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Abstract—This paper introduces a new mutation operator
for networks inference based on the epsilon-greedy strategy.
Given some prior knowledge, either provided by a third party
method or collected from literature, our approach performs
mutations by randomly exploring the search space with -
frequency and by exploiting the available prior knowledge
in the remaining cases. The algorithm starts with a highly
exploitative profile and gradually decreases the probability
of employing prior knowledge in the mutation operator, thus
reaching a trade-off between exploration and exploitation. Tests
performed have shown that the proposed approach has great
potential when compared to the traditional genetic algorithm:
it not only outperforms the latter in terms of results accuracy,
but also accelerates its convergence and allows user to control
the evolvability speed by adjusting the rate with which the
probability of using prior knowledge is decreased.
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I. INTRODUCTION

Genetic algorithms (GA) [1] are a class of evolutionary
algorithms that aims at optimizing complex computational
problems using techniques based on the natural evolution
theory. In contrast to deterministic optimization methods,
which tend to get trapped in local optima, GA perform a
global stochastic search that parallel evolves a population
of potential solutions by selectively composing subsequent
generations through bio-inspired mechanisms of crossover
and mutation. Due to their outstanding performance on
real, hard problems, as well as to their great versatility
regarding solutions representation, GA have received great
attention from the scientific community in optimization tasks
[2]. Recent applications include, but are not limited to,
parameters learning in neural networks [3], RNA secondary
structure prediction [4] and networks inference ([5], [6]).

In the last decades, a wide range of enhancements have
been proposed and investigated, most of them concen-
trated on more effective crossover operators [7]. However,
mutation also plays a substantial role in improving GA
performance, thus motivating recent efforts towards the
design of new mutation operators. Within this context,
recent works ([7], [8], [9], [10]) have proposed distinct
strategies to either compute the mutation probability or to
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accept a mutation proposal, some of which are based on
optimization mechanisms such as Simulated Annealing (SA)
and Softmax. In [8], for instance, SA was combined with GA
in order to dynamically change the probability of accepting
some inferior solutions: after mutation occurs, the generated
solution is evaluated and SA is applied to decide whether to
accept it or to keep the previous solution.

In contrast, in [10] authors proposed to apply Softmax
to compute the mutation probability of each bit, replacing
the traditional blind, random mutation. In this approach,
the top and bottom 7 solutions are taken as positive and
negative examples, respectively, and the Boltzmann prob-
ability distribution is used to determine the probability of
each bit to assume value 0 or 1 in the next generation
according to these extreme examples. It has been shown
that the Softmax mutation operator causes a faster evolution
than the traditional approach, allowing the control of the
evolutionary speed by means of the parameter used as
base in the probability formula. Furthermore, in [9], the
mutation probability was dynamically adapted according to
individuals’ fitness: an exponential decrease was applied
such that high-fitness solutions are protected, while solutions
with subaverage fitness are disrupted.

However, to our knowledge, none of the improvements
proposed so far have employed prior knowledge to compute
mutation probabilities nor applied an epsilon-greedy strategy
to control the rate with which the use of prior knowl-
edge is alternated with random operations. The epsilon-
greedy approach is broadly used in learning and optimization
problems, such as the multi-armed bandit problem [11], to
achieve a trade-off between exploration and exploitation and
thus improve results accuracy. In short, this method chooses
a random option with e-frequency, and otherwise chooses
the best available option. Although extremely simple, the
epsilon-greedy strategy tends to be hard to beat and signifi-
cantly better than other optimization methods [11].

In the current work, we propose to balance among muta-
tion decisions made by a traditional blind, random mutation
operator and based on some available prior knowledge by
means of an epsilon-greedy strategy. Our approach randomly
explores the search space in € mutations, and exploits the in-
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formation provided by a third party method in the remaining
cases. Here, we follow the tendency of combining multiple
learners and propose the integration of two distinct inference
methods, namely genetic algorithms and mutual information,
neither in a parallel or a sequential way, but rather alternating
and balancing their use through an epsilon-greedy approach.
In the scope of this study, we use mutual information as
the source of prior knowledge, albeit any other method,
as well as prior knowledge gathered from literature, may
be used instead. We validate our mutation operator with
the problem of networks inference, more specifically with
structure learning in Boolean networks, and show that the
coupling scheme proposed in the current work has great
potential for inference improvement, outperforming both of
the individual methods.

In what follows we introduce our methods and briefly
explain the GA modeling and implementation adopted to test
our approach. Next, we present the new mutation operator
proposed in the current paper and the experiments run to
assess it. Finally, we conclude this paper with a discussion
of the results and findings of our work.

II. MATERIALS AND METHODS
A. Random Boolean Networks

Random Boolean networks (RBNs) are defined by a
directed graph G(V, F'), which is composed by a set of
nodes V = {vi,...,un}, and a set of Boolean functions
F = {fi,...,f~n}. Each node v;, i = 1,...,N, is a
Boolean device that stands for the state of variable i: it
can assume values 0/1, on/off, etc. An example of a simple
Boolean network structure is depicted in Fig. 1, where the
double line denotes a node on state 1, while the single dashed
line stands for nodes on state 0.

Each node has its value determined by a Boolean function
fi € F, which represents the rules of regulatory interactions
between nodes, and K; specific inputs, denoting its regu-
latory factors or predictors. Fig. 2(a) specifies the Boolean
functions for each node of the example network in Fig. 1.
A function f; determines, for each possible combination of
K; input values, the state of the variable v;. Being K; the
number of input binary variables regulating a given node,
the number of combinations of states of the K; inputs is
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Figure 1. (a) An example of N = 3 interacting nodes with K = 2
modeled as Boolean devices. Double line nodes assume value 1, while
single dashed line nodes are on state 0. (b) The network wiring can be also
described as a string with length N x K, containing all nodes’ predictors.

A B C

(OR) (OR) (NAND)
B C A|A C B|A B C
0 0 0]0 O O0]O0 0 1
0 1 1|0 1 1|0 1 1
1 0 1 10 1 1 0 1
11 1 1 11 1 1 0

(a)

) (t+1) (t+2)
A B C|A B C|A B C
0o 0 0]0 0 1 11 1
0o 0 1 1 1 1 1 1 0
o 1 o1 o0 1 1 1 1
0o 1 1 1 1 1 1 1 0
1 0 0|0 1 1 11 1
1 0 1 1 1 1 1 1 0
1 1 0|1 1 0|1 1 0
1 1 1 1 1 0|1 1 0

(b)

Figure 2. (a) Boolean functions and (b) a three-step state transition table
for the network example of Fig. 1(a).

2K: Furthermore, for each of these combinations, a specific
Boolean function must output either 1 or O such that the total
number of Boolean functions over K; inputs is 22" When
K; = 2, some of these functions are well-known (AND,
OR, XOR, NAND, etc.), but in the general case functions
have no obvious semantics. Given the values of nodes V'
at time ¢, the Boolean functions are used to synchronously
update the values of nodes at time ¢ + 1 by mapping
vi(t+ 1) = fi(vk;i(t)), as shown in Fig. 2(b).

B. Mutual Information as Prior Knowledge

In the context of inferring networks structure, information-
theoretic approaches such as entropy and mutual information
(MI) have been frequently explored as criterion functions
([12], [13], [14]), i.e., a function that evaluates the suitability
of a subset of predictors for predicting a target node. In short,
this strategy aims at generalizing the pairwise correlation
coefficient to measure the degree of independence between
two variables. Thus, for each pair of nodes ¢ and j, the
mutual information MI;; is computed as [14]:

M;i; = Hi+ H; — Hi; ey
where H, is the entropy of an arbitrary discrete variable x:
H, ==Y p(ax)log(p(xr)) 2

k=1

In (2), p(xzy) = Prob(z = =) is the probability of
each discrete state (value) of the variable x. It is assumed
that a non-zero MI indicates the existence of a relationship
among nodes [13]. However, it is important to note that
this criterion does not imply a direct causal interaction
between these nodes in the real network, but rather that they
have a statistical dependence among them, i.e., they are not
randomly associated to each other. A common approach for
networks inference based on information-theoretic methods
is to compute the pairwise MI and apply a threshold such
that only those nodes that were linked to others with a MI



higher than the threshold are included in the model ([13],
[14]). Since MI is symmetric, this strategy generates an
undirected graph G.

Yet, differently from previous works ([13], [14]), we adopt
MI as a prior information concerning the target network
and use it to support the inference process and improve
convergence. The normalized MI matrix obtained from the
data is thus interpreted as a degree of belief regarding a
relationship among nodes ¢ and j: the higher the value of
MI;;, the more likely the nodes ¢ and j are connected in the
target network, and hence the greater the probability that our
model will englobe interactions ¢ — j or ¢ <— j. We compute
the MI matrix based on the software implementation by [15].

It is important to notice that the MI matrix may contain
erroneous information, since the same is extracted from a
data set that is characteristically noisy. In addition, as this
matrix is symmetric, many false positive connections may
be inferred when the undirected graph is transformed into a
directed one: a high MI;; value will enforce both ¢ — j and
1 <— j connections. Having said that, it is important that the
method to be combined with MI uses this prior information
solely as a support for its search, rather than as a picture
of the true network structure. Applying random searches by
means of GA over a network somehow based on MI has
the benefit of guiding the exploration of the search space
without restricting the stochastic nature of GA.

III. MODEL

As the goal of the present paper is to study the effects
of an epsilon-greedy strategy to balance between random
exploration and exploitation of prior knowledge in the
mutation operator, we resort to the network modeling and
GA implementation published by Mendoza and Bazzan
[16] to test the proposed approach. In what follows we
briefly explain the combination scheme between GA and
RBNs, which was previously applied to the problem of
reverse engineering gene regulatory networks (GRNs) [16],
emphasizing some algorithmic changes introduced in the
current work.

A. Representation

The structure and dynamics of GRNs were described by
RBNs, presented in Section II-A. In this context, nodes rep-
resent genes and the edges depict the regulatory interactions
that exist among them. Furthermore, each GA individual
represents a candidate network codified into a string. In [16],
authors implemented a binary encoding including the nodes’
state, predictors and Boolean function. However, since we
are interested in analyzing the improvements in terms of
structure inference accuracy, we do not encode the nodes’
states or their Boolean functions. Instead, we adopt a distinct
approach and encode solely the network wiring as an integer
string, which contains the set of predictors for each node in
the network. An example of this representation is depicted
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in Fig. 1(b), in which nodes are denoted as A, B and C for
the sake of simplicity.

B. Fitness function

Inspired by the work of Nam and colleagues [17], in
which a sub-exhaustive search was conducted towards net-
work topologies consistent with a temporal expression sig-
nal, Mendoza and Bazzan proposed the application of GA
to explore the solutions space of consistent models. Thus,
instead of entailing a search for consistent structures, the
authors evolve a set of candidate solutions encoded as GA
individuals and evaluate them based on an inconsistency
ratio (IR) computed in relation to their network structure
and the input temporal expression signals, as follows:

2K

IR; =w™" ) min(w(0), wy(1))
k=1

3)

in which w represents the weight of each measurement,
and variables wy(0) and wy (1) denote the total weight of
measurements whose output value is 0 and 1, respectively,
for each k = 1,...,2%¢ possible input combination of a
node 7. While the predictors’ states are observed at time ¢,
the target node’s state is observed at time ¢ 4+ 1. Once the
IR for each node is calculated, the network inconsistency
(IR,) is determined by the sum of all nodes’ I R.

The goal of the GA is to minimize the IR, regarding
the input temporal expression signal. The fitness function is
thus defined as in (4), such that individuals with lower IR
are more likely to remain in subsequent generations. The
term NI denotes the number of actual inferred interactions
and N2 is the maximum number of possible interactions.

1
f= IR NI )
L+ 55n T a2

C. Crossover and mutation

In [16], authors applied purely random crossover and mu-
tation operators. Given the binary strings of two individuals,
crossover was performed by randomly selecting two points
in the interval [1, L], where L denotes the length of the
strings, and swapping all the genetic material among both
points between the pair of individuals. Furthermore, point
mutations were applied as bit inversion, in which a set of
randomly selected bits had their value flipped.

In the present paper we implement some changes over
these operators following the direction discussed in [18], in
which crossover and mutation were performed over network
wiring. This strategy aims at finding the best network struc-
ture by varying the connections between nodes and looking
for the combination that maximizes the fitness function.
Therefore, crossover is implemented as a connections swap
among a subset of nodes of two GA individuals. As an
example, consider the situation exposed in [18]: given two
individuals of length 10, referring to networks of N = 5



Algorithm 1 The epsilon-greedy mutation operator

for each individual in population do

1:

2 if random < P,,,: then

3 randomly choose a pair of nodes 7 and j;

4 extract the belief MI;; from MI matrix;

5: if random < Ppri0r then

6: mutate link (¢, 7) by exploiting prior knowledge MI;;;
7 else

8: mutate link (¢, j) by randomly exploring search space;
9: end if
10:  end if
11: end for
12: Pprior = Lprior X A,

nodes and K = 2, 0545120300 and 2534102340, if
the random choice of the operator is to start the crossover
at point 3, all connections regarding nodes 3 to N will
be exchanged between the pair of mates to generate the
offspring, which in this case will be 0545122340 and
2534100300. In the next section we present our epsilon-
greedy mutation operator.

IV. AN EPSILON-GREEDY MUTATION OPERATOR

In the current work, we propose an epsilon-greedy mu-
tation operator to replace the traditional GA blind, ran-
dom mutation. This operator is based on an epsilon-greedy
strategy and aims at alternating between random operations
and decisions made upon available prior knowledge. The
epsilon-greedy approach has been frequently used to achieve
a trade-off between exploration and exploitation in other
scenarios [11] — a phenomenon that we intend to reproduce
in the context of networks inference via GA.

The basic functioning of the proposed epsilon-greedy
mutation operator is described in Algorithm 1. Our operator
works with two probabilities: P,,,,; and Pp.;o.. The trade-
off between exploration and exploitation is controlled by
Pyrior = 1 — €, which is the probability of using prior
knowledge when performing a mutation. When e 0,
Pprior will be equal to 1 and thus our mutation operator
will follow an exploitative policy (Algorithm 1, line 6). In
this case, the probability of performing a mutation over
a randomly selected link will be determined by the prior
knowledge. In the present paper, we have used a normalized
MI matrix as the prior information such that the higher
the belief MI;; attached to a link between genes ¢ and j
(MI;; > 0.5), the more likely this link will be added to our
model during a mutation. Conversely, the smaller this belief
(MI;; < 0.5), the more probable a mutation will remove
this link. In contrast, when € = 1, Pp.jor = 0 and hence
our operator reproduces the traditional GA blind, random
mutation (Algorithm 1, line 8).

Simulations start with e = 0, thus allowing GA to be
highly exploitative during the first generations. This means
that the networks encoded by early GA populations will be
very close to the network structure inferred by MI. The
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probability P, is then gradually decreased throughout
generations by a multiplicative factor A (Algorithm 1,
line 12), the annealing, whose value is the parameter that
controls convergence speed. As P,.,. decreases, more
random searches will be performed over the MI-based initial
networks. The inferior limit for P, is zero, which refers
to the case where ¢ = 1 and hence, that GA will follow a
purely explorative approach.

The decision about attempting a mutation over an individ-
ual follows the traditional approach: a probability P, is
applied to decide whether the GA will propose to mutate the
genetic material of a candidate solution. However, the actual
occurrence of a mutation depends on other factors, such as
the belief associated with the link to be mutated in the case
of using prior knowledge, or if the operations proposed are
free of redundancy and valid from the viewpoint of network
syntax, i.e., they satisfy some constraints like the maximum
connectivity allowed for each node.

V. EXPERIMENTS AND RESULTS

We run our experiments with a benchmark network ob-
tained with an Artificial Gene Network (AGN) validation
and simulation model [19]. As our study aims at investi-
gating the effects of an epsilon-greedy mutation operation
over inference accuracy, rather than the efficiency of a
specific network inference method, we test the enhancements
proposed with a single deterministic 50-node target network,
which is generated according to a scale-free Boolean net-
work model. The scale-free topology [20] is currently known
to be one of the most similar models to real biological
networks [21], which is the study case in [16]. The upper
bound limit of nodes’ average connectivity was configured as
(k) = 3 [22]. We simulated 10 temporal expression signals
of length 10, each one starting from a randomly chosen
initial state and concatenated them into a single time series
used for network inference.

GA parameters were configured as described in [16],
except for P,,,:. We evolved a population of 50 individuals
over 1000 generations, applying crossover with probability
P.0ss = 1 and elitism with an elite size £ = 4. The proba-
bility of attempting a mutation P,,,,; was varied between 0.1
and 0.5 in steps of 0.1. We tested and analyzed the effects
of the proposed epsilon-greedy mutation operator applying
the annealing factors A = {0.9,0.99,0.999} over Pprior.
We compare this results with the two extreme situations,
i.e., a purely exploitative (¢ = 0, no decay) and a purely
explorative (e = 1, no decay) GA algorithm, where the latter
mimics the traditional blind, random GA mutation. For each
of these scenarios, we performed 30 simulations and build
an ensemble prediction from each of which by letting the
best individuals of the final generation to perform a majority
voting on the network structure. Furthermore, we combine
all ensemble predictions into a single consensus network and
use it for results assessment in the current work.



Table I
EFFECTIVE MUTATION RATES FOR SIMULATIONS WITH NO DECAY.

Pmut
0.1 0.2 0.3 0.4 0.5
e =0,nodecay 032% 061% 091% 1.17% 1.49%
e=1,nodecay 347% 581% 8.05% 9.61% 11.39%

The effective mutation rates for simulations with no
Pprior decay appear in Table I. Readers may notice that
albeit P, is configured with relatively large values consid-
ering traditional GA setups, the number of actual mutations
performed is lower due to the set of conditions that must be
satisfied in order to a mutation in fact occur. When a decay
rate A is applied, the effective mutation rates range from the
values observed in the extreme cases, i.e, ¢ = 0 and € = 1,
being very close to the latter when A = 0.9.

A comparison in terms of the average fitness among the
scenarios tested is shown in Fig. 3. The graphs behavior
evidences the better results obtained when prior knowledge
is applied (e = 0), especially for no decay and decay rate
A = 0.999: the average fitness after 1000 generations is
higher than values for the traditional GA. Furthermore, the
use of prior knowledge combined to low decay rates seems
to originate populations with greater internal variability. This
improvement comes at a cost though: the convergence speed
for these cases is slightly slower than for the remainder.
As this tendency was observed for all mutation rates, we
give here solely the results for P,,,; = 0.3. A trade-off
between performance and speed can be achieve by tuning
the method’s parameters, such as the decay rate A.

Furthermore, we compare the results based on the AUC
score of the inferred networks, which is computed as the
area under the ROC curve (Table II). The highest scores for
each P,,,: value are emphasized in boldface style. Except
for Pyt = 0.4, in which the purely random exploration
approach (¢ = 1) has yielded the best results, the epsilon
greedy mutation operator has introduced improvements up
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Figure 3. Evolution of average fitness values when Pyt = 0.3.
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Figure 4. A comparison between the performance of the proposed coupling
scheme (GA + MI) and the individual methods when Py, = 0.3.

to 11% higher than the traditional GA, providing the most
accurate inferences in most of the scenarios.

To stress even more the benefits of combining GA and MI
via our epsilon-greedy mutation operator, we have assessed
the network inferred solely from the MI matrix as described
in Section II-B, using as threshold every MI value in the
matrix in an ascending order, and have found an AUC
score of 0.5345. This means that the coupling scheme
between GA and MI embedded in the proposed epsilon-
greedy mutation operator outperforms both methods when
individually applied, as shown in Fig. 4. Again, only the
P.t = 0.3 case is depicted as this behavior is general.
However, there is no consensus regarding the best annealing
value (A), since enhancements were observed for all Ppy.;or
decay rates.

VI. CONCLUSION

In the present paper we introduced an epsilon-greedy
mutation operator as a means of improving accuracy of net-
works inference by GA through the use of prior knowledge.
As far as we are concerned, up to now, this strategy has
not been applied to this purpose. Our operator balances
between random mutations and mutations decided upon
some available prior knowledge, which in the scope of this
work was obtained from a MI matrix. Experiments have
shown that the proposed coupling scheme provides a faster
and better convergence in relation to the traditional GA.
In addition, the AUC scores of inferred networks were
boosted, achieving superior marks than those provided by
both methods when individually applied. Furthermore, this
mutation operator allows user to control GA evolvability
and the trade-off between exploration and exploitation by
adjusting the rate with which the probability of using prior
knowledge is decreased. For future works, we intend to
test this approach with distinct prior knowledge sources and
compare the respective sensibility and performance.
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