
barriers (challenges) that they face when involved with software crowdsourcing
projects. We will also collect feedback from Brazilian buyers to obtain information
about Brazil crowdsourcing initiatives that companies had participated in and the
challenges faced by the crowd. We will then be able to generate recommendations that
will be useful for crowd workers, as well as to better understand the use of
crowdsourcing in the context of software engineering.

Acknowledgment

The authors would like to thank the CNPq (process number 309000/2012-2) for the
financial support.

References

Begel, A., Herbsleb, J. D. and Storey, M. (2012). "The future of collaborative software
development", Proceedings of the ACM Conference on Computer Supported
Cooperative Work Companion.

Peng, X., Babar, M. A., & Ebert, C. (2014). “Collaborative Software Development
Platforms for Crowdsourcing”. IEEE software, 31(2), 30-36.

Kaganer, E., Carmel, E., Hirscheim, R., and Olsen, T. (2013), “Managing the Human
Cloud”. MIT Sloan Management Review, 54(2), 23-32.

Howe, J. (2008). “Crowdsourcing: How the power of the crowd is driving the future of
business”. Random House.

Lakhani, K., Garvin, D. A., & Lonstein, E. (2010), “Topcoder (a): Developing software
through crowdsourcing”. Harvard Business School General Management Unit Case.

Stol, K. J., & Fitzgerald, B. (2014) “Two's company, three's a crowd: a case study of
crowdsourcing software development”, In Proceedings of the 36th International
Conference on Software Engineering (pp. 187-198). ACM.

Prikladnicki, R., Machado, L., Carmel, E., and de Souza, C. R. B. (2014) “Brazil
Software Crowdsourcing: A First Step in a Multi-year Study”, 1st International
Workshop on CrowdSourcing in Software Engineering (CSI-SE). Collocated with the
36th International Conference on Software Engineering (ICSE), Hyderabad, India

Machado, L., Pereira, G., Prikladnicki, R., Carmel, E. & de Souza, C. R. (2014).
“Crowdsourcing in the Brazilian IT industry: what we know and what we don't
know.” In Proceedings of the 1st International Workshop on Crowd-based Software
Development Methods and Technologies (pp. 7-12). (CrowdSoft) ACM. Collacated
with the 22" Foundations of Software Engineering (FSE), Hong Kong.

109

[l Latin American School on Software Engineering (ELA-ES 2015)

Decisoes sobre arquitetura de software em projetos que
utilizam métodos ageis

Andrey Baumhardt Ramos', Raquel Aparecida Pegoraro'

'Departamento de Ciéncia da Computacio — Universidade Federal da Fronteira Sul
(UFFS) — Chapec6, SC — Brasil

Andreybramos@hotmail.com, Raquel.pegoraro@uffs.edu.br

Abstract. In the last few years the agile method using has been increasing.
However, the lack of architectural focus in agile methods as created the ne-
cessity of developing evolutionary architecture studies. This research has the
following objectives: (a) To identify the project evolution and software archi-
tecture problems and their reasons in the agile methods development; (b) To
identify the practices that allow it to improve the capacity software architecture
evolution; (c) To propose a decision analysis estructure that relates problems
and practices, allowing the teams to make the right decisions on the agile pro-
jects architecture. With this study we hope to give knowledge basis about how
to create a software architecture for agile projects.

Resumo. A adocdo dos métodos dgeis vem crescendo significativamente nos
ultimos anos. Porém, a falta de foco arquitetonico tem gerado a necessidade
de desenvolver estudos sobre a arquitetura evolutiva centrada em projetos que
utilizam métodos dgeis. Esta pesquisa tem como objetivos: (a) ldentificar os
problemas relacionados a evolucdo do projeto e arquitetura de software e suas
causas em projetos que utilizam métodos dgeis; (b) ldentificar quais prdticas
permitem melhorar a capacidade de evoluir a arquitetura de software em proje-
tos que utilizam métodos dgeis; (c) Propor uma estrutura de andlise de decisdo
relacionando problemas e prdticas que permita que as equipes, baseadas nas
situacoes dos seus projetos, tomem decisoes referentes a arquitetura de projetos
dgeis. Espera-se com este estudo gerar uma base de conhecimento sobre ar-
quitetura de software para projetos dgeis que permita que as empresas tomem
melhores decisoes sobre o assunto.

1. Introducao

A importancia de vincular metas de qualidade com a arquitetura de software é
conhecida e praticada na constru¢io de projetos de dominio complexo, sendo
considerada um dos primeiros passos para construcdo de sistemas escaldveis
[Ramakrishnan 2010],[Pressman 2011]. O projeto da arquitetura estd preocupado com
a compreensdo de como um sistema deve ser organizado e com serd a estrutura geral
desse sistema, sendo o elo critico entre o projeto e a engenharia de requisitos, pois identi-
fica os principais componentes estruturais de um sistema e os relacionamentos entre eles
[Sommerville 2011]. O planejamento macigo inicial de requisitos e arquitetura € muito
utilizado na abordagem tradicional de desenvolvimento de software [Pressman 2011].

110

[l Latin American School on Software Engineering (ELA-ES 2015)

Para lidar com o fato que os requisitos evoluem e que a mudanga € algo normal
e aceitdvel em projetos de software, surgiram os métodos dgeis. Esses métodos se ca-
racterizam por utilizarem abordagem iterativa e incremental de desenvolvimento, com
equipes auto-organizadas, com constante colaboragdo do cliente que se ajusta dinamica-
mente as suas necessidades através da aceitacdo de mudancas de requisitos em qualquer
momento do projeto, que busca a minimiza¢do de produtos de trabalho de engenharia de
software, entre eles a documentagdo de software, e a simplicidade no desenvolvimento
[Abbas et al. 2010], [Dyba and Dingsgyr 2008].

Apesar da crescente adocao dos métodos dgeis pelas empresas e de varios relatos
de sucesso da sua adocdo, os mesmos sdo criticados pela a sua falta de foco arquitetd-
nico [Hochstein and Lindvall 2005], [Dyba and Dingsgyr 2008]. Ha um consenso entre
varios autores sobre a necessidade de pesquisar sobre arquitetura evolutiva centrada no
desenvolvimento 4gil, isso devido a importancia das decisdes dos envolvidos ao longo
do projeto e da necessidade de adequacdo as mudancas [Babar and Abrahamsson 2008],
[Ambler 2008], [Hadar and Silberman 2008], [Chen and Babar 2014]. Porém, a revisao
sistemadtica feita por [Breivold et al. 2010] em estudos publicados sobre arquitetura em
métodos dgeis aponta que hd uma discrepancia entre a literatura de arquitetura de soft-
ware e os métodos dgeis, e que ha falta de apoio cientifico e de estudos empiricos para
conhecer plenamente as vantagens e desvantagens dos método ageis de software, no que
tange a arquitetura de software.

[Parsons et al. 2007] afirmam que para uma ado¢ao bem sucedida de 4gil € neces-
sario ndo apenas a selecao de um método 4gil, mas também adog¢ao de técnicas apropri-
adas que possibilitem combinacdo de qualidade e melhoria do processo. Destacam que
muitas equipes podem ndo ter o conhecimento e habilidades para escolher as melhores
técnicas a serem utilizadas, e que a estratégia usual € de adotar um método ou prética 4gil
que julgar conveniente, avaliar e apés adapta-lo para melhorar os resultados. Utilizar esta
estratégia de defini¢do das préticas para decisdes relacionadas a arquitetura do software
pode ser um risco para a sua evolugdo.

Segundo [Babar 2009] problemas como a falta de tempo para considerar escolhas
de arquitetura, ou a falta de foco em atributos de qualidade, podem ocasionar a dificuldade
de manutencdes e altos custos para os projetos que adotam abordagens dgeis. Algumas
préticas podem ser adotadas para conseguir lidar com essas situagdes, tais como criar
uma fase pré-desenvolvimento para planejar as diferentes op¢Oes relevantes de arquitetura
do sistema, ou utilizar o atendimento aos atributos de qualidade como uma medida de
sucesso.

Neste contexto, percebe-se que hd uma lacuna na literatura sobre métodos ageis € o
impacto da arquitetura nos projetos, o que € entendido como um fator critico na utilizacio
desses métodos e, para se beneficiar plenamente dos métodos, € necessario entender esta
correlacdo de dependéncia. A partir desta problemadtica, este projeto busca responder a
seguinte questdo de pesquisa: “Como evoluir de forma sistematizada e com qualidade a
arquitetura de software em projetos que utilizam métodos dgeis?”

Motivados pela necessidade de compreender a evolugdo do projeto e arquitetura
de software em empresas que utilizam métodos 4geis e de investigar maneiras de apoiar
esta evolucdo, os objetivos desta pesquisa sao:

111

[l Latin American School on Software Engineering (ELA-ES 2015)

e Identificar os problemas relacionados a evolucio do projeto e arquitetura de soft-
ware e suas causas em projetos que utilizam métodos ageis;

e Identificar quais praticas permitem melhorar a capacidade de evoluir a arquitetura
de software em projetos que utilizam métodos ageis;

e Propor uma estrutura de andlise de decisdo para apoiar as escolhas e definicdes
sobre a documentagdo de arquitetura de software em projetos de software que
utilizam métodos dgeis. A estrutura analitica serd composta pela relacdo entre os
problemas e praticas identificados na fase anterior da pesquisa.

Espera-se através da estrutura proposta que as empresas, baseados no contexto
especifico dos seus projetos, possam refletir sobre as escolhas a cerca da arquitetura de
software e tomar melhores decisdes.

2. Procedimentos Metodologicos
A metodologia que serd utilizada na pesquisa consistird nos seguintes passos:

1. Mapeamento sistemdtico da literatura com o objetivo de identificar os fatores
criticos que impactam na evolugdo satisfatéria arquitetura de projetos de soft-
ware que utilizam métodos 4geis, e seus efeitos. O resultado serd apresentado
através do diagrama causa e efeito, o qual permite estruturar hierarquicamente
as causas de determinado problema ou oportunidade de melhoria. Para realiza-
cdo do mapeamento sistematico da literatura serdo seguidas as recomendagdes de
[Kitchenham et al. 2010];

2. Mapeamento sistemdtico da literatura identificando as praticas utilizadas
para construir e evoluir a arquitetura de software em projetos que utili-
zam métodos 4geis, e as situacdes em que cada pratica pode ser utilizada
[Kitchenham et al. 2010];

3. Estudo de caso exploratério com o objetivo de identificar as praticas de arquitetura
utilizadas pelas empresas e os desafios enfrentados [Yin 2015];

4. Embasado nos achados das etapas anteriores desta pesquisa serd proposta uma
estrutura de andlise de decisdo para apoiar as escolhas e definicdes sobre a do-
cumentacdo de arquitetura de software, relacionando problemas ou situacdes de
projetos e praticas para solucdo.

3. Resultados esperados
Ao final deste projeto de pesquisa espera-se alcancar os seguintes resultados:

e Identificacdo dos fatores criticos que impactam na evolucao satisfatéria da arqui-
tetura de projetos de software que utilizam métodos dgeis, e seus efeitos;

e Identificacdo das praticas utilizadas para construir e evoluir a arquitetura de soft-
ware em projetos que utilizam métodos dgeis;

e Compreensdo dos desafios enfrentados pelas empresas de software quanto a ar-
quitetura de software na utilizacdo de métodos dgeis;

e Proposi¢cdo de uma estrutura de andlise de decisdo, relacionando problemas e pra-
ticas, que permita que as equipes, baseadas nas situagdes dos seus projetos, tomem
melhores decisdes referente a arquitetura do software.

112

[l Latin American School on Software Engineering (ELA-ES 2015)

Referéncias

Abbas, N., Gravell, A. M., and Wills, G. B. (2010). The impact of organization, project
and governance variables on software quality and project success. In Agile Conference
(AGILE), 2010, pages 77-86. IEEE.

Ambler, S. W. (2008). Agile software development at scale. In Balancing agility and
formalism in software engineering, pages 1-12. Springer.

Babar, M. (2009). An exploratory study of architectural practices and challenges in using
agile software development approaches. In Software Architecture, 2009 European
Conference on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP
Conference on, pages 81-90.

Babar, M. A. and Abrahamsson, P. (2008). Architecture-centric methods and agile appro-
aches. In Agile Processes in Software Engineering and Extreme Programming, pages
242-243. Springer.

Breivold, H. P., Sundmark, D., Wallin, P., and Larsson, S. (2010). What does research say
about agile and architecture? In Software Engineering Advances (ICSEA), 2010 Fifth
International Conference on, pages 32-37. IEEE.

Chen, L. and Babar, M. A. (2014). Towards an evidence-based understanding of emer-
gence of architecture through continuous refactoring in agile software development.
In Software Architecture (WICSA), 2014 IEEE/IFIP Conference on, pages 195-204.
IEEE.

Dyba, T. and Dingsgyr, T. (2008). Empirical studies of agile software development: A
systematic review. Information and Software Technology, 50(9):833-859.

Hadar, E. and Silberman, G. M. (2008). Agile architecture methodology: Long term stra-
tegy interleaved with short term tactics. In Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and applications, pa-
ges 641-652. ACM.

Hochstein, L. and Lindvall, M. (2005). Combating architectural degeneration: a survey.
Information and Software Technology, 47(10):643—656.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., and
Linkman, S. (2010). Systematic literature reviews in software engineering—a tertiary
study. Information and Software Technology, 52(8):792—805.

Parsons, D., Ryu, H., and Lal, R. (2007). The impact of methods and techniques on
outcomes from agile software development projects. In Organizational Dynamics
of Technology-Based Innovation: Diversifying the Research Agenda, pages 235-249.
Springer.

Pressman, R. S. (2011). Engenharia de software:Uma Abordagem Profissional. McGraw
Hill Brasil.

Ramakrishnan, S. (2010). On integrating architecture design into engineering agile soft-
ware systems. Issues in Informing Science and Information Technology, 7.

Sommerville, 1. (2011). Engenharia de Software. Pearson Education do Brasil, 9 edition.

Yin, R. K. (2015). Estudo de Caso-: Planejamento e Métodos. Bookman editora.

113

[l Latin American School on Software Engineering (ELA-ES 2015)

Sistema Multiplataforma para o Controle de Dentuncias:
modelagem para implantacao em orgaos publicos de fiscalizacao

Lucas S. Rodrigues, Fernando M. Federson

Instituto de Informatica — Universidade Federal de Goias (UFG)
Alameda Palmeiras, Quadra D, Campus Samambaia
Caixa Postal 131 - CEP 74001-970 - Goiania — GO - Brasil

{lucas.soarod, federson}@gmail.com

Abstract. The capacity of the Society to inform the possible violations to the
supervisory bodies responsible by efficient communication channels is always a
challenge for any government. In order to assist the Government in this task, we
propose a process and the resulting modeling of a tool that can adapt to many
regulatory agencies using latest technologies, especially mobile technology. A
model of business processes is outlined from the case study of administrative
practices employed in providing the service within the Regional Council of
Engineering and Agronomy of Goias. The architecture of a multiplatform system
is also presented to meet the modeled processes.

Resumo. A Sociedade poder informar as possiveis infracdes as entidades
fiscalizadoras responséveis através de canais de comunicacdo eficientes é um
desafio sempre presente para qualquer Governo. No sentido de auxiliar o
Governo nesta tarefa, sdo propostos um processo e a modelagem resultante de
uma ferramenta que pode se adaptar a muitos 6rgdos fiscalizadores utilizando
tecnologias recentes, em especial, a tecnologia moével. Um modelo de processos
de negdcio € delineado a partir do estudo de caso de praticas administrativas
empregadas no oferecimento do servico de denincias no ambito do Conselho
Regional de Engenharia e Agronomia de Goias. A arquitetura de um sistema
multiplataforma também € apresentada para atender os processos modelados.

1. Introducao

No Brasil, o chamado Governo Eletrénico determina uma série de diretrizes com foco na
eficiéncia e efetividade das fungBes governamentais através da TIC (Tecnologia da
Informagdo e Comunicacgdo) para democratizar o acesso a informag&o, dar transparéncia de
processos e informacdes e ainda dinamizar a prestacdo de servigos publicos [1]. O uso
efetivo das tecnologias disponiveis, como passo seguinte & formulacdo de diretrizes,
possibilitaria as agéncias governamentais, em especial as de caréater fiscalizador, darem uma
resposta eficiente as situacGes de irregularidades informadas pela populagcdo, mas este
recurso é ainda pouco explorado no Brasil. Este trabalho tem como propdsito demonstrar
um caso de aplicacdo dessas diretrizes.

114

[l Latin American School on Software Engineering (ELA-ES 2015)

Nas proximas secOes apresentamos, resumidamente, a metodologia utilizada, a
elucidacdo do processo de tratamento de denuncias empregado atualmente no Conselho
Regional de Engenharia e Agronomia de Goias (CREA-GO), o novo modelo de processos
melhorado e a arquitetura de sistema, baseada nas plataformas movel e web. Por fim,
apresentamos os resultados obtidos e nossos objetivos futuros.

2. Metodologia

A metodologia empregada na execucdo do presente trabalho foi baseada na seguinte
sequéncia de atividades: 1) Elucidacdo do processo de negocio atual; 2) Avaliacdo do
modelo atual; 3) Proposta de um novo modelo de processos de negocios; 4) Especificacdo
da Arquitetura de Sistema que suporte o modelo de processos proposto. O padrdo de
modelagem utilizado para os processos de negocio € o Business Process Modelling
Notation (BPMN) [2]. A arquitetura de sistema foi dividida em Perspectiva de Implantacédo
e Perspectiva Modular. Na Perspectiva de Implantacdo foi utilizado o padrdo de notacéo
Unified Modeling Language (UML) [3], através do Diagrama de Implantacdo. Para a
Perspectiva Modular foi elaborado uma explanacéo textual para entendimento do modelo.

3. Modelo de Processos de Negocio

3.1. Analise e Avaliacao

A seguir explicamos o funcionamento do processo de negdcio para tratamento de dendncias
atualmente praticado no CREA-GO. O processo inicia-se com a manifestacdo por parte do
cidadéo (Sociedade — Cidad&o) sobre alguma irregularidade no campo profissional, por
exemplo: execucdo de obra sem o acompanhamento de um Engenheiro Civil. A
comunicacéo é feita através de e-mail ou telefone, a Central de Denlncias do CREA-GO,
depois o cadastramento é realizado no sistema existente. E feito uma analise para
identificar se realmente € uma denuncia procedente relativo ao escopo do 6rgdo. Caso seja
procedente, é pedido ao Departamento de Fiscalizacdo uma programacao da data e o fiscal
que realizard a denlncia. Esta elucidacdo estara contida também na Figura 1, onde foi
proposto um modelo melhorado para este processo.

O gargalo percebido é: o sistema computacional utilizado atualmente ndo permite
que alem da prépria Central de Dendncias, 0os demais atores também encaminhem registros
entre si e para o sistema. Isso faz com que todo e qualquer direcionamento deva enviar uma
resposta (informacao) a Central.

3.2. Modelo Proposto

Na Figura 1, € apresentado um modelo proposto apos correcdo do gargalo identificado na
subsecdo anterior. Tanto para a perspectiva de fases, que foram definidas como Cadastro,
Analise, e Execuc¢do, quanto para as tarefas modeladas, o0 modelo de negocio especificado
permite a “fluidez” da informagdo para que chegue com rapidez ao agente de fiscalizagao
que averiguara os fatos.

115

[l Latin American School on Software Engineering (ELA-ES 2015)

© Possivel
2 |2 Irregularidade
- |3 -
2 3 Manifestar
22 o
a |¥ Dendncia !
i i
]
] Cadastro | /‘, Anélise ¥ Execugéo i
1
E ! Escopo do !
3 | Srgdo? Andnimo? &
c | . Orgao? = Elaborar -
] Cadastrar | | Analisar Nao N&o | Responder
o i . > » Fechamento da]
q, Dentincia | | Dentincia Dentincia Cliente
o I
I
ag £ : H 3 Si
o | E ! Encaminhar a im
1 . . =
o |8 ! Fiscalizagdo
o | I
I
g I H
Determinar : .
& | Determinar Realizar Elaborar 27
N i Prazo para ; o PR SRR)
= | - Fiscal Visita Relatorio ..
g ; visita Relatdrio de
- | Ocorréncia

Figura 1. Modelo de Processo de Negécio melhorado.

A melhoria apresentada é a possibilidade da préopria Fiscalizagdo ao receber a
demanda da denuncia encaminha-la ao fiscal, sem que haja obrigatoriedade de repassar
antes & Central de Denuncias para realizar o encaminhamento. Os prdprios envolvidos no
processo validam a proposta identificando como esta, a melhor alternativa para o modelo.

4. Arquitetura de Sistema

SGBD

Dispositivo Movel Cidadao

Aplicativo Apache Cordova @

HTMLE/CSSIS g |

=<Hibernate=>

SJSON/ XML=>

1 Servidor de Aplicacéo

Cliente Web Administrativo

Apache TomCat & |
Browser _:ﬁ’-?-—"_"
B 1
Aplicacdo Web Java 3 | *
1
<<JSON [XML>>
Tablet Fiscal

Aplicative Apache Cordova E

HTML5/CSSIIS & |

Figura 2. Diagrama de Implantacdo para o Sistema Multiplataforma para o Controle
de Denuncias.

116

[l Latin American School on Software Engineering (ELA-ES 2015)

4.1. Perspectiva de Implantacio

Quanto a Perspectiva de Implantacdo (Figura 2), além dos nos, definimos tecnologias
subjacentes a cada um destes, assim como também as técnicas de comunicacgéo entre eles.
Pensando no compartilhamento do mesmo repositério de dados um dos padrdes
arquiteturais aplicados é o Cliente-Servidor. Baseado na pluralidade de Sistemas
Operacionais dos smartphones e tablets indica-se que o aplicativo seja compilado para o
executavel nativo da maioria dos Sistemas Operacionais Mobile existentes através da
codificacdo usando HTML(HyperText Markup Language), CSS(Cascading Style Sheets),
javascript e o framework Apache Cordova [4].

4.2. Perspectiva Modular

A Perspectiva Modular, para este trabalho, foi dividida em quatro Visdes Funcionais:
Cidadao, Central de Dendncias, Area Administrativa da Fiscalizacdo e Fiscal. A Visdo do
Cidadéo foi dividida nos submddulos: Registro, Acompanhamento e Historico. A Visao
Fiscal terd o submddulo Relatorios de Visita, e também o submddulo Backlog (ou “em
espera’), que mostrara as dentncias a serem elucidadas, que foram alocadas aquele fiscal,
mas ainda nao foram programadas para visita. A Visdo Central de Denuncias foi dividida
em: Analise, Acompanhamento, Estatisticas e Relatério Geolocalizado. O Relatorio
Geolocalizado € um componente que podera orientar a fiscalizacdo do érgdo a concentrar
esforcos em uma determinada area, caso haja maior recorréncia de casos em uma regiao
geografica. A Visdo Area Administrativa da Fiscalizacdo tera todos os mesmo submaédulos
da Central de Dendncias, com excecdo do mddulo de Anélise, porém em acréscimo o
submédulo Distribuicdo para alocagdo das denlncias aos fiscais.

5. Conclusao e Trabalhos Futuros

Neste trabalho concluimos a modelagem arquitetural, importante etapa no processo de
construg¢do de um sistema. Os resultados sao animadores. Os modelos estdo em processo de
aprovacao por especialistas do 6rgdo e encontra-se em prototipagem com o objetivo de
validacao e detalhamento das especificagdes. Esta constru¢do se prosseguira nas etapas
comuns para desenvolvimento do sistema: projeto detalhado, codificagdo, teste,
implantacdo e treinamento.

6. Referéncias

[1] da Silva, C. R. C., Tavares, T. C., & Bicharra, A. C . (2009). Governo Eletronico em
Ambientes Colaborativos Virtuais. IX Simposio Brasileiro de Sistemas de Informagao,
122-132.

[2] Model, B. P. (2013). Notation (BPMN) Version 2.0. Object Management Group
specification.

3] Uml, O. M. G. (2004). 2.0 Superstructure Specification. OMG, Needham.

[4] Cordova, A. (2013). About Apache Cordova. Disponivel
em:<http://cordova.apache.org>. Acessado em: 15 dez. 2014.

117

[l Latin American School on Software Engineering (ELA-ES 2015)

Abordagem de TBM para Automatizar Testes GUI no
Contexto de Aplicacbes Moveis

Silvia Meireles?, Arilo Dias-Neto!
Instituto de Computacdo (IComp) — Universidade Federal do Amazonas (UFAM)

Av. General Rodrigo Octavio, 6.200, Campus Universitario Senador Arthur Virgilio
Filho — Setor Norte — Manaus — CEP 69.077-000 — Manaus — AM — Brasil

{silvia,arilo}@icomp.ufam.edu.br

Resumo. A crescente demanda de Aplicacdes Moveis que devem ser
desenvolvidas em um curto periodo de tempo traz consigo a necessidade de se
buscar estratégias para reduzir o tempo e/ou custo de desenvolvimento e
promover o aumento da qualidade do produto. Isso pode ser feito por meio do
teste de software, especificamente por meio da automatizacéo de atividades de
teste, onde normalmente séo escolhidas atividades repetitivas, como geragao e
execucdo de casos de teste. Este artigo descreve a proposta de uma
abordagem de TBM para apoiar a automatizacéo de testes GUI em Aplicacoes
Moveis, que engloba a geracdo do modelo, geracdo e execucdo de casos de
teste e suporte a atividades de pds-teste.

1. Introducéo

Desde o surgimento do primeiro smartphone em 2007, houve uma verdadeira revolugao
causada pela utilizacdo de dispositivos moveis. Hoje, esses dispositivos sdo
simplesmente fundamentais em nossa vida cotidiana e se torna dificil pensar em realizar
algumas tarefas simples, como enviar/receber mensagens, emails e realizar operagdes
bancérias, sem o uso de Aplica¢des Moveis, também conhecidas como Apps.

Apps possuem diversas caracteristicas ndo encontradas em outros dominios, tais
como: suporte a uma vasta gama de dispositivos, plataformas e versdes. Para avaliacdo
da sua qualidade, existem outras variaveis que devem ser consideradas no teste de
dispositivos méveis, como, a qualidade da ligacdo de rede e o proprio movimento do
dispositivo podem influenciar o comportamento de uma App (WILLIAMSON, 2013).

O teste de software & uma forma de se melhorar a qualidade em sistemas de
software (DELAMARO et al., 2007). Apps, como qualquer sistema de software,
necessitam ser testadas, porém, testar é uma atividade cara, complexa e exige grande
esforco (GAO et al., 2014). Esse fato tem despertado o interesse de pesquisadores em
buscar alternativas para reduzir seus elevados custos.

A automatizacdo de teste € uma estratégia comumente utilizada para reduzir o
custo e/ou tempo de teste e também permite aumentar sua eficiéncia e confiabilidade
(MARIANI et al., 2012). Apesar de inameros trabalhos demonstrarem os beneficios da
automatizacdo de teste, o teste manual é a abordagem mais comum em aplicacfes
moveis na industria (WILLIAMSON, 2013). Por outro lado, diversos trabalhos tém
pesquisado aspectos individuais da automatizacdo de teste em Apps, como: geracédo de
modelos para teste (MOREIRA e PAIVA, 2014); geracao de oraculos de teste (ZAEEM

118

[l Latin American School on Software Engineering (ELA-ES 2015)

et al., 2014), geracdo de dados de teste (LI et al., 2014; ANAND et al., 2012), teste
baseado em reconhecimento de imagens (CHANG et al., 2010; WU e LIU, 2012),
dentre outros. Embora diversos trabalhos abordem aspectos relacionados a
automatizacdo de teste, normalmente ndo ha integracdo de técnicas/abordagens para
englobar varios aspectos da geracdo/execucao de teste.

Zaeem et al. (2014) alertam para a necessidade de se desenvolver ferramentas
de teste automatizado para apoiar o desenvolvimento de aplicativos mdveis. Wu e Liu
(2012) ressaltam que o Teste Baseado em Modelos (TBM) é uma das estratégias mais
populares para dar suporte a geracao e execucdo de casos de teste.

Neste trabalho, pretende-se instanciar uma abordagem de TBM que suporte a
geracdo e execucdo automatica de casos de teste GUI para aplicacdes moveis. 1sso sera
feito a partir de técnicas/abordagens existentes para geragdo automatica de dados e
oraculos de teste. Também faz parte do escopo deste trabalho integrar ferramentas em
cada uma das atividades englobadas neste trabalho, com o objetivo de maximizar o uso
dessas ferramentas.

2. Trabalhos relacionados

Moreira e Paiva (2014) descrevem uma abordagem de TBM para aplicagfes GUI,
denominada Pattern Based GUI Testing (PBGT) que visa sistematizar e automatizar o
processo de Testes GUI por meio de Padrdes de Teste GUI. PBGT possui apoio
ferramental, fornecendo um ambiente integrado de modelagem e teste, que permite gerar
automaticamente casos de teste a partir de modelos e executa-los por meio de uma GUI.

Li et al. (2014) propdem o framework ADAutomation para teste automatizado
GUI que utiliza o Diagrama de Atividades da UML. Esse framework modela o
comportamento do usudrio, gera casos de teste GUI, oferece andlise de pos-teste e
depuracéo.

Zaeem et al. (2014) propdem uma abordagem extensivel para gerar oraculos de
teste que permite a geracao de sequéncias de teste que aproveitam esses oraculos. Nessa
abordagem que possui suporte ferramental, features da aplicacdo sdo definidas e
armazenadas em uma biblioteca. Ao testar uma App, features da biblioteca séo
instanciadas, e por meio das suas definicdes sdo gerados casos de teste com oraculos de
teste para testar exaustivamente cada feature.

Amalfitano et al. (2014) apresentam uma técnica automatica para teste GUI em
aplicacdes Android, denominada MobiGUITAR. Nessa técnica, os estados dos widgets
sdo extraidos em tempo de execucdo e sdo usados para gerar uma maquina de estado
escalavel em conjunto com critérios de cobertura de Teste Baseado em Evento, que
permite gerar dados de teste automaticamente.

Anand et al. (2012) apresentam uma técnica, denominada Contest, para gerar
eventos de entrada para Apps. Essa técnica realiza a execu¢do Concolic, que é uma
evolugdo da execucdo simbolica para gerar sequéncias de eventos sistematicamente.

3. Abordagem proposta

Neste trabalho, pretende-se instanciar uma abordagem automatizada para TBM no
contexto de aplicagdes moveis que contemple a geracdo do modelo, geracdo e execugédo
de casos de teste e apoie a comparacgédo de resultados do teste. A primeira atividade desta

119

[l Latin American School on Software Engineering (ELA-ES 2015)

abordagem é a geracdo do modelo (estrutural ou comportamental) da App testada. Esse
modelo pode ser construido a partir dos seguintes artefatos de software:

e (Codigo da aplicacdo, como demonstrado em Amalfitano et al. (2014) que é
uma extensdo ao trabalho de Nguyen et al. (2013). Neste, a ferramenta
Guitar explora automaticamente a aplicacdo testada capturando todas as
possiveis interacfes de eventos GUI, e ao final deste processo gera o
modelo estrutural da mesma, conhecida como Arvore GUI;

e Diagramas da UML, como o Diagrama de Atividades, que ¢ utilizado para
modelar o comportamento do usuario em (Li et al., 2014);

e Modelos GUI descritos em outras linguagens, como o modelo em linguagem
PARADIGM proposto em (Moreira e Paiva, 2014), que descrevem padrdes
de widgets.

Com base no modelo gerado, serdo utilizadas técnicas para gerar um conjunto de
casos de teste por meio da geracao de dados e oraculos de teste. Para gerar as entradas
do teste, podem ser utilizadas as seguintes abordagens:

e Execucdo simbdlica, que permite gerar sequéncias de eventos, como
proposta em (Anand et al., 2012) que utilizaa execucao Concolic;

e Mapeamento de PadrGes GUI que gera caminhos entre elementos iniciais
e finais dentro do modelo descrito em (MOREIRA e PAIVA, 2014).

Outra atividade importante € a geracdo de oraculos de teste para determinar se a
execucdo dos testes esta correta. Para essa etapa, pode-se partir do trabalho Zaeem et al.
(2014), adaptando-se a abordagem que utiliza a definicdo de features de interacdo de
usuarios que sdo incrementalmente adicionadas.

Uma vez geradas as entradas e os ordculos de teste, € possivel executar
0s casos de teste. Para isso, deve-se escolher uma plataforma sob a qual os casos de
teste serdo executados. Nessa etapa, pode-se optar pela plataforma Android, visto que a
mesma é a plataforma mais popular de Apps e é utilizada em diversos trabalhos
(ZAEEM et al., 2014; NGUYEN et al., 2013).

Ao final da execucdo de cada caso de teste, o resultado obtido é comparado
com o resultado definido pelo respectivo oraculo. Nos casos em que o resultado obtido
é igual ao previsto pelo oraculo, os testes sdo aprovados, caso contrario os incidentes de
teste devem ser reportados.

A abordagem proposta serd desenvolvida a partir de técnicas/abordagens
existentes, pois o0 objetivo é reutiliza-las e adaptd-las quando necessario. Esta
abordagem contemplara as principais atividades do processo automaticao de teste
em aplicagbes moveis com o proposito de integrar ferramentas utilizadas neste processo.

4. Resultados esperados

Como resultado espera-se automatizar testes GUI em aplicagdes moveis e com isso
reduzir o ciclo de desenvolvimento da automatizacao de testes, por meio da reducdo de
tempo/custo nas atividades de uma abordagem de TBM para Apps, como geracdo de
modelo e geracdo/execucdo dos casos de teste GUI.

120

[l Latin American School on Software Engineering (ELA-ES 2015)

Dentro deste trabalho, esta definida a avaliacdo experimental de ferramentas de
automatizacao de testes GUI com o proposito de identifica-las e/ou integra-las com o
propdsito de maximizem seu uso.

Agradecimentos

Os autores agradecem a FAPEAM e INDT pelo apoio financeiro para a realizacdo desta
pesquisa.

Referéncias

Amalfitano, D.; Fasolino, A.; Tramontana, P.; Ta, B.; Memon, A. (2014)
"MobiGUITAR - A Tool for Automated Model-Based Testing of Mobile Apps,”
Software, IEEE, vol.PP, n0.99, pp.1,1.

Anand, Saswat; Naik Mayur; Harrold, Mary Jean; Yang, Hongseok (2012)
"Automated concolic testing of smartphone apps”. In: Proceedings of the ACM
SIGSOFT.

Chang, Tsung-Hsiang; Yeh, Tom; Miller, Robert C. (2010) "GUI testing using computer
vision". In: Proceedings of the Conference on Human Factors in Computing
Systems.

Delamaro, M. E.; Maldonado, J. C.; Jino, M. (2007) "Introducéo ao Teste de Software".
Rio de Janeiro: Elsevier.

Gao, J.; Wei-Tek Tsai; Paul, R.; Xiaoying Bai; Uehara, T., (2014) "Mobile Testing-as-a-
Service (MTaaS) -- Infrastructures, Issues, Solutions and Needs,”, In: 15th
International Symposium on High-Assurance Systems Engineering (HASE), vol.,
no., pp.158,167, 9-11.

Li, Ang; Qin, Zishan; Chen, Mingsong; Liu, Jing (2014) "ADAutomation: An
Activity Diagram Based Automated GUI Testing Framework for Smartphone
Applications”. In: 8th International Conference on Software Security and Reliability
(SERE), pp.68-77.

Mariani, Leonardo; Pezzé, Mauro; Riganelli, Oliviero; Santoro, Mauro (2012) "Auto
BlackTest: Automatic Black-Box Testing of Interactive Applications”. In: 34th
International Conference on Software Engenieering.

Moreira, Rodrigo M.L.; Paiva, Ana C.R. (2014) "PBGTTool: An Integrated Modeling
and Testing Environment for Pattern-Based GUI Testing”. In: 29th IEEE/ACM
International Conference on Automated Software Engineering (ASE).

Nguyen, Bao; Robbins, Bryan; Banerjee, Ishan; Memon, Atif. (2013) "Guitar: an
innovative tool for automated testing of gui-driven software”.Automated Software
Engineering, pp. 1-41, Springer US.

Zaeem, Razieh N.; Prasad, Mukul R.; Khurshid, Sarfraz (2014) "Automated generation
of oracles for testing user-interaction features of mobile apps”. In: 7th International
Conference on Software Testing, Verication and Validation, pp.183-192.

Williamson, L. (2013) "A mobile application development primer: A guide for
enterprise teams working on mobile application projects”. IBM Software Thought
Leadership White Paper.

Wu, Yumei; Liu, Zhifang (2012) "A Model Based Testing Approach for Mobile
Device". In: International Conference on Industrial Control and Electronics
Engineering (ICICEE), pp.1885-1888.

121

[l Latin American School on Software Engineering (ELA-ES 2015)

Discovery and Usage of Computing Devices in IoT
Environments

Willian Lunardi', Sabrina Marczak', Leonardo Amaral', Fabiano Hessel'

'Faculdade de Informatica — Pontificia Universidade Cat6lica do Rio Grande do Sul (PUCRS)
{willian.lunardi, leonardo.amaral}@acad.pucrs.br,

{sabrina.marczak, fabiano.hessel}@pucrs.br

Abstract. During the past few years, with the fast development and proliferation
of the Internet of Things (IoT) as well as with the growing number of active com-
puting devices in loT environments around the world, many application areas
have started to exploit this new computing paradigm. Consequently, a mecha-
nism to deal with different devices has become necessary. Middleware systems
solutions for IoT have been developed in both research and industrial environ-
ments to supply this need. However, discover and usage of computing devices
remain a critical challenge due to the large amount of devices available and the
lack of intuitive mechanisms to deal with them. This paper presents a brief and
preliminary discussion on the alternatives reported in literature to address this
issue. Our long-term goal is to propose a framework to help programmers of
loT applications to select and to interact with middleware devices.

1. Introduction

The term Internet of Things (IoT) was coined in 1998 [Kevin 2009] and defined as
the computing paradigm that allows people and things to be connected Anytime, Any-
place, with Anything and Anyone, ideally using Any path/network and Any service
[Guillemin et al. 2009]. In this sense, there are current market statistics and predictions
that demonstrate a rapid growth in computing device deployments related to IoT environ-
ments. By 2020, it is estimated that there will be 50 to 100 billion IoT devices connected
to the Internet [Sundmaeker et al. 2010]. These statistics and facts imply that we will be
faced with a vast amount of IoT devices, which, when properly used, will add more value
to the environment.

A inherited issue in this new setting is information overload, i.e. users face vast
and distributed information sources, and have difficulty in selecting those that satisfy
their needs and interests. In this sense, the biggest challenge and time-consuming task is
to select and use the appropriate devices when there is a large amount of available devices
to choose from and, often, with heterogeneous characteristics.

Middleware systems solutions for IoT have been developed to supply this
need. However, discovery and usage of middleware devices remain a critical challenge
[Perera et al. 2012]. End users, such as programmers that are in charge of selecting (ag-
gregating) heterogeneous devices in order to contextualize virtual environments and apply
operations among them, are not aware of domain modeling and middleware specification
patterns (to define what and how they want to interact with things/devices). Besides, pro-
grammers may not have enough knowledge to perform such task without devoting time to

122

[l Latin American School on Software Engineering (ELA-ES 2015)

understand the middleware patterns or to engage others who are responsible for modeling
the domain of devices.

By analyzing other IoT middleware systems (e.g., [GSN Team],
[Digital Enterprise Research Institute], [Amaral et al. 2015]), we found that they
do not provide intuitive search methods and also do not focus on ease of use of devices
by programmers. Trying to fill this gap, our long-term goal is to propose a framework
that will embed mechanisms to a middleware solution to solve these issues. Our first step
in our research journey is to learn more about how to suggest devices based on users
needs. This paper presents a brief overview about the 10T paradigm to contextualize the
motivation to our work, and describes two device recommendation approaches we have
found in our preliminary literature search that might be applicable to our solution.

2. Internet of Things and Context of Things

During the past decade, the IoT has gained significant attention by academia and by in-
dustry. It promises to create a world where all objects (also called ’smart objects’) around
us are connected to the Internet and communicate with each other with minimum human
intervention [Le-Phuoc et al. 2009].

On the other hand, there is no any standard definition for [oT [Perera et al. 2014].
A commonly used definition is that [oT allows people and things to be connected Any-
time, Anyplace, with Anything and Anyone, ideally using Any path/network and Any
service [Guillemin et al. 2009].

In this sense, [oT ecosystems are based on a layered architecture style and use this
view to abstract the integration of objects and to provide services solutions to applica-
tions [Jing et al. 2014]. In IoT, high-level system layers as the application layer are com-
posed of IoT applications and middleware system, which is a software layer interposed
between the infrastructure of devices and applications, and is responsible for providing
services according to devices functionality [Atzori et al. 2010]. Many of the system archi-
tectures proposed for [oT middleware comply with Service-Oriented Architecture (SOA).
This approach allows each device to offer its functionality as standard services. There-
fore, IoT middleware systems have evolved from hiding network details to applications
into more sophisticated systems to handle many important requirements, providing sup-
port for heterogeneity and interoperability of devices, data management, security, etc.

In most instances, the middleware device connection is followed by a contextual-
ization process that aims to acquires and stored its characteristics. Context is considered
any information that can be used to characterize the situation of an entity. Besides, context
information about 10T devices needs to be acquired and stored with annotations that will
make easy to retrieve it later. Abowd and Mynatt [Abowd and Mynatt 2000] identified
the five Ws (Who, What, Where, When, and Why) as the minimum annotations that are
necessary to understand context. Studies like this one imply that IoT middleware requires
a mechanism for the acquisition of context characteristics of devices in order to provide
features such devices discovery, management, and others.

3. Recommenders Systems

As mentioned earlier, device discovery remains a critical challenge. To move towards fill-
ing this gap, we learned that context information can be used to promote devices discovery

123

[l Latin American School on Software Engineering (ELA-ES 2015)

in IoT middleware solutions. Also, that a software system that uses such contextual infor-
mation to recommend devices based on users needs can provide a more intuitive manner
to the user discover and use devices.

A system that recommends things by producing customized recommendations
as output or has the effect of guiding the user in a personalized way to interesting or
useful objects in a large space of possible options is named a recommendation system
[Burke 2002].

Adomavicius and Tuzhilin [Adomavicius and Tuzhilin 2011] elicited different ap-
proaches to use contextual information in the recommendation process. These can be
broadly categorized into two groups: (1) recommendation via querying and search, and
(2) recommendation via preference elicitation and estimation.

1. The querying and search approach uses information to query or search a certain
repository of resources and present the best matching resources to the user.

2. The preference elicitation and estimation approach attempts to model and learn
user preferences, i.e., by observing the interactions of this and other users with the
systems or by obtaining preference feedback from the user on various previously
recommended items, and uses these preferences to make its recommendations.

Search-based recommender systems usually create an index of objects and use
this index to respond to queries from users. An index is a data structure that makes the
system efficient to retrieve objects given the value of one or more elements of the objects.
Queries are evaluated by processing the index in order to identify similarities, which are
then returned to the user. These systems also have procedures to analyze variations in
documents and queries. The verification of these variations can improve the searching
process. These procedures can play functions such as ’synonym check’ which aims to
search for words with equivalent meanings, ’stopwords check’ which aims to identify
keywords that are not considered relevant, and so on.

4. Discussion and Research Plan

With the constant growth of the IoT and the provision of a huge number of IoT devices
in the near future, it is unfeasible that application programmers manually look for desired
devices without a standardized system support.

A ToT context-based recommender system can provide improvements to the [oT
application development process that is composed of the process of finding and using mid-
dleware devices, especially for users that do not know the domain and/or the middleware
configuration patterns.

Given our previously stated problem, facts, and definitions, with our preliminary
review of literature, we found that we can recommend devices and guide the user through
search-based recommender systems. In this case, the user will not be aware of the content
and structure of the system data to ask a precise question. Therefore, through a search we
can provide a ranked list of items that are strongly related to the search terms that the user
entered, even if they do not exactly match.

The next step is to conduct a systematic literature review of search engines and
search-based recommender systems to conclude which techniques are most appropriate to

124

[l Latin American School on Software Engineering (ELA-ES 2015)

compose our framework solution. Once we finish this more formal and organized review,
we will develop a software prototype that implements our framework solution composed
of the chosen techniques. The framework will be coupled on SOA-based middleware
previously developed by our research group [Amaral et al. 2015]. Next, we will conduct
a case study with real data from a health care system to evaluate the framework.

References

Abowd, G. D. and Mynatt, E. D. (2000). Charting past, present, and future research in
ubiquitous computing. ACM Trans. Comput.-Hum. Interact., 7(1):29-58.

Adomavicius, G. and Tuzhilin, A. (2011). Context-aware recommender systems. In
Recommender systems handbook, pages 217-253. Springer.

Amaral, L., Tiburski, R., Matos, E., and Hessel, F. (2015). Cooperative middleware plat-
form as a service for internet of things applications. In Proc. of the ACM Symposium
on Applied Computing (to be published), SAC ’15, New York, NY, USA. ACM.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer
Networks, 54(15):2787 — 2805.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12(4):331-370.

Digital Enterprise Research Institute. Linked sensor middleware (Ism). http://1lsm.
deri.ie/. Accessed: 2015-03-26.

GSN Team. Global Sensor Network. http://sourceforge.net/apps/trac/
gsn/. Accessed: 2015-03-11.

Guillemin, P., Friess, P, et al. (2009). Internet of things strategic research roadmap. The
Cluster of European Research Projects, Tech. Rep., September.

Jing, Q., Vasilakos, A., Wan, J., Lu, J., and Qiu, D. (2014). Security of the internet of
things: perspectives and challenges. Wireless Networks, 20(8):2481-2501.

Kevin, A. (2009). That internet of things thing, in the real world things matter more than
ideas. RFID Journal, 22.

Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., and Morbidoni, C. (2009).
Rapid prototyping of semantic mash-ups through semantic web pipes. In Proceedings
of the 18th international conference on World wide web, pages 581-590. ACM.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2012). Cadiot: Con-
text awareness for internet of things. In Proc. Int’l Conf. on Green Computing and
Communications, pages 775-782. IEEE.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014). Context aware
computing for the internet of things: A survey. Communications Surveys Tutorials,
IEEE, 16(1):414-454.

Sundmaeker, H., Guillemin, P., Friess, P., and Woelffl¢, S. (2010). Vision and challenges
for realising the internet of things.

125

[l Latin American School on Software Engineering (ELA-ES 2015)

Analise da adocao de processo de medicao no
desenvolvimento agil de software

Luis Paulo Correa’, Raquel Aparecida Pegoraro !

'Departamento de Ciéncia da Computacdo — Universidade Federal da Fronteira Sul
(UFFS) — Chapeco, SC — Brasil

correaluisp@gmail.com, raquel.pegoraro@uffs.edu.br

Resumo. Motivados pelo crescimento da adogcdo dos métodos dageis e pela
necessidade de realizar a andlise do desempenho desses projetos através da
analise de métricas e da implantacdo de processos de medi¢do, bem como
pela caréncia de estudos que tratam sobre esse assunto, esta pesquisa tem
como objetivos: (a) Avaliar o impacto da adogdo de um processo de medi¢do
na andalise do desempenho numa empresa que utiliza métodos dageis na gestdo
de seus projetos; (b) Identificar os fatores comportamentais ou
organizacionais que interfiram positivamente ou negativamente na
implantacdo do processo de medig¢do. Ao final deste projeto de pesquisa
espera-se alcangar os seguintes resultados: (a) entender quais fatores
interferem na implantagdo do processo de medi¢cdo com métodos ageis; (b)
entender se a adogcdo de um processo de medi¢do auxilia na analise de
medi¢do avaliando os fatores qualidade, produtividade e evolucdo do projeto,
e qual a relagdo de impacto entre esses fatores.

Abstract. Motivated by developing of adoption of agile methods and the
necessity to do the performance analysis projects through analyzing metrics
and the implementation of measurement processes, as well as the lack of
studies that deal with this issue, this research aims to: (a) Evaluate the impact
of the measuring process adoption in the performance analysis on a company
which uses the agile methods in the management of its project; b) Identify the
behavioral or organizational factors that interfere positively or negatively in
the implementation in the measuring process. By the end of this research we
expected to achieve the following results: (a) Understand which factors
influence the implementation of the measurement process with agile methods;
(b) Understand if the adoption of measurement process helps in measuring
analysis evaluating the quality factors, productivity and evolution of the
project, and what the impact of relationship between these factors.

Palavras-chaves: Métricas de software. Processo de medicao. Métodos ageis.
Pesquisa exploratdria. Projeto de experimentos.

126

[l Latin American School on Software Engineering (ELA-ES 2015)

1. Introducao

Os métodos ageis tem chamado aten¢do das empresas de software devido aos
inimeros relatos de sucesso, porém, segundo Dingsoyr et al., (2012), apesar do
crescimento ascendente de sua adogdo, muito trabalho ainda tem de ser empreendido
para tornar coerente o discurso atual sobre a agilidade. Mikulenas e Butleris (2010)
afirmam que as pesquisas da area se concentram na apresentacao de historias de sucesso
ou de licdes aprendidas por organizagdes que adotaram métodos ageis para projetos
especificos, havendo uma falta de pesquisas de avaliagdo de adequagdo dos métodos
ageis, considerando diversas caracteristicas ambientais em empresas de software, entre
eles adocao de métricas de software.

As métricas s3o essenciais para as empresas desenvolvedoras de software, pois
ajudam na medicao da qualidade, na estimava dos recursos necessarios e dos custos, no
planejamento e controle do progresso de desenvolvimento de software (Mishra, Kumar
e Kumar, 2009). Poonacha e Bhattacharya (2012) argumentam que muitas organizagdes
adotam métodos ageis sem entender quais os fatores devem ser medidos e controlados.

O Standish Group publicou em 2011 o relatério Chaos Manisfesto que compara
o desempenho entre projetos ageis ¢ tradicionais de software e apresenta fatores
motivadores para ado¢do de métodos ageis. Nos projetos tradicionais (modelo cascata)
14% tiveram sucesso, 57% foram contestados e 29% falharam, sendo que nos projetos
ageis 42% tiveram sucesso, 49% foram contestados ¢ 9% falharam (Standish Group,
2012). Os dados apresentados na pesquisa mostram que os projetos realizados a partir da
abordagem agil tiveram mais sucesso que os tradicionais, porém a taxa de projetos que
falharam ou foram contestados ainda ¢ alta, o que demonstra sérios problemas de gestao
e reforca a importancia de um monitoramento e controle eficazes nos projetos desta
natureza.

A revisdo sistematica publicada por Dyba e Dingsoyr (2008) a qual faz um vasto
levantamento sobre estudos empiricos utilizando métodos ageis, nao cita nenhum estudo
sobre métricas de software, processo de medicdo ou indicadores de desempenho,
constatando que nos primeiros anos apos o advento do Manifesto Agil os estudos ndo
trataram destes temas. Apds este periodo alguns estudos foram publicados sobre o
assunto, porém predominando estudos de caso com relatos de experiéncia sobre a
adocdo de métricas em métodos ageis (Petersen e Wohlin, 2011) (Talby e Dubinsky,
2009) (Green, 2011) (Middleton e Joyce, 2012). Os autores Dingsoyr et al., (2012)
avaliaram os primeiros 10 anos dos métodos ageis e afirmam que entre os assuntos que
ainda precisam ser evoluidos nos métodos ageis estd o gerenciamento desses projetos,
especialmente sobre planejamento, controle, avaliagdo do desempenho e estimativas.
Neste contexto, este projeto de pesquisa possui os seguintes objetivos:

e Avaliar o impacto da adog¢do de um processo de medicdo na andlise do
desempenho numa empresa que utiliza métodos ageis na gestao de seus projetos;

e Identificar os fatores comportamentais ou organizacionais que interfiram
positivamente ou negativamente na implanta¢ao do processo de medigao.

Este artigo estd estruturado da seguinte forma: na sessdo 2 sdo apresentados os
procedimentos metodolégicos que serdo utilizados e na sessdo 3 sdo apresentados os
resultados esperados para esta pesquisa.

127

[l Latin American School on Software Engineering (ELA-ES 2015)

2. Procedimentos Metodologicos
A metodologia que sera utilizada na pesquisa consistird em:

a) Realizacdo de um estudo de caso numa empresa de grande porte que possui um
setor de desenvolvimento de software para atender as demandas internas de
sistemas de informacdo e utiliza métodos ageis na gestdo de seus projetos, sendo
subdivido em 2 fases de pesquisa. Na primeira fase sera utilizada a estratégia de
pesquisa exploratoria (Gil, 2010) e serdo acompanhadas varias iteracdes de um
projeto com o objetivo de conhecer a realidade vivenciada pela empresa quanto
ao monitoramento dos seus projetos, neste momento sem interferéncia do
pesquisador. Posteriormente serd utilizada a estratégia de pesquisa-acao (Gil,
2010), nesta fase serd implantado um processo de medicdo seguido as
recomendacdes de Pegoraro (2014) que apresenta recomendagdes de como
implantar um processo de medicdo para projetos ageis de software, e de Softex
(2011) que define resultados a serem esperados de um processo de medi¢ao
maduro. Para definicdo das métricas sera utilizado o método GQM (Goals
Questions Metrics) proposto por Basili et al. (1996), abordagem muito utilizada
para defini¢do de métricas na engenharia de software. Nesta fase da pesquisa
serdo utilizadas as técnicas de coleta de dados de entrevistas e grupos focados.

b) Para a avaliagdo do impacto da ado¢ao de um processo de medig@o na analise de
desempenho, sera realizado um estudo quantitativo através técnica de analise e
projetos de experimentos. Os fatores a serem investigados serdo: (a) qualidade;
(b) produtividade; e (c) evolu¢do do projeto. Foram definidos esses fatores por
serem aspectos criticos da gestdao agil de projetos. A forma de controle desses
fatores sera através do monitoramento das métricas e os dados serdo coletados
durante as fases de pesquisa exploratdria e pesquisa-agdo; apos, os resultados
serdo submetidos a andlise de variancia (ANOVA) para identificar quais fatores
tiveram interagdo significativa apds a ado¢do do processo de medicdo. Para a
conducdo do projeto de experimentos serd seguindo as recomendacodes de
(Werkema e Aguiar, 1996) e (Montgomery, 1997).

3. Resultados esperados

Ao final deste projeto de pesquisa espera-se alcangar os seguintes resultados: (a)
entender quais fatores interferem na implanta¢do do processo de medi¢do nos métodos
ageis; (b) entender se a adogcdo de um processo de medi¢do auxilia na analise de
desempenho avaliando os fatores qualidade, produtividade e evolugdo do projeto, e qual
a relacdo de impacto entre esses fatores.

4. Referéncias

BIOLCHINI, J. C. de A. et al. Scientific research ontology to support systematic review
in software engineering. Advanced Engineering Informatics, v. 21, n. 2, p. 133-151,
2007.

128

[l Latin American School on Software Engineering (ELA-ES 2015)

BASILI, V. et al. Goal question metric approach. Encyclopedia of software engineering.
In: Encyclopedia of Software Engineering. John Wiley and Sons, pp. 528-532, 1996.

DINGSOYR, T. et al. A decade of agile methodologies: Towards explaining agile
software development. Journal of Systems and Software, v. 85, n. 6, p. 1213-1221,
jun. 2012.

DYBA, T.; DINGSOYR, T. Empirical studies of agile software development: A
systematic review. Information and Software Technology, Amsterdam, v. 50, n. 9-10,
p.833-859, ago. 2008.

GIL, A. C. Como elaborar projetos de pesquisa. 5. Ed. Sdo Paulo: Atlas, 2010.

GREEN,P. Measuring the Impact of Scrum on Product Development at Adobe Systems.
System Sciences (HICSS), 2011 44th Hawaii International Conference on. p. 1-10.

MIDDLETON, P.; JOYCE, D. Lean Software Management: BBC Worldwide Case
Study. Engineering Management, IEEE Transactions on. v. 59, n.1, p.20-32, 2012.

MIKULENAS, G.; BUTLERIS, R. An approach for constructing evaluation model of
suitability assessment of agile methods using analytic hierarchy process. Electronics
and Electrical Engineering, v. 10, n. 106, p. 99-104, 2010.

MISHRA, D.; BALCIOGLU, E.; MISHRA, A. Measuring Project and Quality aspects
in Agile Software Development. TTEM-Technics Technologies Education
Management, v. 7, n. 1, 2012.

MONTGOMERY, D. C. Design and Analysis of Experiments. 5. ed. New York: John
Wiley & Sons, 1997.

SOFTEX. Melhoria de Processo do Software Brasileiro: Guia Geral. Campinas:
SOFTEX, 2011.

STANDISH Group. Chaos Manifesto. 2012. The Standish Group International.
Relatorio. Disponivel em: <https://secure.standishgroup.com/reports/reports.php>
Acesso em: 01 mar. 2015.

POONACHA, K. M.; BHATTACHARYA, S. Towards a Framework for Assessing
Agility. System Science (HICSS), In: 45TH HAWAII INTERNATIONAL
CONFERENCE, 2012. Proceedings... p. 5329-5338, 2012.

PEGORARO, R. A. Me¢étricas de avaliagdo para abordagens ageis em projetos de
software. 2014. Tese. Universidade de Federal do Rio Grande do Sul, 2014.

PETERSEN, K. WOHLIN, C. Measuring the flow in lean software development.
Software: Practice and Experience. v. 41. n. 9, p. 975-996, 2011.

TALBY, D.; DUBINSKY,Y. Governance of an agile software project. Software
Development Governance, 2009. SDG '09. ICSE Workshop on. p.40-45.

WERKEMA, M. C. C.; AGUIAR, S. Planejamento e Analise de Experimentos: como
identificar e avaliar as principais varidveis influentes em um processo. Belo
Horizonte: Fundagao Christiano Ottoni, 1996.

129

[l Latin American School on Software Engineering (ELA-ES 2015)

On the Transformation to Agile in a Large-Complex Globally
Distributed Company: A Research Plan to Define Guidelines

Greice Roman, Sabrina Marczak, Alessandra Dutra

'Faculdade de Informdtica — Pontificia Universidade Catélica do Rio Grande do Sul (PUCRS)
Av. Ipiranga, 6681 — Partenon — 90.619-900 — Porto Alegre — RS — Brazil

greice.roman@acad.pucrs.br, {sabrina.marczak, alessandra.dutra}@pucrs.br

Abstract. The transformation to agile is not a simple process and although there
is vast literature on the topic, there is still no consolidated body of knowledge
on how to proceed when this transformation happens in large-complex glob-
ally distributed companies. This paper presents the research plan to follow the
transformation into agile of a large-complex distributed IT organization aiming
to serve as an exploratory case study for our long-term goal of proposing a set
of guidelines to guide the transformation in such type of company.

1. Introduction

The Agile Manifesto [Beck and colleagues 2001] was written in February 2001. It offers
new values to motivate software companies to deliver high-quality products faster and
produce satisfied customers. Since then, companies are discussing whether to become
agile and how to go about transforming themselves to achieve such ’agility’. The trans-
formation process involves more than deciding on which agile method to adopt. It refers
to making changes in such a way that the company and its projects will ’become’ agile.

Academia has been supporting industry to go through the transformation process
for as long as the agile philosophy has been defined. However, achieving success in large-
scale companies as reported in [Fry and Greene 2007]), for example, is a complex process
and brings numerous challenges to organizations [Korhonen 2013]. For instance, how
much can requirements keep changing when they cross hundreds of applications at a time?
[Dingsgyr and Moe 2014] presents a research agenda on the topic showing that there are
still several open questions. Given the large number of large companies migrating to agile,
there is a need for a consolidated and more extensive body of knowledge.

This paper presents the research plan to follow the transformation into agile of a
large-complex distributed IT organization aiming to serve as an exploratory case study
for our long-term goal of proposing a set of guidelines to guide the agile transformation
process in large-complex globally distributed software companies. We will contribute to
furthering the body of knowledge on the topic for this type of company.

2. Agile Transformation

The agile transformation process (ATP) has been encouraged to remedy inherent problems
of traditional software development [Gandomani et al. 2014] and is defined as the process
of leaving the traditional way to development software and adopting the agile philosophy,
tools, and principles [Ranganath 2011]. A true ATP must focus on ’being’ agile rather
than ’doing’ agile. This is the main reason that makes ATP more difficult than expected.

130

[l Latin American School on Software Engineering (ELA-ES 2015)

[Gandomani et al. 2014] identified a set of categories of an ATP, as follows: pre-
requisites to become agile, training on methods and what it is about, facilitators (people
who will guide the process), transition framework (a stepwise view on how to do it), man-
aging the transition, assessment of progress, reasons for aiming to agility, coaching the
transition, technical issues, human aspects-related issues, customer-related issues, selec-
tion of pilot projects for the transition, and agile method selection. [Fontana et al. 2015],
on the other hand, identified the following categories: practices to become agile, team
composition and behavior, deliveries (evolution from traditional to continuous delivery),
requirements (transition from traditional requirements elicitation to use stories), product
(practices to improve the software product), and customer relationship.

In large-scale agile transformation, the key challenges seem to be managing a large
number of agile teams, dividing work among those teams, achieving the system-wide
properties of the software, and guaranteeing the simultaneous releases of cross-cutting
features [Ganesh and Thangasamy 2012]. In their study, [Dingsgyr and Moe 2014] iden-
tified four principles to be observed in large-scale agile development, namely: architec-
ture - figuring out how work is coordinated; inter-team coordination - creating effective
knowledge networks is essential due to the knowledge-intensive nature of software de-
velopment; portfolio management - providing continuous feedback from the portfolio to
project levels enables the teams and project members to take decisions that are consistent
with the goals of the large-scale agile portfolio, and scaling - describing the context for
agility and scale is essential for understanding how to improve agility in large-scale agile.

The discussion becomes even more interesting when a large company is physically
distributed and develops complex-interrelated applications.

3. Our Long-Term Research Plan and Case Study Design

To achieve our goal we will follow a qualitative approach organized in four major phases
(see Figure 1). Phase 1, named Foundation, aims to build the foundation for our two-year
long investigation and is organized in two major sub-phases. The Literature Review sub-
phase aims to review definitions for related concepts such as agile transformation, large-
scale development, and development of complex applications, and define the concepts
we will adopt. It will also serve the purpose of identifying related work. We expect
to identify an initial list of aspects that have to be considered when going through the
referred transformation (Jan to May’15). The Benchmarking sub-phase aims to provide
us with deeper knowledge about how large-scale complex globally distributed companies
have gone through the ATP themselves. We will visit companies in Europe who have
gone through this process and discuss the aspects identified during the Literature Review
with them. We plan two months of work including visits and data analysis (Jun-Jul’15).

Phase 2, named Exploration, composed of a case study, aims to further the knowl-
edge acquired in Phase 1 by observing the identified aspects in a more comprehensive
manner (Aug-Dec’15). Section 3.1 presents the case study design in more details. Phase
3, named Solution, aims to have our guidelines for agile transformation in large-scale
complex globally distributed companies defined (version alpha). We will systematically
organize the insights from the prior phases in the format of policies or procedures that will
indicate a course of actions to be taken for each of the aspects related to the transformation
when a company wants to become agile (period: Jan-Apr’16).

131

[l Latin American School on Software Engineering (ELA-ES 2015)

Phase 1: Foundation Phase 2: Exploration Phase 3: Solution Phase 4: Evaluation

Literature Review Field study:

L Interviews
—> Case study — | Guidelines draft | [«

Benchmarking Field study:
Institutionalization

Figure 1. Proposed research design

In Phase 4, named Evaluation, we will evaluate whether our proposed guidelines
is fit to help large-scale complex globally distributed companies to become agile. We
will conduct a field study based on interviews with professionals who have been involved
with agile transformation aiming to have them pointing out whether each of the proposed
guidelines are proper to the aspect they mean to address and how they could be improved
(May-Jul’16). Once we compile the provided feedback, we will generate a new version
of the guidelines document (version beta)—as part of Phase 3 (Aug’16), and then consult
a new set of professionals to evaluate this version—as part of Phase 4 again (Set-Dec’16).
This time we will interview professionals who are currently involved in the transformation
process and that would be willing to consider adopting our guidelines. We will invite them
to select a sample to try in their companies and later ask them about their perception of
the results. There is a risk that guidelines will not be institutionalized given the short
time, however, we still think that having a preliminary try to observe changes and results
is valuable to have a more refined feedback on how fit is our set of guidelines.

3.1. Case Study Background and Design

The case study will be investigate in a large I'T multinational company chosen by conve-
nience. The company, named ORG (fictitious name), has started its agile transformation
in Jan’15. ORG’s IT department develops software products to support the organization’
business processes. Demands to develop or to update these products come from the sev-
eral business departments distributed around the world. The IT department is organized
by business area. Each IT team attends a business area only and is composed of the fol-
lowing functions: project management, business and requirements analysts, developers,
and architects. The Test team is a separate organizational unit and has its members allo-
cated per project by business area as requested by IT teams. IT personnel are distributed
among the headquarters’ office located in the US and also in Brazil, India, and Malaysia.

Projects are defined once a year as part of the IT roadmap plan. Once approved,
projects are assigned to project managers who allocate their teams and start a discussion
with business representatives acting as project owner proxies of what features should be
developed first. A Sprint plan is then approved and development starts. A project backlog
is kept and rediscussed each iteration until the scope is finished. Each project might tackle
business requests that might cross software applications, presenting the organization with
the challenge of having to manage the complexity of large systems interlocks.

Each business IT team is free to organize itself as it wants as long as the team re-
spects the worldwide guidelines defined by the IT board, such as adopt the tools to support
software development defined by the organization and follow agile practices proposed by
Scrum and XP only. Managers anticipate that this *freedom’ will increase the complexity

132

[l Latin American School on Software Engineering (ELA-ES 2015)

of coordinating software development cross business areas and system interlocks.

We will observe four projects selected as pilots by the organization for the ATP.
These projects are receiving training and guidance from a company specialized in Agile
Transformation. Each project belongs to a distinct business area and are distributed in at
least two sites each. We will be present at the Brazilian site but we also got permission to
participate in virtual meetings and conference calls with remote team members.

We aim to gather data about how the teams are organizing themselves and why
such organization, which practices they are adopting and why, which issues they are going
through and how they are solving them, and which needs they have that require feedback
from senior management. We will take into consideration the work environment they
have (e.g., applications and team members background, imposed organizational guide-
lines, etc) and collect the perception they have on how such environment influences the
transformation. Data will be collected and analyzed simultaneously to allow for follow-up
clarifications and exploration of new insights coming from the observed data.

4. Final Remarks

This paper presents our long-term goal to define a set of guidelines to support the ATP in
large-complex globally distributed companies. We discuss in more details one of the four
research phases, Phase 2, composed of a case study, highlighting the importance to collect
empirical evidence in this kind of study. Although we have just recently started our in-
vestigation, we have already identified a set of aspects that have to be observed during the
ATP from literature. We expect that our findings will shed some light in understanding the
phenomena and providing guidance to companies who want to go through this process.

Acknowledgment

This work is sponsored by the PDTI Program, financed by Dell Computers of Brazil Ltd.
(Law 8.248/91).

References

Beck, K. and colleagues (2001). Manifesto for agile software development.

Dingsgyr, T. and Moe, N. (2014). Towards principles of large-scale agile development.
In Dingsgyr, T., Moe, N., Tonelli, R., Counsell, S., Gencel, C., and Petersen, K., edi-

tors, Agile Methods. Large-Scale Development, Refactoring, Testing, and Estimation,
volume 199 of Lecture Notes in Business Information Processing, pages 1-8. Springer.

Fontana, R., Meyer, V., Reinehr, S., and Malucelli, A. (2015). Progressive outcomes: A
framework for maturing in agile sw development. J. of Systems and Sw, 102:88-108.

Gandomani, T., Zulzalil, H., and Nafchi, M. (2014). Agile transformation: What is it
about? In Proc. Malaysian SEng. Conf., 2014, Langkawi, Malaysia, pages 240-245.

Ganesh, N. and Thangasamy, S. (2012). Lessons learned in transforming from traditional
to agile development. Journal of Computer Science, 8:389-392.

Korhonen, K. (2013). Evaluating the impact of an agile transformation: a longitudinal
case study in a distributed context. Software Quality Journal, 21:599-624.

Ranganath, P. (2011). Elevating teams from ’doing’ agile to "being’ and ’living’ agile. In
Proceedings of the Agile Conference, Aug 2011, Salt Lake City, USA, pages 187-194.

133

[l Latin American School on Software Engineering (ELA-ES 2015)

Guidelines for Modularizing the Monitor Component
when Refactoring Adaptive Systems

Marcel A. Serikawa', Bento R. Siqueira', Fabiano C. Ferrari',
Ricardo Menotti!, Valter V. de Camargo'

!Computing Department — Federal University of Sdo Carlos (UFSCar)
Caixa Postal 676 — 13.565-905 — Sao Carlos — SP — Brazil

{marcel.serikawa, bento.siqueira, fabiano, menotti, valter}@dc.ufscar.br

Abstract. Adaptive systems are system that can adapt themselves to environ-
mental or internal changes in order to improve their quality of service. Most
authors agree that control loops are an intrinsic part of these systems, but in
most cases they are designed and implemented in a spread and tangled way,
harnessing maintenance activities. An alternative for that is to perform refac-
torings aiming at re-modularizing control loops as first class entities. Therefore,
in this paper we present our initial steps in creating a refactoring catalogue for
adaptive systems based on MAPE-K model. Our intention is to provide some
guidelines for refactoring the monitor component. Our approach is illustrated
with code snippets from a context-aware mobile application.

1. Introduction

Adaptive systems are able to modify their behavior and/or structure in response to a
changing environment[Garlan and et al 2004, Cheng and et al 2009]. Most authors agree
that this kind of systems is naturally and intrinsically composed by a set of control
loops [Weyns and ef al 2013], which are a sequence of processes to gather information
from the managed system and its environment, process this information and make neces-
sary changes to achieve a specific goal [Garlan and et al 2004]. Usually, a control loop
is composed by the following components: Monitor, Analyzer, Planner and Executor
[IBM 2006].

Previous research have shown that control loops are often tangled and spread
with the system main logic [Cdmara and et al 2013], harnessing maintenance and evo-
lution activities. To solve these problems, several authors [Cdmara and et al 2013,
Garlan and et al 2004] state that designing control loops in a modular way can reduce the
complexity and improve the maintainability. A possible alternative for that is by refactor-
ing the source code, aiming to change its structure without changing its external observed
behavior [Fowler and et al 1999]. However there is a lack of systematic knowledge about
refactoring adaptive systems in order to modularize their control loops.

Although there is no an exact solution for designing adaptive software, the
majority of solutions are based on the MAPE-K model proposed by IBM (2006)
[Weyns and et al 2013]. Therefore in this paper we present two design alternatives for
refactoring the Monitor component. The Monitor is the Control Loop element respon-
sible for collecting information from the managed system and the environment in order
to update the Control Loop Knowledge. Before updating the Knowledge, the Monitor

134

[l Latin American School on Software Engineering (ELA-ES 2015)

may preprocess the collected data, which may include conversions, standardization, data
aggregation and data filtering [Gil de La Iglesia 2014].

In this paper we have focused on two major steps on refactoring the monitor: (1)
the identification of code snippets that represent monitor abstractions and (2) modulariza-
tion of the identified monitor code in two design alternatives. The first one is based on
the observer pattern and it is called Event-Triggering, and the another is based on Polling
and it is called Time-Triggering.

2. Monitor Identification

Although each system can be built in many different ways, we still have some good ev-
idences to find the monitor abstraction in the code. An important characteristic is that
they have to be frequently updated with sensor’s data, it gives two important evidences
about the monitor code snippet. The first is that it should be a sensor instantiated, and the
second is that the monitor abstraction is inside a loop structure statement being constantly
updated. Although, it is very important to emphasize that to accomplish an adaptive sys-
tem monitor modularization, the software engineer needs a good knowledge about the
system [Cdmara and et al 2013].

To exemplify this identification and refactoring process it is used a context-aware
mobile application called PhoneAdapter [Sama and et al 2010]. This application is re-
sponsible to adapt the mobile configuration according to the data gathered by sensors like
GPS, Bluetooh, system calendar and users needs. In the Figure 1 it is shown the class
ContextManager code, where it is possible to identify the Monitor abstraction evidences
as listed before. In this class there are sensor devices imported as can be seen in lines 2-6
and a "while" statement in line 11 being processed every 2 minutes (line 31).

s case 2:
import java.util.Calendar: 19 mieekday="monday";
import android.bluetooth.Bluetoothlidapter; 20 break;
import android.bluetooth.BluetoothDevice:
import android.location.Location;
import android.location.LocationlListener;
if (mBtAdapter '= null){

if ('mBtAdapter.isEnabled()){
public class ContextManager extends IntentService {

while (!'mStop)} {

12 mCal=Calendar.getInstance ()
nTime=mTimeFormat.format (mCal.getTime ()) 30 tryi
switch (mCal.get (Calendar.DAY OF WEEK)){ 31 Thread.sleep (120000) ;
case 1:
nWeekday="sunday";
break:

Figure 1. Monitor evidences.

3. Monitor Modularization

In Figure 2 it is shown the class diagram of Event-triggering on the left and Time-
triggering on the right. The Event-triggering Monitor is designed as the Observer
Pattern, therefore the Sensor class, the Subject, adds the Monitor in a list of Ob-
server, the Sensor implements the method Sensor.notifyObservers () respon-
sible to call the Monitor.notify () method when there is a data change event. The

135

[l Latin American School on Software Engineering (ELA-ES 2015)

Time-triggering Monitor class has the method Monitor.update () that will call the
Sensor.getData () method to gather the Sensor’s data, this process occurs according
to the attribute timer. The main difference between these monitors is which element will
trigger the data update process and the choice between which monitor to be used is based
on the data being monitored.

Event-triggering Time-triggering
<<<Observer=>> Monitor
<<Subject>> B
Monitor
<<APl=> Sensor <<APl>> -timer: int
Sensor .- - pproChanged : boclean Sensor - pproChanged : boolean

- data : Data

- observerColl - Observer

+ updateData() : void

+ regObs{observer : Cbserver) : void

+ unregObs(observer : Observer) : void

+ notifyObservers() : void

- dataChanged : boolean

+ notify() : void
+ preprocess() : void
+ Updateknowledge() : void

- data - Data

+ updateData() : void

+ update() : void

+ preprocess() | void

+ updateKnowledge() : void
+ resetTimer() ; void

i i

SensorWeekday MonitorWeekday

- day ' int

Figure 2. Monitor Class Diagram with Event- (left) and Time-triggering (right).

In the Figure 3 it is shown an Event-triggering Monitor example, there are two
classes SensorWeekday on the right and MonitorWeekday on the left, with the
stereotype Observable and Observer respectively. The SensorWeekday class imple-
ments Observable which is the Subject equivalent in JAVA, this class instantiates the
system sensor Calendar (line 4) from where it collects the original data. The method
notifyObservers () is responsible to update the Monitors everywhen the day at-
tribute value has change, as can be seen in the method setDay ().

public class SensorWeekday extends Observable { public class MonitorWeekday implements Observer {

private SensorWeekda(){ public void update (Observable sensorWeekday, Object obj){
this.calendar = Calendar.getInstance();

public wvoid preprocess(int dawy){
String mWeekday = "™
switch (day) {
case 1:

public void notifyCbservers(){

public void setDay(int day){ niWeskday="sunday";
12 if(this.day!=day){ 12 break;
3 this.day = day- 13 case 2:

notifyCbservers(): mWeekday="monday";

break;

Figure 3. Example of a event-triggering refactor.

The MonitorWeekday class implements the update () method (line 3) which is
equivalent of the notify() method in Observer Patter, it is responsible to get the infor-
mation provided by the Sensor (Subject). The MonitorWeekday.preprocess ()
method is responsible to pre-process the data gathered, therefore the code from lines 15
- 22 in Figure 1 is placed in this method. After this process, this data is updated in the
Knowledge component and then processed by the others control loop components.

This monitor choice was based in the data type weekday, assuming that this value
changes every 24 hours it does not need to be updated every two minutes as it is done in

136

[l Latin American School on Software Engineering (ELA-ES 2015)

the original class, Figure 1, line 31. And since in this Event-triggering monitor the Sensor
component is responsible to trigger the monitoring process, it should be instantiate inside
a class responsible to manage all Sensors or as a separated thread.

4. Conclusion

The guidelines provided in this paper are an initial set which still need to be extended in
order to be fully applicable. Up to this moment, we have identified two kinds of monitors
and explained their characteristics, what assists modernization engineers along the identi-
fication process. We have also provided two design alternatives for the re-modularization.
Although we have not conducted an experiment yet, we have evidences that the modu-
larized version of the system has its maintainability and understandability improved. As
future work we intend to analyze the remaining components of control loop and develop
the complete refactoring catalogue for Adaptive Systems.

References

Camara, J. and et al (2013). Evolving an adaptive industrial software system to use
architecture-based self-adaptation. In Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2013 ICSE Workshop on, pages 13-22. IEEE.

Cheng, B. H. C. and et al (2009). Software engineering for self-adaptive systems: A re-
search roadmap. In Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P., and Magee,
J., editors, Software Engineering for Self-Adaptive Systems [outcome of a Dagstuhl
Seminar], volume 5525 of Lecture Notes in Computer Science, pages 1-26. Springer
Berlin Heidelberg.

Fowler, M. and et al (1999). Refactoring: Improving the design of existing programs.

Garlan, D. and et al (2004). Rainbow: Architecture-based self-adaptation with reusable
infrastructure. IEEE Computer, 37(10):46-54.

Gil de La Iglesia, D. (2014). A Formal Approach for Designing Distributed Self-Adaptive
Systems. PhD thesis, Linnaeus University, Department of Media Technology.

IBM (2006). Autonomic computing white paper: An architectural blueprint for autonomic
computing. IBM White Paper, page 34.

Sama, M. and et al (2010). Context-aware adaptive applications: Fault patterns and their
automated identification. IEEE Transactions on Software Engineering, 36(5):644—661.

Weyns, D. and et al (2013). On patterns for decentralized control in self-adaptive systems.
In Software Engineering for Self-Adaptive Systems 11, pages 76—107. Springer.

137

[l Latin American School on Software Engineering (ELA-ES 2015)

Furthering Knowledge on How Behavior-Driven Development
Can Support Requirements Elicitation

Lauriane Correa!, Sabrina Marczak!, Cleidson R. B. de Souza®

!Computer Science School — Pontificia Universidade Catélica do Rio Grande do Sul
90619-900 — Porto Alegre — RS — Brasil

Instituto Tecnoldgico Vale e Universidade Federal do Para
66055-080 — Belém — PA — Brasil

lauriane.moraes@acad.pucrs.br, sabrina.marczak@pucrs.br

cleidson.desouzalacm.org

Abstract. Requirements elicitation major’s challenge is establishing common
ground with the customer. Behaviour-Driven Development (BDD), inspired on
the concept of ’Specification by Example’, proposes a structured, English-based
format named scenario to state the desired behavior for the software to be built.
We aim to understand BDD usage in the field by first exploring the topic through
a multiple case study and later by confirming the preliminary findings in a large-
scale survey. While we are still conducting the exploratory study, we have also
started planning the survey. In this paper we introduce our research plan to
conduct the survey aiming to promote discussion on how to better acquire com-
prehension about the phenomena.

1. Introduction

Requirements elicitation tries to discover the application domain, business needs, require-
ments and system constraints by consulting stakeholders [Sommerville 2010]. Require-
ments analysts and stakeholders often do not share a common understanding of related
concepts and terms. Such lack of common ground can cause misalignment of the elicited
requirements [Zowghi and Coulin 2005]. Stakeholders also often have difficulties ex-
pressing their needs, making it harder to define the software expected behaviors.

A recurrent reported issue in literature is the difficulty of software teams to com-
municate clearly [International 2013], causing projects to go over budget or fail. That
is why Behavior-driven Development (BDD) emerges as a promessing approach. BDD
is the name given to a set of methods and techniques put together aiming to help teams
to focus their efforts on identifying, understanding, and building valuable features that
matter to businesses, and to ensure that these features are well designed and implemented
[Smart 2014]. The way the pieces are tied together aims to ensure consistency and trace-
ability of requirements throughout the development life cycle, to allow for timely com-
munication with anyone involved in the project, including the customer. Communication
aspects become less important since BDD uses a structured form.

Despite the promissed benefits and the anedoctal reports of how much BDD can do
for a software team, there is little empirical evidence of the extent that it can specifically
support requirements elicitation. To fill in this gap, we posed the following research

138

[l Latin American School on Software Engineering (ELA-ES 2015)

question: How can BDD support requirements elicitation in practice?, and designed an
empirical study to answer it. We set to first explore how BDD is used in practice through
a case study and then later confirm the preliminary findings in a large-scale survey. Our
interest in a large-scale study is to better understand the contexts in which BDD can
support requirements engineering (e.g., when the analyst writes the specification, when
there is an internal customer), aiming for generalization of our findings. While we brielfy
introduce our entire research plan to provide context, the goal of this paper is to present
the survey design aiming to collect feedback to help us ensure we are in the right path.

2. Behavior-Driven Development in a Nutshell

Behavior-driven Development (BDD) was designed to help teams build and deliver more
valuable, higher-quality software faster [Smart 2014]. It was initially proposed by Dan
North as a way to teach Test-driven Development (TDD) [North 2006]. It is composed of
a set of practices from agile methodologies, such as TDD, automated acceptance testing,
and continuous building [Smart 2014]. It also incorporates the definition of features or
requirements based on examples as proposed by [Adzic 2011].

BDD provides a connection from code to the requirements, offering a better envi-
ronment for managing project progress. This is done through scenarios that define a way
to describe how the system should behave based in a language that is native to the stake-
holder, promoting a common understanding of the business domain between stakeholders
and development team [Evans 2003]. BDD starts by identifying relevant business goals
and software features that will cover these goals. Collaborating with the customer, BDD
practitioners use concrete examples to illustrate the features. These features can be bro-
ken down into smaller chunks, named user stories, when more than one aspect composes
them. The defined examples are then automated in the form of executable specifications
that follow a structured format named ’scenarios’.

Figure 1 illustrates the notation defined to write an example that represents a
certain feature. This feature is composed of two scenarios, each composed of a set of
steps marked by pre-defined clauses as explained next. A Feature is a descriptive text of
what is desired by the customer. This description provides context to those reading and

Feature title: Buying books with the bookstore card
Narrative:

In order to buy the books

As a bookstore client

I want to pay my chosen books with my bookstore card
Scenario 1: Paying with a positive balance

Given my bookstore card has a balance of 300.00

And my bookstore card give me 15% discount

‘When I buy 100.00 from my cart in books

Then I should pay 85.00

And I should have 215.00 left in my bookstore card
Scenario 2: Paying without sufficient balance

Given my bookstore card has a balance of 50.00

And my bookstore card give me 15% discount

‘When I buy 100.00 from my cart in books

Then I should receive an "insufficient balance’ error message
And I should still have 50.00 in my bookstore card

Figure 1. Illustration of a Feature and Its Scenarios using BDD

139

[l Latin American School on Software Engineering (ELA-ES 2015)

using a feature definition and describes the business value of the feature to the software
as a whole [North 2006]. A feature usually contains a list of Scenarios [Smart 2014].
Each scenario is composed by a set of pre-defined clauses, namely: *Given’, "When’, and
"Then’. Given describes the preconditions for the scenario and prepares the test environ-
ment. When describes the key action the user performs, or state transition. Then is used
to describe outcomes. The observations should inspect the output of the system (a report,
user interface, message, command output). And and But are additional clauses used to
join the previous clauses and provide a more readable way to specify the feature.

3. Proposed Survey in the Context of Our Long-Term Research Plan

Given its novelty, there is little empirical evidence how BDD is used in practice and none,
to the best of our knowledge, on how it addresses requirements elicitation issues. To better
understand this phenomena and explain the benefits and challenges of BDD adoption, we
are currently conducting an exploratory study organized in two smaller steps as indicated
in Figure 2, Phase 2, and are preppering for applying a survey (Phase 3) as previously
mentioned. We briefly introduce the exploratory studies to provide context.

Our goal conducting the Interview step was to develop a initial understanding
about how BDD is defined and used in practice. We have conducted ten semi-structured
interviews before the book "BDD in Action’ [Smart 2014] has been released. This book
provides a consolidated description of BDD and its related techniques. While analyzing
data from the interviews, we started observing team members of a project at a large agile
IT company with development centers located in five continents. The case was selected
based on convenience and access to the company’s office in Brazil. In this project, ana-
lysts discussed the needs for a software solution with the customer and wrote the elicited
features down using user stories. Later, these stories were transformed into scenarios with
the development team’s help and then automated by a tool that supports BDD. We have
just recently joined the company on site. An iteration is about to be completed soon,
allowing us to get familiar with all activities of an interation cycle.

Although we are still conducting the Case Study, we have already started design-
ing the Survey study (Phase 3). Our goal with the survey is to aim for generalization of our
findings from Phase 2. So, for now, we have decided that our population is IT profession-
als located in any place around the world who adopt BDD. We will follow a snowballing
sampling to select our sample, that should be as large as possible given the two months
we plan to keep the survey open. We will ask the ten participants of our interview step
to indicate colleagues and request them to indicate other people. We have also already
started to look for additional respondents by inspecting discussion groups in social media
websites such as LinkedIn. Eight groups of interest located in Latin America, Europe,
and Asia have been identified so far.

Phase 1. Literature Review Phase 2. Exploratory Study Phase 3. Confirmatory Study

Figure 2. Proposed Research Method

140

[l Latin American School on Software Engineering (ELA-ES 2015)

The survey will be made available online and will be non-supervised. We have
already tested the Qualtrics survey tool to make the questionnaire instrument available
but we learned that the license our University owns is limitated to 200 respondents. We
are looking for a reliable, free-of-cost alternative solution at this moment.

The survey instrument will be composed of closed questions only, in a Likert-
scale format. Response choices will be designed based on the findings from the literature
review, our interviews, and the insights from our case study. We have an initial draft
but this work will be refined and completed as the case study is finished and data ana-
lyzed. The general constructs we are considering to design the questions are as follows:
BDD concept, BDD activities, roles involved in the process, artifacts used, tools adopted,
benefits of adoption and challenges faced when using BDD. Requirements engineering re-
lated specific contructs are as follows: requirements elicitation issues, requirements qual-
ity, product quality, communication issues, common ground establishment, and obsolete
documentation. Our survey design is following Kitchenham’s and Pfleeger’s guidelines
[Kitchenham and Pfleeger 2002].

4. Final Remarks

BDD aims to promote collaboration and to facilitate communication among stakeholders
and the software team. We aim to further our knowledge about BDD usage in the wild by
conducting a large-scale survey to confirm findings from our previous initial exploratory
studies. This paper presented our high level plan to conduct the survey. We hope that
our about-to-come-soon findings will motivate additional practitioners to adopt BDD and
researchers to explore other aspects related to this topic.

Acknowledgment

This work is sponsored by the PDTI Program, financed by Dell Computers of Brazil Ltd.
(Law 8.248/91).

References

Adzic, G. (2011). Specification by Example: How Successful Teams Deliver the Right
Software. Manning Publications Co., Greenwich, CT, USA.

Evans, E. (2003). Domain-Driven Design: Tacking Complexity In the Heart of Software.
Addison-Wesley, Boston, MA, USA.

International, T. S. G. (2013). The chaos manifesto.

Kitchenham, B. A. and Pfleeger, S. L. (2002). Principles of survey research part 2: De-
signing a survey. SIGSOFT Softw. Eng. Notes, 27(1):18-20.

North, D. (2006). Introducing BDD. http://dannorth.net/
introducing-bdd/.

Smart, J. (2014). BDD in Action: Behavior-Driven Development for the Whole Software
Lifecycle. Manning Publications, Shelter Island, NY.

Sommerville, 1. (2010). Software Engineering. Addison-Wesley, England, 9 edition.

Zowghi, D. and Coulin, C. (2005). Requirements Elicitation: A Survey of Techniques,
Approaches. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

141

[l Latin American School on Software Engineering (ELA-ES 2015)

What challenges project managers face in software
crowdsourcing?

Graziela Basilio Pereira, Alexandre Lazaretti Zanatta, Rafael Prikladnicki

!Computer Science School - PUCRS, Porto Alegre, Brazil 90619-900

{graziela.basilio, alexandre.zanatta}@acad.pucrs.br,

rafael.prikladnicki@pucrs.br

Abstract. Crowdsourcing means outsourcing to the crowd and can be used to
support software development activities. In this paper we present software
crowdsourcing, a global trend and show how Brazilian project managers are
inside this context. We also introduce a preliminary study about the challenges
faced by project managers in software crowdsourcing projects.

1. Introduction

Crowdsourcing (CS) means outsourcing to the crowd. It is a compound contraction of
Crowd and Outsourcing and represents “the act of a company or institution taking a func-
tion once performed by employees and outsource it to an undefined (and generally large)
network of people in the form of an open call” [Howe 2006].

CS rises as an option to software development projects, providing access to a
scalable workforce of online experts. It also promises cost savings, time to market, pro-
ductivity and flexibility, tapping the intellect of the crowd [Carmel 1999]. At first sight
CS emerges as a solution for software projects with limited budgets and constrained re-
sources.

In a software development process CS can be adopted at certain stages or through-
out the whole project. Any software development task can be crowdsourced, including
requirements, design, coding, testing, evolution and documentation [Huhns et al. 2013].
There are platforms that cover every software development process like TopCoder and
others which were designed to attend specific tasks, like uTest. Furthermore, CS can be
incorporated independently of the software methodology or lifecycle, such as waterfall or
agile [Huhns et al. 2013]. Enterprises have been outsourcing software development for a
long time through the use of other companies to build their software solutions. During
this period project managers were learning, developing methods and techniques to work
on projects with this feature.

Software development projects require communication, coordination, and man-
agement. Organizations increasingly sought the project management area to solve
problems and guarantee successful projects, that meet clients’ needs with quality
[Schwalbe 2013].

Recently, a new software engineering approach is emerging, enabled by cloud
solutions that provide large scale and highly available computational resources. This new
approach, known as crowdsourcing software development or software crowdsourcing,
uses the cloud to outsource parts or the entire software project to a crowd of developers
[Huhns et al. 2013].

142

[l Latin American School on Software Engineering (ELA-ES 2015)

In software CS processes the project manager can play the part of any of the three
main CS actors. Buyer (sponsor/client) - company that places the work requests (tasks). In
this case the project manager is responsible for monitoring and controlling the contracted
project. Crowd - a community of developers globally dispersed. Individual suppliers
that will effectively perform the tasks. As development (coding, testing, analysis, and
documentation) can be outsourced, nothing avoids the project manager to join the crowd.
CS Platforms - the platform is the middleman, i.e., it intermediates the communication
between buyers and the crowd itself. The CS systems show the tasks requirements that
should be solved by solvers (crowd). Some platforms have the role of the project manager
to ensure that projects contracted through the platform meet the goals.

Unfortunately, there is a lack of information available about project management
on software CS. As a result, there are several questions surrounding this area, such as:
What are the challenges of managing software CS projects? What strategies can be
adopted to minimize the challenges while managing a software CS project? Is there
any difference between manage a software CS and a distributed software development
project?

In order to identify and answer these questions, we planned an empirical research
study based on a survey and collected data from project managers in Brazil. In the next
sections we introduce the preliminary results of a pilot survey and four interviews. We
conclude the paper presenting our analysis based in the data collected.

2. Software crowdsourcing: Is it increasing?

The crowd work industry is now quickly growing in scope and ambition. Crowd work
today spans a wide range of skills and pay levels, with commercial vendors providing
access to a range of workers and focused support for various tasks [Kittur et al. 2013].

The benefits of CS to the organizations, like cost reduction, time to market, pro-
ductivity and flexibility, tapping the intellect of the crowd are evidenced by many authors
[Huhns et al. 2013] [Kittur et al. 2013] [Carmel 1999].

Along with the benefits to the companies, CS equally presents advantages to
the workers like flexible schedule, extra remuneration and learning. Besides this, it
also provides new opportunities for income and social mobility in regions where local
economies are stagnant or in those where local government structures discourage invest-
ment [Kittur et al. 2013].

This context is emphasized by most of the industrial software giants like Apple,
Oracle and Microsoft. These firms are engaging and adopting CS to create new products,
start new projects, secure funding and identifying talents [Huhns et al. 2013]. The work-
force in a crowd also evidences this growing. TopCoder, a CS plataform created in 2001
has reached more than 500,000 members in 2014 [Huhns et al. 2013].

The presented information supports that the crowd work continues to expand, un-
locking an incredible number of opportunities for careers and skilled work in online mar-
ketplaces.

To identify if Brazil is following this global trend, from the perspective of the
project managers, we performed a pilot survey, which received 363 project managers
answers. The survey presented questions about the usage, experience, challenges and

143

[l Latin American School on Software Engineering (ELA-ES 2015)

recommendations for managing software CS projects. Through a quantitative analysis it
became clear that Brazil is not following the CS rapid growth. The collected data showed
us how many of the respondents were aware of the term Crowdsourcing. Only 35 % had
already heard about CS before the survey, while 65 % were unaware about it. Just 7%
of the respondents already had some experience with CS, indicating that the Brazilian
market is immature in this area.

This moderated adhesion occurs due to several factors according to
[Machado et al. 2014]: buyers prefer to develop in-house or outsourcing, fear of exposing
strategic business information, concern to ensure deadlines, uncertainty about laws and
taxes that may be involved in CS activities.

3. Software CS: What are the challenges faced by project managers?

According to [Malone et al. 2010] making CS manageable and controllable is currently a
concern in CS projects. Software development processes require coordination, communi-
cation, and management. A large number of organizations increasingly sought the project
management area to solve problems and guarantee successful projects that meet clients’
needs with quality [Schwalbe 2013]. To unlock the potential of the crowd’s work, man-
agers need a deeper understanding of how these projects are developed and if additional
or different practices are needed to manage software CS projects.

We have gathered the challenges related to the pilot survey and four project man-
ager interviews. The most quoted challenges for managing CS software projects were re-
lated to communication, data confidentiality, people management and time management.
The key challenges mentioned were:

Coordinate activities in the crowd

Track the work progress and guarantee the tasks deadline and quality
Ensure the project confidentiality

Changes management

To specify product requirements without limiting innovation and creativity
Recognize how to define which activities can be done in the crowd
Resource management - allocation, engagement and ensure the commitment

Respondents expressed concern about the exposure of project’s strategic informa-
tion and recommended that the more strategic it is, the less CS should be used. The ability
to communicate with people at all management levels was the most important concern
identified.

Finally, the appropriate project selection and the team training methods were also
cited as concerns, once not every project is suitable for CS application and some people
have to be trained to work in this environment.

4. Conclusion

CS is relatively new and many of its grand promises and bad predictions have yet to
spread. Despite of that, firms and employees are already engaged into the CS market,
seeking the model, its unique benefits and accepting consciously or not the associated
risks [Felstiner 2011]. The project manager has an important role to identify the inher-
ent risks, set its boundaries, mitigate them and benefit from the advantages that CS can
provide.

144

[l Latin American School on Software Engineering (ELA-ES 2015)

Throughout our analysis we believe that all the challenges were adherent to any
of the knowledge areas of PMBOK [PMI 2014]. There were no issues that did not fit in
these areas. This lead us to think that CS projects can be managed based on the guide
of knowledge proposed by PMI. This hypothesis was reinforced along two interviews in
which project managers affirmed that software CS projects can be treated like any other
project. According to them, these projects may require deeper management in some fields
of expertise or specific techniques and tools to communicate or monitor the project.

The next steps in this research includes (1) to conclude the analysis of all an-
swers received in the pilot survey and interviews, (2) to execute a comprehensive litera-
ture review on managing CS projects, (3) to interview project managers in order to deeply
explore the challenges and recommendations identified, and (4) to propose project man-
agement practices for managing CS projects.

References

Carmel, E. (1999). Global software teams: collaborating across borders and time zones.
Prentice Hall PTR.

Felstiner, A. (2011). Working the crowd: employment and labor law in the crowdsourcing
industry. Berkeley J. Emp. & Lab. L., 32:143.

Howe, J. (2006). The rise of crowdsourcing. Wired magazine, 14(6):1-4.

Huhns, M. N., Li, W., and Tsai, W.-T. (2013). Cloud-based software crowdsourcing
(dagstuhl seminar 13362). Dagstuhl Reports, 3(9).

Kittur, A., Nickerson, J. V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J., Lease,
M., and Horton, J. (2013). The future of crowd work. In Proceedings of the 2013
conference on Computer supported cooperative work, pages 1301-1318. ACM.

Machado, L., Pereira, G., Prikladnicki, R., Carmel, E., and de Souza, C. R. (2014).
Crowdsourcing in the brazilian it industry: what we know and what we don’t know. In
Proceedings of the 1st International Workshop on Crowd-based Software Development
Methods and Technologies, pages 7-12. ACM.

Malone, T. W., Laubacher, R., and Dellarocas, C. (2010). The collective intelligence
genome. [EEE Engineering Management Review, 38(3):38.

PMI, P. M. 1. (2014). A guide to the project management body of knowledge(pmbok
guide). fifth edition.

Schwalbe, K. (2013). Information technology project management. Cengage Learning.

145

[l Latin American School on Software Engineering (ELA-ES 2015)

Colaboracio e Cooperagiio em Equipes Ageis: uma
investigaciao baseada na simulacao de agentes

. L3 1 2
Adriana Neves dos Reis

"nstituto de Ciéncias Exatas e Tecnologicas — Universidade Feevale
Novo Hamburgo — RS — Brasil

*Programa de Pos-Graduacio em Engenharia de Produgio e Sistemas — UNISINOS
Sao Leopoldo — RS — Brasil

adriananr@feevale.br

Abstract. Agile software development teams have their productivity linked to
interpersonal collaboration mechanisms. In practice, however, this feature is
not always observed, compromising the team's results, and even continued to
maintain agility as base value of your process. Whereas collaboration it is a
social behavior, dependent people, the proposed research presented in this
paper aims to apply a model based on agents to understand the relationships
between profiles and people in agile teams. To this end, we intend to
investigate scenarios for analysis of actions that contribute to the increase in
the degree of collaboration and cooperation between the actors of the process,
and to evaluate the influence of context on these behaviors.

Resumo. As equipes ageis de desenvolvimento de software tém sua
produtividade atrelada aos mecanismos de colaboragdo interpessoal. Na
pratica, entretanto, nem Ssempre esta caracteristica ¢é observada,
comprometendo os resultados da equipe, e até mesmo a continuidade de
manter a agilidade como valor base de seu processo. Considerando que
colaboragdo trata-se de um comportamento social, dependente das pessoas, a
proposta de pesquisa apresentada neste artigo tem como objetivo a aplica¢do
de um modelo baseado em agentes para compreender as relagoes entre perfis
e pessoas em equipes dageis. Para tanto, pretende-se investigar cendarios para
a andlise de acoes que contribuam para o aumento do grau de colaboragdo e
cooperagdo entre os atores do processo, bem como avaliar a influéncia do
contexto nestes comportamentos.

1. Introducao

Os métodos ageis de desenvolvimento de software tém sua produtividade atrelada ao
trabalho em equipe, visto que um de seus pilares ¢ a interacdo entre os individuos em
substitui¢do a intensa documentacdo para fins de comunicagdo entre 0s mesmos nos
modelos de processo tradicionais. Contudo, apesar de mais de dez anos de ado¢do no
mercado, sabe-se empiricamente que nem toda equipe consegue apresentar os niveis de
produtividade esperados na abordagem agil.

146

[l Latin American School on Software Engineering (ELA-ES 2015)

Entre as razdoes mencionadas no dia-a-dia das empresas de software para o
insucesso das praticas ageis estdo: a ndo adequacdo da cultura organizacional a filosofia
agil, a ndo adogdo das praticas ageis no contexto previsto (como tamanho de equipe,
papéis, etc), a falta de maturidade técnica da equipe, a falta de compreensdo do que ¢
agilidade, entre outros. Porém, além desses, observa-se uma dificuldade dos
desenvolvedores em assumir uma postura de colaboracdo, de a comunicagao pessoal ser
uma constante, e de cooperagdo, ou seja, de conseguir construir software e resolver
problemas em conjunto.

Tal contexto de colaboracao versus cooperacao gera evidéncias de que, além do
contexto organizacional, é necessario entender como os individuos da equipe se aderem
a pratica agil, o que parece ser influenciado pelo seu perfil em diferentes aspectos:
profissional, técnico, social, entre outros. Dessa forma, é preciso considerar que cada
membro da equipe possui suas crengas, competéncias, e objetivos, os quais sdo fatores
de interferéncia no direcionamento das ac¢des a favor de tragar e alcangar o objetivo do
grupo. Além disso, a interagdo entre eles e o ambiente da empresa podem contribuir ou
atrapalhar a execucao das praticas ageis.

Uma estratégia para abstrair esse fendmeno ¢ a Modelagem e Simulagdo baseada
em Agentes, por ser uma técnica que opera no nivel micro individual [1]. Um agente ¢ a
representacdo de um individuo com caracteristicas especificas, o qual interage com
outros agentes em um contexto compartilhado. Logo, o modelo descreve um sistema
reativo que exibe certa autonomia para decidir quao bem deve executar uma tarefa a ele

delegada [2].

Assim, o objetivo desta pesquisa ¢ investigar quais os efeitos das caracteristicas
dos desenvolvedores para o comportamento da equipe agil em relacdo aos aspectos de
colaborag¢do e cooperacdo. Para tanto, a proposta €, a partir de dados coletados em
equipes reais, investigar a dindmica da equipe agil, a partir da investigag¢do in silico,
utilizando modelagem e simula¢do baseada em agentes.

2. Agenda de Pesquisa

Em um sistema adaptativo, “agentes representam as unidades basicas do processo da
tomada de decisdao” [3] (p. 55). Um modelo baseado em agentes utiliza uma abstracdo
bottom up, baseada em agentes com funcées simples.

147

[l Latin American School on Software Engineering (ELA-ES 2015)

Colaboracio e Cooperacio em Equipes Ageis

Politicas Geréncia de
Organizacionais Projetos
Nivel Macro

i
1
1
1
1
1

00
0.

s

Perfil Papel

Nivel Micro

>to
e
o

>0

P

..........................

Colaboragdo Cooperagdo

Método Agil

e

Processo de Desenvolvimento

Figura 1. Framework da pesquisa proposta. Fonte: o autor.

Além disso, quando estes individuos interagem, considerando suas funcoes,
alguns comportamentos especificos emergem [2]. Dessa forma, neste contexto, é
relevante associar simulagdo para investigar propriedades da dindmica do processo
estudado.

A abordagem baseada em agentes tem sido adotada em estudos para permitir a
defini¢ao de modelos, os quais analisados em cenarios reais, consequentemente, servem
de base para a proposi¢ao de recomendagdes de ag¢do nestes contextos [1].

Assim, na Figura 1 ¢ apresentado o framework da pesquisa proposta, organizado
em niveis de abstragcdo, de forma esquematica.

3. Potencialidades do Estudo

De forma empirica, mesmo com a disseminacao das praticas ageis e 0 maior
grau de sua adocdo, ainda sdo comuns relatos sobre a dificuldade de obtencdo de
melhorias significativas em relacdo a produtividade das equipes que praticam agilidade.
Assim, compreender o comportamento dos atores em uma equipe agil e seus critérios
para comportamento em relacdo a colaboracdo e cooperacdo é um desafio na
perspectiva de estudos que abordam os aspectos sociais em Engenharia de Software.

O modelo proposto evidencia que Modelagem e Simulagdo baseada em
Agentes possuem caracteristicas potenciais como ferramenta de investigacdo do
ambiente de TI (Tecnologia da Informagéo) e, consequentemente, oferece suporte para
tomada de decisdo que estimule este tipo de pratica com resultados de produtividade
satisfatorios.

148

[l Latin American School on Software Engineering (ELA-ES 2015)

Referéncias

[1] E. Kiesling, M. Glnther, C. Stummer, and L. M. Wakolbinger, “Agent-based
simulation of innovation diffusion: A review,” Cent. Eur. J. Oper. Res., vol. 20,
no. 2, pp. 183-230, 2012.

[2] R.H.Bordini, J. F. Hibner, and M. Wooldridge, Programming multi-agent
systems in AgentSpeak using Jason, vol. 8. John Wiley & Sons, 2007.

[3] N. Nan, R. Zmud, and E. Yetgin, “A complex adaptive systems perspective of

innovation diffusion: an integrated theory and validated virtual laboratory,”
Comput. Math. Organ. Theory, vol. 20, no. 1, pp. 52-88, 2013.

149

[l Latin American School on Software Engineering (ELA-ES 2015)

Meta-Aprendizado Aplicado a Estimativa de Esforco em
Projetos de Desenvolvimento de Software

Silvia Nunes das Déres', Duncan Ruiz'

'Faculdade de Informética — Pontificia Universidade Catélica do Rio Grande do Sul (PUCRS)
Caixa Postal 1429 — 90.619-900 — Porto Alegre — RS — Brasil

silvia.dores@acad.pucrs.br, duncan.ruiz@pucrs.br

Abstract. Effort estimation is one of the cores of a software development pro-
Jject due to its influence in many management tasks, such as cost and schedule
estimate. Given the importance of this area, there is a great deal of effort to
propose new techniques and improve the accuracy of estimates. Among these
approaches there are techniques based on Machine Learning (ML). Although
there is a large number of ML approaches aimed at predicting effort, there is
no rule of thumb to choose the most appropriate algorithm for a given organi-
zational context. Thus, this paper aims to present a proposal for meta-learning
use to recommend ML algorithms on estimating effort in software development
projects.

Resumo. Estimativa de esforco é um dos cernes de um projeto de desenvolvi-
mento de software uma vez que ela influencia diversas tarefas gerenciais, tais
como, estimativa de custo, cronograma e prazo. Dada a relevincia da drea,
existem diversas pesquisas voltadas para a proposta de novas técnicas para
melhorar a precisdo das estimativas. Dentre essas abordagens destacam-se as
técnicas de baseadas em Aprendizado de Mdquina (AM). Embora exista um
grande niimero de abordagens de AM voltadas para predigcdo de esforco, faltam
métodos que auxiliem na escolha do algoritmo mais apropriado para um dado
contexto organizacional. Neste sentido, este trabalho tem o objetivo apresentar
uma proposta para utilizacdo de meta-aprendizado na recomendagdo de algo-
ritmos de AM para estimar esforco em projetos de desenvolvimento de software.

1. Introducao

Uma boa estimativa de esfor¢o € essencial para ajudar os gerentes de projeto a alocar
recursos e controlar os custos e o cronograma de seus projetos, 0 que por sua vez permite
que os projetos sejam finalizados no tempo e dentro do orcamento [Mendes 2014]. Porém,
estimar esfor¢o ndo € uma tarefa facil, uma vez que diversos fatores como complexidade
do projeto, tamanho e grau de incerteza podem afetar a confiabilidade destas estimativas
levando a superestimacao ou subestimagdo do esfor¢co dos mesmos [Pressman 2011].

Dentre as solugdes existentes para apoio a esta atividade destacam-se as solucoes
baseadas em Aprendizado de Maquina (AM), que visam predizer o esfor¢o para um pro-
jeto novo baseado em dados histdricos de projetos anteriores. Dentre as técnicas de AM
aplicadas a estimativa de esforco podemos destacar: Arvores de Regressdo e Classificacio
[Basgalupp et al. 2013]; Logica Fuzzy [Ziauddin et al. 2013]; Redes Neurais Artificiais

150

[l Latin American School on Software Engineering (ELA-ES 2015)

[Attarzadeh and Ow 2010]; Algoritmos Genéticos [Benala et al. 2012] e Estimativa por
Analogia [Mendes and Counsell 2000].

Apesar de ser crescente o nimero de solucdes desenvolvidas utilizando AM para
apoio a estimativa de esforco, tais solugcdes ainda nao sio utilizadas na prética, ou seja,
pelas empresas de desenvolvimento de software [Jgrgensen 2004]. Uma possivel justifi-
cativa para isto € o fato de que os modelos de estimativa baseados em AM geralmente sdao
gerados com base em um conjunto de amostra de projetos e tem sua eficicia demonstrada
para esta amostra. Porém, ao serem empregados em contextos diferentes daqueles nos
quais foram baseados, estes modelos nem sempre se mostram satisfatorios.

Estudos como [Mendes et al. 2014] investigam as vantagens e desvantagens de
se projetar modelos “personalizados” para um determinado contexto, ou seja, construir
modelos de estimativa para uma organizacdo utilizando os dados daquela organizagao.
A vantagem 6bvia neste caso serd o alinhamento deste modelo a realidade organizacional
para o qual foi projetado, o que leva a uma maior precisao das estimativas. Por outro lado,
construir modelos com base em dados de uma tinica organizagdo tem como desvantagens,
ou impedimentos, fatores como: (i) o tempo que levaria para uma organizagao construir
uma base de dados de projetos (dataset) suficientemente grande para ser util na construcao
de um modelo; (2) durante esse tempo, a organiza¢do poderia mudar algum aspecto (como
as tecnologias empregadas), o que tornaria os projetos antigos pouco relevantes para as
novas préticas.

Com base no contexto apresentado, verifica-se que um desafio cientifico atual
no desenvolvimento de solucdes de estimativa de esfor¢co baseadas em AM ndo seria
a constru¢do de um algoritmo que se adapte a todos os contextos de desenvolvimento
possiveis, mas sim “como atribuir um algoritmo mais adequado para um determinado
problema”, dada a existéncia de diversos algoritmos que se mostram satisfatorios para
variadas situagdes.

Assim, visando apoiar a resolu¢@o deste desafio, este trabalho propde a utilizagao
de meta-aprendizado para a selecdo de algoritmos de estimativa de esfor¢o baseados em
AM, de acordo com a base de dados organizacional. De maneira genérica, o meta-
aprendizado estuda como sistemas de aprendizado podem aumentar sua eficiéncia através
da experiéncia. O objetivo € entender como a propria aprendizagem pode se tornar
flexivel de acordo com o dominio ou tarefa em estudo [Vilalta and Drissi 2002]. Com
1sso, pretende-se determinar sob quais condi¢des cada algoritmo € mais apropriado, pos-
sivelmente ampliando o entendimento do mesmo e levando a sugestdes de uso mais ade-
quadas [de Souza 2010].

O restante desde documento esta dividido da seguinte maneira: na Se¢ao 2 € apre-
sentada uma visdo geral da proposta e na Se¢do 3 sdo apresentadas as consideracoes finais
do trabalho.

2. Visao Geral da Proposta

Na Figura 1, adaptada de [de Souza 2010], € apresentado o processo genérico de meta-
aprendizado que serd aplicado nesta pesquisa:

Inicialmente sdo adquiridas as Bases de Dados (B) de projetos de desenvolvi-
mento de software, cujos dados contenham métricas significativas para a estimativa de

151

Parte 2

Avaliagdo (A)

Algoritmo 1
Algoritmo 2
Algoritmo 3

Desempenho
0s
algoritmos.

atributos

'
Bases de Dados (B) Meta-

Aprendizado

l

Modelo de
Recomendacgdo
Ay de Algoritmos

Caracterizagdo
dos Dados (C)

)

Figura 1. Visao Geral da Proposta

esforco. Essas bases podem ser tanto oriundas de repositérios publicos de dados (tais
como PROMISE[T. Menzies and Turhan 2012] e ISBSG[ISBSG 2015]), quanto de em-
presas de desenvolvimento de software que desejem colaborar com a pesquisa (Parte 1).

Em um segundo momento (Parte 2), duas etapas sdo aplicadas para cada elemento
de (B): a avaliagao dos algoritmos, em (A), e a extracdo de caracteristicas, em (C). Os
algoritmos de AM a serem utilizados devem ser selecionados a partir da realizacdo de
uma revisao sistematica da literatura, onde serdo identificadas e analisadas as solugdes
de AM ja aplicadas para estimar esfor¢co em desenvolvimento de software. Esta revisdao
também tem como objetivo identificar Medidas de Avaliacdo, tais medidas sdo utilizadas
para avaliar o desempenho dos algoritmos e, a partir deste desempenho, determinar qual
algoritmo deve-se utilizar para um determinado conjunto de dados. A caracterizacdo do
conjunto de dados procura extrair caracteristicas presentes nos dados que possam influ-
enciar o desempenho dos algoritmos de AM. Posteriormente, tais caracteristicas serao
utilizadas para recomendar os algoritmos de AM mais promissores para um conjunto de
dados com tais caracteristicas.

A terceira etapa (Parte 3) prevé a associacdo da Avaliagdio (A) com a
Caracterizagdo (C) para cada Base de Dados (B). Sao obtidos meta-exemplos, forma-
dos por meta-atributos de entrada e meta-atributos alvo. O conjunto de meta-exemplos €
denominado meta-base. Para induzir entdo o mapeamento entre meta-atributos de entrada
e meta-atributos alvo, aplica-se um algoritmo de AM, referido como meta-aprendiz. Por
meio dele, pode-se utilizar o meta-conhecimento obtido do processo de aprendizagem e
realizar, por fim, a recomendacdo de algoritmos no contexto de meta-aprendizado.

Em relacdo a metodologia aplicada na pesquisa, além da revisao sistematica ja
mencionada, serdo realizados exaustivos experimentos in-silico para validagdo da solugao
de meta-aprendizado proposta, onde a solucao sera testada em relagc@o ao seu desempenho
individualmente e comparativamente a outras solucdes de apoio a Estimativa de Esforco.
Por fim, espera-se também realizar a avaliacdo da solu¢do proposta, a partir da realizacao
de um estudo de caso em uma organizacao de desenvolvimento de software.

3. Conclusao

Este artigo apresentou a proposta de uma soluc¢do de meta-aprendizado para realizacdo de
estimativa de esforco em desenvolvimento de software. Esta solu¢do visa recomendar o

[l Latin American School on Software Engineering (ELA-ES 2015)

melhor algoritmo de AM para uma determinada base de dados, possibilitando, com isso,
a adequacao da solu¢do a um determinado contexto organizacional.

Como resultado, pretende-se que a pesquisa desenvolvida contribua nao apenas
para a ampliacdo do conhecimento cientifico referente a meta-aprendizado no contexto de
Engenharia de Software, mas também estimule seu uso no contexto real de desenvolvi-
mento de software para estimar esforco.

Referéncias

Attarzadeh, I. and Ow, S. H. (2010). Proposing a novel artificial neural network prediction
model to improve the precision of software effort estimation. In Bio-Inspired Models
of Network, Information, and Computing Systems, pages 334-342.

Basgalupp, M. P,, Barros, R. C., da Silva, T. S., and de Carvalho, A. C. (2013). Software
effort prediction: A hyper-heuristic decision-tree based approach. In Proceedings of
the 28th Annual ACM Symposium on Applied Computing, pages 1109-1116. ACM.

Benala, T., Dehuri, S., Satapathy, S., and Madhurakshara, S. (2012). Genetic algorithm
for optimizing functional link artificial neural network based software cost estimation.
In Proceedings of the International Conference on Information Systems Design and
Intelligent Applications, volume 132 of Advances in Intelligent and Soft Computing,
pages 75-82. Springer Berlin Heidelberg.

de Souza, B. F. (2010). Meta-aprendizagem aplicada a classificacdo de dados de ex-
pressdo génica. PhD thesis, Instituto de Ciéncias Matematicas e de Computacido —
USP, Sao Carlos, SP, Brasil.

ISBSG (2015). International software benchmark and standards group.

Jgrgensen, M. (2004). A review of studies on expert estimation of software development
effort. Journal of Systems and Software, 70(1):37-60.

Mendes, E. (2014). Practitioner’s Knowledge Representation: A Pathway to Improve
Software Effort Estimation. Springer Publishing Company, Incorporated.

Mendes, E. and Counsell, S. (2000). Web development effort estimation using analogy.
In Software Engineering Conference, 2000. Proceedings. 2000 Australian, pages 203—
212. IEEE.

Mendes, E., Kalinowski, M., Martins, D., Ferrucci, F., and Sarro, F. (2014). Cross- vs.
within-company cost estimation studies revisited: An extended systematic review. In

Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, EASE *14, pages 12:1-12:10, New York, NY, USA. ACM.

Pressman, R. S. (2011). Engenharia de Software. McGraw-Hill, Sao Paulo, 7 edition.

T. Menzies, B. Caglayan, E. K. J. K. F. P. and Turhan, B. (2012). The promise repository
of empirical software engineering data.

Vilalta, R. and Drissi, Y. (2002). A perspective view and survey of meta-learning. Artifi-
cial Intelligence Review, 18(2):77-95.

Ziauddin, S. K., Khan, S., and Nasir, J. A. (2013). A fuzzy logic based software cost
estimation model. International Journal of Software Engineering and Its Applications,
7(2):7-18.

153

[l Latin American School on Software Engineering (ELA-ES 2015)

Sistema de Recomendaciao de APIs na Engenharia de Software

Luisa Hernandez, Heitor Costa

Departamento de Ciéncia da Computacao - Universidade Federal de Lavras - MG - Brasil

luisahernandezr@dcc.ufla.br,heitor@dcc.ufla.br

Resumo. A maioria dos projetos de software depende de bibliotecas externas
para alcancar seus objetivos. Essas bibliotecas sdo conhecidas como
Application Programming Interfaces (APls). Neste estudo, é apresentada uma
metodologia que permitira realizar uma andlise empirica de Sistemas de
Software quanto a utilizagdo de APIs e apoiar o desenvolvimento de sistemas
de software com qualidade. Essa metodologia permitirda a recomendagdo de
APIs em sistemas que utilizem APIs. Recomendac¢oes para desenvolvedores na
fase inicial do projeto também serdo consideradas.

Abstract. Most software projects depend on external libraries to achieve their
goals. These libraries are known as Application Programming Interfaces
(APls). In this study, we present a methodology to reach empirical analysis
software systems on the use of APIs and thus support the development of
software systems with quality. This methodology will let to recommend APIs in
systems using APIs. Recommendations to developers in the initial phase of the
project will be also considered.

1. Introducao

Desenvolvimento de software ndo ¢ uma tarefa facil. Prova disso ¢ a existéncia de
varias propostas metodologicas que afetam componentes e aspectos do processo de
desenvolvimento [Cands et al., 2003]. Entre os diferentes componentes, encontram-se
as bibliotecas de software conhecidas como Interfaces de Programacdo de Aplicativos
(Application Programming Interfaces - APIs). Uma API ¢ a interface para uma entidade
de software reutilizdvel utilizada por varios clientes e que pode ser distribuida
separadamente do codigo ambiente [Robillard et al., 2013].

Quase todos os sistemas de software dependem de fungdes reutilizaveis
fornecidas pelas APIs e o desenvolvimento de software moderno ¢ inseparavel desse
retiso [Duala-Ekoko; Robillard, 2012]. Entre as principais vantagens de utilizar APIs
estd o fato de prevenir que os desenvolvedores reconstruam recursos existentes [Teyton
et al., 2013], proporcionando uma forma rentdvel para construir sistemas de software
com melhora na (1) produtividade dos programadores, fornecendo variedade de funcdes
desejadas e (2) qualidade de software, porque sdo geralmente '"bem-testadas" e
utilizadas por grande quantidade de usuérios (desenvolvedores) [Sun ef al., 2011].

No entanto, para Engenheiros de Software, ¢ dificil selecionar de forma eficaz as
APIs durante o desenvolvimento e verificar a utilizacdo correta depois da constru¢do do
sistema. Por causa do aumento do tamanho e da quantidade de APIs, os
desenvolvedores devem frequentemente aprender como usar as APIs desconhecidas
[Acharya et al., 2007]. Isso significa que, antes de aproveitar os beneficios de uma API
para determinadas tarefas, um desenvolvedor deve descobrir e entender o

154

[l Latin American School on Software Engineering (ELA-ES 2015)

comportamento ¢ as relagdes entre os elementos de uma API [Duala-Ekoko; Robillard
2012]. Para ajudar os desenvolvedores, foi proposto LIBTIC, um motor automatico de
busca de desenvolvedores especialistas em APIs Java utilizando mineragdo no
repositorio de software GitHub [Teyton et al., 2013a]. No entanto, contratar
especialistas em APIs requer investimento, disponibilidade e recursos humanos que
podem nao estar dentro do escopo do projeto de desenvolvimento. Por outro lado, para
analisar as APIs utilizadas por um conjunto de sistemas de software e sugerir APIs para
desenvolvedores (sistema alvo da recomendagdo deve utilizar APIs), foi apresentada
uma metodologia que combina técnicas de Mineragao de Regras de Associagdo e de
Filtragem Colaborativa [Thung et al., 2013].

Neste estudo, o objetivo ¢ apresentar uma metodologia de recomendagdo de
APIs para desenvolvedores com sistemas em estado inicial (podem ou nao ter codigo,
mas se tiver, ndo usam APIs) e com sistemas em desenvolvimento que usam APIs. Este
artigo esta organizado da seguinte forma. Breve apresentacao de técnicas para sistemas
de recomendacdo estd na Secdo 2. A metodologia proposta e adotada para o
desenvolvimento de um sistema de recomendacdo ¢ discutida na Secgdo 3.
Consideragdes finais sdo apresentadas na Sec¢ao 4.

2. Sistemas de Recomendacao

Sistemas de recomendacdo para Engenharia de Software (Recommendation Systems for
Software Engineering - RSSEs) fornecem itens de informagao valiosos para tarefas de
engenharia de software em determinados contextos. Maior parte desses sistemas surge
para ajudar desenvolvedores em diversas atividades, desde reuso de codigo a escrever
relatorios eficazes de bugs [Robillard et al., 2010]. Hoje em dia, mais esfor¢os sdo
necessarios para realizar essas atividades por causa de novas tecnologias, componentes
e ideias que desenvolvedores sao continuamente introduzidos [Robillard ef al., 2014].

Entre as vantagens do uso de RSSEs, podem ser citadas diminui¢do do esforco,
aumento da produtividade nas tarefas da engenharia de software e auxilio nas tomadas
de decisdes [Robillard et al., 2014]. Para desenvolver esses sistemas, s3o comumente
utilizadas diferentes técnicas que dependem do contexto do problema e dos itens a
serem recomendados: 1) Filtragem Baseada no Conteudo: fundamentada nas
caracteristicas ou palavras-chave dos itens e nas preferéncias do usuario; e i1) Filtragem
Colaborativa: utilizada para recomendar itens baseando-se em outros usudrios que
interagem com o sistema. A Filtragem Colaborativa sera utilizada neste estudo e h4 dois
principais métodos [Breese ef al., 1998]: i) Baseado na Meméria, utiliza uma base de
dados inteira para fazer recomendagdes; ¢ 11) Baseado no Modelo, utiliza uma parte da
base de dados para aprender um modelo e predizer as preferéncias dos usuarios.

3. Metodologia

Como parte dos requisitos para elaboracdo de uma metodologia para auxiliar
desenvolvedores e engenheiros de software com a recomendagdao de APIs necessarias,
serdo utilizados, pelo menos, 1.000 sistemas de software (repositdrio P). A relagdo entre
esses sistemas e as categorias de aplicagdo serd identificada, portanto precisam ser
consideradas categorias estabelecidas pelo proprio repositorio com a finalidade de evitar
critérios de classificagiio subjetivos. Desse modo, SourceForge' foi selecionado por

1 http://sourceforge.net

155

[l Latin American School on Software Engineering (ELA-ES 2015)

sugerir 10 categorias principais. Os sistemas selecionados seguem os critérios: i) ser
desenvolvido em Java; ii) pertencer a uma categoria de aplicacdo do SourceForge; iii)
ter, pelo menos, 10.000 linhas de coédigo; e iv) ter status* "Producio/Estavel" ou
"Maduro". Na Figura 1, é apresentada uma metodologia para recomendar APIs, com
duas fases: Fase A) Recomendacdo de APIs para os desenvolvedores iniciando o
desenvolvimento de um sistema de software (podem ou nao ter codigo, mas se tiver, ndo
usam APIs) e consideram uma categoria de aplicagdo; ¢ Fase B) Recomendagdo de
APIs para os sistemas de software em desenvolvimento que utilizam APIs e que podem
ser classificados em uma categoria de aplicagao.

e
(3) classificar Categorias e

Subcategorias

T Fase (B)

{2) Criar

Repositério de (4) relacionar

Sistemas de

(2} extrair
(5a) aplicar ‘I'(Sb;) aplicar (Sb.) aplicar J'
. JN—. i o e e
Itens mais i : Filtragem Colaborativa i
H frequentes : i (Vizinhos mais préximos) |
[l ftalph i 2 e e e g
(6a) calcuiar]
recomendogdo (6b) colcular
recomendogdo
——————————————————————————————— Y
i (7a) Sugerir APIs para i1 (78] Sugerir APIs para sistemas :

i
desenvolvedores iniciande | | de software em desenvolvimento |
projeto de software. H ' com APIs i

-| Sistema de Recomendacio |

Figura 1. Metodologia Proposta para Sistema de Recomendacédo de APIs

Por causa do contexto do problema deste estudo e das necessidades da Fase A,
técnicas de recomendagao ndo sao uma boa escolha, pois nao tém APIs para relacionar.
No entanto, ha a possibilidade de recomendar APIs aos desenvolvedores determinando a
popularidade e identificando APIs mais frequentes para cada categoria do repositorio P
e relacionando esses resultados as categorias consideradas pelo desenvolvedor alvo de
recomendacdo. Quanto a Fase B, serd utilizada a filtragem colaborativa baseada em
memoria. Isso implica que a similaridade sera estabelecida entre os projetos do
repositorio P e o sistema alvo de recomendag¢do (considerando categorias), obtendo os
sistemas mais proximos. Em seguida, serd estabelecida a similaridade entre as APIs do
sistema alvo e as APIs dos sistemas mais proximos, gerando uma lista de APIs a
recomendar. Nessa fase, poderd ser feita a unido entre a lista gerada por itens mais
frequentes e a lista gerada pela técnica de filtragem colaborativa.

Para avaliar os resultados, serdo criados dois repositorios de teste (Teste A - T, e
Teste B - Ts) com os sistemas alvo de recomendacdo segundo as necessidades de cada
fase. Para simular o cenario da Fase A, serdo selecionados n sistemas de software do
repositorio principal. Para esses sistemas, serdo retiradas as APIs guardando essas
informagdes para aplicar as medidas de avaliacdo (Precision, Recall e Fallout) entre
essa lista e as APIs geradas apos a execugdao do sistema de recomendagdo. Quanto a
simulagdo do cenario da Fase B, serdo coletados os sistemas de teste dentro do
repositorio 7. Para isso, sera necessario selecionar n sistemas de software do
repositorio principal e retirar algumas APIs, obtendo mesma quantidade de APIs para
cada sistema de software. Essa quantidade estard limitada segundo o sistema de
software com menor uso de APIs. As informagdes sobre as APIs removidas serdo
guardadas para aplicar as medidas de avalia¢do (Precisdo, Recall e Fallout) entre essa
lista e as APIs geradas apos a execugdo do sistema de recomendagao.

2 Status - Estado do sistema fornecido pelo repositorio SourceForge que indica se ele esté inativo, estavel, em versdo Beta, etc.

156

[l Latin American School on Software Engineering (ELA-ES 2015)

4. Consideracoes Finais

Os Sistemas de Recomendagdo tém sido estudados e desenvolvidos com mais
frequéncia na area Engenharia de Software para apoiar os engenheiros na tomada de
decisdes de tarefas, componentes, pessoal, cddigo, etc. Esses sistemas permitem o
incremento da produtividade nas atividades de desenvolvimento e fornecem suporte aos
desenvolvedores. Por outro lado, um componente indispensavel no desenvolvimento de
software ¢ a APL. As APIs sdo fungdes reutilizaveis em sistemas de software que
permitem melhorar a produtividade e a qualidade do software desde que sejam
escolhidas de forma correta para suprir as necessidades, mas a escolha de APIs ¢ uma
tarefa dificil para os desenvolvedores.

Como resultado deste trabalho, ¢ apresentada uma proposta da metodologia de
recomendacdo automatizada de APIs para sistemas de software em desenvolvimento
que usam APIs e para desenvolvedores que apenas consideram as categorias de
aplicagdo correspondentes. Entre os beneficios, espera-se apoiar os Engenheiros de
Software na tomada de decisdes sobre quais APIs utilizar em seus projetos. Assim,
espera-se ter: i) aumento na produtividade dos desenvolvedores, pois serdo reutilizadas
fungdes, evitando a reconstru¢ao e, consequentemente, minimizacdo do tempo de
desenvolvimento; e i1) aumento na qualidade do software, pois o uso de APIs populares
¢ um indicador da qualidade das APIs e da qualidade dos sistemas de software.
Finalmente, espera-se divulgar os avancos da pesquisa em futuras publicacdes.

Referéncias

Acharya, M.; Xie, T.; Pei, J.; Xu, J. (2007). Mining API Patterns as Partial Orders from Source
Code : From Usage Scenarios to Specifications. In: Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering. pp. 25-34.

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms
for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in
artificial intelligence. Vol. 40, pp. 43-52.

Cands, J. H.; Letelier, P.; Penadés, C. (2003). Métodologias Agiles en el Desarrollo de
Software. In: DSIC Universidad Politécnica De Valencia. pp. 1-8.

Duala-Ekoko, E.; Robillard, M. P. (2012). Asking and Answering Questions about Unfamiliar
APIs: An Exploratory Study. In: International Conference on Software Engineering. pp. 266-
276.

Robillard, M., & Walker, R. (2014). An Introduction to Recommendation Systems in Software
Engineering. In Robillard, M., Maalej, W., Walker, R., & Zimmermann, T. (Eds.),
Recommendation Systems in Software Engineering, (pp. 1-11). Berlin, Heidelberg: Springer.

Robillard, M. P., Walker, R. J., & Zimmernann, T. (2010). Recommendation Systems for
Software Engineering. IEEE Software, pp.80-86.

Robillard, M. P.; Bodden, E.; Kawrykow, D.; Mezini, M.; Ratchford, T. (2013). Automated API
Property Inference Techniques. In: IEEE Transactions on Software Engineering, 39(5), pp.
613-637.

Sun, C.; Khoo, S.; Zhang, S. J. (2011). Graph-Based Detection of Library API Imitations. In:
International Conference on Software Maintenance. pp. 183-192.

Teyton, C.; Falleri, J.-R.; Palyart, M.; Blanc, X. (2013). A Study of Library Migration in Java
Software. The Computing Research Repository (CoRR). pp. 1-20.

Teyton, C.; Falleri, J.-R.; Morandat, F.; Blanc, X. (2013a). Find your Library Experts. In:
Working Conference on Reverse Engineering. pp. 202-211.

Thung, F.; Lo, D.; Lawall, J. (2013). Automated Library Recommendation. In: Working
Conference on Reverse Engineering. pp. 182-191.

157

[l Latin American School on Software Engineering (ELA-ES 2015)

An Automatic Approach to Detect
Unusual Events in Software Repositories

Larissa Leite, Christoph Treude, Fernando Figueira Filho

! Departamento de Informatica e Matemética Aplicada
Universidade Federal do Rio Grande do Norte (UFRN) — Natal, RN — Brazil

{larissaleite, ctreude, fmarquesfilho}@gmail.com

Abstract. This work presents an automatic approach to detect unusual events in
software repositories. The approach collects data from source code repositories
and analyzes new commits based on historical data in order to detect unusual
events that are displayed to developers and managers in an awareness tool.

1. Introduction

Software development teams use source control repositories and issue trackers to support
their development processes and activities. Managers can use information extracted from
such tools to become aware of the team productivity, and plan the cost and time of fu-
ture releases [Weiss et al. 2007], while developers are fed with insight into workspaces
of other developers [Treude and Storey 2010]. Such insight is usually provided by aware-
ness tools. Awareness is defined as “an understanding of the activities of others, which
provide context for your own activity” [Dourish and Bellotti 1992]. Since the success of
software projects largely depends on the effectiveness of communication and coordina-
tion, software development teams need to maintain awareness of different aspects ranging
from overall project status and process bottlenecks to current tasks and incoming artifacts
[Treude and Storey 2010].

Despite the large amount of previous work on awareness, no tool or approach has
specifically focused on awareness of unusual events in a software repository. Being aware
of unusual events can be useful in preventing errors, but also in alerting developers and
managers of events that may require justification or that can affect the work of other devel-
opers, especially when they relate to significant changes to the project. The motivation of
this work comes not only from input from fellow developers, but also from a recent survey
with 156 GitHub users [Treude et al. 2015], in which developers reported the need to be
aware of unusual events: “Commits that take particularly long might be interesting. If a
developer hasn’t committed anything in a while, his first commit after a long silence could
be particularly interesting, for example, because it took him a long time to fix a bug. Also,
important commits might have unusual commit messages, [...] indicating that the devel-
oper was emotional about that particular commit”. Another developer added: “Changes
to files that haven’t been changed in a long time or changes to a large number of files, a
large number of deletions, etc.”. This work proposes a mechanism to automatically detect
such unusual events, and make managers and developers aware of them.

2. Method to Detect Unusual Events

To validate our proposal, we are using data from the software repository of Superin-
tendéncia de Informética (SINFO), a company that belongs to Universidade Federal do

158

[l Latin American School on Software Engineering (ELA-ES 2015)

Rio Grande do Norte (UFRN). SINFO is responsible for the development and mainte-
nance of all information systems used by employees, students, and faculties at the uni-
versity. There are more than 75 developers, testers, and requirement analysts working at
SINFO, using Apache Subversion (SVN) as their source control repository.

Unusual — or unexpected — events are, by definition, events that are not in con-
formance with normality. The first step to detect such events is to determine what is
normal, which, of course, depends on the context being analyzed. In our work, this is
done by gathering historical data from software repositories, which is usually associated
with commits, tasks, and issues or bugs. At the current step, our work relies mainly on
commit-related data to investigate unusual events.

What is unusual depends on the development context, team size, work dynamics,
software process, development cycle, domain, product size and criticality, as well as the
development model (community-based open source or industry). Although this work is
being conducted in the context of a specific software development team, we believe that
the unusual events discussed in this work can be generalized to other contexts since we
have chosen events that are likely to occur in any software project that uses source control.
Future work needs to investigate this further. In the following, we describe different rules
we use to detect unusual events in source control repositories.

Long time between commits. Time between commits is considered an indicator
of project activity [Kolassa et al. 2013]. One or two working days without any commits
from the whole team might be caused by infrastructure problems. From the developer
point of view, time between commits can be a measurement of how difficult a task is or
how challenging it was to fix a bug. In some cases, long time between commits may also
be a potential cause of conflict when trying to incorporate changes from a local work-
ing copy to the current version of the project. We determine whether the time between
commits is “long” in a given development context by calculating the mean time between
commits in a project and by considering all those times that are longer than the mean plus
two standard deviations.

Large number of files touched (added, modified, deleted) in the same commit.
The number of files touched in a commit is especially important when inspecting added
or deleted files, since modifying existing files is much more common than their creation
or removal. Adding or deleting a considerable amount of files might be an indicator of
changes to the software architecture and it is probably a sign of a refactoring or work on
a disruptive task, i.e., a task that changes a lot and “disrupts” the current code. Again, we
use the historical mean and standard deviation to define “large”.

Large number of code modifications (LOC, methods, code complexity). Com-
mits with a notably large number of changes to lines of code (LOC), methods, or code
complexity may represent significant modifications to the code base, similar to what hap-
pens when many files are added, modified, or deleted in a single commit. Thus, it is
important to notify the development team of such changes.

Modification in files without their related files. It is very common to
have strongly coupled files that are often changed together in software development.
ROSE [Zimmermann et al. 2005] is a tool for Eclipse aiming to: (i) suggest and
predict likely changes; (i1) prevent errors due to incomplete changes; and (iii) de-

159

[l Latin American School on Software Engineering (ELA-ES 2015)

tect coupling undetectable by program analysis. ROSE uses the Apriori Algorithm
[Agrawal and Srikant 1994] to compute association rules. Unlikely ROSE, the approach
used in this work does not try to predict changes or prevent errors, but rather to notify
developers of a possibly incomplete change after the commit.

Modification in files changed by many different developers. Files created
and/or changed by many developers are more bug-prone than files only maintained by
one or two developers, which was evidenced by a tool called Seesoft [Balsiger 2010]. In
the security domain, source code files changed by many developers are also more likely
to have at least one post-release security vulnerability [Meneely 2011]. Therefore, modi-
fications to these specific files are worth mentioning to the development team. Similar to
the rules presented above, we use the historical mean and standard deviation to determine
what is “many” in a given development context.

Modification in files that had many modifications. The number of modifications
made to a file during the lifetime of the project is a commonly analyzed factor in the area
of software maintenance. [Graves et al. 2000] state that the number of times that the code
has been changed is a good indication of how many faults it will contain. Although this
work does not aim to predict defects, a modification to a file that has already been changed
many times can be an indicator for instability in the code, and, thus, it is considered an
important notification to the development team.

Modification in files not modified in a long time. Files that have not been mod-
ified in a long period of time can indicate two things: either the code is stable or it has
been “forgotten” and it is not up to date with the current version/status of the project
(architecture, requirements, etc).

Our approach stores data about unusual events in a database and presents it to man-
agers and developers using a web application. The Data Extraction process is supported
by a Java project called UEMiner, which consists of three main components: (i) Miner,
(i) DataCollector, and (iii) DataAnalyzer. Miner is responsible for accessing a source
code repository and for communicating with the database in order to save the retrieved
data. The DataCollector component consists of an infrastructure to collect and prepare
data to allow the identification of unusual events. Since the data related to each event is
different, there is one collector for each type of unusual event. To store the relevant data,
the DataCollector component creates spreadsheets, along with a few related statistics —
especially mean and standard deviation. The DataAnalyzer component analyzes the data
collected and prepared by DataCollector aiming to identify unusual events by: (i) getting
statistical information about the historical data from the spreadsheets, and (ii) comparing
such information with data of the current commit being analyzed. If an outlier is identi-
fied, the event is saved to the database, allowing it to be accessed by the web application.
The DataAnalyzer component constantly monitors the repository for new commits, but
the analysis process can be triggered by other factors, such as specific days of the week.
The whole process is illustrated in Figure 1.

3. Future Work

The next steps for this work involve the evaluation of the proposed approach. Events are
displayed to developers and managers in an awareness tool called UEDashboard, which
shows the events in a notification feed. Managers and developers can provide feedback

160

[l Latin American School on Software Engineering (ELA-ES 2015)

Data Collector | ———» |4 | ————» | Data Analyzer
Creates m Provides Data

CSV Spreadsheets

Unusual Events

Commits

— —
Modifications |L_‘{ |k—4

Database Database

Figure 1. Process for Data Extraction and Analysis.

by classifying the event as useful or not useful, and they can write comments about each
notification. In future work it might be possible for the tool to learn from these inputs to
understand what is relevant for the development team and provide better notifications. We
also intend to interview development teams to deeply understand what is behind unusual
events. Additionally, we aim to apply our method to different development teams, since
teams with different characteristics — team size, project age, development process — may
require different analysis and could bring up various other types of unusual events. We
also plan to extend our work beyond version control systems by additionally analyzing
data from issue trackers, communication channels, and release management systems.

References

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large
databases. In Proc. of the 20th Intl. Conf. on Very Large Data Bases, pages 487-499.

Balsiger, M. (2010). Representing software features in the Eclipse IDE. Univ. of Bern.

Dourish, P. and Bellotti, V. (1992). Awareness and coordination in shared workspaces. In
Proc. of the Conf. on Computer-supported Cooperative Work, pages 107-114.

Graves, T. L., Karr, A. F.,, Marron, J. S., and Siy, H. (2000). Predicting fault incidence
using software change history. /IEEE Trans. on Software Engineering, 26(7):653-661.

Kolassa, C., Riehle, D., and Salim, M. A. (2013). The empirical commit frequency distri-
bution of open source projects. In Proc. of the 9th Intl. Symp. on Open Collaboration,
pages 18:1-18:8.

Meneely, A. (2011). Investigating the Relationship Between Developer Collaboration
and Software Security. PhD thesis. North Carolina State Univ.

Treude, C., Figueira Filho, F., and Kulesza, U. (2015). Summarizing and measuring
development activity. Submitted to Symp. on the Foundations of Software Engineering.

Treude, C. and Storey, M.-A. (2010). Awareness 2.0: staying aware of projects, develop-
ers and tasks using dashboards and feeds. In Proc. of the 32nd Intl. Conf. on Software
Engineering, pages 365-374.

Weiss, C., Premraj, R., Zimmermann, T., and Zeller, A. (2007). How long will it take
to fix this bug? In Proc. of the 4th Intl. Workshop on Mining Software Repositories,
page 1.

Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S. (2005). Mining version histo-
ries to guide software changes. IEEE Trans. on Software Engineering, 31(6):429-445.

161

[l Latin American School on Software Engineering (ELA-ES 2015)

An Evaluation Model for Software Ecosystem Practice
Improvement

Simone da Silva Amorim', John D. McGregor?, Eduardo Santana de Almeida®,
Christina von Flach G. Chavez?

!1Departamento de Informtica - Instituto Federal da Bahia (IFBA)
CEP 40301-015 - Salvador - BA - Brazil

2Department of Computer Science - Clemson University
Clemson — USA

3Departamento de Computagio
Universidade Federal da Bahia (UFBA) - Salvador, BA - Brazil

simone.amorim@ifba.edu.br, johnmc@clemson.edu, {esa,flach}@dcc.ufba.br

Abstract. Many software ecosystems have achieved success in recent years.
However, there is not an accepted quality process model which evaluates the
essential practices that are commonly used in a software ecosystem. This paper
presents the outline of a Ph.D. research aimed at developing an improvement
model for software ecosystems. It summarizes a representation of the steps of
the model and the identification of key factors that are relevant to the practices.
The model is based on the practices and activities that can improve various
facets of the ecosystem, modeled by three views of the ecosystem: community,
business and technical. We also propose a research plan for developing such a
model.

1. Introduction

Software ecosystems are composed of one or more platforms and a set of applications
built on top of these platforms, developed and used by a community. The community
encompasses users, domain experts, sponsors and a set of internal and external developers
all of whom interact in a shared market for software and services [Jansen et al. 2009].
In spite of the growing body of software ecosystem research, existing research does not
address how and why they evolve over time. Empirical research is necessary to understand
how different software ecosystems face the challenges of software evolution. Through
this research, models can be defined and calibrated to use measurements to successfully
guide the evolution processes in a software ecosystem. Such models would be useful to
strategic decision makers within the context of software ecosystems, as a way of providing
feedback to ecosystem managers.

Ecosystems evolve as the result of numerous forces acting on the organizations
within the ecosystem. Evolution brings changes in the health of the ecosystem, in the
quality of the products and practices in the ecosystem, and in the attractiveness of the
ecosystems products and product development environment. We are investigating how
these changes affect the quality of the ecosystem. By quality we mean the degree to which
the practices meet the needs of process designers and the expectations of the organizations
for the ecosystem to achieve its full potential.

162

[l Latin American School on Software Engineering (ELA-ES 2015)

This work presents an ongoing Ph.D. investigation on how to build a model of
practice improvement for Software Ecosystems. We introduce the Evaluation Model for
Software Ecosystems Practice Improvement (EMSEPI) and its three views on ecosystems:
community, business and technical. These views represent different but overlapping as-
pects of the elements of a software ecosystem and their relationships.

2. Research Questions

The goal of this research can be stated as follows: to develop a model to evaluate the
practice improvement in software ecosystems and to guide the evolution of these prac-
tices, giving support to all phases of the lifecycle.

Based on this goal, we state key questions to drive the research design. These are
next detailed, together with a sketch on how we intend to address them.

RQI1. How do ecosystems evolve as they grow more successful? We intend to
understand which issues have important influence on the evolution of software ecosys-
tems. We investigate this question by means of the identification, description, and classi-
fication of evolution characteristics of software ecosystems, based on a detailed analysis
on existing literature, and also based on the analysis of data from real-world projects.

RQ2. How can the practices responsible for evolution be compared and evalu-
ated in software ecosystems? By analyzing the issues that impact on software ecosystem
evolution, we develop a model to evaluate the improvement practices and to guide these
practices during its evolution. This approach will focus to evaluate key factors consid-
ering the development process for the three ecosystems views: community, business and
technical. To make such a model useful for practitioners, we intend to develop a tool to
aid stakeholders to classify their ecosystem practices.

RQ3. How can goals and recommended useful actions be established for soft-
ware ecosystems? Based on the classification of the practices improvement, we intend to
build guidelines for the ecosystem to evolve their practices and achieve new levels of the
practices improvement.

3. Evaluation Model for Software Ecosystem Practice Improvement

In this section, we present the Evaluation Model for Software Ecosystem Practice Im-
provement (EMSEPI). It is an attempt to evaluate a set of factors that influence the qual-
ity of practices for software ecosystems of all sizes and granularities. This model uses
a key factors approach, based on progressive phases, which ecosystems can follow to
achieve success. The key factors are classified considering the three ecosystems perspec-
tives: community, business and technical. It is important for software ecosystem models
to consider interactions among these views, since one of the more important ecosystem
characteristics is the influence that each element exerts on other elements inside of the
environment. Quantitative measures to define each progressive level of a key factor do
not currently exist.

EMSE-PI is organized in two steps that should be performed for each software
ecosystem view and each key factor. In the First step, all activities related to key factor
are identified. In the second step, the ecosystem is classified in accordance with PCT. The
steps that analyze the key factors were defined through a literature review. Key factors

163

[l Latin American School on Software Engineering (ELA-ES 2015)

are organized in accordance with the ecosystem view. For example, in the community
view, we present the following key factors: coordination, communication, interactions,
experience of developers, and so on. For business view, we introduce: cost management,
taking decisions, market share, return on investment, and so on. Lastly, for technical view,
we introduce: change management, quality attributes, documentation, and so on. They
cover several practices that are part of the dynamics ecosystem evolution.

In addition, EMSEPI uses a Phase Classification Template (PCT). The PCT shows
a natural improvement progression for each key factor. They are sequentially ordered.
The stages in the progression are named: minimal, low, medium and high. An ecosystem
is evaluated against each key factor and placed along the progression for that factor. The
classifications indicate how the organization can anticipate future changes. Due to space
limitations, Figure 1 shows only an example of three key factors on the PCT for each view
of this model: interactions, business decisions and design decisions.

|:MinlmaI:| |: Low :| |:Medlum:| |: High :|

i Small groups i
Interactions |I':‘1:I\-_'MI:‘J::I group Informal community Formal Community

Community

Informal Strategic Decigions _ N
Independent T to organize the Strategic decisions o

decisions community expand community

Business
Decisions

Business

Technical

decisions

Deslgn
Decisions

Ad hoc Decisions Quality attribute Platform variations

design based on

based decisions based on qualities
decisions trade-offs

Figure 1. PCT - Phase Classification Template

4. Research Approach

We are developing EMSEPI by starting with the framework proposed by De Bruin et al.
[De Bruin et al. 2005]. They introduced a methodology and outline the main phases of
generic model development for a maturity model. However, this methodology will be
adjusted to develop an improvement model. The model of De Bruin is composed of six
phases of development: scope, design, populate, test, deploy and maintain.

During scoping, the stakeholders for the ecosystem determine the coverage of the
desired model. The design phase defines the model architecture and aims to answer ques-
tions such as: why and how to apply the model, who should be engaged in the application
of the model and what can be gained from the success of the model. The populate phase
identifies key factors and a progressive series of improving levels for each. During this
phase measures for each key factor are also determined. During the test phase, the model

164

[l Latin American School on Software Engineering (ELA-ES 2015)

is validated. The deploy phase applies an initial organizational application to verify that
the model is sufficiently generalizable. Finally, the maintain phase manages the growth
of the model and use.

During our initial scoping phase, we have identified twenty-one practices from
our previous work that are important to a successful ecosystem [Amorim et al. 2013,
Amorim et al. 2014a, Amorim et al. 2014b]. The model should be applied to software
ecosystems that engage in platform-based software development, by providing a software
platform to internal and external developers who are in service to a community of users
and domain experts. Currently, we are iterating within the population phase of model
development.

5. Conclusion and Future Work

We presented a high-level view on our PhD work. Our research objectives were moti-
vated by the lack of models that evaluate the essential practices that are commonly used
in a software ecosystem. A large number of quality models have been developed in the
last years. However, none of them addressed the quality of the practices needed in a soft-
ware ecosystem. In our research, we propose a model for software ecosystems practice
improvement that can help consolidate knowledge and contribute to an ecosystem devel-
opment. This allows stakeholders to model various aspects of software evolution within
the context of software ecosystems and community, business, and technical views of that
ecosystem. In this context, we formulated research questions and designed a research
methodology based on studies about ecosystem evolution.

We hope this work will widen the understanding of the ecosystem practices im-
provement. We believe that our findings have practical implications to ecosystem man-
agement and development, as well as of a tool support. Moreover, we are going to develop
this model in further detail by identifying more key practices. We plan to apply this model
to real-world ecosystems for validation and, at the same time, extract relevant knowledge
about the changes software ecosystems experience over time.

References

Amorim, S. d. S., de Almeida, E. S., and McGregor, J. D. (2013). Extensibility in ecosys-
tem architectures: An initial study. In Proceedings of the 2013 International Workshop
on Ecosystem Architectures, WEA 2013, pages 11-15.

Amorim, S. d. S., de Almeida, E. S., and McGregor, J. D. (2014a). Scalability of ecosys-
tem architectures. In Proceedings of the 11th Working IEEE/IFIP Conference on Soft-
ware Architecture, WICSA 14, pages 49-52.

Amorim, S. d. S., de Almeida, E. S., McGregor, J. D., and Chavez, C. v. F. G. (2014b).
Flexibility in ecosystem architectures. In Proceedings of the 2014 European Confer-
ence on Software Architecture Workshops, ECSAW ° 14, pages 14:1-14:6.

De Bruin, T., Freeze, R., Kaulkarni, U., and Rosemann, M. (2005). Understanding the
main phases of developing a maturity assessment model. In Proceedings of the 16th
Australasian Conference on Information Systems, ACIS ’05.

Jansen, S., Finkelstein, A., and Brinkkemper, S. (2009). A sense of community: A re-
search agenda for software ecosystems. In Proceedings of the 31st International Con-
ference on Software Engineering: Companion Volume, ICSE *09, pages 187-190.

165

[l Latin American School on Software Engineering (ELA-ES 2015)

Melhoria da Qualidade Interna de Software Orientado a
Objetos Usando Medidas de Acoplamento e de Coesao

Danilo Santos, Antonio Resende, Heitor Costa

Departamento de Ciéncia da Computacdo - Universidade Federal de Lavras - MG - Brasil
danilobatista@posgrad.ufla.br, {tonio,heitor}@dcc.ufla.br

Resumo. A manuten¢do é uma fase onerosa do ciclo de vida do software por
serem realizadas sucessivas manutengoes ndo planejadas, deteriorando a
qualidade do software mais rapidamente. Dentre as causas da deterioragao,
as mudangas arquiteturais for¢cam a perda de coesdo e o aumento do
acoplamento afetando a qualidade de sistemas de software. Neste artigo, o
objetivo ¢é desenvolver uma metodologia para rearranjar a arquitetura de
software pela movimentagdo de classes entre pacotes e determinar a "melhor"”
organizagdo arquitetural para aumentar a qualidade interna e externa do
software. Para suportar e avaliar a metodologia proposta, um apoio
computacional (plug-in para Eclipse) serd desenvolvido.

Abstract. Maintenance is a costly phase of the software life cycle due to
perform successive unplanned maintenance, deteriorating software quality.
Among the causes of deterioration, architectural changes force the loss of
cohesion and increased coupling affecting the software quality. In this paper,
aim is to develop a methodology to rearrange the software architecture for
handling classes among packages and determining "best" architectural
organization to increase internal and external software quality. To support
and evaluate the proposed methodology, computational support will be
developed (plug-in for Eclipse).

1. Introduciao

Engenheiros de Software esforcam-se para agregar qualidade a sistemas de software,
propondo solugdes de projeto adequadas ou identificando pontos no projeto que podem
ter a qualidade aprimorada [Al Dallal, 2013]. Embora sistemas de software sejam
desenvolvidos empregando as melhores praticas de desenvolvimento e provendo
qualidade desde o inicio do seu ciclo de vida, eles podem deteriorar-se em decorréncia
de sucessivas manutengdes [Stephen et al., 2001].

Portanto mesmo que um software, no inicio de seu ciclo de vida, atenda aos
requisitos de qualidade perceptiveis aos usudrios, com o passar do tempo ele precisa
evoluir, para atender as novas necessidades do usudrio e do ambiente, respeitando a lei
da mudanga continua [Pressman; Maxim, 2014]. Caso isso ndo ocorra, ele serd superado
em qualidade e substituido por um concorrente existente no mercado [Parnas, 1994].
Para evitar essa deterioragdo na qualidade executa-se o processo de manutengdo,
entretanto ndo basta simplesmente executa-lo, existe a necessidade de realiza-lo
seguindo padrdes de projeto, para manter a qualidade inicial ou melhora-la.

166

[l Latin American School on Software Engineering (ELA-ES 2015)

Nao aplicar esses padrdes pode ocasionar deterioragao na qualidade do software,
denominada erosdo de software [Parnas, 1994]. Por isso a manutengdo deve ser
realizada de forma planejada e nao estruturada, evitando-se corrigir erros ou inserir
fungdes sem considerar fatores de qualidade ou padrdes de projeto inicialmente
utilizados. Manutengdes nao planejadas e ndo estruturadas tornam o codigo
desorganizado, ilegivel e propenso a falhas [Erdil et al., 2003]. Isso afeta atributos
internos primordiais que conferem qualidade ao software (e.g., acoplamento e coesao)
[Martin; McClure, 1983]. Acoplamento e coesdo sdo atributos internos de software
[Morasca, 2009] que podem ser afetados por uma manutengao mal feita.

Diversos autores concordam que pacotes de um sistema de software devem
possuir baixo acoplamento e alta coesdo, para obter um software com qualidade [Chen
et al., 2002; Bavota et al., 2013; Al Dallal, 2013]. Como a manutencao afeta
diretamente o acoplamento e coesdo [Lanza e Marinescu, 2006], caso ela ndo seja
executada seguindo padrdes de projeto, tem-se reducdo na qualidade do software.
Assim, uma reestruturacao da arquitetura do software torna-se necessaria, por exemplo,
divisdo/combinagao de pacotes.

Neste trabalho, a reestruturagdo consistira na movimenta¢ao de classes entre
pacotes. Optou-se por essa abordagem em nivel de pacotes, pois aperfeicoando a
estrutura dos pacotes pode-se reduzir os prejuizos ocasionados pela degradagdao de
qualidade, reestabelecendo a “melhor” estrutura possivel para o projeto. Essa
degradacdo também pode ser notada nos valores de acoplamento e coesdo, onde em
decorréncia da manutencdo tem-se aumento da coesdo diminui¢do do acoplamento
[Lanza e Marinescu, 2006]. Uma estratégia a ser utilizada na reestruturagdo de
movimentagdo de classes serd buscar uma arquitetura, cujas medidas favorecam baixo
acoplamento e alta coesdo entre pacotes. Assim, pode-se ter aumento/diminui¢cdo da
quantidade de classes de um pacote e a possibilidade de acrescentar pacotes ao sistema.

Para dar apoio a essa reestruturacdo algoritmos/técnicas de Inteligéncia Artificial
(IA) serdo utilizados para buscar uma solucdo boa, ndo necessariamente Otima,
automatizando a solu¢do. Espera-se que esta automatiza¢do reduza a subjetividade da
existente na tomada de decisdo se uma reestruturagdo deve ser feita. Além disso, a
avaliacdo por um humano ¢ mais propensa a falhas e tornaria o processo menos
eficiente, visto que demandaria mais tempo para ser executada e geraria menor
quantidade de possiveis configuracdes de arquiteturas em comparacdo com as
técnicas/heuristicas de IA.

2. Metodologia

A metodologia de desenvolvimento ¢ apresentada na Figura 1. Inicialmente, sera
realizada uma Revisdo Sistematica de Literatura (RSL), com o objetivo de saber quais
sdo as medidas de software existentes na literatura. O resultado dessa RSL fornecera
bases solidas para determinar as medidas a serem utilizadas na metodologia proposta, as
quais avaliardo os atributos de acoplamento e coesao de sistemas de software.

Em seguida, serdo estudadas técnicas/heuristicas de 1A (Simulated Annealing,
Redes Neurais Artificiais, Logica Fuzzy, etc) para identificar qual ¢ a mais apropriada
para ser utilizada na metodologia proposta. Essas técnicas/heuristicas de IA possuem
papel fundamental nessa metodologia, pois permitirdo que as “melhores decisdes” sejam

167

[l Latin American School on Software Engineering (ELA-ES 2015)

tomadas a cada passo, maximizando as chances de sucesso ¢ diminuindo o tempo de
execucao.

Com as técnicas/heuristicas de IA e as medidas de acoplamento e de coesdo
definidas, um plug-in para Eclipse sera desenvolvido. Esse plug-in ird utilizar uma
técnica/heuristica de IA e, com base nos valores de acoplamento e coesdo dos pacotes de
software, alterard a arquitetura do software, tendo como saida uma sugestdo de
arquitetura de software melhorada.

Medidas de
Acoplamento
e de Coesao

Utilizarl

Implementar Técnicas - L4
Inteligéncia Artificial

Técnicas/Heuristicas
de Inteligéncia
Artificial

Recuperar a Propor a
Arquitetura Arquitetura
Software' Software'
Arquitetura Atual Arquitetura Sugerida

Figura 1. Metodologia de Desenvolvimento

3. Trabalhos Relacionados

Grande esfor¢o tem sido dedicado por diversos autores para realizar trabalhos que
contribuam na melhoria da qualidade de software, deteriorada durante a manutencao,
por meio de alteragdes estruturais no projeto do software. Uma técnica para
remodelagem dos pacotes utilizando medidas estruturais e semanticas para decompor o
pacote em unidades menores e mais coesas foi proposta [Bavota, 2013]. Com a
utilizagdo dessa técnica, melhorias podem ocorrer na coesdo dos pacotes do software
sem deterioracdo do acoplamento, tendo sido validada por meio de um estudo empirico.

Em outro trabalho [Abdeen, 2009], foi implementada uma técnica e um
algoritmo baseados em uma heuristica de busca para otimizar a conectividade
interpacotes de sistemas de software orientados a objetos. Nessa heuristica, pacotes sdo
decompostos, a partir do conhecimento do acoplamento e da coesdo, minimizando a
conectividade ciclomdtica entre os pacotes. Uma andlise foi realizada para verificar
como o refatoramento afeta o acoplamento e a coesdo [Du Bois et al., 2004]. A partir
dessa analise, foram sugeridas orientacdes de como identificar oportunidades para
aplicar o refatoramento de software. Concluiu-se que a utilizagdo de técnicas de
refatoramento, por exemplo, substituicio/movimenta¢do de métodos em conjunto de
classes sob analise de acoplamento e de coesdo, possibilita atingir melhorias na
qualidade.

Diferentemente dos trabalhos citados anteriormente, nesta investigacdo pretende-
se utilizar o acoplamento e a coesdo de software como medidas norteadoras das
melhorias da arquitetura, apoiada em técnicas/heuristicas de IA. As classes serdo

168

[l Latin American School on Software Engineering (ELA-ES 2015)

movidas automaticamente entre os pacotes, enquanto a coesao € o acoplamento serdo
medidos e acompanhados para se identificar a melhor configuracao de arquitetura.

4. Resultados Esperados

Espera-se que a metodologia proposta seja util para aumentar a qualidade interna de
sistemas de software (diminuir acoplamento e aumentar coesdo). Para realizar a
avaliagdo da metodologia proposta, sera utilizado um conjunto de medidas de
acoplamento e coesdo diferente do conjunto de medidas utilizado para a condugdo do
processo de reestruturagao.

Essa reestruturagdo sera aplicada em sistemas de software presentes em
repositdrios de sistemas open-source, pois ha necessidade de ter acesso ao codigo fonte.
Os sistemas a serem analisados deverdo atender alguns critérios, por exemplo,
quantidade de classes, quantidade de linhas de cédigo, sistemas atuais (2014 em diante),
aceito pela industria e constantemente atualizado.

5. Referéncias

Abdeen, H.; Ducasse, S.; Sahraoui, H.; Sahraoui, H. Automatic Package Coupling and Cycle
Minimization. In: WCRE. pp. 103-112, 2009.

Al Dallal, J. Object-Oriented Class Maintainability Prediction Using Internal Quality
Attributes. I: Information and Software Technology. pp. 2028-2048, 2013.

Bavota, G.; Lucia, A.; Marcus, A.; Oliveto, R. Using Structural and Semantic Measures to
Improve Software Modularization. In: Emp. Softw. Engineering. pp.901-932.2013.

Chen, Z.; Zhou, Y.; Xu, B.; Zhao, J.; Yang, H. A Novel Approach to Measuring Class Cohesion
Based on Dependence Analysis. In: International Conference on Software Maintenance. pp.
377-384, 2002.

Du Bois, B.; Demeyer, S.; J. Verelst. Refactoring-Improving Coupling and Cohesion of
Existing Code. In: Working Conference on Reverse Engineering. 2004.

Erdil, K.; Finn, E.; Keating, K.; Meattle, J.; Park, S. Software Maintenance as Part of the
Software Life Cycle. Department of Computer Science, Tufits University: Compl80:
Software Engineering Project, 2003.

Lanza M., e Marinescu R. Object-oriented metrics in practice: using software metrics to
characterize, evaluate, and improve the design of object-oriented systems. Springer Science
& Business Media, 2006.

Martin, J.; McClure, C. L. Software Maintenance: The Problem and Its Solutions. Englewood
Cliffs, NJ.: Prentice Hall Professional Technical Reference, 1983.

Morasca, S. A Probability-based Approach for Measuring External Attributes of Software
Artifacts. In: International Symposium on Empirical Software Engineering and
Measurement, pp. 44-55, 2009.

Parnas, D. L. Software Aging. In: ICSE. pp. 279-287, 1994.

Pressman, R.; Maxim, B. Software Engineering: A Practitioner's Approach. 976p. 2014.

Stephen, E. G.; Graves, A. F.; Marron, J. S.; Mockus, A. Does Code Decay? Assessing the
Evidence from Change Management Data. In: Transactions on Software Engineering. pp. 1-
12, 2001.

169

Realization

UFRGS
DE INFORMATICA
UNIVERSIDADE FEDERAL
DO RO GRAMDE DO SUL

Promoted by

Diamond Sponsor

/

Gold Sponsors:

4P @ Google

Support:
& @ ant urRos Pk “"*'PeSCI PROPG &,
CAPES f“ PROREXT e UERN

Universidade do Estada
40 Rio Grande do Norte

2nd Latin-American School on Software Engineering
Campus do Vale - Instituto de Informatica - UFRGS
Av. Bento Gongalves 9500 BI. IV - Porto Alegre - Brazil - CEP: 91501-970

	capa
	front-matter - proceedings
	content
	Talk
	Tutorial 1
	Tutorial 2
	Tutorial 3
	Tutorial 4
	Tutorial 5
	Tutorial 6
	Tutorial 7
	Panel 1
	Panel 2
	Panel 3
	Panel 4
	Mini-curso 1
	Mini-curso 2
	paper 18
	paper 20
	paper 22
	Introdução
	Background
	Controle de Versão
	Integração Contínua
	Conformidade Arquitetural

	Solução Proposta
	Linguagem DCL
	Jenkins

	Ferramenta ArchCI
	Avaliação
	Conclusão

	paper 31
	paper 5
	paper 11
	Introduction
	Motivating Example

	ContractOk
	Case Study
	Conclusions

	paper 14
	paper 15
	paper 16
	paper 17
	paper 19
	paper 21
	Introdução
	Background
	Proposta de Pesquisa
	Considerações Finais

	paper 24
	paper 26
	paper 28
	paper 29
	paper 30
	paper 32
	paper 34
	paper 35
	paper 36
	paper 37
	paper 38
	paper 39
	paper 4
	paper 6
	paper 7
	paper 8
	paper 9

	contra

