Comparative Analysis of OpenACC, OpenMP and CUDA using Sequential and
Parallel Algorithms

Cleverson Lopes Ledur, Carlos M. D. Zeve, Julio C. S. dos Anjos'
Universidade Luterana do Brasil
Information Systems
BR 116, n. 5.724, Moradas da Colina - Guaba/RS
'Federal University of Rio Grande do Sul - UFRGS
Informatics Institute - INF
Parallel and Distributed Processing Group - GPPD
Av. Bento Gonalves, 9500, Porto Alegre, Brazil
ledur @null.net, !jcsanjos @inf.ufrgs.br, carlos.zeve @ gmail.com

Abstract

With the increased processing required in the last years,
and the search for devices with better performance, started
in computing a need to parallelize processing, making it
possible to support the performance of software and algo-
rithms requiring high processing pattern. It’s possible to use
the processing power of devices like the GPU to run paral-
lel software with a better execution time. In this work, will
be evaluated the performance of three programming paral-
lel models using CUDA, OpenMP and OpenACC with three
different applications.

1. Introduction

With the evolution of technology and the constant need
to provide more resources for users, there is the possibil-
ity of using all hardware resources available for the soft-
ware development. GPUs have a different design philos-
ophy of CPUs, shaped by the rapid growth of the video
game industry which exerted enormous pressure on the abil-
ity to perform floating-point calculations for massive frame
in video games. This has motivated manufacturers of GPUs
casts them focused in the area of floating-point calculations.
It’s possible develop parallel programs to run on GPUs us-
ing APIs and parallel programming models such as CUDA,
OpenMP and OpenACC. These APIs will be used and ana-
lyzed in order to obtain results for a comparison of speedup
and runtime.

2. Parallel Programming

Parallel Programming consists in the uses of multiple
processors to perform different parts of the same program
simultaneously. The main objective would be to reduce the
total execution time of processing [2].

Two of the main reasons for using parallel programming
would be to reduce the time required to troubleshoot and
solve complex and larger problems.

Parallel computing allows us to take advantage of com-
puting resources not available locally or underutilized, over-
coming limitations of memory when the memory available
on a single computer is not enough to solve the problem
and overcome the physical limits of speed and miniaturiza-
tion that currently restrict the ability to start construction of
sequential computers increasingly faster [3].

2.1. Parallel Architectures

Current architectures with high number of processing
cores in parallel offer new software needs. A sequential
computer software has to provide a sequence of operations
to perform in the processor.

The parallel programming provides a sequence of oper-
ations on each processor to perform the task executions on
parallel, including operations that coordinate and integrate
the separate processors in a coherent computing. This need
for coordination of activities parallel computing requires a
new dimension to the programming of computer processes.
Algorithms for specific problems should be reformulated in
a way that creates processing operations to be performed on
different processors [3].

11th Workshop on Parallel and Distributed Processing (WSPPD), 2013



There are currently two main architectures in parallel
computing:

Shared memory all the individual processors have access
to a common shared memory, allowing the shared use
of multiple data values and data structures stored in
memory.

Passage memory each processor has its own local mem-
ory, and processors share data by passing messages to
each other via a communication network.

One of the main difficulties of shared memory architec-
ture is memory contention. When many processors try to ac-
cess the shared memory in a short period of time, the mem-
ory will not be available to accommodate all requests simul-
taneously, and some processors will have to wait until oth-
ers receive the processing results.

There are some techniques that help to reduce memory
contention and make the system more efficient. One such
technique is to set a local cache in each processor, which is
used to keep a recent copy of values used in memory. An-
other technique for reducing memory contention is the di-
vision of shared memory into separate modules that can be
accessed in parallel by different processors. The shared in-
formation is spread by individual memory modules, reduc-
ing the probability of simultaneous access to the same mem-
ory by multiple processors.

2.2. GPU Programming

CPU and GPU is a powerful combination since the CPU
consist of cores optimized for some serial processing, while
the GPU consist of thousands of smaller cores designed for
parallel performance. Serial parts of the code are executed
by the CPU while the parallel parts are executed by GPU.

GPU computing is the use of a graphics processing unit
together with a CPU to accelerate general purpose applica-
tions in science and engineering [1].

The GPU offers unprecedented performance for applica-
tions to transfer the processing intensive parts of the appli-
cation to the GPU, while the rest of the code is still being
executed by the CPU. From a user perspective, the applica-
tion just run with a speed significantly better.

GPU is also used in complex mathematical and geomet-
ric calculations, due to its ability to process vectors or matri-
ces with extreme efficiency. This great speed and power for
mathematical calculations come from the fact that modern
GPUs possess more processing circuits with data caching
and flow control to the CPU. More specifically, the GPU has
been especially designed to resolve problems which may be
expressed in terms of the computations with multiple par-
allel data - the same program is executed for each data ele-
ment in parallel - with high need for arithmetic [4].

Because the same program is executed for each piece of
data, there is little need for a unit of flow control sophis-
ticated, and because it runs on various data in parallel and
has high request to calculations, the latency of memory ac-
cess can be hidden calculations instead of caches giants.

3. Programming Languages
3.1. CUDA

CUDA is a computing platform and a model of parallel
programming that enables dramatically increasing the per-
formance of using the computing power of the graphics pro-
cessing unit (GPU). The idea behind the language is that de-
velopers have available the powers of the graphics process-
ing unit (GPU) to perform massive operations or not their
software faster than using the CPU.

The processing flow for CUDA is not so complex. Data is
copied from main memory to the graphics processing unit.
After that, the processor allocates the process to the GPU,
which then performs the tasks simultaneously in their core.
After that, the result is the opposite, it is copied from the
GPU memory to the main memory.

3.2. OpenACC

OpenACC is an API (Application Programming Inter-
face) that provides a set of compilation directives, runtime
libraries, and environment variables that can be used to
write parallel programs in Fortran, C and C + + to run on
devices accelerators, including GPUs. It was initially devel-
oped by the Portland Group (PG), Cray Inc., and supported
by NVIDIA also the CAPS enterprise.

There are some facilities that have OpenACC compared
to CUDA, since he abstains from the developer details such
as data transfer between the host and the memory of the de-
vice, temporary data storage, kernel boot time mapping of
threads and parallelism. OpenACC allows the programmer
to write the code in a way that if the parallelism is ignored
by the developer, it can continue with the same code with-
out changes in the final result.

One big difference that has OpenACC over CUDA, is the
use of compilation directives that facilitate the paralleliza-
tion of the code. Thus, developers can start writing their
algorithms sequentially and subsequently introduce direc-
tives OpenACC in the algorithm. It’s like to give hints for
the compiler turn the code parallel.

3.3. OpenMP

The OpenMP standard was developed and it is main-
tained by the group OpenMP Architecture Review Board

11th Workshop on Parallel and Distributed Processing (WSPPD), 2013



(ARB) formed from some Big companies such as SUN Mi-
crosystems, SGI, IBM, Intel and others, that in the end of
1997, gathered force to create a standard parallel program-
ming for shared-memory architectures.The OpenMP API
and focuses on a set of directives that supports the creation
of parallel programs with shared memory through the im-
plementation of an automatic and optimized set of threads.
Its features can now be used in languages Fortran 77, For-
tran 90, C and C + +.

The advantages of using OpenMP can be displayed on
simplicity and little change in the codes, the robust support
for parallel programming, ease of understanding and use of
directives, one support nested parallelism and the possibil-
ity of dynamic adjustment of the number of threads used.

4. Metodology

The general goals of this work is to carry out, based on
tests and observations, the comparison between an appli-
cation developed sequentially, the same application ported
to CUDA, OpenACC and OpenMP. It is possible to anal-
yse the differences of time executions among the applica-
tion developed sequencially about CUDA, OpenACC and
OpenMP applications.

A computer with the following hardware configurations
will be used to run the applications:

Motherboard ASUS M5A78L-M

Processor AMD Athlon(tm) II X2 270 Processor, 2048 KB
L2 Cache, Ext Clock 200 MHz

System Memory DIMMO 2048, DIMM1 2048
GPU NVIDIA GeForce GTX 650
OS Ubuntu 12.04

Another issue that will be discussed with the data is that
the details of programming abstraction that allows Ope-
nACC, will impact negatively or positively on the results.
The specific objectives of the project are:

1. Evaluate the complexity of programming and portabil-
ity of the application between languages.

. Evaluate the runtime of the application.

. Evaluate the runtime of the application in CUDA.

. Evaluate the runtime of the application in OpenACC.
. Evaluate the runtime of the application in OpenMP.

. Evaluating the Speedup of the application.

. Evaluating the Speedup of the application in CUDA.

[c <IN BN e Y T )

. Evaluating the Speedup of the application in Ope-
nACC.

9. Evaluating the Speedup of the application in OpenMP.

4.1. Comparison Details

Facing the possibility of parallelizing software to use the
resources of the GPU, three models were chosen to allow
this implementation to be carried out a comparative analy-
sis of application implemented in parallel and sequentially
in order to obtain results Speedup and Runtime.

It was implemented three application that require a high
interaction processing and the calculation. These applica-
tion are:

Mandelbrot set The Mandelbrot set is just a set of points
in the Argand plane. The application create a image file
and set for each pixel a color in order to create the frac-
tal.

N-Queens In the general n-queens problem, a set of n
queens is to be placed on an n x n chessboard so that
no two queens attack each other.

Matrix Multiplication matrix multiplication is a binary
operation that takes a pair of matrices, and produces
another matrix.

These application were implemented sequentially in C
and later in Cuda, OpenACC and OpenMP in parallelized
form. Each code were compiled and executed ten times to
produce a execution time average and to be possible to com-
pare with other codes. With the compilation of algorithms
and execution of tests using the Time command in Linux
before the calling command for the binary file, it was possi-
ble to generate the total execution time of the application.

4.2. Execution Time

The execution time of a program can be defined as the
time from the first processor starts executing until the last
processor to finish.

The computation time is the time spent in computing,
excluding communication time and idle. Downtime arises
when a processor runs out of tasks, which can be minimized
with a proper load distribution and overlapping computation
with communication.

The communication time is the time that the application
spends to send and receive messages.

The runtime can be decomposed in the computation
time, communication and idle time.

4.3. Speedup

Speedup is the speedup observed when performing a par-
ticular process p processors in relation to the implementa-
tion of this process in one processor.

11th Workshop on Parallel and Distributed Processing (WSPPD), 2013



5. Evaluation

Will be explained in the next subsections the results for
each different code tested. Each application ran ten times
and was made an average of execution times.

Below are the results of tests performed in sequential and
in the parallel languages for the three applications.

Execution Times

Nqueens

Mandelbrot Set

Application

Matrix Multiplication

0 2 4 6 8 10
Seconds

m OpenACC OpenMP CUDA C

Graph 1 - Execution Time Results

Matrix multiplication algorithm is easy to be parallelized
because your code is simple and easy of understanding.
When parallelized, he earns a lot at runtime, since it is just
a simple mathematical operation that is performed on each
processing core of the GPU.

In this test, were used two arrays of 834x834 for the cal-
culation.

In the results, can be considered that the sequential code
takes a long time to calculate the matrix multiplication, once
there are many repeated operations to realize. In the paral-
lel code, this operations are realized in many cores in the
same time. The faster execution it have in this test is from
OpenACC. Mandelbrot Set also has ease of parallelization,
since the calculations to define the color of each pixel frac-
tal can be done in parallel, because it has no dependence on
the data being processed simultaneously.

In this test, was created an image of 4096 x 4096 pixels
by the algorithm.

Like in the Matrix Multiplication, the Mandelbrot Set is
a good algorithm to parallelize because it runs a matrix to
set the pixel color relative to the position. In this case, it was
found a better performance with the OpenACC algorithm as
you can see in the Graph 1.

In this test, were used a recursive algorithm to calculate
a board with 10 queens. There are many solutions for the
nqueens problem, but in this tests were used just one recur-
sive solution.

As in this application is used recursive code, the perfor-
mance using CUDA is slow because the number or cores
used to solve the problem is reduced. The CPU execution
is faster in comparison with the other codes. The big differ-
ence among the OpenMP, OpenACC and CUDA execution
time, can be explained because the compiler ignore direc-
tives that will not produce good results in the parallel code.

5.1. Conclusions

Before the work presented, it can be concluded that par-
allel programming is increasingly present in the near future,
not only in massive computing software, but also in systems
of small and medium businesses to generate more speed and
providing the programmer more options to exploit the hard-
ware resources.

In the tests, OpenACC presented a excellent execution
time compared with the other languages. CUDA presented
goods execution times too, but the complexity to construct
codes is bigger than OpenACC and OpenMP.

Developers who want to use the parallelism must change
their programming paradigms to meet the needs that arise as
speed and better performance software applications in order
to increase the capacity calculations and processing possi-
ble.

References

[1] D.B.Kirk. Programming Massively Parallel Processors, Sec-
ond Edition: A Hands-on Approach. 2013.

[2] S.d.L.Martins. Programacao paralela. (10), March 2013.

[3] P.S.Pacheco. An Introduction to Parallel Programming. Uni-
versity of San Francisco, 2013.

[4] J. Tortugo. Cuda: Modelo de programacao paralela. (24),
March 2013.

[5] J. R. M. Viana. Programacao em gpu: Passado, presente e fu-
turo. (24), March 2013.

11th Workshop on Parallel and Distributed Processing (WSPPD), 2013



