Performance Evaluation of Intel Xeon Phi Coprocessor using XKaapi

Joao V. F. Lima, Nicolas Maillard
Instituto de Informatica — UFRGS
Grupo de Processamento Paralelo e Distribuido (GPPD)
{jvlima, nicolas} @inf.ufrgs.br

Francois Broquedis, Thierry Gautier, Bruno Raffin
Laboratoire d’Informatique de Grenoble
francois.broquedis @imag.fr, thierry.gautier @inrialpes.fr, bruno.raffin@inria.fr

Abstract

This paper presents preliminary performance compar-
isons of parallel applications developed natively for the In-
tel Xeon Phi accelerator using three different parallel pro-
gramming environments and their associated runtime sys-
tems. We compare Intel OpenMP, Intel CilkPlus and XKaapi
together on the same benchmark suite. Our benchmark suite
is composed of two computing kernels: a Fibonacci compu-
tation that allows to study the overhead and the scalability
of the runtime system, and a NQueens application gener-
ating irregular and dynamic tasks. Performance evaluation
shows our XKaapi data-flow parallel programming environ-
ment exposes the lowest overhead of all and is highly com-
petitive with native OpenMP and CilkPlus environments on
Xeon Phi. Moreover, the efficient handling of data-flow de-
pendencies between tasks makes our XKaapi environment
exhibit more parallelism.

1. Introduction

Nowadays computing platforms expose a great num-
ber of heterogeneous processing units. Large-scale appli-
cations from the industry usually require mixing differ-
ent parallelization paradigms to exploit such machines at
their full potential. However, designing parallel environ-
ments and runtime systems that support multiple paradigms
on a portable and efficient way is still challenging.

With the introduction of the Intel Xeon Phi coproces-
sor, Intel proposed a strong evolution in the way to de-
velop applications for accelerators. Many researchers and
research projects have recently moved their focus on this
architecture [4} 6} 11,|{13}/15,|16f], trying to position the Intel
Xeon Phi as a good candidate for executing efficient high-
performance parallel applications.

In this paper, we present preliminary performance evalu-
ations of the XKaapi data-flow runtime on native Intel Xeon
Phi applications: our goal is to study the strengths and the
weaknesses of XKaapi to program native applications.

Section [2| overviews the XKaapi’s parallel programming
model and the difficulties encountered during the port of
XKaapi to the Intel Xeon Phi coprocessor. Section[3|reports
experimental evaluations compared to OpenMP and Cilk-
Plus, the native parallel programming environments pro-
posed by Intel to develop Xeon Phi’s applications. Section[]
concludes the paper and suggests future works.

2. XKaapi on Intel Xeon Phi
2.1. Overview of XKaapi

The XKaap{] task model [9], as in Cilk [7], In-
tel TBB [17], OpenMP-3.0 or StarSs [1} 3], enables
non-blocking task creation: the caller creates the task and
proceeds with the program execution. The semantic re-
mains sequential such as XKaapi’s predecessors Atha-
pascan [8] and KAAPI [9]], which was specialized for
multi-CPU/multi-GPU iterative applications [|12].

XKaapi has several APIs (C, Fortran, C++, prototype
of compiler directives) to program heterogeneous paral-
lel architectures. In this paper, code fragments are pre-
sented using the C++ API. More information about het-
erogeneous multi-CPUs and multi-GPUs parallel program-
ming and scheduling can be found in Lima et al. [14]] and
Gautier et al. [10].

1 |http://kaapi.gforge.inria.fr

11th Workshop on Parallel and Distributed Processing (WSPPD), 2013

http://kaapi.gforge.inria.fr

2.2. Adaptation to Intel Xeon Phi

The Intel Xeon Phi is made of several cores (up to 61 on
the 7100 serie). The cores have their own memory that is
cache coherent using a full MESI coherency protocol. Re-
mote memory accesses are managed by the communication
network (a full-duplex ring among the cores). The instruc-
tion set is based on the classical x86 instruction set with
specific extensions to address SIMD capabilities and large
vector operations. Moreover, the processor does not reorder
memory read and write instructions, which releases the ap-
plication programmer from guarding memory accesses with
expensive memory barriers.

The Intel Xeon Phi can be seen as a set of hyperthreaded
cores that share a global memory organized by chunks,
which is not very far from a multicore NUMA architecture.
Porting XKaapi source code to the Xeon Phi was not dif-
ficult, mainly requiring to specialize memory barriers and
atomic operations to take into account the Xeon Phi speci-
ficities.

XXKaapi thread binding was also modified to fit the Xeon
Phi architecture. Assuming the coprocessor has p physical
cores and each core supports h hardware threads, the total
number of logical processors on the Intel Xeon Phi is p * h.
Instead of distributing XKaapi threads in a sequential or-
der from 0 to p x h — 1, XKaapi fills all physical cores with
one thread in a round-robin fashion until all threads are cre-
ated. An execution with ¢ threads where ¢ > p will set up
a distribution like: 0,h,2 x h,3 *x h,...,(p — 1) * h, 1, h +
1,2(h+1),....

The work stealing scheduler was not adapted to the in-
ternal topology of the architecture. Indeed, several previous
works [2,9,|10] have demonstrated the good scalability of
XKaapi even at fine grain, so we decided to keep it unmod-
ified for this first evaluation.

3. Experiments

This section presents the experimental results of the
XKaapi runtime system on an Intel Xeon Phi coprocessor.
All times reported in this section are average of more than
30 executions with a warm-up phase of 2 runs.

3.1. Platform and Environment

All the applications were executed natively on the Intel
Xeon Phi environment. The Xeon Phi used is a 5110P with
60 cores running at 1.053 Ghz and sharing 8 GB of mem-
ory. Each core has support to 4 hardware threads, for a total
of 240 threads.

The software environment used on the Intel Xeon
Phi was the following: firmware version 1.14.4616 that

comes with version 13.0.1 of the Intel C/C++ com-
piler, MPSS 2.1.6720-13 and compiler_xe_2013.1.117. We
evaluated XKaapi version 2.1 with the modifications de-
scribed in section [2] of this paper. XKaapi applications
were compiled with the same Intel compilers used to com-
pile OpenMP and CilkPlus applications.

3.2. Fibonacci

This benchmark computes the n-th Fibonacci number
using a naive recursive computation. The purpose of this
micro-benchmark is to compare the overheads and scalabil-
ity of the runtime systems that come with the OpenMP, the
CilkPlus and the XKaapi programming environments.

Tseq=3.77s | OpenMP | CilkPlus | XKaapi
#thread=1 65.64 33.21 15.52
10 33.12 3.34 1.58
20 17.54 1.66 0.79
40 9.29 0.83 0.39
60 6.30 0.56 0.27
120 3.86 0.38 0.18
180 3.27 0.37 0.17
240 3.18 0.37 0.18

Table 1. Times (in seconds) for Fibonacci
N=38 on Intel Xeon Phi.

3.2.1. Overall Analysis Table [I] reports experimen-
tal results on the Intel Xeon Phi. The results obtained
by this benchmark shows XKaapi has the lowest over-
head among the three tested environments. As highlighted
in [2,|10], XKaapi intrinsic overheads due to the compu-
tation of the data-flow dependencies between tasks are
reported on steal operations. If the number of steal oper-
ations is very small compared to the number of created
tasks, such as Fibonacci [7], data-flow related over-
heads do not impact XKaapi’s performance obtained.

3.2.2. Parallel Programming Environment Scala-
bility To study the scalability of runtime systems, we
compared the execution times obtained using each envi-
ronment against the time of the parallel program executed
on a single core, i.e. S = T1/T,. The speedups for Cilk-
Plus and XKaapi environments were similar. On Intel
Xeon Phi, CilkPlus reached a speedup of 59 on 60 hard-
ware threads and 90 on 240 hardware threads while XKaapi
reached respectively speedups of 57 and 86.

3.2.3. OpenMP Performance Issues On the contrary, In-
tel OpenMP exhibited poor performance for this micro-
benchmark with fine grain recursive tasks. One reason could

11th Workshop on Parallel and Distributed Processing (WSPPD), 2013

be the fact that the 1-core execution is optimized to avoid
task creation, performing simple function calls as for the
sequential code. The reference time 77 does not include
overheads that only appears when several cores are used.
In opposite, these overheads are present in the 73 tim-
ing on the Intel Xeon Phi. Nevertheless, the maximum re-
ported speedup with OpenMP is 20 compared to 90 ob-
tained by CilkPlus. We already noticed poor performance
on fine grain task-based programs for the GNU/GCC lib-
GOMP runtime system [2], and in a less significant way for
Intel OpenMP as well. On this task-based program, the Intel
OpenMP runtime could be improved to achieve better per-
formance, for instance by using the approach described in
Broquedis et al. [2]].

3.3. NQueens

The NQueens benchmark is based on the Takaken [18]]
optimized sequential code to compute the number of solu-
tions for the NQueens problems. It has been parallelized us-
ing XKaapi since 2007 [9]] and we adapted it to OpenMP
and CilkPlus. We have decided not to consider the OpenMP
BOTS NQueens program as baseline as it runs slower than
Takaken’s code, mainly because it does not take symme-
tries of the configuration into account. Sequential execution
of our code is about 1200 times faster than BOTS NQueens
for N = 16 using the same icpc compiler with the —03
option.

3.3.1. Implementation The principle of the paralleliza-
tion is a recursive exploration of the different configura-
tions of the chessboard: a set of possible configurations is
generated at each recursive call, taking symmetries into ac-
count [[18]]. Each configuration is explored by an indepen-
dent task. On final recursion, possible solutions are cumu-
lated in a global variable. The parallelism is generated until
a threshold, then the code performs sequential exploration.
The OpenMP, CilkPlus and XKaapi codes generate the
same independent tasks. The main difference between the
three environments resides in the way solutions are cumu-
lated. As the original code relies on a 3D vector of solutions
holding each of the 3 considered symmetries, the OpenMP
version uses a critical region to accumulate the solutions.
The CilkPlus version behaves similarly, using a mutex to
implement the same kind of critical region. So, for each ac-
cumulation, these runtime sytems perform an a priori syn-
chronization before accessing the global variable.

3.3.2. Accumulation in XKaapi The XKaapi ver-
sion creates tasks with access to the global variable de-
clared as “cumulative write access” [8,9], which allows
to accumulate arbitrary data with an user defined associa-
tive or cumulative operator. When a thief thread steals a
task, the runtime creates a new per thief thread data that

the stolen task and its descendants use for the accumula-
tion. When the stolen task completes, the new data is cu-
mulated to the victim thread’s data. At the end, the global
variable contains the final cumulated result. This mecha-
nism enables the XKaapi runtime to reduce the required
synchronizations compared to OpenMP and CilkPlus.

12 -
XKaapi (t=6) =——+—

CilkPlus (t=6)
OpenMP (t=6) ===-le==s

Time (s)

0 20 40 60 80 100 120 140 160 180 200 220 240

Threads

Figure 1. Scalability of the NQueens bench-
mark (N=17) for XKaapi, CilkPlus and
OpenMP. Speedups were computed against
the sequential execution time of 114.95s.

3.3.3. Scalability Figure [I] reports the speedup
S = T,/Tseq for NQueens (N = 17) on Intel Xeon
Phi. For each environment, we report the performance ob-
tained using the best threshold.

Like for the Fibonacci benchmark, XKaapi had the
smallest overhead among all tested environments. The T3
execution time of XKaapi was a little faster than the pure se-
quential program.

4. Concluding Remarks

In this paper, we presented the performance results of the
XKaapi data-flow programming model on the Intel Xeon
Phi coprocessor in native execution. We designed and eval-
uated two benchmarks (Fibonacci and NQueens) and com-
pared to OpenMP and CilkPlus, native Xeon Phi paral-
lel programming environments provided by Intel. We con-
ducted experiments with a 60-core Intel Xeon Phi coproces-
SOT.

Our results showed that one Intel Xeon Phi chip with 60
cores can be a competitive architecture, if, and only if, (a)
the application exhibits enough parallelism, even irregular
and dynamic, for the 240 available threads; (b) the runtime
is able to schedule fine grain tasks with low overhead.

11th Workshop on Parallel and Distributed Processing (WSPPD), 2013

This paper presented preliminary and promising per-
formance results of XKaapi on the Intel Xeon Phi. Fu-
ture works include extended evaluations on different bench-
marks, as well as energy consumption measures. We will
also try to take into account the specificity of the memory
organization to reduce data transfers, using locality heuris-
tics (HEFT scheduler or work stealing with affinity consid-
erations).

Finally, pursuing our previous works [2} 5], we will fo-
cus on providing a highly optimized OpenMP-4.0 runtime
support for Intel Xeon Phi; and we will also study the per-
formance of PCle interconnected multi-Intel Xeon Phi ar-
chitectures following our research on multi-GPUs [[10]

References

[1] E. Ayguadé, R. Badia, F. Igual, J. Labarta, R. Mayo, and
E. Quintana-Orti. An Extension of the StarSs Programming
Model for Platforms with Multiple GPUs. In Proc. of Euro-
Par, volume 5704, pages 851-862. Springer, 2009.

[2] F. Broquedis, T. Gautier, and V. Danjean. Libkomp, an ef-
ficient openmp runtime system for both fork-join and data
flow paradigms. In Proceedings of the 8th international con-
ference on OpenMP in a Heterogeneous World, INOMP’ 12,
pages 102-115, Berlin, Heidelberg, 2012. Springer-Verlag.

[3] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell,
E. Ayguadé, and J. Labarta. Productive Programming of
GPU Clusters with OmpSs. In Proc. of the IEEE IPDPS,
2012.

[4] T.Cramer, D. Schmidl, M. Klemm, and D. an Mey. Openmp
programming on intel xeon phi coprocessors: An early per-
formance comparison. In Proceedings of the Many-core
Applications Research Community (MARC) Symposium at
RWTH Aachen University, pages 38—44, November 2012.

[5S] M. Durand, F. Broquedis, T. Gautier, and B. Raffin. An Ef-
ficient OpenMP Loop Scheduler for Irregular Applications
on Large-Scale NUMA Machines. In A. R. et al., editor,
IWOMP, number 8122, pages 141-155, Berlin, Heidelberg,
sep 2013. Springer-Verlag.

[6] J.Eisenlohr, D. E. Hudak, K. Tomko, and T. C. Prince. Dense
linear algebra factorization in openmp and cilk plus on in-
tel’s mic architecture: Development experiences and perfor-
mance analysis, april.

[7] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. In Proceed-
ings of the ACM SIGPLAN 1998 conference on Program-
ming language design and implementation, PLDI *98, pages
212-223, New York, NY, USA, 1998. ACM.

[8] F. Galilée, J.-L. Roch, G. G. H. Cavalheiro, and M. Doreille.
Athapascan-1: On-line building data flow graph in a parallel
language. In Proc. of PACT 98, pages 88-95, Washington,
DC, USA, 1998. IEEE Computer Society.

[9] T. Gautier, X. Besseron, and L. Pigeon. KAAPI: A thread
scheduling runtime system for data flow computations on
cluster of multi-processors. In Proc. of PASCO’07, London,
Canada, 2007. ACM.

(10]

(11]

[12]

(13]

(14]

(15]

[16]

[17]

(18]

T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin. XKaapi:
A Runtime System for Data-Flow Task Programming on
Heterogeneous Architectures. In Proc. of the 27th IEEE
IPDPS, may 2013.

A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov,
R. Dubtsov, G. Henry, G. Chrysos, A. G Shet, and P. Dubey.
Design and implementation of the linpack benchmark for
single and multi-node systems based on intel(r) xeon phi(tm)
coprocessor. In Proc. of the 27th IEEE IPDPS, Boston, USA,
May 2013. IEEE.

E. Hermann, B. Raffin, F. c¢. Faure, T. Gautier, and J. Al-
lard. Multi-GPU and Multi-CPU Parallelization for Interac-
tive Physics Simulations. In Proc. of Euro-Par, volume 6272,
pages 235-246. Springer, 2010.

V. B. J. Labarta. Prototype programming environment in
booster node, delivrable d5.1, eu deep project dynamical ex-
ascale entry platform. Technical report, 02. FP7-ICT-2011-7.
J. V. F. Lima, T. Gautier, N. Maillard, and V. Danjean.
Exploiting Concurrent GPU Operations for Efficient Work
Stealing on Multi-GPUs. In Proc. of the 24th SBAC-PAD,
pages 75-82, New York, USA, 2012. IEEE.

C. J. Newburn, S. Dmitriev, R. Narayanaswamy, J. Wiegert,
R. Murty, F. Chinchilla, R. Deodhar, and R. McGuire. Of-
fload compiler runtime for the intel xeon phi coprocessor. In
Proc. of the 27th IEEE IPDPS Workshops and PhD Forum,
2013.

S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A.
Jarvis. Exploring simd for molecular dynamics, using intel
xeon processors and intel xeon phi coprocessors. In Proc. of
the 27th IEEE IPDPS, 2013.

A. Robison, M. Voss, and A. Kukanov. Optimization via
reflection on work stealing in TBB. In Proc. of the IEEE
IPDPS, pages 1-8, 2008.

Takaken. Source code for n queens problem.

11th Workshop on Parallel and Distributed Processing (WSPPD), 2013

	Introduction
	XKaapi on Intel Xeon Phi
	Overview of XKaapi
	Adaptation to Intel Xeon Phi

	Experiments
	Platform and Environment
	Fibonacci
	Overall Analysis
	Parallel Programming Environment Scalability
	OpenMP Performance Issues

	NQueens
	Implementation
	Accumulation in XKaapi
	Scalability

	Concluding Remarks

