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Abstract—A common trend in several areas of knowledge is
to combine distinct methods or algorithms expertise in order
to provide more accurate results. This approach has its basis
on the theory of wisdom of crowds, which claims that the
information drawn from collective decisions is usually more
precise than the individual ones. Many classification tasks
have profit from this idea. However, its application to gene
regulatory networks inference is recent and still not deeply
explored. In the current work, we perform a comparative
study between several widely used combination methods in
machine learning. We analyze their performance for artificially
generated gene networks and observe that ensemble predictions
yield more accurate results than individual ones, thus being an
interesting strategy for improving inference on gene regulatory
networks.
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[. INTRODUCTION

One of the most challenging and complex problems in
bioinformatics refers to the analysis of gene expression
data for the inference of regulatory interactions between
genes. The main motivation is to characterize the genetic
regulation responsible for cellular development and function
performed by the organisms’ underlying gene regulatory
networks (GRNs). The construction of a global model for
GRNs enables the investigation of the control and function
of its distinct parts considering their effects over the system
as a whole. This is particularly interesting, for instance, for
drugs and treatments development. Additionally, this model
represents an important tool for in silico experiments.

A wide range of statistical and machine learning methods
have been already applied in the reverse engineering process,
as recently reviewed in [1]. In general, these methods receive
a data set of gene expression measurements as input and
try to reveal the regulatory interactions that compose the
networks’ topology from implicit information embedded on
experimental biological data, providing a network model
consistent with the data. However, there is an important
challenge involved in this context: as experiments usually
yield sparse data sets, the interactions between hundreds of
genes must be learned from a few available samples [2],
which not only raises the difficulty of the inference problem,
but also impairs its performance.
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Indeed, in the comparative study by Hache and colleagues
[1], it was demonstrated that the performance of the reverse
engineering methods is still not good enough for practical
applications with large networks. None of the tested methods
outperforms all other methods or is capable of reconstructing
the entire true network structure for all data sets. Further-
more, values for sensitivity, specificity, and precision were
always low, suggesting that reverse engineering methods
need further improvements to be truly reliable for biological
applications.

An alternative approach for inference improvement was
proposed in [3], which has its basis on the concepts of
wisdom of crowds [4]. In contrast to the classical method
of selecting a single network from the output of an algo-
rithm, usually the one that best fits the data, Marbach and
colleagues suggested integrating the information contained
within a set of plausible solutions, relying on the fact that
many reverse engineering algorithms naturally provide an
ensemble of networks that are consistent with the biological
data, e.g., genetic algorithms, simulated annealing, among
others. By applying majority voting as the integration mech-
anism, authors found that ensemble predictions boost the
performance compared to individual members of an ensem-
ble provided by an evolutionary approach. A similar strategy
was explored in [5], in which authors applied the idea behind
the wisdom of crowds to compose the final solution of the
inference process based on the set of candidate networks
pointed out by the last generation of a genetic algorithm.

Moreover, the effects of building an ensemble from the
output of a set of distinct reverse engineering algorithms
were investigated by Marbach and colleagues in [6]. Given
the set of predictions submitted by the participants of
the DREAM3 challenge [7], which are given as ranked
lists of predicted edges, authors have shown that inference
methods have particular strengths and weaknesses, and that
predictions drawn from the integration of multiple methods
benefit from the variance in expertise. The so-called com-
munity predictions are formed following the Borda count
voting method: the edge lists are reranked according to
the average rank for each edge considering the top two
methods, the top three methods, and so on, until all methods
are included in the ensemble. The findings suggest that
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community predictions are as accurate as the predictions
made by best-performer methods and that the inclusion of
methods with very low scores do not compromise the good
performance of the ensemble.

The idea of combining the expertise of distinct algorithms
is not new. In fact, recent studies on classification methods
discuss the improvements introduced by the use of classifier
ensembles. This approach exploits the idea that the use of
different classifiers may offer complementary information
about the patterns to be classified, so that the pattern
recognition process becomes more effective [8]. In addition,
since no classifier can be considered entirely satisfactory
for a particular task, the combination strategy aims at
increasing the capacity of generalization and, consequently,
the performance of the system as a whole. However, even
though the benefits of the ensembles for classification tasks
are elucidated, ensemble solutions have been just recently
applied in the context of inference of GRNs so that its
potential was not fully explored yet. There is still the lack
of a broad comparative study about inference of GRNs
based on ensemble approaches, applying different types of
combination methods to the same data set and evaluating its
particular strengths, as well as research on the development
of more robust combination methods. The present study aims
at exploring the first niche and providing the reader with
some insight on the benefits of using ensemble predictions.

In what follows, we introduce the concepts of wisdom
of crowds and explain our materials and methods. Next, we
describe our experiments and findings, which reinforce the
idea of the improvement capacity associated to ensemble
predictions in relation to currently available reverse engi-
neering methods.

II. MATERIALS AND METHODS

A. Wisdom of Crowds

The idea of building ensembles is motivated by the obser-
vation that, in general, individuals who decide collectively
are more likely to make better decisions and predictions in
regard to individuals or even experts [4]. This phenomena
is known as wisdom of crowds and has been observed
in many real situations, such as predictive markets. The
Iowa Electronic Market' (IEM) is a speculative market
based on users’ opinion about an upcoming event and has
been used to forecast the outcome of future events such
as presidential elections. Previous events, such as the USA
Presidential Race of 2008, have shown that IEM predictions
have generally outperformed the major national polls and
were more accurate than these, even months in advance of
the actual election. Thus, predictive markets, as well as other
situations in which information of a collective is aggregated,
have shown better capability.

Thttp://tippie.uiowa.edu/iem/
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B. Data

Due to the restricted knowledge about the biological sys-
tems from which gene expression profiles are obtained, the
use of artificial networks and simulated expression signals
is still a common practice to assess algorithms performance.
Thus, in the present paper, we resort to an Artificial Gene
Network (AGN) validation and simulation model? [9], based
on the Boolean network approach, to compose an artificial
set of networks. We generate 30- and 50-nodes AGNs, five
instances of each, following the Barabdsi-Albert (BA) [10]
model, which is currently known to be one of the most
similar models to real gene regulatory networks [11].

Following the upper limit of stability for Boolean net-
works discussed in [12], we set the upper bound of nodes’
average connectivity to (k) = 3. Also, we consider a proba-
bilistic approach for the Boolean modeling, which relax the
deterministic rigidity of deterministic Boolean networks by
allowing each gene to have more than one Boolean function,
each of which have a particular usage probability [13]. For
each network, we simulated 10 temporal expression signals
of length 10, each one starting from a randomly chosen
initial state. The dynamics of the AGN is obtained by apply-
ing the Boolean transition functions to the network’s initial
state and yields binary gene expression signals. Furthermore,
we have concatenated these signals generating a single time
series of size 100, which is used for network inference.

C. Reverse Engineering Algorithms

As the goal of this study is to focus on the combination
of the results provided by multiple reverse engineering
methods, and not on the methods themselves, we did not
implement any inference algorithm. Instead, we resort to
R packages designed for GRNs reconstruction based on
two widely used modeling frameworks, Boolean networks
and Bayesian networks, implemented by the boolnet [14]
and bnlearn [15] packages respectively. We extracted two
types of information from the gene expression profile: an
adjacency matrix and a confidence matrix. While the first
provides the network wiring, the second give us an additional
information about the confidence attached to each link by
the inference method. In addition, we also create a ranked
list of interactions based on the confidence matrix for the
use of non-linear voting-based combination methods.

The algorithms used for network inference, as well as their
respective parameters, are summarized on Table 1. A total
of 13 possible combinations of algorithms and parameters
were tested: three based on the Boolean formalism and ten
based on the Bayesian formalism. Regarding the former, we
applied the best-fit algorithm [13] and obtained, for each
gene, a set of Boolean functions that explain its behavior
within the gene expression profile, each of which associated
to a probability. In contrast to algorithms that only find

Zhttp://code.google.com/p/jagn/



Table I
REVERSE ENGINEERING ALGORITHMS AND PARAMETERS.

Network Formalism Infere}nce Algorithm’s Parameter
Algorithm
Boolean Best-fit Qgi% z %
maxK =4
Y score = “aic’
Tabu score = “bde”
Bayesian score = “loglik”
score = “‘aic”
HC score = “bde”
score = “loglik”
score = “‘aic”
MMHC score = “bde”
score = “loglik”
ARACNE —

functions that perfectly explain all measurements, the best-fit
is a more suitable option since real gene expression data
are known to be noisy. The use of the best-fit algorithm
implemented by the boolnet R package involves a single
parameter, maxK, which determines the maximum number
of input genes, or fan-in, to be tested per gene. Following
previous studies [2], we limit the fan-in to values maxK
= {2, 3,4}, incorporating the notion that a gene’s expression
is controlled by a small set of active regulators.

From the output of the best-fit algorithm we derive
the confidence matrix for the inference process, which is
computed by summing the probabilities attached to all
Boolean functions that comprise a particular predictor. For
instance, assume that four Boolean functions were inferred
for genel, each of which attached to a probability of 0.25.
Suppose also that three of the Boolean functions for genel
include gene4 as its predictor. Thus, the level of confidence
on link gene4 — genel will be equal to 0.75. Once
the confidence matrix is available, we obtain the adjacency
matrix by assigning 1 to all links with confidence greater
than zero.

Regarding the Bayesian formalism, we have tested three
distinct classes of algorithms available in the bnlearn R
package: two greedy score-based structure learning algo-
rithms, Hill Climbing (HC) and Tabu Search (Tabu); a
constraint-based local discovery algorithm, ARACNE [16];
and a hybrid structure learning algorithm, Max-Min Hill
Climbing (MMHC) [17]. The score-based algorithms are
general purpose heuristic optimization algorithms that rank
network structures with respect to a goodness of fit score
and try to maximize it. The search for the best structures
is performed by the algorithms HC and Tabu, which are
both greedy algorithms with the difference that the latter
allows an eventual decrease in the score function in order
to escape local optima. Due to the discrete characteristic of
data, we applied the multinomial log-likelihood, the Akaike
Information Criterion (AIC), and the equivalent Dirichlet
posterior density (BDe) scores for structure evaluation.
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Constraint-based algorithms, such as ARACNE, use con-
ditional independence tests to detect the Markov blankets’
of the variables and compute the structure of the Bayesian
network. ARACNE identifies candidate interactions by esti-
mating pairwise gene expression profile mutual information
and, afterwards, refines the model by removing the vast
majority of indirect candidate interactions using a well-
known information theoretic property, the Data Processing
Inequality (DPI). Finally, hybrid algorithms such as the
Max-Min Hill-Climbing (MMHC) [17] combine aspects of
score- and constraint-based algorithms: while the latter aims
at restricting the search space by detecting the Markov
blanket through conditional independence tests, i.e., a local
search, the score-based algorithms are used to explore the
restricted search space.

The default data structure returned by the algorithms
available in the bnlearn R package is the adjacency ma-
trix, obtained through the function amat (). Therefore, to
estimate the degree of confidence attached to each inter-
action, or network link, we follow the approach proposed
in [18], which is implemented under the package function
arc.strength(). There, a simple way of measuring
Bayesian networks’ arc strength based on bootstrap is intro-
duced: multiple network structures are generated by applying
non-parametric bootstrap to the data and the confidence
level of a particular feature is estimated by examining in
how many of the bootstrap samples it appeared. Once the
confidence matrix is obtained, a ranked list of interactions
according to their respective confidence levels is constructed.

D. Combination Methods

Several combination methods have been already discussed
in the literature, especially regarding supervised learning.
In general, these methods are classified as selection-based
and fusion-based methods. While selection-based methods
nominate a single method to provide the output for the
process according to an analysis of methods’ competence,
fusion-based methods integrate the information contained
within a set of predictions to compose an single output.
In the current paper we will focus our analysis on the
latter, more specifically in five distinct methods, classified
as follows [8]:

o Linear methods: sum and average of confidence levels
« Non-linear methods: Borda count and majority voting
« Statistical methods: Dempster-Shafer (D-S)

The linear and statistical methods are applied to the
confidence matrix. The linear methods simply compute
the sum and mean of the confidence levels inferred by
each of the reconstruction methods, obtaining the degree
of confidence of the ensemble prediction. The Dempster-
Shafer method is a generalization of the Bayesian theory for

3The Markov blanket for a given node is the set composed by its parents,
its children and its children’s other parents.



propositions combination and allows one to merge evidence
from different sources to obtain a single degree of belief that
takes into account all the available evidence. The general
combination rule of D-S theory is given by:

> anp=c m' (A)m*(B)
ZAQB#@ m!'(A)m?(B)

in which m* € [0,1] is the belief mass of a given element
according to method X, m12 is the resulting ensemble mass,
and the denominator term is a normalization factor.

Considering the two possible states for the system under
consideration, i.e., the status of an interaction between
two genes, to be absent (A) or present (P), such that
6 = {A, P}, the universal set of our problem containing
all and only the states in which the proposition is true is
defined by 2¢ = {{A, P}, A, P,&}. Since state {A, P} is
not allowed in our problem (an edge can be either present or
absent, but not both), it is removed from this set. Recalling
the two main properties of the belief mass functions, I)
m(2) = 0 and II) Y ¢ 06 m(S) = 1, we have derived the
following combination rules for the ensemble prediction of
GRNs by D-S technique based on two distinct methods, m!
and m?:

mb2(A) oc m' (A)m?(P) +m! (P)m?(P) +m!(A)m?(A)
@)
mb?(P) o m*(P)m?*(A) +m*(A)m?*(P) + m* (P)m?(P)
3)
Regarding the non-linear methods, the majority voting
requires every method on the ensemble to vote on the classi-
fication of a given interaction as absent or present, according
to their respective adjacency matrices. The inclusion of the
interaction in the final GRN model will be decided by the
majority of the votes. Moreover, the model’s confidence is
computed as the average confidence level of the majority
group. In contrast, the Borda count considers the confidence
level attached to each interaction by ranking the predictions
made by each of the individual methods in respect to the
degree of confidence and combining the ranked lists by
averaging the rank of each interaction [6]. The confidence
level of each interaction is then recomputed as its position
in the ranked list.

mb?(C) =

)

III. EXPERIMENTS AND RESULTS

In order to perform a comparative study on the combi-
nation methods for ensemble predictions discussed in the
previous section, we have run the algorithms outlined in
Table I, varying their respective parameters, for each of the
AGNs comprising our data set, i.e., five networks of size
30 and five networks of size 50. Each algorithm yields an
individual solution that is used to compose the ensemble
prediction. We follow the approach discussed in [6] to build
the ensembles: starting from the top scored method, we
systematically aggregate the other methods according to a
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decreasing order of score, forming an ensemble of the top
two methods, the top three methods, and so on, until an
ensemble comprising all the methods is built. This approach
aims at providing a better picture about the effect of each
inference method on the ensembles’ performance.

After the algorithms have been applied for all networks
and the ensembles have been built, we average their res-
pective results, obtaining a single score for each reverse
engineering algorithm and combination method, for both
network sizes. The performance of the distinct combination
methods were twofold assessed and compared. First, we
have evaluated results in terms of the area under the ROC
curve (AUC score). Since the reverse engineering methods
return a matrix with the degree of confidence of all inferred
connections, we have computed the specificity and sensiti-
vity for each possible threshold of this matrix, starting from
the lowest value, and subsequently we obtain the AUC score.

Moreover, we compute the similarity between an inferred
network (N7) and the target network (Np). Similarity is
a measure that combines both true positive rate (TPR,
sensitivity) and true negative rate (TNR, specificity), as
defined in Equation 4. While the AUC score evaluates
the performance across the range of possible thresholds,
the similarity considers a single and specific threshold of
occurrence, based on which an adjacency matrix is extracted
from the confidence matrix for comparison purposes. Due to
space constraints, only the results for a threshold equal to
0.1 are shown in this paper.

Similarity(N;, Ny) = VTPR x TNR 4)

In general, Boolean-based methods have performed better
than the Bayesian approach. However, since our goal is to
evaluate combination methods and not reverse engineering
methods, we do not identify them in the graphs. Instead,
methods and ensembles receive a numeric identification
(z axis), in which 1 refers to the best performing method,
2 to the second best method and the ensemble of the top
two methods, and so on until 13, which refers to both the
worst performing method and the ensemble composed by
the whole set of methods.

Results in terms of the AUC score are depicted in Fig-
ures 1(a) and 1(b) for the 30-node and 50-node networks.
These values corroborate the advantages of ensemble pre-
dictions over individual predictions. For both network sizes,
all combination methods have yielded more accurate results,
with the most meaningful improvement being observed for
the linear methods, namely the sum and average, followed by
Borda count. Little to none performance difference was ob-
served between the linear methods. Regarding D-S method,
the improvement was moderate.

In contrast, the combination by means of majority voting
produced the poorest results. For the 30-node networks, it
modestly outperformed most of the ensembles. Also, its
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Figure 1. Average AUC scores of inferred networks.

performance for the 50-node networks was mostly worse
and only in few cases higher than individual scores. This
is probably due to the fact that in majority voting, the
information carried by a set of methods that predict a given
edge is completely discarded when this set is the minority.
In this case, the edge’s confidence based on the ensemble
prediction is equal to zero, regardless the relevance and
confidence of the methods that predicted it.

Furthermore, one can notice that the performance im-
provement given by the combination methods in relation to
individual methods becomes more significant as the size of
the ensemble increases. However, for the 30-node networks,
linear methods have provided better results even for small
ensembles, composed solely by the top three methods,
while the other methods have improved results only for
ensembles composed by four or more solutions. For the
50-node networks, all combination methods have shown
some improvement only from the forth ensemble.

The benefits of ensemble predictions are even clearer for
the analysis based on the similarity measure (Figures 2(a)
and 2(b)). When comparing the adjacency matrices ob-
tained under a threshold of occurrence equal to 0.1, we
observe a substantial gain in accuracy. The best ensemble
predictions, provided by the sum of interactions confidence,
D-S and Borda count, outperform all individual predictions.
Moreover, the performance of D-S method has improved,
while the performance of the average confidence method has
dropped to an intermediate level. Once again, the majority
voting was the least robust combination method to low-
performing algorithms: its performance deteriorates from the
sixth ensemble for both 30- and 50-node networks.
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Figure 2. Average similarity between inferred and target networks.

Figures 3(a) and 3(b) depict the 95% confidence intervals
for the tested methods, confirming the superiority of the
ensemble approach in relation to individual algorithms.
A statistically significant improvement in terms of AUC
score and the similarity measure has been observed for the
sum and average of interactions confidence, as well as for
the Borda count method. Considering solely the similarity
measure, the Dempster-Shafer method is also significantly
better. In contrast, no statistically significant difference is
observed between majority voting and individual solutions.
Based on this comparison, one can conclude that the overall
performance of ensemble approaches was satisfactory and it
seems this is a promising strategy for inference of GRNS.
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Figure 3. 95% confidence intervals.



IV. CONCLUSION

In the present work we have investigated the effects of
several combination methods of reverse engineering algo-
rithms on the ensemble prediction of GRNs. We have tested
two linear methods — the sum and average of confidence lev-
els, two non-linear methods — the majority voting and Borda
count, and Dempster-Shafer theory with AGNs. The results
corroborate previous studies [3], [6]: predictions drawn from
a community of methods are indeed more accurate than
individual ones. However, differently from these, we perform
a comparative study between distinct combination methods
for ensemble predictions, assessing their performance for a
common data set.

Our results suggest that Borda count and the sum or
average of confidence levels are the most reliable combi-
nation methods for ensemble prediction of GRNs between
the tested methods. Most of the ensembles composed by
their predictions have outperformed all other combination
methods, as well as individual algorithms. In contrast, the
majority voting presented the poorest performance and was
not very robust to low-performing methods. The findings
of this comparative study meet the ideas discussed in [4]:
under the right circumstances, such as independent decision
making, groups are remarkably intelligent and often perform
better than the smartest people in them. However, only
known combination methods were investigated in this study
such that we hypothesized that more robust combination
methods, as well as ensembles built over more accurate
algorithms, could provide even more remarkable gains.
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