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Abstract. In games with a high number of players, the main interest is
normally on the investigation about the changing in the distribution of
individuals along time. In this paper we use this kind of game to model
three populations of drivers in a traffic scenario where they have to select
routes. This way we investigate the dynamics of the assignment for a non
trivial case in which the payoffs of the populations are not symmetric. We
show how the convergence to one of the Nash equilibria of the resulting
game is achieved when the three populations co-evolve, under different
rates of mutants in these populations.

1 Introduction

Evolutionary game theory (EGT) is well-known for investigating the relation-
ship between individual and aggregate behaviors. There are many systems where
we nowadays observe a tendency of a complex coupled decision-making process,
usually known as collective intelligence. Already in 1950, J. Nash [6] saw this
phenomenon, which he then called “mass-action interpretation”. Later, this fo-
cus on equilibria was criticized by J. Maynard Smith: ”An obvious weakness
of the game-theoretic approach to evolution is that it places great emphasis on
equilibrium states ...” [7]. Besides, J. Maynard Smith also dealt with the shift
from individual to population level. Even if he borrowed some definitions from
standard GT when he introduced the concept of evolutionary stable strategy
(ESS) as a way to understand conflicts among animals, he had already noticed
that ”there are many situations ... in which an individual is, in effect, competing
not against an individual opponent but against the population as a whole... Such
cases can be described as 'playing the field’... Such contests against the field are
probably more widespread and important than pairwise contests.” [7].

Currently, this kind of modeling is called a population game, which models
simultaneous interactions of a large number of simple agents distributed in a
finite number of populations. Simple agents here mean that each has a (typically
small) number of strategies to choose, causing a minor impact in other agents
payoff. Despite this, the payoff of each agent is, as in the classical game theory,
conditioned by the distribution of strategies in each population.

In population games, typically, one is not interested in constancy or equi-
librium only. Rather, the major interest is on changes. Thus the dynamics of
games has been usually the main concerns of EGT. It considers a population of
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decision-makers (animals, human players) and investigates the rate of change of
the strategy profiles in time, as a response to the decisions made by all individu-
als in the population. The biological interpretation is that a population consists
of animals that are genetically programmed to play some strategies. Initially,
this strategies may be distributed randomly over the population. The payoff to
an individual using a given strategy determines how many offsprings each indi-
vidual will have in the next generation. This way the composition of individuals
(and hence of strategies) in the next generations will change.

The present paper is concerned with one of such systems, namely a traffic
network. game theory and evolutionary programming are combined to investi-
gate the dynamics of demand in a traffic network in which the route choice of
three populations of agents is modeled in a game-theoretic way. These popula-
tions play a normal form game (NFG). This may look trivial. However, a look
in the literature shows that, mostly, only two populations are considered, each
having only two actions to select, i.e., a 222 game. Moreover, frequently, the
game is symmetric. This means that the equations of the replicator dynamics
(more on Section 3) have at most two variables. Because we have three popu-
lations playing a non-symmetric game, and two of them have three actions to
select from, the replicator dynamics is both difficult to analyse and represent.

The goal here is not the computation of the exact equilibrium, especially be-
cause in the real-world this is probably a useless effort given that this equilibrium
will not last long due to the dynamic nature of the environment. Using the bio-
logical metaphor of a population of decision-makers, we consider an environment
in which new drivers or agents replace existing ones in a way to reproduce the
fact that in real-world networks, drivers unfamiliar with the network (e.g., non-
commuters) do use it even if one cannot expect that they have full knowledge
about the game. This way, the co-evolution of the three populations is investi-
gated regarding the assignment of routes. The basic idea (further developed in
Section 3) is that a population of strategies is reproduced, from generation to
generation, proportionally to its fitness.

2 Background and Related Work

In population games, because one deals with a large number of agents, the as-
sumption that agents are able to anticipate what others will do is a strong one.
In a traffic network, a driver agent would have to have a complete mental ac-
count of all the routes that take it from his origin to his destination. Besides,
this agent would have to anticipate all delays that could arise in each of those
routes, for any of the possible set of choices of other agents. Nevertheless, game-
theoretic approaches to traffic simulation are reported in the literature. In [8], a
two-level, three-player game is discussed. Two of these players represent two road
authorities, while the population of drivers is seen as the third player. Complete
information is assumed, which means that all players (including the population
of drivers) have to be aware of the movements of others.
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A large number of works about the effect of information on route choice
uses abstract scenarios based on static assignment. These abstract scenarios are
mostly inspired by congestion or minority games. The basic idea is that agents
have to decide simultaneously between two routes; those that select the less
crowded one receive a higher reward. Agents’ repeated decision-making is cou-
pled to some adaptation or learning strategy so that the next choice is adapted
to the reward feedback. Based on this, an equilibrium may be reached. Examples
of such abstract two route scenarios can be found in [5, 2, 1]. Also, authors in
[3] have investigated the use of minority games to achieve a balanced usage of a
road network in which decision are made about which link to follow.

3 Methods

A population game can be defined as follows. P = {1, ..., p} is the society of p > 1
populations of agents where [p| is the number of populations. S? = {sf, ..., s? }
is set of strategies available to agents in population p. The payoff function is
m(sf,qa™P).

In this description, |p| populations interact. Agents in population p have m?
possible strategies. Let n? be the number of individuals using strategy s?. Then,

the fraction of agents using s” is 2! = ;\L,Z, where NP is the size of population
p. gP is the mP-dimensional vector of the z¥, for i = 1,2,...,m?. As usual, q~P
represents the set of qP’s when excluding the population p. The set of all qP’s
is q. Hence, the payoff of an agent of population p using strategy s? while the
rest of the populations play the profile q P is 7(s?, qP).

Originally, EGT derives dynamics for large populations of individuals from
symmetric two-player games. Consider a (large) population of agents that can
use a set of pure strategies SP. A population profile is a vector o that gives the
probability o(s?) with with strategy s? € SP is played in p.

In two-player games, for symmetric Nash equilibria, (c*, 0*), the interpreta-
tion related to population biology is as follows: In a population where everyone
uses o* (the optimal profile), the best is to use o* as well.

So far the solution concept proposed by the symmetric EGT, which is ba-
sically a population game with pairwise contexts, i.e., two random members
of a single population meet and play the stage game, whose payoff matrix is
symmetric. The reasoning behind these games is that members of a population
cannot be distinguished, i.e., two meet randomly and each plays one role but
these need not to be the same in each context. Thus the symmetry. However,
there is no reason to restrict oneself to a symmetric modeling in other scenarios
beyond population biology. For instance, in economics, a market can be com-
posed of buyers and sellers and these may have asymmetric payoff functions
and/or may have sets of actions whose cardinality is not the same. In asymmet-
ric games, each agent belongs to one class determining the set of legal strategies.
Asymmetric games thus typically involve co-evolution. In the route choice game
discussed here, asymmetric games correspond to multicommodity flow (not a
single origin-destination pair).
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Table 1. Payoff matrices for the 3-player traffic game; payoffs are for player 1 / player
2 / player 3 (the 3 Nash equilibria in pure strategies are indicated in boldface).

a3 T3
G2 S2 B2 G2 S2 B2
G1[1/1/4 5/6/7 5/1/7 G1[4/4/8 7/4/6 7/1/8
S1(3/4/6 4/6/8 4/1/8 S1|4/6/8 5/4/6 5/1/8
B1|5/5/7 5/6/8 4/0/9 B1|5/7/8 5/4/6 4/0/8

Before we introduce the particular modeling of asymmetric population game,
we discuss the concept of replicator dynamics. Recall that the composition of the
population of agents (and hence of strategies) in the next generations changes
with time (in this case generations) suggests that we can see these agents as
replicators. The dynamics of this replication is unclear when one simply com-
putes the ESS. Moreover, the ESS may not even exist, given that the set of ESSs
is a possibly empty subset of the set of Nash equilibria computed for the NFG.
In the replicator dynamics, it is assumed that members of each population p are
programmed to adopt one pure strategy from a finite set available to the popula-
tion, 8P = {s!, ..., s, }. Suppose that there are |p| populations of agents, one for
each player. The replicator dynamics describes the evolution of the proportion
of members of each population playing every strategy.

As previously defined, the fraction of agents using s] is 2 = ]T\",’]"p. The state
of population p can be described as a vector xP = (2%, ..., 22 ). We are interested
in how the fraction of agents using each strategy changes with time, i.e., the
derivative &?. Because payoffs represent reproductive fitness that is responsible

for the number of successors using each strategy, we can write:

i = (n(s?,xP) — 7(xP)) x a? (1)

In Eq. 1, 7(xP) is the average payoff obtained by p: T(xP) = > a¥n(s?,xP).
i=1

In the three-population game considered in this paper, to avoid confusion we
use the term ”player” with its classical interpretation, i.e., the decision-makers
of the NFG. Because this game is played by randomly matched individuals, one
from each population, we call these individuals "agents”. Thus player refers to
a population of agents.

We are now in position to use the description of the general population
game given in the previous section and instantiate it for our particular scenario.
Formally: P = {1,2,3}; the strategies for each population p € P are S! =
{G1,51,B1}, 8? = {G2,52, B2}, and S = {G3,T3}; the payoff function is
given in Table 1.

In order to explain how the fitness function was derived, it is necessary to
understand how the three populations interact. Let us assume that we have
road network I, which is used by three populations of agents to go from their
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Table 2. Fraction of agents associated with each (pure) strategy (route choice).

str.| fraction str.| fraction str.|fraction
G1 1 G2 Y1 G3 z

S1 T2 S2 Y2 T3] (1—2)
Bl|(1—z1 —z2)||B2|(1 —y1 — y2)

respective origins to a destination. Each agent must select a route and the payoff
obtained is a function of the delay on the selected route.

Now, there are some alternative routes available to each agent in each popu-
lation. These routes or strategies were named after the following reasoning: G
means greedy selection. (G is the most preferred because this route yields the
highest utility if not shared with other populations); S means second preferred
alternative; and B means border route (a route that uses the periphery of I').
Populations p = 1 and p = 2 have strategies {G1, 51, B1} and {G2,52, B2}.
Population p = 3 is slightly different. It has only two strategies: G3 (greedy)
and one called T3 (which calls for agents to turn in order to avoid the low util-
ity when everybody wants to use its greedy option). Combining all these sets,
there are 18 possible assignments of routes. We recall that the fraction of agents
associated with each s¥ € SP is given by the vector =¥ = ]7\1,5; To facilitate the
comprehension of the equations of the replicator dynamics (derived from Eq. 1),
as well as to reduce the number of variables, we allow a slight modification in
this notation, which is then shown in Table 2.

The delay in each route is the sum of delays on each link in the route. In turn,
delays in each link are given by a volume-delay function (VDF) or expression of
the number of users of the particular link at a particular time. The VDF used in
the present paper considers the number of agents using each link. Specifically, it
adds 1 unit each time an agent uses a given link. This way, a link has cost 0 if
no agent uses it; cost 1 if one agent uses it; and so forth. One particular link L
of the network however does not accommodate all agents. Thus if all agents use
L at the same time, each receives a penalty of 1 unit.

As an example, assume that all agents want to use their most preferred
route, i.e., they all act greedily and select route G1, G2, and G3 if belonging to
population p =1, p = 2, and p = 3 respectively. An agent in p = 1 then has the
following cost: 3 (3 links that are not shared) + 2 (one link shared with agents
in p=2) + 6 (2 links shared with p =2 and p = 3) + 1 (penalty on L). Similar
costs apply for all 18 combinations of the routes. The maximum cost is incurred
by agents in p = 2 when the following combination of route choices is made:
B1 / B2 / G3. This cost is 13 for p = 2. In order to deal with a maximization
(of utility or payoff) problem rather than one of cost minimization, costs are
transformed in payoffs as follows. For each joint route choice, the resulting cost
for each player is subtracted from the maximum cost (in this case, 13), resulting
in the correspondent payoff. Payoffs computed this way are given in Table 1.
This way, for the just mentioned example, the payoff of agents in p = 2 when
the joint choice is B1 / B2 / G3 is not the cost of 13 but in fact 13-13=0.
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Table 3. Five Nash equilibria for the three-player traffic game.

Profile|| @1 @2 (1—a1 —a2)| 1 y2 (L—y1—wa)| 2z (1-—2)||payoff
Ca 1 0 0 0 1 0 1 0 [[5/6/7
o 0 0 1 0 0 1 1 0 ||5/6/8
oo 0 0 1 1 0 0 0 1 |[5/7/8
oa 0 0 1 2 : 0 3 3
oe 1104744 0 0.5256 0.3863 0.6136 0 0.3524 0.6476

The values in Table 1 represent an arbitrary assignment of utility of the
three players involved, based on the topology of I' as explained. The utility
function u(.) that underlies Table 1 is however equivalent to any other a(.) if 4(.)
represents identical preferences of the players, and u(.) and @(.) differ by a linear
transformation of the form 4(.) = A x u(.) + B, A > 0. Of course equivalence
here refers to the solution concept, i.e., a qualitative, not quantitative concept.
Equivalent game models will make the same prediction or prescription.

For the three-agent game whose payoffs are given in Table 1, there are five
Nash equilibria. While the computation of the three equilibria in pure strategies
is trivial, the mixed-equilibria are less obvious. All five Nash equilibria appear
in Table 3. In this table, columns 2-4 specify x! (fraction of agents selecting
each strategy s} in population p = 1), columns 5-7 specify x2 of p = 2, and the
last two columns specify x3 of p = 3. This means that, for the first equilibrium
(profile o,,), because 1 = 1, y2 = 1, and z = 1, all agents in p = 1 selects action
G1, whereas all agents in p = 2 select S2 and all agents in p = 3 select G3.

Regarding the mixed strategy profile o4, all agents in p = 1 select action Bl
(because 1 = xz = 0), whereas in p = 2, % of agents select G2 and % select
S2. In p = 3, % of agents select G3 and i select T3. Profiles oy, 0., and o,
can be similarly interpreted. In the classical GT interpretation of equilibrium,
04, 0p, and o, would be Nash equilibria in pure strategies, while the other two
equilibria would mean that agents randomize between two pure strategies. The
EGT interpretation thought is as follows. If we consider that we are dealing with
three populations of agents, we can think about the five equilibria in terms of
the percentage of individuals in one of the three populations that in fact select
one of the actions available. This seems a more reasonable explanation for the
concept of mixed strategies, given that, at each time, players in fact only select
an action (a route in the network I"). It must also be noticed that in asymmetric
games, all ESS are pure strategies (for a proof see, e.g., [9]). Thus only o, oy,
and o, are candidates for ESS. Besides, clearly, among o, o5, and o, the first
two are (weakly) Pareto inefficient because o is an outcome that make all agents
better off.

As mentioned, in this paper we are not considering how agents in the three
populations of agents indeed select an action. Rather, we are interested in the
dynamics of co-evolution of the populations as a whole. For this matter, we as-
sume that agents have a way to learn or adapt (or even any other mechanism
of action selection) but this is opaque here. What matters is that they somehow
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Table 4. Equations of the replicator dynamics for the traffic network

T1 = @ (—2y1 — 2z — 4y + 3 F #1291 + 222 + dz1y; — 331 F 235 F 200y — @3 — Y2 + T1 Y3 + T2Y2)

Ty =wa(—z — 2y + 1+ @12y; + 2221 +4wyy) — 3wy + 2ep + 2w3y; — w2 —y2 + T1Y2 + w2Y2)

Y1 = y1(—za1 — 22z —4z] — 2a9 + 7+ w12y] + 22y] + 4x1yq + 200y1 — Ty1 — 22y — dyg + T1y2 + T2y2)

Yo = yo(22 + 4 + @1 2yq + 22y1 + 4x1y] + 2w0y] — Ty1 — 22ys — 4yg — @1 — @9 + T1y2 + Toya)

2= 2(Swyy] — 23] —wg — 2y +yo + 1+ a@iys +aoys + @2y + 22wy + zwo +22y] — 2yg — 2 — 2T Ys — 2ToY2)

select an action. This does not mean that agents do not adapt to the environ-
ment. In fact they do but because we are assuming that the population is large
enough, we may just look at what happens at population level.

To reproduce the behavior of new drivers in the network I', we use ideas
similar to those in [4] and [10], in which newcomers replace some agents who
either leave the population or change their strategies. In either case, newcomers
are genetically mutated versions of the agents. To create these, we use a mutation
rate pp,: with probability p,, an agent in the population p is replaced by its
mutated version. The dynamics of the process is then modeled by a genetic
algorithm. Each population p is composed by NP agents. Each is programmed to
play a given strategy s? € SP. For instance, an agent in p = 1 can be genetically
coded to play G1. In each generation, each agent plays g games whose payoff is as
in Table 1. The sum of the payoffs obtained by playing these g games is then the
fitness of the agent. After these g games are played, the populations of agents are
reproduced: In each population p, the fittest agents have a higher probability of
being selected. Then each individual suffers mutation with probability p,,, which
means that its strategy is changed to another one randomly selected. We are then
interested in the replicator dynamics of the agents in the three populations. From
Eq. 1, and having in mind that the fractions of agents in each population are
denoted as in Table 2, the equations of the replicator dynamics for our specific
three-population game appear in Table 4.

4 Experiments and Results

In this section we discuss the numerical simulations of the replicator dynamics
for the three-population game described in Section 3. We are interested in inves-
tigating issues such as what happens if the populations start with each one using
a given profile ¢ in tames that have more than one equilibrium. For instance,
if this profile is o*, under which conditions will it remain this way? How many
mutants are necessary to shift this pattern? Also, if the population starts using
any o (one of the equilibria), what happens if it is close to (but not actually at)
c*? Will it tend to evolve towards ¢* or move away? If it reaches ¢*, how long
has it taken?

The main parameters of the model, as well as the values that were used
in the simulations are: P = {1,2,3}; N! = N2 = N3 = 300; g = 10,000
(number of games played by each agent in each generation); A = 1000 (number
of generations); and p,, (mutation probability, which varies).

The three Nash equilibria that need to be investigated are, as mentioned,
those in pure strategies, i.e., 0,4, 0p, and o, from Table 3. We have analytically
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checked that only o. is an ESS. To do this, it is necessary to analyse which
are stable rest points. In simple games, e.g., 222 or even symmetric 223 this
can be done graphically. However, because our problem involves five variables
(x1,T2,y1,Y2, 2), the divergence operator was used. This way, it was verified that
the only Nash equilibria where all derivatives are negative is 0., meaning that
this is a stable rest point. We stress however that such an investigation is only
possible for the static NFG, i.e., when no change happens in the composition
of the populations. When it comes to the dynamics, this investigation can only
be done using numerical simulation. For instance, the issue about whether or
not the ESS will establish depends on the mutation rate. If it is too high, then
the populations never converge to the selection of any Nash equilibria, much
less to the ESS, because perturbations happen too often. If the mutation rate is
too low, it may be that the initial condition determines which Nash equilibria
will establish, which may not be the ESS. In this case, because the mutation is
almost zero, the population is not able to shift to the ESS.

Because the replicator dynamics for this problem involves five variables, it
is not possible to show the typical replicator dynamics plots that depict the
trajectory of the variables, and hence show the convergence to a point. Therefore,
as an alternative to show the dynamics of this convergence we use a kind of
heatmap, here by means of the software R. In the plots that appear next (which
were reduced due to lack of space), heatmaps (here only using shades of gray)
are used to convey the idea of the intensity of the selection of each of the 18
joint actions (represented in the vertical axis) along time (horizontal axis). The
three Nash equilibria that we seek are represented as 010, 012, and 102 for o,
op, and o, respectively. The darker the shade, the more intense one joint action
is selected. Thus we should expect that the three Nash equilibria correspond to
the darker strips.

In Figure 1 we show how the selection evolves along time, for high rates of
mutation. Figure 1(a) is for p,, = 107, We can see that althought o, (010)
is clearly more frequently selected, other joint actions also appear often, as,
e.g., 012. Interestingly, their counterparts 110 and 112, which differ from 010
and 012 by p = 3 selecting T3 instead of G3 also appear relatively often. This
indicates that agents in p = 3 try to adapt to the other two populations. In the
end the performance is poor because co-evolution is disturbed by the high rate
of mutation (newcomers, experimentation by the agents). This overal picture
improves a little with the reduction in p,,. When p,,, = 1072 (not shown) and
pm = 1073 (Figure 1(b)), the convergence pattern is clearer but still it is not
possible to affirm that one profile has established. We remark that we deliberately
show figures where the more frequently selected profile is 010. However this is not
always the case. The other two profiles may also be the most frequently selected.
In any case, the general pattern is that there is no clear convergence. When we
decrease the rate to p,, = 1074, it is possible to observe that one of the two cases
occur: either profile 102 (o.) established right in the beginning (Figure 1(c)), or
there is a competition between 010 and 012, with one or the other ending up
establishing. In Figure 1(d) it was the case that the joint selection has converged
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Fig. 1. Evolution of Dynamics for Different py,.

to 010, but this needs not to be the case, with 012 being the other convergence
possibility. For p,, = 10~° the pattern is pretty much the same as for p,,, = 1074,
With decrease in p,,, there is a decrease in the time needed to either 010 or 012
establish, if 102 has not already set. For instance, comparing Figure 2(b) to
Figure 1(d), one sees that profile o, (010) established before in the former case.
Lower mutation rates follow the same trend.

In short, four conclusions can be drawn from these simulations. First, the
co-evolution of the dynamics does not always lead to the ESS computed for the
corresponding static NFG. Whereas there is only one ESS among the three Nash
equilibria in pure strategies (o.), depending on the distribution of strategies in
the three populations at the early steps of the game and on the mutation rate, all
three Nash equilibria may establish. Second, the mutation rate has an influence
on the frequency of selection in the sense that if it is too high, it is not really
possible to affirm that one Nash equilibria has established definitively. Third, if
the mutation rate is low, then it is possible to see the convergence to one of the
three Nash equilibria. Finally, still for low mutation rates, there is a different
pattern of convergence when considering the three Nash equilibria. The profile o,
does establish fast (and does not shift) if it sets at all. When this is not the case,
there is a competition between the other two. This competition is determined by
agents in p = 3: from the payoff matrix (Table 1), one can see that only agents
in p = 3 have different payoffs in profiles o, and oy.

5 Conclusion

In this paper, a three-population game was defined in order to model co-evolution
of strategies in a scenario in which the payoffs of the populations are not sym-
metric. Although the game considers three populations only, each having a few
actions, we claim that this is not an unrealistic simplification. In fact, in the
majority of the situations a traffic engineer has to deal with, there is a small
number of commodities (origin-destination pairs) thus three populations is not
far from reality. Regarding the number of actions, it is equally the case that in

8th Ibero-American Workshop on Multi-Agent Systems (IBERAGENTS 2012)



50

Replicator Dynamics of an Assignment Game

(a) pm =107° (b) pm =107° (€) pm = 107°

Fig. 2. Evolution of Dynamics for p,, = 1075,

the majority of the real-world cases drivers do not have more than a handful of
options to go from A to B.

One contribution of this paper relies on the modeling, whose analytical solu-

tion is not trivial. However the major contribution refers to the aspects related
to the dynamics of the co-evolution, as it was shown that the convergence to
one of the Nash equilibria is achieved under given mutation rates only. In the
future we want to extend this work by combining it with techniques that work
at individual agent level as for instance reinforcement learning.
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