
11th Workshop on Parallel and Distributed Processing (WSPPD), 2013

Parallel Voronoi Diagram computation on scaled distance planes using CUDA

Julio Toss, João Comba
Institute of Informatics - Federal University of Rio Grande do Sul (UFRGS)

Av. Bento Gonalves 9500, Porto Alegre - RS - Brasil, CEP: 91501-970
{jtoss,comba}@inf.ufrgs.br

Abstract

Voronoi diagrams are fundamental data structures in
computational geometry with several applications on dif-
ferent fields inside and outside computer science. This pa-
per shows a CUDA algorithm to compute Voronoi diagrams
on a 2D image where the distance between points can-
not be directly computed in the euclidean plane. The pro-
posed method extends an existing Dijkstra-based GPU al-
gorithm to treat our 2D images as graph and then com-
pute the shortest-paths to create each Voronoi cell. Experi-
mental results report speed-ups up to almost 40x over cur-
rent reference sequential method for Voronoi computation
on non-euclidean space. This problem is a building block
of the deformation engine in the SOFA physics simulation
framework.

1. Introduction

Voronoi Diagrams appears in many fields of computer
science. Classical problems like Finding Nearest Site, Fa-
cility Location, Motion Planning or Coverage in sensor net-
works, in general use some kind of Voronoi diagrams under-
lying its solutions.

This paper will address Voronoi Diagrams in the context
of the physics based simulation method proposed in [1] to
compute the deformations of complex objects. Actually, in
this method, the simulated bodies are composed with a mix-
ture of soft and stiff materials so, to have an accurate sim-
ulation, each simulation node has to limit the region of in-
fluence where they will propagate the forces. These regions
are, in fact, represented as Voronoi cells.

A particularity of this kind of Voronoi diagram is that the
distance function is not computed in a standard Euclidean
plane. Instead, the distance between points is scaled accord-
ing to the compliance values in the material map. There-
fore, points connected by similar material (i.e. inside a same
Voronoi cell) will deform in a similar way.

The creation of the Voronoi Diagram is done during the
setup phase of the simulation and remains unchanged dur-
ing the simulation as long as the object’s topology and ma-
terial property values do not change. This allows the follow-
ing simulation phase to be performed in real-time, a neces-
sary requirement for interactive applications.

However, to enable on-line modifications on the object’s
topology, we must be capable of recomputing the Voronoi
Diagrams on-the-fly, that is, during the simulation. Cur-
rently, the time needed to recompute Voronoi Diagrams is
too costly for a real-time simulation. In [1] the authors re-
port initialization times ranging from less that 1 second for
grid of 100x40 voxels to 10 minutes for a 500x200 grid.
However, their implementation in strictly sequential leav-
ing plenty of room for parallelization.

This paper proposes a parallel method for computing the
afore mentioned kind of Voronoi Diagram. Our method, de-
scribed in section 2, is based on the Dijkstra-like CUDA
algorithm proposed in [2, 3] for solving the Single-Source-
Shortest-Path (SSSP) problem on large graphs .

2. Parallel Voronoi Implementation

As mentioned previously, the kind of Voronoi diagram
our method computes differs from other works [4, 7, 6] be-
cause we are not in a classical euclidean space. The dis-
tances within our space are scaled according to the stiffness
values of the material. The distance function is locally com-
puted between neighbor pixels using the euclidean distance
and then scaled by the corresponding values from W . The
distance function is defined by equation 1, where W is a
matrix containing the material stiffness values.

d(p, q) =

√
(p1 − q1)2 + (p2 − q2)2 ∗ 2

Wp +Wq
(1)

To determine the distance between pixels in different
neighborhoods we compute the shortest path on a graph
where each pixel is mapped to a vertex and connected to its
neighbors by weighted edges with weights given by d(p, q).



11th Workshop on Parallel and Distributed Processing (WSPPD), 2013

(a) Input material map with a stiffness gradient

(b) Voronoi diagram for a 500x200 pixels grid and 200 seeds (red pixels)

Figure 1: Example of input material property map (1a) and
the corresponding Voronoi diagram generated (1b)

2.1. Pseudocode

Our algorithm is inspired on the SSSP problem solu-
tion described in [3, 5]. The algorithm executes Kernel1 fol-
lowed by kernel2 until the termination condition is satisfied.
At each iteration, two cost matrices, Co and Cu, are updated
to keep the cost of the shortest path found so far. The du-
plication of these cost matrices is needed to avoid read af-
ter write inconsistencies when writing to global memory.
The call to the distance function at line 4 of Kernel1 ac-
cesses the W matrix containing the stiffness values of each
point. At last, the V OR matrix stores the index of the near-
est Voronoi seed of each pixel. A boolean matrix M is used
to mark which vertex have changed and will need to be re-
laxed on the next step. Initially only the seed vertexes are
marked. When the graph has reached an equilibrium where
no more vertex is updated, the algorithm finishes.

3. Performance Evaluation

Benchmarks were performed with two kinds of mate-
rial maps. One constant, where all the pixels had the same
value of stiffness and the other with a gradient variation of
stiffness like shown on figure 1a. The bench instances vari-
ate image size and number of seeds. The images with sizes
32x32, 32x64 and 64x64 have all 5 seeds. The ones with
pixel resolution 100x40 and 500x200 have 10 and 200 seeds
respectively.

Algorithm 1 Kernel1 - Relaxation

1: tid← getThreadIndex()
2: if M [tid] then
3: for all neighbors nid of tid do
4: newCost← Co[tid] + d(tid, nid)
5: AtomicMin(Cu[nid], newCost)
6: if newCost = Cu[nid] then
7: V OR[nid]← V OR[tid]
8: end if
9: end for

10: M [tid]← False
11: end if

Algorithm 2 Kernel2 - Verify termination and update

1: tid← getThreadIndex()
2: if Co[tid] > Cu[tid] then
3: Co[tid]← Cu[tid]
4: M [tid]← True
5: CONTINUE ← True
6: end if
7: Cu[tid]← Co[tid]

3.1. Test Environment

The platform used for the CPU benchmarks was an Intel
CoreTMi7 CPU model 930 with 4 cores running at 2.89Ghz
and 12 GB memory. However, despite the multi-core ar-
chitecture, note that the CPU implementation is strictly se-
quential. The results for our GPU algorithm were obtained
on an NVIDIA GPU GTX480 with 1.5 GBytes of global
memory and 15 Multiprocessors with 32 cores each, total-
ing 480 CUDA cores. The installed CUDA Driver and Run-
time were of version 5.0.

3.2. Results

The results reported in this section are an average of 10
runs measuring time (ms) and are summarized in table 1.
A comparison of performance based on speed-up obtained
with the GPU version over the sequential CPU implemen-
tation is shown on figure 2.

The results show that the GPU implementation is always
better than the sequential CPU version, even for small im-
ages, but it becomes much more interesting for large im-
ages. As expected, the speed-up increases with the size of
the input image. Because each pixel is computed by one
CUDA thread more parallelism is exposed in high resolu-
tion images.

Despite the good speed-up achieved, if we look closer at
table 1 we realize that the method has a very low efficiency.
From 100,000 threads used for the 500x200 benchmark, the
average of active threads actually doing work per iteration



11th Workshop on Parallel and Distributed Processing (WSPPD), 2013

CPU GPU

Topology Size #Seeds Iterations Time (ms) Std. Dev Iterations Time (ms) Std. Dev

Degrade
32 x 32 5 1024 5.35 1.393 18 0.642 0.002
64 x 32 5 2048 8.323 2.668 32 1.164 0.004
64 x 64 5 4096 17.561 3.283 62 2.373 0.01

Uniform
32 x 32 5 1024 4.743 1.144 20 0.707 0.002
64 x 32 5 2048 7.671 1.921 25 0.918 0.006
64 x 64 5 4096 15.369 3.485 46 1.743 0.008

Degrade 100 x 40 10 4000 14.45 0.059 48 1.842 0.007
500 x 200 200 100000 381.847 5.222 54 9.585 0.019

Table 1: Benchmark results

is of only 100,000 / 54 = 1851, which means less than 2%
of thread activity.

Note that the number of active thread grows at each it-
eration by a factor of the graph degree as new vertexes are
expanded. In our case, each vertex has 8 neighbors. In prac-
tice, this number is even smaller because, as our graph has a
2D grid topology, two neighbor vertexes share half of their
neighborhood thus reducing the number of new vertexes ex-
panded at each step. Voronoi diagrams with a larger quan-
tity of seeds will expose parallelism faster than the others
because more vertex will be expanded at the initial steps.

Additionally the solution showed on algorithm 1 and 2
have an implicit global barrier at the end of each kernel call.
Overheads of several successive kernel launches are known
to be harmful to the overall performance. Future implemen-
tations will try to eliminate the need of the global barrier,
a good candidate solution could be based on the modified
Bellman-Ford algorithm proposed in [5].

4. Conclusions & Future Works

Good parallel efficiency on general purpose graphics
processor is very hard to achieve. The SIMD nature of such
platform require that threads execute rather synchronized
with little divergence on its execution paths. This is par-
ticularly harmful for graph algorithms, like Dijkstra SSSP,
where the expansion of vertexes may lead to very unbal-
anced workloads. For future improvement, load-balancing
techniques could be used to assign vertex to threads in a
way that reduces the number of idle threads scheduled at
each iteration.

Targeting synchronization reduction, our next imple-
mentation will be based on the algorithm proposed by [5]
were we remove the global barrier at the expense of intro-
ducing some shortest paths re-computation.

(a) Uniform stiffness image

(b) Gradient stiffness image

Figure 2: Speedups of the GPU implementation compared
to CPU.

Finally, regarding the simulation framework, there are
many other problems beyond Voronoi diagrams that could
benefit from parallelization. Also, future implementation
could target heterogeneous architecture combining multi-
cores CPUs and Multi-GPUs.



11th Workshop on Parallel and Distributed Processing (WSPPD), 2013

4.1. Acknowledgement

Special thanks to François Faure and Bruno Raffin from
INRIA-Grenoble for their insightful help and explanation
about the method of material-aware distance function com-
putation.

References

[1] F. Faure, B. Gilles, G. Bousquet, and D. K. Pai. Sparse mesh-
less models of complex deformable solids. ACM SIGGRAPH
2011 papers on - SIGGRAPH ’11, page 1, 2011.

[2] P. Harish and P. Narayanan. Accelerating large graph algo-
rithms on the GPU using CUDA. High Performance Comput-
ingHiPC 2007, pages 197–208, 2007.

[3] P. Harish, V. Vineet, and P. Narayanan. Large Graph Algo-
rithms for Massively Multithreaded Architectures. Techni-
cal Report IIIT/TR/2009/74, International Institute of Infor-
mation Technology Hyderabad, 2009.

[4] K. E. H. III, T. Culver, J. Keyser, M. Lin, D. Manocha, and
K. E. Hoff III. Fast computation of generalized Voronoi dia-
grams using graphics hardware. Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 277–286, 1999.

[5] S. Kumar, A. Misra, and R. S. R. Tomar. A modified par-
allel approach to Single Source Shortest Path Problem for
massively dense graphs using CUDA. 2011 2nd Interna-
tional Conference on Computer and Communication Technol-
ogy (ICCCT-2011), pages 635–639, Sept. 2011.

[6] G. Rong, Y. Liu, W. Wang, and X. Yin. GPU-assisted com-
putation of centroidal Voronoi tessellation. IEEE Transac-
tions on Visualization and Computer Graphics, 17(3):345–
356, 2011.

[7] G. Rong and T. Tan. Jump flooding in GPU with applications
to Voronoi diagram and distance transform. Proceedings of
the 2006 symposium on Interactive 3D . . . , page 109, 2006.


