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Abstract. MicroRNAs (miRNAs) are key regulators of eukaryotic gene
expression whose fundamental role has been already identified in many
cell pathways. The correct identification of miRNAs targets is a major
challenge in bioinformatics. So far, machine learning-based methods for
miRNA-target prediction have shown the best results in terms of speci-
ficity and sensitivity. However, despite its well-known efficiency in other
classifying tasks, the random forest algorithm has not been employed in
this problem. Therefore, in this work we present RFMirTarget, an effi-
cient random forest miRNA-target prediction system. Our tool analyzes
the alignment between a candidate miRNA-target pair and extracts a
set of structural, thermodynamics, alignment and position-based features.
Ezxperiments have shown that RFMirTarget achieves a Matthew’s corre-
lation coefficient nearly 48% greater than the performance reported for
the MultiMiTar, which was trained upon the same data set. In addition,
tests performed with RFMirTarget reinforce the importance of the seed
region for target prediction accuracy.
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1 Introduction

MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that
act as negative regulators of gene expression, thus playing an important role in
gene regulation by targeting mRNAs with cleavage or translational repression [1].
The miRNA biogenesis is similar in both animals and plants. Mature miRNAs
are formed from longer primary transcripts by two sequential processing steps
mediated by a nuclear and a cytoplasmic RNase III endonuclease. In animals
the responsible enzymes are Drosha and Dicer, respectively, while in plants both
cleavages are performed by a Dicer homolog, DCL [1]. These cleavages generate
a 60—70 nt stem-loop miRNA precursor (pre-miRNAs) and a mature miRNA
duplex, respectively. Further, the mature miRNA duplex is assembled into an
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effector complex known as RNA-induced silencing complex (RISC). The gene
repression, caused by miRNA silence, can occur in two different ways: i) by
degradation of messenger RNA (mRNA) through the RNA interference (RNAi)
pathway or ii) by inhibiting protein translation [2].

Since the discovery of miRNAs in Caenorhabditis elegans [3], in which they
were related to control developmental timing, miRNAs have been characterized
in both animals and plants in several metabolic processes, such as growth, ap-
optosis, cell proliferation, stress responses and defense against viruses and other
diseases [4,5]. In humans, miRNAs play a critical role in tumorigenesis, acting
either as tumor suppressors or oncogenes. Moreover, recent studies have shown
that miRNAs are highly related with cancer progression, including initiating,
growth, apoptosis, invasion and metastasis [6].

Two main challenges are involved in the study of miRNAs: the identification
of novel miRNAs and the prediction of miRNAs targets. The existence of a stem-
loop is the key feature adopted by ab initio prediction methods to identify novel
miRNAs. In this sense, machine learning (ML) algorithms, among which support
vector machine (SVM) [7, 8], random forest [9] and naive Bayes [10] stand out,
have been extensively applied to the task of learning how to distinguish real
pre-miRNAs from pseudo pre-miRNAs based on a set of descriptive features.
Following this direction, ML methods can help in the computational prediction
of miRNAs targets, although this is considered a more difficult problem.

Basically, the interaction of a miRNA and its target occurs by complemen-
tarity of their nucleotide sequences, with some functional differences between
plants and animals miRNAs. Plant miRNAs bind their targets with perfect or
near perfect complementarity and mostly in their open read frames (ORFs) [11].
In contrast, in most cases, animals miRNAs sequences have a partial comple-
mentarity to their targets and the hybridization occurs predominantly in the
3’ untranslated regions (3> UTRs) [12]. Furthermore, in animals, a region of
miRNA called seed plays an important role in the correct interaction between
the miRNA and its target. This region comprehends six to eight nucleotides
in the 5’ end of the miRNA that have (almost) strict pairing with the mRNA
target. The classification of miRNA target sites can be thus distinguished into
three types: i) 5> dominant canonical, where a perfect match occurs in the seed
region and an extensive base pairing is observed in the 3’ end of the miRNA,
ii) 5" dominant seed only, which presents an extensive base pairing only in the
seed region and iii) 3’ compensatory, in which the seed region does not contains
a perfect base pairing, but the 3’ end of the miRNA displays a more extensive
base pairing [13, 14].

Several different computational tools have been already developed for target
prediction analysis [15]. In general, these tools are based on features derived from
the interaction between a miRNA and its potential targets, such as seed comple-
mentarity, thermodynamics stability, presence of multiple sites and evolutionary
conservation among species [14]. Among these, ML-based algorithms have had
the best results so far in terms of specificity and sensitivity [16]. One well-known
classifier is the random forest algorithm [17], further explained in Section 2.1.
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Fig. 1. Fluxogram of RFMirTarget training and functioning. (a) RFMirTarget is
trained with positive and negative miRNA-target examples. This data set is anal-
ized by miRanda, whose output is processed for features extraction. A RF model is
then built upon these features. (b) Once trained, RFMirTarget may be used to clas-
sify unknown miRNA-targets: given two files with miRNAs and references sequences,
RFMirTarget outputs the confidence and alignment for all predicted miRNA-targets.

Its popularity is due mainly to its meaningful efficiency when compared to other
classification methods. This efficiency, in turn, comes from the manner the algo-
rithm profits from ensemble predictions. Although already known as an efficient
approach for identifying novel miRNAs [9], random forests have not been ex-
plored in the context of miRNA-target prediction yet. Therefore, in the present
paper, we introduce the REMirTarget tool, a random forest model for the predic-
tion of miRNAs targets. Tests with biologically validated examples have shown
that the proposed model is indeed robust and has performance superior than
the state-of-the-art tool MultiMiTar [16].

2 Materials and Methods

RFMirTarget is trained upon biologically validated miRNA-target pairs. This
data set is processed by miRanda (see Section 2.3) in order to identify interacting
sites between miRNAs and their respective targets and prepare the data set
for feature extraction. The alignments provided by miRanda are the source for
features definition, which in turn are used for training a random forest classifier.
Once trained, the model can be applied to the classification of unknown instances
of miRNA-targets (Fig. 1(b)). To perform such task, the user must provide
two files with miRNAs and candidate reference sequences, and RFMirTarget
outputs the prediction confidence and alignment for all predicted miRNA-target
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pairs. In what follows we explain the methods involved in the training process,
summarized in Fig. 1(a).

2.1 Random Forest

Random forest (RF) is a well-known ensemble approach for classification tasks
[17], which has its basis on the combination of tree-structured classifiers with the
randomness and robustness provided by bagging and random feature selection.
In [18], the application of bagging as a means to enhance the performance of
tree-structured classifiers and reduce their bias was proposed by Breiman. The
author’s approach consisted in training several classifiers with random bootstrap
samples from the original data set and afterwards combining their results into
a single prediction: for classification tasks, by means of voting; for regression
tasks, by averaging all classifiers results.

Furthermore, Breiman has improved his previous model by aggregating ran-
dom feature selection to the training process [17]. His proposal consisted in
selecting from a random subset of features the one with the smallest impurity to
split at each node when growing a tree. Tests run by Breiman have revealed that
RF classifier always outperforms the bagging approach [18]. However, the bene-
fits of RF's go beyond its good performance. The mechanism applied for growing
trees allows an unbiased estimation of both the generalization error and the most
important variables for classification during the growth process, using for such
analysis the data left out of the bootstrap sample used as training set, named
out-of-bag (OOB) data. Additionally, as RFs are tree-structure classifiers, they
inherit the interpretability associated to this type of model [9]. In the present
work, the RF model was implemented with the randomForest R package [19].

2.2 Data set

The RF model was trained with experimentally verified examples of human
miRNA-target collected by Bandyopadhyay and Mitra in [20] and used in the
training process of MultiMiTar [16], a SVM-based miRNA-target prediction sys-
tem. The data set is composed of 289 biologically validated positive examples
and 289 systematically identified tissue-specific negative examples. As the basic
mechanism of RF renders the definition of training and testing data sets unnec-
essary, both classifier model and error estimative are drawn from the same data
set. During the training process about 2/3 of the original data is sampled for
growing the tree, while the remainder (OOB data) is used to test the generated
model and estimate the generalization error. We refer the reader to [20] for more
details about the data.

2.3 Data Preparation

The data set of positive and negative examples of miRNA-target pairs used for
training MultiMiTar does not comprises information about the actual site of
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Fig. 2. Example of miRNA-target alignment predicted by miRanda. The miRanda
software outputs all possible alignments and base pairings of a miRNA-target pair that
scored above a given threshold. The highlighted nucleotides refer to the seed region.
In addition, the figure illustrates the nucleotides numbering (1-20) for position-based
features extraction.

alignment between miRNAs and their targets. Due to the existence of multiple
sites, which is related to some extent to the short length of miRNAs sequences,
the extraction of this information by techniques such as BLAST could result
in an extremely large data set, with many biologically unlikely miRNA:mRNA
pairs. Therefore, to reduce the dimension of our problem and prepare our data set
for feature extraction, we resort to miRanda software [21] to obtain the miRNA-
target binding sites from the same examples used for MultiMiTar training.

The miRanda software runs a score-based algorithm to analyze the comple-
mentarity of nucleotides (A:U or G:C) between aligned sequences. The scoring
matrix allows the occurrence of the non-canonical base-pairing G=U wobble,
which is important for the accurate detection of RNA:RNA duplexes, and is
based on the following parameters: +5 for G=C, +5 for A=U, +2 for G=U and
-3 for all other nucleotides pairing [21]. Additionally, there is a scaling factor for
giving a higher weight to nucleotides within the first eleven positions.

Besides the scoring matrix, four empirical rules are applied for the identi-
fication of the miRNA binding sites, counting from the first position of the 5’
end of the miRNA: i) no mismatches at positions 2 to 4; ii) fewer than five
mismatches between positions 3-12; iii) at least one mismatch between positions
9 and L-5 (where L is length of the complete alignment); and iv) fewer than
two mismatches in the last five positions of the alignment [21]. An example of
the alignment output provided by miRanda is depicted in Fig. 2. After running
miRanda algorithm on the data set described at Section 2.2, we obtained 1074
positive and 407 negative miRNA-target pairs, which consists of the training in-
stances used for building the RF model with the randomForest R package [19].
At this point we emphasize that although the number of training instances we
use is greater than the value reported in [16], they derive from the original data
set used for training MultiMitar. The difference in the data set dimension is due
to data processing by miRanda, which is part of our strategy to fulfill a lack of
information on the actual binding site between miRNA-target pairs.

2.4 Features

The negative and positive examples predicted by miRanda algorithm consist of
the alignment between both sequences, as well as properties such as the score
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Fig.3. RFMirTarget combines 34 features divided into four categories: alignment,
thermodynamics, position-based and structural features. From these, six refer to the
seed region: MFE value and five structural features.

and alignment length, based on which the classifier features are extracted. The
RF features are divided into four categories: structural features, thermodynamics
features, alignment features and position-based features. The first two categories
are widely used for training classifier systems, while the later was introduced in
the study held by [22] and the alignment features are proposed in the current
study. In what follows we explain each of the defined categories.

— Structural features. Quantify the number of matches (G:C and A:U pair-
ing) and mismatches (G:U wobble pair, gap and other mismatches) in the
alignment.

— Thermodynamics feature. Minimum free energy (MFE) of the miRNA-
target alignment computed by RNAfold [23].

— Alignment features. Properties of the miRNA-target alignment computed
by the miRanda algorithm: alignment score and alignment length.

— Position-based features. Evaluation of each basepair from the 5’-most
position of the miRNA up to the 20th position of the alignment, assigning
nominal values to designate the kind of pairing in each position: a G:C match,
an A:U match, a G:U wobble pair, a gap and a mismatch. In the previous
study [22], the gap feature was not included in the set of position-based
features.

The thermodynamics and structural features were extracted in twofold man-
ner: for the complete alignment and for the seed region, which is composed by
the nucleotides in positions 2-8, to count from the 5’-most position of the miRNA
(Fig. 2). Following the approach in [22], the MFE for both seed and complete
alignment was computed by using a linker sequence to connect the miRNA and
target sequences into a single linear sequence and make possible the use of the
RNAfold program (which requires a single linear RNA sequences as input). In the
present work we used the same linker sequence applied in [22], ”AAAGGGLL-
LLLCCCUUU”, which according to authors ensures that each part of the sub-
sequence extracted from the alignment will be paired and does not change the
thermodynamics qualitatively. In total, 34 features were drawn from the mi-
Randa output, six of which referring to thermodynamics and structural features
of the seed region and the remainder concerning properties of the complete align-
ment, as shown in Fig. 3.



RFMirTarget 7

Prediction
Non-Target Target Error
Real Non-Target 346 61 0.1498
Target 25 1049 0.0232

Table 1. Confusion matrix for REMirTarget trained upon 28 features.

2.5 Performance Assessment

The tools’s performance was assessed by computing the total prediction accuracy
(ACCQC), specificity (SPE), sensitivity (SEN) and Matthew’s correlation coefficient
(MCC) based on the confusion matrix. This matrix is provided by the training
process and quantifies the number of instances from the OOB data classified as
false positive (FP), true positive (TP), false negative (FN) and true negative
TN).

TP+TN

ACC = T TN T FP T FN (1)

SPE x 100%  (2) SEN x 100%  (3)

" TP+ FN

TP xTN — FP x FN
MCC = (4)
V(TP +FP)x (TN + FN) x (TP + FN) x (N + FP)

_ N
T TN+ FP

3 Results

3.1 RFMirTarget Prediction Performance Based on 28 Features

At first, the RF classifier was trained with a set of 28 features, which comprises all
the features summarized in Fig. 3 except for those concerning the seed region, i.e.,
the MFE and five structure-based features that quantify the number of matches

Error rates for training data
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Fig. 4. Error rates for REMirTarget trained with 28 features. The generalization error
decreases as the number of trees in the ensemble prediction increases.
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and mismatches between nucleotides 2-8 (see Fig. 2). We adopted the standard
values suggested by the randomForest R package and trained the model with
500 trees and 5 predictors each. The number of predictors is computed as the
square root of the number of variables and this formula is known to lead to
results near optimal values [19].

Classification results in terms of the confusion matrix are reported in Ta-
ble 1. RFMirTarget is very accurate, specially in what concerns the positive
examples: the classification error for the target class was minimal, close to 0.02.
From the 1074 positive examples, only 25 were misclassified, indicating an out-
standing performance to detect true positive targets. The classification error for
the non-target class was higher, but still satisfactory: 346 out of the 407 negative
examples were correctly classified. The performance metrics for the 28-features
model are ACC: 94.19, SEN: 97.67, SPE: 85.01 and MCC: 0.85.

Fig. 4 depicts the evolution of the error rate for the target class, non-target
class and OOB data according to the number of trees used in the prediction.
Error values start to stabilize from 200 trees. Yet, experiments have shown that
there is still a performance gain when adopting 500 trees. In addition, the advan-
tage of using ensemble predictions is clear: the error for the predictions based on
500 trees is much lower than the predictions of a single tree for all three cases.

As previously mentioned in Section 2.1, one important utility of RF classifiers
is that they naturally provide an estimative of features importance computed
as the forest building progresses. We analyzed this information and found that
seven out of the ten most important features according to the average decrease
in accuracy (Fig. 5) refer to the seed region, more specifically to the position-
based features regarding the seed location (Pos_2 to Pos_8). Hence, we decided to
extend our model and include the seed thermodynamics and structural features,
training a new RF classifier with the complete set of 34 features summarized in
Fig. 3.

Features Importance

totalMFE | ©

Mean Decrease Accuracy

Fig. 5. Features importance for the 28-features RFMirTarget model. Features related
to seed region play a crucial role in prediction accuracy.
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Prediction
Non-Target Target Error
Real Non-Target 365 42 0.1031
Target 35 1039 0.0325

Table 2. Confusion matrix for the 34-features RFMirTarget model.

3.2 RFMirTarget Prediction Performance Based on 34 Features

The RF model trained with the set of 34 features comprising the complete align-
ment and seed properties have presented moderated improvement. Results are
summarized in Table 2. Compared to the case with 28 features, despite the slight
increase in the error rate for the target class, a significant decrease of 31% was
observed in the misclassified negative examples: the error rate reduced to 0.10.
An analysis of Table 2 in contrast to Table 1 shows that the overall error rate of
RFMirTarget suffered a slight reduction, from 0.058 to 0.051. Fig. 6 illustrates
the variation in the error rates for the target class, non-target class and OOB
data according to the number of trees used in the training process: the error
rates decrease as the number of trees increase.

A comparison between the 28-features and 34-features models in terms of
the performance metrics discussed in Section 2.5 is given in Table 3. We include
also the performance values reported for MultiMiTar [16]. A slight performance
gain is observed for the 34-features model in relation to the 28-features model
regarding all metrics except sensitivity. The greatest increase is related to the
specificity, which suggests that information about the seed region is important
to the correct identification of true negative instances, and thus to decrease the
rate of false positives. Moreover, the analysis of the 34-features model results in
contrast to MultiMiTar indicates that RFMirTarget has a balance between speci-
ficity and sensitivity as good as the latter. In addition, RFMirTarget shows an
increase of 48% and 18.5% in MCC and accuracy, respectively, when compared

Error rates for training data
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Fig. 6. Error rates for RFMirTarget trained upon 34 features. Again, the ensemble
prediction provides a more accurate result than single classifier prediction.
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ACC (%) SEN (%) SPE (%) MCC

RFMirTarget, 28-features model 94.19 97.67 85.01 0.85
RFMirTarget, 34-features model 94.80 96.74 86.68  0.86
MultiMiTar* 80.00 89.83 70.21  0.58

Table 3. Comparison between RFMirTarget models trained with 28 features and 34
features, in contrast to the competing tool MultiMiTar. All models are trained upon
the same data set. *Values reported in the tools’ original paper [16].

to MultiMitar. Despite the fact that MultiMiTar performance metrics are com-
puted based on an independent testing data set, the confusion matrix generated
by REMirTarget also provides an unbiased measurement of the performance [17]
due to the use of bootstrap samples when training the RF model. Hence, this
process generates a reliable method assessment.

The analysis of the ten most important features revealed that the features
related to the seed region have the greatest impact on method’s performance,
as expected (Fig. 7). According to this analysis, the most relevant features are
the MFE value and the number of GC base pairs of the seed region, which is
biologically plausible since GC pairings are more stable because they involve
three hydrogen bonds.

4 Conclusion and Future Work

In the present paper we introduced RFMirTarget, a classifying system for miRNA
targets prediction based on the RF algorithm. In [9], RFs were introduced as a
tool for predicting miRNA precursors and identifying novel miRNAs, performing
better than the well-known SVM classifier. Moreover, RF algorithms are of easy
implementation, require less computational resources and time, and they are of
more easy understanding for the final user when compared to other classification
methods such as SVM. As RFs are ensembles of classification trees, they inherit
the interpretability property of the latter and can be easily translated into rules,
hence representing an interesting tool for exploring data [24]. Nonetheless, none
of the tools for miRNA-target prediction proposed so far were built upon RFs.

The first RF model presented in the current work was trained with 28 struc-
tural, thermodynamics, alignment and position-based features extracted from
the complete alignment between miRNA and candidate target. The results were
encouraging: 94% of the examples were correctly classified. Seven out of the ten
most important features are related to seed properties. Aggregating six ther-
modynamics and structural features of the seed region in the training process
of the RF model, the classification performance improved in almost all senses.
The list of the ten most important features for this model includes only seed
features, except for the alignment score provided by the miRanda. Thus, our
tool reinforces the importance of the seed region for target prediction accuracy,
corroborating previous studies in the area [13, 14].
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Features Importance
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Fig. 7. Features importance for the 34-features RFMirTarget model. Besides the score,
which is associated to the complete alignment, all relevant features concern the seed
region. The MFE value of the seed region, in particular, causes a high impact in the
prediction accuracy.

Comparing RFMirTarget with the competing tool MultiMiTar [16], which
has presented the best predictions results for miRNAs targets so far, REMirTar-
get has superior performance in all aspects. The MCC was significantly higher
for the RFMirTarget: 0.86 against 0.58, which represents an improvement of
48%. The accuracy was also enhanced nearly to 18.5%: RFMirTarget has cor-
rectly predicted 94.80% of the examples, in contrast to 80.00% of MultiMiTar.
MultiMiTar is a SVM classifier trained upon the same data set used in this work
and its performance on an independent testing data set is superior than former
methods [16]. Therefore, one can conclude that REMirTarget is a reliable and
robust strategy for miRNA target prediction when compared to other existing
popular methods.

An interesting direction for future work is a deeper investigation of the im-
pact of seed region for miRNAs targets prediction. Features related to the seed
region are predominant in the analysis of the most impacting features regarding
model’s accuracy, such that we find worth investigating the predictive power of a
classifying model trained based on this set of features, and perform comparisons
with other available tools using an independent testing data set. RFMirTarget
should be soon made freely available for download under a GPL license.
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