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Abstract— One way to cope with the increasing demand in paradigm is queue-based, traffic signals are very simple, and
transportation networks is to integrate standard solutions with  drivers are not fully autonomous (e.g. during replanning).
more intelligent measures. This problem has been approached Most of previously mentioned works have one or more of

from different sides such as the study of the assignment - . .
of the demand in the network, and the investigation of the the following drawbacks: they are not fully agent-based; they

effects of control measures. However, given that most of these rely on strong simplifying assumptions, they do not consider
approaches are complex and deal with different levels of both control and assignment of demand as a whole process
abstraction of the original problem, there has been few attempts  (except in [17] but here the integration only refers to their
to address both demand and control in a single tool. This specific market-based approach).

paper presents an overview of ITSUMO, a microscopic traffic Theref th . lack of t for traff N
simulator whose implementation uses agent technologies with erelore there IS a lack Or support for traic experts

a bottom-up philosophy in mind. We give an overview of the Who want to implement and test their own solutions (e.g.
system and some details of its modules (simulation kernel, data artificial intelligence (Al) based approaches for optimization
management, control, driver and routing, and visualization), or broadcast of recommendation). These experts can nei-

followed by an example of its use. ther extend commercial tools (except for some API-based
modules that i) are not totally flexible and ii) represent an
|. INTRODUCTION AND MOTIVATION additional purchase cost) nor use the available free tools as

The second half of the last century has seen the beginnitiigse deal only with pieces of the whole problem.
of the phenomenon of traffic congestion. This arose due to This way there is still the need of an integrated platform
the fact that the demand for mobility in our society haghat: be fully based on the autonomous agent paradigm of
increased constantly. Traffic congestion is a phenomensimulation; be open-source and user-friendly; consider the
caused by too many vehicles trying to use the same infragffects of both control measures on driver's reasoning and
tructure at the same time. The consequences are well-knowtice-versa.
delays, air pollution, decrease in speed, unsatisfaction whichThe present paper describes ITSUMO (Intelligent Trans-
may lead to risk manouvers thus reducing safety for pedegertation System for Urban Mobility), an open-source tool
trians as well as for other drivers. that addresses these issues. It allows the modeling of traffic

The increase in transportation demand can be met Ikagctors (drivers, traffic lights, and even autonomous vehicles)
providing additional capacity. However, this might no longeas autonomous agents; it deals with short term control of
be economically or socially attainable or feasible. Thus, theaffic lights and withen routereplanning by drivers; thus it
emphasis has shifted to improving the existing infrastructuneermits the study of co-effects of both demand and supply.
without increasing the overall nominal capacity, by means ofhis is achieved by means of Al techniques in general and
a better utilization of the available capacity. Two, compleof agent-based techniques in particular.
mentary, measures can be taken. In traffic engineering termi-With the increase dissemination and computing power of
nology these are associated with management ofiéeand mobile devices, it is now possible to execute distribued Al
(users, drivers) andupply (infrastructure, control). The set applications for various situations: intelligent routing using
of all these measures is framed as Intelligent Transportati@gorithms that do not rely on full-knowledge; planning
Systems (ITS). under constraints and restricted communication and informa-

In the last years there has been some proposals foon; distributed optimization of traffic lights. For instance,
simulation platforms that are flexible enough to test ITSt is possible to define drivers as intelligent agents and to
techniques and approaches. Some (e.g. Paramics, AISUMug each driver model. This approach is in contrast with
VISIM, EMMEZ2, Dracula) are based on classical models ofurrent models, which are purely reactive and ignore drivers’
simulation and are commercial tools. With the appearanaaental states (informational and motivational data). Also, it
of a new simulation paradigm — agent-based simulation — i possible to plug reinforcement learning based control for
is now possible that traffic experts and other users develdgaffic lights.
their own applications. This has been achieved at some extentAn earlier version of ITSUMO was presented as a demo in
(e.g. [7], [13], [16], [1], [5], [6], [15], [17]) but these tools are the AAMAS conference [14]. However, although ITSUMO
goal-directed meaning that they were built for (more or lesd)as also been used to investigate route choice scenarios,
specific purposes. One of the notable exceptions is MAE.g. in [3], the focus has been primarily on control. The
Sim (www. mat si m or g). However, MATSim’s simulation current version was extended in the sense that it now allows
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modeling of both control measures and drivers reaction
to them, as well as routing techniques. Moreover this igig. 2. Specific Functionalities of the ITSUMO Framework
provided as non-comercial code and is one of the few tools
that are truly agent-based (thus microscopic). As shown in

the next section, the simulation kernel is responsible fQ§ehavior for instance. In the agent-based approach battl tra

handling the movement of vehicles. Other modules suppoghd/or route choices may be considered, which is a key

the agent-based modelling of demand and supply. issue in simulating traffic since those choices are becoming
In the next section details of the simulator and an overview]creasmgw more complex. Also, individual traffic lightan

of the main modules are given. Section IlI briefly revisits th he modelled according to several approaches, from cldssica

main aspects by means of a case study where traffic light$-line coordination to recently proposed ones (negtigt

adapt and where autonomous drivers can plan their routemmunication-free, via game theory, reinforcement learn
The last section concludes the paper. ing, swarm intelligence, etc).

In order to achieve the necessary simplicity and perfor-
Il. DESCRIPTION OF THESIMULATOR mance, ITSUMO uses the Nagel-Schreckenberg cellular—
ITSUMO is composed by five modules: database, thautomata (CA) model [9] for traffic movement (aka. Na-Sch
simulation kernel, control, demand (assignment and dsivermodel). In short, each road is divided in cells with a fixed
definition), and the output module (visualization and stati length. This allows the representation of a road as an array
tics). Figure 1 shows how these modules interact. where vehicles occupy discrete positions. The movement
In order to run a simulation, the topology must be storetbllows rules that represent a special form of car—follagvin
as an XML file. After running the simulation, two optional behavior. This simple, yet valid microscopic traffic model,
outputs can be used: either through on-screen visualizatican be implemented in such an efficient way that is good
(macroscopic or microscopic) or via dump of various dat@nough for real-time simulation and control of traffic.
files. Other, optional, modules are the insertion and contro Hence the kernel of the simulator (implemented in C++)
via signal plans, and the assignment. is based on the CA model. The simulation occurs in discrete
Figure 2 provides more details about specific funcionalitiesteps and is implemented as a series of updates in the
that will be discussed in the next sections. As discusseghicles’ positions in the network. Each update in a node
below, ITSUMO allows data configuration in various ways,
and also provides the basic interfaces for its extension. Fo
example, it is possible to extend the framework adding TABLE I
new routing algorithms or new traffic light control methods. ALTERNATIVES FORTOPOLOGY AND SIGNALS EDITION, CONTROL,
Currently these alternatives are as in Table I. We discus&CUTNG ALGORITHMS, CONDITIONS FORROUTING AND PLANNING
them in the next subsections where we give details abogt

manual
the modules. Before, we remark that, because the simulator —©°Pology OSM
is extendable, the user may add its own code for both fraffic Tight manual
communication (e.g. between controllers and drivers), and— oo oo
for definition of the infrastructure (beyond the one already light greedy
provided)_ control RL
Dijkstra
routing ARA*
A. Microscopic Simulation Model and Simulation Kernel algorithms EUL' gynﬁm'c
i . i . alch change|
In contrast to macroscopic models of traffic simulation pre-trip OD-based
(which are mainly concerned with the movement of platoons _ Na-Sch + FC
f hicl n . th te | D in th troutlng, planning Na-Sch
of vehicles, focusing on the aggregate level), in the agent-ng replanning p— Na-Sch
based paradigm each object can be described as detailed as congestion | full knowledge
desired, thus permitting a more realistic modeling of dwsve based partial knowledge
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Fig. 3. OSM Export Feature (here for Porto Alegre, Brazil) <phase_id> 1 </ phase_id>

<iteration_start> 0 </iteration_start>

<section>
<section_id> 74 </section_id>
<section_nanme> (g2) & t;-&gt; (n2) </section_nanme>
<is_preferencial > fal se </is_preferencial >
<del i m ting_node> 25 </delimiting_node>
<delimting_node> 4 </delimting_node>
<l aneset s>
<l aneset >
<l aneset_id> 75 </l aneset _i d>
. . . <l aneset _position> 1 </|aneset_position>
Fig. 4. ITSUMO Main Objects of the Topology <st art_n53e> 25 </start_node> =P
<end_node> 4 </end_node>
<turning_probabilities>
<di rection>

or traffic light may modify its current behavior. <destination_| aneset> 78
</ destination_| aneset >
<probabi lity> 100.0 </ probability>
</direction>
B. Database Module </ turning_probabilities>
. . . . <l anes>
The information regarding the topology of the traffic < ane>

network is stored in an XML file (see Figure 5). The <lane_id> 76 </lane_id> o
. <l ane_position> 1 </|ane_position>
database module creates, updates, and stores the static and <yaxi num speed> 10 </ naxi mum speed>
the dynamic objects to be used in the simulation, both reélate ~ <decel eration_prob> 0.0
. . </ decel erati on_prob>
to the infrastructure (supply) and to the demand. Regarding </ | ane>
the former, the main attributes are: cartesian coordinates </<|/ Lﬁggi?)
intersections, streets characteristics (number of [a@&s); </ | aneset s>
and signal plans (set of lane-to-laneset allowed movements/ section>
Regarding the demand, the dataset stores: insertion rate of
\(;?'::;;:Il\lejrs’t glt\::eane(;ge\;svgfstﬂivcetthvéogiﬁl;ﬂlgsa?gadtizmtn:t':hlgg 5. XML file (partially) describing a traffic network in BUMO
topology only; see Figure 4. For more details about these
attributes please see [14].

As indicated at the top of Table I, this kind of data can bé&esidential, etc.). Thus, our parser can import streets tha
either entered manually — via a GUI, or be imported directlynatch one or more of these tags. For instance it is possible
from the Open Street Map (OSMww. openst r eet map. o import just the main arterials present in an OSM map, or
or g) via the applicative "OSM2ITSUMO" (see Figure 2).all links, or links in any other degree of abstraction. Hence
Using the former method, each component in the networy importing OSM maps (in different abstraction levels),
(e.g. as depicted in Figure 4 for a small example) is insertdd SUMO permits the use of real-world maps.
by the user. This process is time-consuming and error-prone Similarly to the definition of the network topology, there
It can however be used for small networks. For complex aire two ways to create signal plans in ITSUMO (notice
big maps, the alternative is to use the latter method. however that the latter is optional; the simulation can be

Because the XML format used in OSM is different fromrun without defining traffic lights and corresponding plans)
the one used in ITSUMO, we provide a parser to get thAs indicated in Table I, plans can be created manually and
necessary data from OSM. The user just has to select thatomatically. In the former, the user is requested to enter
portion of the OSM map s/he wants to use (typically ahe full definition of all signal plans for each signalized
bounding box as in Figure 3), export this to an XML (in OSMintersection. Figure 6 depicts the GUI provided for cre-
format), and run the parser. The output is then a new XMhtion/edtion. For each plan, phases must be defined (using
in the ITSUMO format (i.e. nodes, streets, sections, laisesethe mouse to connect incoming lanes to outgoing lanesets),
and lanes are created with their corresponding attributes) their cycle times, and splits (not shown). This is again

It is important to remark that most of the streets in OSMime-consuming. If the network has too many signalized
have a tag to classify them (motorway, primary, secondariptersections, ITSUMO’s automatic signal plan generagar ¢




Signal plan edit

be used. The user has to inform the cycle time, which will b sgupeno I ]
splitted equally among all defined movements. This of cours| g . et e drion
generates only one, simplified, plan. However, users can e |’ e— = .
the plan (using the same GUI used for manual edition) arj Ao signaplan inormation
modify it as desired.

The database also stores other objects such as sourc
sinks, turning probabilities, etc. Due to lack of space wi
refer the reader to [14].

C. Control: Traffic Light Agent Module

In ITSUMO the control of traffic lights is implemented
and executed via traffic light agents. These can contn
one or more intersections, using the same kind of contr
method or different ones. This is so because each agent! =i
independent i.e. decides its own action taking into account
the information available and using its own algorithm. Neti Fi9- 8- GUI for editing signal plans
however that the information available may come from other

traffic light agent_s S0 that_it Is nqt the case that_ eacg% of them, while node B originates, say, 2% and collects
agent uses exclusively local information. In summaryficaf 30% ’ ' ’

light agents may be heterogeneous and handle congestion "Eor each trip, a vehicle is generated and a route is assigned.

different ways. . - «This is in sharp contrast with the basic Na-Sch model where

Some basic classes for creating traffic light agents (“TL = S L

- - . vehicles are treated as individual particleghout a route.
Agents” in Figure 2) have been implemented in order t

facilitate the development of traffic controllers. Theserag ?Qather, they are routed at each intersection with a prababil

are organized in a data structure that is kept separated frg%tum left, right, or continue in the same street,

. . So far ITSUMO has basically allowed the creation of
the simulator. Thus, the user does not need to manipulate, . : ) .
. : .Vehicles as Na-Sch particles, or provided a GUI to define
the kernel code. Moreover if any user wishes to code its :
. . foute for only a handful of routes, those that were assigned
own control method, this can be easily done.

A communication is established between the agents arta% the so-called *floating cars” (FC). This process of route

the kernel using sockets. This permits the exchange (\)/f::]'rclltéosn was manual and could not be done for many

information about traffic status and control actions. The ™, . . . .
former can be e.g. number of stopped vehicles, densitydspe With this new version, to geperate routes fqr vehlclgs,
e ’ ITSUMO can use various algorithms as shown in the third

etc. of the lanes under cont_rol by the given a_gent. _The agel5'|tock of Table I. For example, ARA* stands for Anytime
can then send a control action back to the simulation kern

(normally this control action is the number of the signalpla . epairing A [8], a heuristic se_arch algorithm; the ﬂ_“rd
that the should be run at a given intersection) is a dynamic shortest path algorithm that uses dynamically

These control actions can be implemented by the user 8fs1ang|ng quantities (e.g. traffic volume) as links weights
No matter the algorithm used, the routing can be done

desired. So far we provide the following control methods; . . . .
either in a centralized way (e.g. routes are computed in

fixed time (i.e. only one signal plan is used and no changgé . : : .
( y gnat p 9 centralized manner and are assigned to vehicles), or in

is made so that in fact no control is actually performed); . . o .
. . . : a decentralized way. The centralized case is trivial and is

greedy (gives priority — i.e. more green time — to the phasé . ) : )
rformed as commonly used in commercial simulators:

with more congested approaching lanes); and reinforcemelt . .

. ; . Iven an OD matrix, an algorithm computes routes for
learning based approaches (e.g. Q-learning). For morédsiet . . .

. ach driver, simulates the journeys, and performs furtber r
about our previous uses of these approaches we refer the”. . e .
.~ assignments until an equilibrium is found.
reader to [4] (greedy) and [2], [11], [12] (use of Q-learning . . . .
; : . In the decentralized case, there is a de-coupling vehicle-

Other methods already tried were swarm-intelligence [10Jri

and reinforcement learning with function approximatio8][1 ver because this allows the specification of severakelas
9 P os drivers’ behavior ("Drivers" in Figure 2). Here, the dtiv

. ] o computes its own route based on a given strategy and on

D. Demand Assignment and Driver Definition Module  |ocal knowledge. Therefore we refer to this as planning and
1) Routing: Demands are normally represented by an OMiscuss it in the next subsection.

(origin-destination) matrix that results from some suregy 2) Driver Definition: Modeling drivers’ behavior can be
other kind of measurement of demand. ITSUMO can alsapproached in different ways, depending on the purpose of
generate synthetic demands (see "OD Matrix" in Figure 2jhe simulation. In some cases, the objective is to simulage t
This can be done assigning either uniform probabilities toollective or macroscopic behavior. However, this behavio
all nodes or to a set of selected nodes, or specific origin amgnerges out of individual ones. Simple algorithms, like the
destination probabilities to selected nodes. In the lattede CA model, can be used to describe the movement of vehicles.
A for instance may originate 20% of the trips and collecHowever, this model does not provide support for modeling

N o150 tnesers
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more sophisticated driver behaviors such as those based —
route planning or en-route decision, which is appealing t
Al practicioneers.

Next, the recents extensions that were made to ITSUM
in order to allow the definition of classes of drivers are
discussed. This discussion concentrates here on two aspe
the pre-journey planning and the en-route (re-)planning.

The centralized assignment discussed in the previo
section works only to the extent that the full rationality
assumption is considered: drivers want to maximize the
individual utilities. This economometric model considaes-
ther bounded-rationality nor individual preferences. ldaer
it is a relatively strong assumption that drivers know thg
whole traffic network, not to speak about the traffic status ¢
each links at each moment. The first assumption can only
accepted if all drivers are known to have GPS-based devic
to guide them. The second (accurate, instantaneous knowi-
edge of the status of each link) is still far from reality. Bve Fig. 7. Macroscopic and Microscopic Visualization of a Siatidn
when this is deployed, it is questionable whether drivers ca
indeed process all the information. Therefore the ceaedli
routing only addresses macroscopic investigations eageth  This means that when a driver arrives at a liftke P/,
that are carried out for urban planning purposes. It is nathereP’ is the initially computed route of vehiclg s/he
efficient to model real behavior of individual drivers. evaluates how delayed s/he is when compared to the expected

In the decentralized route computation, it is assumed théime. If the current time step is times higher than the
the driver itself will plan its journey, given its (partial) expected time step, than the driver replans the route. Bgsid
knowledge of both the traffic network and of the currenthe exact portiony of the route where the driver considers
traffic status. replanning is also configurable. More anxious drivers will

ITSUMO has a series of methods to allow the implemenstart replanning sooner. Therefoseand = (among other
tation of routing at the driver level. So far, without need offactors) define different classes of drivers. At the end ef th
further coding, it is is possible to use the algorithms thrat a simulation, one can evaluate the performance of each class
mentioned in Table I, both in centralized and decentralizedf driver and compare these.
variants. Of course, in the latter case, links’ weights may
differ from driver to driver as they are local perceptions.

3) Drivers and En-Route Replannin@ne of the features
of an autonomous driver is its ability to replan during tip tr ~ Sensors and detectors are used to collect information that
when facing congestion. In classical centralized appresch is displayed during the simulation. Thus, sensors colldct a
this is hard to do due to the fact that each driver may have igorts of information about the scenario being simulatedhsu
own replanning strategy, own knowledge about traffic statugs the lane occupation rate, the average vehicle speed in a
as well as own preferences and idiosyncrasies. In order street, in/out flow of vehicles in a specific laneset, etc.
facilitate these definitions, ITSUMO allows each class of The simulation output can be formatted according to the
driver to have its own profile. user needs. The most usual formats are the “cell map”

In Table | (last block) we show the possibilities fen- and the “laneset occupation map”. The former indicates
route replanning. One possibility is the trivial Na-Sch re-which portions of the lane are occupied by which vehicle,
routing of vehicles but here there is actually no planning beproviding the most detailed output possible. On the other
cause this vehicles are treated as particles that are rdpdorhand, the “laneset occupation map” is a high-level output
re-routed. which specifies the rate of occupation (density) for each

The actual replanning, the one that happens autonomousiyeset in the network.
at driver’s level is based on driver's perception of the con- Users can visualize the simulation either in a macroscopic
gestion level. So far we assume that drivers only have local in microscopic level (individual vehicles). Both can be
perception and hence partial knowledge of the traffic statuseen in Figure 7 where the small figure at top left shows the
However, the simulator is prepared to deal with situations imicroscopic visualization of one intersection. At a macro-
which drivers have full knowledge. scopic level, the visualization considers only data thiéces

En-routereplanning can be done using one of the algothe overall behavior of the network, providing an usefull too
rithms mentioned. In all cases, driver will compute a newo capture the big picture of what is happening in a specific
route from the point where s/he starts to replan to thecenario. The microscopic level provides an interfaceuitino
destination. If dynamic shortest path algorithms are usedhich one can see individual vehicles movement. A third
then the current traffic status of the known links are usedind of visualization is a plot of a subset of the vehicles
For unknown links, the lenght is used instead. route over a map using Google Maps.

0

E. Ouptut Module: Statistics and Visualization



TABLE I

them do not allow, for instance, en-route replanning.
TRAVEL TIME TO DESTINATION: COMPARISON

To give an idea of scalability, we remark that we have also

Nb. of | Time for all vehicles to reach their destinatign run simulations that cover the whole city of Porto Alegre. In
Vehicles | No light | Fixed time Greedy this case we did not include all intersections and all ssreet
2000 600 3100 1500 . : . !
2500 900 3000 1600 just the main arterials. These arterials however can hold
3000 >3600 4100 2000 around 100K drivers.
3500 >3600 5200 3100

IV. CONCLUSION

IIl. CASE-STUDY: AGGREGATING INTELLIGENCE TO This paper has presented ITSUMO, an open source mi-
TRAFFIC SIMULATION croscopic traffic simulator that allows modeling of indival

drivers or classes of drivers along with the implementation

different signal control strategies.

We plan to extend ITSUMO to consider other kinds of

In order to illustrate the use of ITSUMO with new ¢
facilities for demand handling, we discuss a case studys TH?

deals with the city of Porto Alegre (305’S, 5r10W) . _ o
in Brazil (Figure 3). The downtown part of the city Was!nformanon such as those related V2V communication and

selected and exported from OSM and parsed to I.I.SUM@formation providing via internet and/or mobile phone in
format using "OSM2ITSUMO". We discuss scenarios Withorder to compare the performance of informed versus non-
and without traffic lights. When these are present, the Signg]formed drivers.

plans were generated automatically using cycle length of 60

seconds, with uniform green time for all phases. Thus if an ACKNOWLEDGMENTS

intersection has only two phases, each receives 30 secondshis project and the authors are funded by CNPg. We

of green time. The traffic light agent runs a greedy strategyank the referees for suggestions and corrections.
that increases this split for the most congested approaxch (a

decreases the same proportion for the other approach).
Overall, that area of the city comprises 159 nodes (96
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kind of It tract. It is not the rpose here traffic lights control: effects of using shared informatién.Ana L. C.
Ind or results qne maY extract. ! purp Bazzan and Franziska Klugl, editofglulti-Agent Systems for Traffic
to make comparisons with other tools, even because most of and Transportationpages 307-321. IGI Global, Hershey, PA, 2009.
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