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1 INTRODUÇÃO

Um estudo anterior realizado sobre a organização das colônias de insetos sociais e sua
aplicação na organização de Sistemas Multiagentes, na disciplina de projeto de pesquisa
CMP3011, mostrou o quão promissora é a aplicação dessa abordagem. Na referida dis-
ciplina dois problemas foram tratados por abordagens construídas através da inspiração
biológica e baseadas em modelos teóricos já aplicados por outros pesquisadores em prob-
lemas correlatos.

O primeiro problema considerado foi o da sincronização de semáforos em uma via,
cujo objetivo é garantir um fluxo de veículos distribuído proporcionalmente nas vias que
são controladas por estes semáforos. O segundo problema aborda um aspecto da utiliza-
ção do TÆMS2. O TÆMS oferece recursos para representar os meios necessários para os
agentes atingirem seus objetivos. Realizar a análise deste processo e determinar um curso
apropriado para as ações dos agentes dadas restrições temporais é o papel do escalonador.
Em geral o número de escalonamentos possíveis para qualquer estrutura significante é
muito grande e é intratável computacionalmente determinar cada um deles.

Motivado pelo aparente sucesso na construção das abordagens concebidas na disci-
plina CMP301 e pelos interessantes resultados que a experimentação e a comparação
com outras soluções podem trazer, é que se buscou trabalhar com mais detalhe cada uma
destas abordagens.

Nas seções que seguem cada uma das abordagens é apresentada e os resultados obti-
dos são discutidos. A este documento estão anexados os dois artigos publicados que
foram fruto do trabalho aqui relatado. O primeiro, intitulado “Reducing Traffic Jams with
a Swarm-based Approach for Selection of Signal Plans” trata da sincronização de semá-
foros e o segundo, intitulado “A Swarm Based Approach for Task Allocation in Dynamic
Agents Organizations”, trata do escalonamento de tarefas utilizando o TÆMS.

1Disciplina CMP301 entitulada “Estudo de insetos sociais e sua aplicação para organização de Sistemas
Multiagentes” cujo relatório encontra-se publicado como RP-340

2O TÆMS é uma linguagem concebida para descrever a estrutura de tarefas dos agentes.
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2 REDUZINDO ENGARRAFAMENTOS COM UMA
ABORDAGEM INSPIRADA EM INSETOS SOCIAIS PARA
A SELEÇÃO DE PLANOS SEMAFÓRICOS

Muitos trabalhos na área de tráfego buscam reduzir os congestionamentos. Vários
destes buscam essa redução através da sincronização de semáforos, permitindo que os
veículos trafeguem em uma direção de uma via principal sem ter de parar nas intersecções
com vias de menor movimento.

As abordagens clássicas são, em sua maioria, baseadas na priorização de uma direção
de forma centralizada e estática, sendo realizada normalmente por um humano especial-
ista. Estas abordagens são pouco eficientes quando se considera a dinamicidade do fluxo
de tráfego ou dependem excecivamente de comunicação, o que é bastante custoso. Abor-
dagens mais flexíveis tem sido propostas baseadas, por exemplo, na teoria dos jogos, mas
que necessitam de muitos recursos para serem implementadas.

O artigo em anexo referente a esta parte do trabalho propõe uma abordagem onde cada
semáforo se comporta como um inseto social. Os planos semafóricos são vistos como
tarefas que devem ser realizadas pelos insetos sem um controle central ou mecanismo
de alocação de tarefas. Os estímulos a que os insetos são submetidos nesta abordagem
dependem do número de carros aguardando para atravessar o cruzamento sinalizado com
o semáforo, entre outra coisas.

Esta abordagem foi implementada em um simulador microscópico de tráfego que per-
mite a modelagem de cada objeto individualmente (veículos, semáforos, etc). O cenário
utilizado foi um trecho da rede viária de Porto Alegre, de onde foram utilizados dados
reais de fluxo e planos semafóricos.

Foram simulados os fluxos de veículos na via principal e nas secundárias em diferentes
situações: sem nenhuma sincronização entre os semáforos; com coordenação fixa; e com
a abordagem inspirada nos insetos sociais. Em todos os casos foi medida a densidades de
veículos na via principal.

Os resultados mostraram que a abordagem inspirada em insetos sociais é mais flexível.
Os semáforos se adaptam ao fluxo corrente selecionando o plano semafórico mais apro-
priado, reduzindo a densidade na via principal.

O artigo denominado “Reducing Traffic Jams with a Swarm-based Approach for Se-
lection of Signal Plans” apresenta com detalhes da abordagem desenvolvida e seus re-
sultados. Este artigo foi submetido para oFourth International Workshop on Ant Colony
Optimization and Swarm Intelligence- ANTS 2004 - que acontecerá de 6 a 8 de setembro
deste ano em Bruxelas na Bélgica e ainda encontra-se em revisão.
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3 UMA ABORDAGEM PARA A ALOCAÇÃO DE TARE-
FAS EM ORGANIZAÇÕES DINÂMICAS DE AGENTES IN-
SPIRADA EM INSETOS SOCIAIS

Um dos problemas mais estudados na área de Sistemas Multiagentes é como determi-
nar que tarefa será realizada, em que tempo, e por qual agente para atingir os objetivos do
sistema. Tais tarefas tem importantes restrições como prazo de execução, dependência de
outras tarefas, recursos associados, etc. Os agentes também têm características diferentes
que devem ser consideradas como capacidade de realizar a tarefa, motivação, acesso a
recursos, etc. Este problema tem sido tratado por diferentes abordagens.

Em ambientes abertos e dinâmicos os agentes tem de ser capazes de se adaptar e alterar
seu objetivos, seus recursos disponíveis, sua relação com outros agentes, entre outras
coisas. Esta questão é crucial nos sistemas multiagentes e está fortemente relacionada a
modelos de aprendizado e adaptação com aqueles também observados sobre os insetos
sociais.

O artigo em anexo referente a esta parte do trabalho propõe uma abordagem para a
geração, adaptação e mudança na organização do sistema multiagentes dinamicamente
utilizando uma abordagem inspirada nos insetos sociais. Esta abordagem é utilizada prin-
cipalmente para a alocação de tarefas se planejamento ou especificação prévios e sem a
necessidade de coordenação explícita.

Os resultados obtidos por esta abordagem mostram que os agentes são capazes de
alterar sua organização dinamicamente de forma a atingir seus objetivos tão qualitativa-
mente eficiente quanto se houvesse um planejamento anterior.

O artigo denominado “A Swarm Based Approach for Task Allocation in Dynamic
Agents Organizations” apresenta com detalhes da abordagem desenvolvida e seus resulta-
dos. Este artigo foi submetido para oThird International Joint Conference on Autonomous
Agents and Multi Agent Systems- AAMAS 2004 - que acontecerá de 19 a 23 de julho deste
ano em Nova Yorque nos EUA. Este artigo será publicado e apresentado no formato de
Poster.
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APÊNDICE A REDUCING TRAFFIC JAMS WITH A
SWARM-BASED APPROACH FOR SELECTION OF SIG-
NAL PLANS



Reducing Traffic Jams with a Swarm-based
Approach for Selection of Signal Plans

Denise de Oliveira1, Paulo Roberto Ferreira Jr.1, Ana L. C. Bazzan1, and
Franziska Klügl2

1 Instituto de Informática, UFRGS, C.P. 15064, 91501-970, P.Alegre, RS, Brazil
2 Dept. of Art. Int., Univ. of Würzburg, Am Hubland, 97074 Würzburg, Germany

Abstract. Several approaches tackle the problem of reducing traffic
jams. A class of these approaches deals with synchronisation of traffic
lights in order to allow vehicles travelling in a given direction to pass
an arterial without stopping at junctions. In short, classical approaches,
which are mostly based on offline and centralized determination of the
priorized direction, are quite unflexible since they cannot cope with dy-
namic changes in the environment (traffic flow) and/or depend too much
on communication which can be costly or unavailable. More flexible ap-
proaches have been proposed but can be demanding to realise if based
on techniques of game theory, for instance. The present paper proposes
an approach where each traffic light behaves like a social insect. The
signal plans are seen as tasks to be performed by the insect without any
centralised control or task allocation mechanism. The stimulus depends
on the number of cars waiting or passing the traffic lights, among other
things. We implemented this approach in a microscopic traffic simulator
which permits the modelling of each individual object – vehicles, traffic
lights, etc. The scenario is taken from the city of Porto Alegre in Brazil,
with real flow and signal plan data. We have simulated the flow of ve-
hicles in an arterial and its vicinity under different situations: without
any coordination between traffic lights, with fixed coordination, and with
our approach. In all cases we have measured the density of vehicles in
the arterial. The results show that our swarm-based approach is more
flexible: traffic lights adapt to the current flow of vehicles by selecting
the appropriate signal plan, thus reducing the density in the arterial.

1 Introduction

Approaches to reducing traffic jams has been proposed in several disciplines like
transportation engineering, physics, and artificial intelligence, among others. A
classical approach is to coordinate or synchronise traffic lights so that vehicles
can traverse an arterial in one direction, with a specific speed, without stopping
[1]. Thus, coordination here means that if appropriate signal plans are selected
to run at the adjacent traffic lights, a “green wave” is built so that drivers do
not have to stop at junctions.

This approach works fine in traffic networks with defined traffic flow patterns
like for instance morning flow towards downtown and it similar afternoon rush



hour. However, in cities where these patterns are not clear, that approach may
not be effective. This is clearly the case in big cities where the business centers
are no longer located exclusively downtown.

Beside, a priori determination of the appropriate signal plans for the different
times of a day is a complex task that requires a lot of knowledge about dynamic
traffic flow. Thus, flexible and robust approaches are not only attractive, but
necessary. Multiagent systems, and especially swarm intelligence offer more flex-
ible solutions. In [2, 3] a multi-agent based approach is described in which each
traffic light is modelled as an agent. Each of them has pre-defined signal plans to
coordinate with other agents in the neighbourhood. Different signal plans can be
chosen in order to coordinate in a given direction or during a pre-defined period
of the day. This approach makes use of techniques of evolutionary game the-
ory: intersections in an arterial are modelled as individually-motivated agents
or players taking part in a dynamic process in which, due to the reward, not
only their own local goals but also a global one has to be taken into account.
Moreover, each agent possesses only information about their local traffic states.

The benefits of this approach are threefold. First, it is not necessary to have
a central agent to determine the direction of the coordination. Second, agents
can build subgroups of synchronisation which meet their own local and current
needs in terms of allowing vehicles to pass in one given direction. Third, it
avoids communication between agents when they have to decide which direction
to priorise, i.e. there is no explicit communication or negotiation.

However, payoff matrices (or at least the utilities and preferences of the
agents) are required, i.e these figures have to be explicitly formalised by the
designer of the system. This makes the approach time consuming when many
different options of coordination are possible (for example all four directions:
south, north, east, and west) and/or the traffic network is complex (for instance,
not only a main arterial has to be considered but also many transversal and
parallel streets).

Therefore, in order to meet this need, this paper presents an approach in
which each crossing with a traffic light behaves like a social insect that grounds
its decision-making on mass recruitment mechanisms found in social insects [4,
5]. Henceforth we use the terms crossing, junction, and traffic light indistinguily.
This is so because in fact in each crossing or junction only one signal plan runs
in a set of traffic lights (despite the fact that one sees two or three of these) so
that the set of traffic lights must be seen as a single entity.

The signal plans are seen as tasks to be performed by the insect. Thus, in our
approach the ability of changing tasks in order to suit the colony needs (both
at local and global levels) are located in each crossing or junction. Stimuli are
provided by the vehicless that, while waiting for their next green phase, continu-
ously evaporate some “pheromone”. Thus the volume of traffic coming from one
direction can be evaluated by the agent, and this may trigger some signal plan
switching. No other information is available for the intersection agents.

Our approach was realized on a microscopic traffic simulator. This is nec-
essary in any swarm-based approach since it is desirable that the objects can



be modelled at individual level. Thus, the next section presents some basic con-
cepts about the simulator and traffic simulation regarding synchronisation of
traffic lights. Section 3 then discusses our swarm-based model of the traffic sce-
nario, while Section 4 presents the scenario we simulated as well as the results of
these simulations. Section 5 summarises the contributions and discusses future
extensions.

2 Description of the Simulator and Synchronisation of
Traffic Lights

We use the Nagel–Schreckenberg model [6] which is a microscopic model for
traffic simulation originally based on cellular–automata (CA). In short, each
road is divided in cells with a fixed length. This permits the representation of
a road as an array where on the discrete positions vehicles may be positioned.
Each vehicle travels with a speed which is represented by the number of cells it
currently may advance at each time step. The vehicle behavior is expressed by
some rules that represent a special form of car following behavior. This simple,
yet valid microscopic traffic model can be implemented in such an efficient way
that it is good enough for real time simulation and control of traffic.

As for the network representation, each road is described as a composition
of nodes representing junctions (also called intersections, crossings) and edges.
The expression edge is used to refer to directed edges representing one direction
of motion on a road, i.e., one road usually consists of two (oppositely directed)
edges.

In the urban traffic scenario, more elements were added such as traffic lights
and more complex types of intersections. Thus, the simulation tool we developed
consists of different elements like lanes, edges, vehicles, sources and sink (of
vehicles), sensors and detectors, traffic lights. The topological configuration and
parameter for the simulation dynamics are stored in a database. This database
can also be used for save the status of all objects in the simulation.

Basically, the simulator checks the static and dynamic network data read
from the database for consistency and initialises the scenario. During the simu-
lation it receives and updates dynamic data like vehicle counts, etc. and handles
the simulation output, as well updates the vehicle motions, traffic light, and data
for statistics.

More details can be obtained in the paper which describes the structure of
the simulator and the database [7]. Here, we focus on the traffic light since it
is the main object for the coordination. Each (signalised) junction has an agent
which is in charge of deciding which signal plan to run. In this paper we assume
that all main junctions have traffic lights.

Signalised intersections are controlled by signal-timing plans which are imple-
mented at traffic signals. A signal-timing plan (henceforth signal plan for short)
is a unique set of timing parameters comprising basically the cycle length (the
length of time for the complete sequence of the phase changes), and the split
(the division of the cycle length C among the various movements or phases).



The criteria for obtaining the optimum signal timing is that it should lead to
the minimum overall delay at the intersection. This is usually achieved by using
simulation or optimisation programs. Several plans are normally required for an
intersection (or set of intersections in the case of a synchronised system) to deal
with changes in traffic flow.

The goal of coordinated or synchronised systems is to synchronise the traffic
signals along an arterial in order to allow vehicles, travelling at a given speed,
to cross the arterial without stopping at red lights. Besides the parameters men-
tioned above, the synchronised plans also need an offset i.e. the time between
the beginning of the green phase at two consecutive traffic signals (only when
they are synchronised).

Well designed signal plans can achieve acceptable results in un-congested
streets in one flow direction. However synchronisation in two opposing directions
of an arterial is difficult to achieve, if not impossible, in almost all practical situ-
ations. The difficulty is that the geometry of the arterial is fixed and with it the
spacing between adjacent intersections. Only in very special cases the geometry
allows progression in opposite directions. Synchronisation in four directions is,
for practical purposes, impossible. Therefore an agent at a junction must select
which plan to carry out, in analogy to a task selection.

As a measure of effectiveness of such systems, one generally seeks to opti-
mise a weighted combination of stops and delays or a measure of the density
(vehicles/unit of length) in the road or network. Here we use the latter.

The average density δ̄k of a lane k during a given simulation horizon T is
thus computed by:

δ̄k =

∑
T

∑
L

N

T × L (1)

where:
L is the length of the lane in number of cells
N is the number of vehicles

If the time horizon T is 1 time step (as it is usually the case), then we do
not need to consider the sum over T . Moreover, the density δ is always between
0 and 1 since a cell is occupied by at most one vehicle. Also, an average density
value for a set of lanes or for the whole network can be computed by simply
weighing each δ̄k by each length Lk.

We measure the average density in the network and also the density in some
key roads. The former gives the engineer an idea of the whole performance but
is of little use because it may compensate heavy loads in some roads with lower
ones, giving the false figure that on average the flow of vehicles is satisfactory.
More details are given in Section 4.1.

3 Model of task allocation in the traffic scenario

Theraulaz et al. [8] present a mathematical model that resembles a hyphothesis
of how the division of labour may be organised in colonies of social insects. In-



teractions among members of the colony and the individual perception of local
needs result in a dynamic distribution of tasks. Their model describes the colony
task distribution using the stimulus produced by tasks that need to be performed
and an individual response threshold related to each task. Each individual insect
has a response threshold to each task to be performed. That means, at individ-
ual level, each task has an associated stimulus (e.g. the perception of waste as
a stimulus for cleaning behavior). The levels of the stimulus increase if tasks
are not performed, or not performed by enough individuals, etc. An individual
that perceives (e.g. after walking around randomly) a task stimulus higher than
its associated threshold, has a higher probability to do this task. This model
also includes a simple way of reinforcement learning where individual thresholds
decreases when performing some task and increases when not performing. This
double reinforcement process leads to the emergence of specialised individuals.

These concepts are used in our approach in the following way: Each traffic
light has a social insect behavior. This traffic light has different tendencies to
execute one of its signal plans (each signal plan is considered an available task),
according to the environment stimulus and particular thresholds. Besides these
individuals, this approach also considers that each vehicle leaves a pheromone
trace that can be perceived by the traffic light at the junction This metaphor
is realistic since many junctions have sensors of type loop induction detectors
which detect the counting of vehicles (and sometimes speed).

3.1 Computation of Stimulus

The liberated pheromone dissipates in a pre defined rate in time and its intensity
indicates the vehicle flow in the street section. The pheromone trail can be
considered as a stigmergic communication among the adjacent traffic lights. The
increase of the accumulated pheromone in a certain direction can be seen by the
insect as a change in a task selection executed by its neighbour.

Each particular task in the Theraulaz et al. model [8] has one associated
stimulus. The intensity of this stimulus can be associated with a pheromone
concentration, a number of encounters between individuals performing the task,
or any other quantitative cue sensed by individuals. The traffic light stimulus
is the average of the accumulated pheromone of all the lanes (incoming and
outgoing).

The accumulated pheromone in a lane, di,t, is the pheromone trail accumu-
lated in the lane i at time t. While the vehicles are waiting for the green light
they remain releasing pheromone so the amount of pheromone increases.

di,t =

n∑
i=0

β−i(di,t)

t∑
i=0

β−i
(2)

where:

n time-window size



β pheromone dissipation rate of the lane

The stimulus s of the plan j is based in a weighted sum of accumulated
pheromone in each phase of this plan. Each phase has a time share ((timeend −
timebegin)/timecycle), that indicates how much time the plan spends with a
phase. A higher time interval indicates a phase priority in the plan.

sj =
n∑

i=0

((1− α)dini,t + αdouti,t)∆ti (3)

where:

n number of phases of the signal plan j
dini,t is the accumulated pheromone trail in the input lanes in phase i at time

t
douti,t is the accumulated pheromone trail in the output lanes in phase i at time

t
∆ti is the time fraction of the phase i
α constant employed to set different priorities to the input and output lane

densities

3.2 Actual Plan Allocation

Behavioural flexibility of changing plans is a consequence of environmentally
induced changes in stimulus and threshold. Every signal plan possess associated
stimuli according to the direction towards this signal plan is biased. Individuals
may change task because high levels of stimulus related to a direction exceed their
response threshold. Equation 4, defines the response function (the probability of
chose the plan j as a function of stimulus intensity sj) of the individual i.

Tθij (sj) =
s2
j

s2
j + θ2

ij

(4)

where:

θij is the response threshold for the individual i for executing the task j.
sj is the stimulus associated with the task j.

3.3 Reinforcement

We use the specialisation model [9], where the threshold is updated in a self
reinforced way. Each individual in the model has one response threshold to each
task. Those thresholds are updated (increasing or decreasing) according to two
different coefficients. The response threshold θ is expressed as units of intensity
of stimulus. The response threshold θij of an individual i when performing task
j during time interval of duration ∆t is:

θij = θij − ξ∆tij (5)

where:



ξ learning coefficient
∆t time interval

The response threshold θij of the agent i when not performing method j
during time interval of duration ∆t is:

θij = θij + ρ∆tij (6)

where:

ρ forgetting coefficient

According to Gordon [10] the real ants are directly influenced by its success
in performing a given task. Successful ants are motivated to stand performing a
task and unsuccessful ants are motivated to change or stop performing the task.
We have extended the Bonabeau et al. [9] model in order to include a success
function as the coefficient that describes learning and forgetting at the same
time (when the l is negative the agent is forgetting). Equation 7 defines this
extention.

θij = θij − l∆t (7)

where:

l is the learning/forgetting coefficient.
∆t is a normalised discrete time interval.

The success degree of the individual is given by the Equation 8 and Equa-
tion 9, where a greater standard deviation of the densities σ (Equation 10, where
n is the number of street sections) leads to a smaller degree of success.

l = 1− 2σ (8)

l = 2e(−5σ) − 1 (9)

σ is the standard deviation of accumulated pheromone trail in the sections.

σ =

√
1

n− 1

n∑
i=1

(di − d)2 (10)

where:

n is the number of street sections.
d is the mean accumulated pheromone trail in n sections.

The whole system tends to stay stable and suited to the traffic flow but can
change in order to adapt to a new environment situation. Traffic lights in the
same street with an intense traffic flow in a certain direction tend to adopt the
synchronised plans and give priority for this direction.



4 Description of the Scenario and Results of the
Simulations

4.1 Scenario

S 1 S 2 S 3 S 4

S 5

S 6 S 7 S 8

Fig. 1. Network and the traffic light location (numbered circles)

The scenario, showed in Figure 1 in a simplified schema, is part of a real
network situated in the city of Porto Alegre (Brazil). This set of streets were
chosen due to the high traffic flow and availability of data regarding flow of
vehicles and the signal plans.

The main street or arterial has eight traffic lights, each with two possible
plans. Signal plan 1 gives priority to the main direction (WE) and it is synchro-
nised with the adjacent traffic lights in this direction. Plan 2 is not synchronised
with plans in neighouring junctions, and allocates equal share of green time for
each direction, as we can see in Figure 2.

Regarding plan 1, the difference between this kind of plan running at two
adjacent junctions is the offset. For instance, junctions S2 and S3 in Figure 1
have the same basic plans but S3 has a 16 second offset. This indicates that
vehicles departing at S2 and travelling with the synchronisation speed V will be
able to pass at S3 16 seconds later without stopping.

Vehicles are inserted in the network by sources located at the borders of it.
For instance, vehicles are inserted in the main street from a source located in the
left corner (Fig. 1). This insertion happens with different rates in each street.
We setup these rates according to real traffic flow information. Similarly, at the
network borders, vehicles are removed from the scenario. Besides, each junction



Plan 2

Secondary laneset

Plan 1

Main laneset

Secondary laneset

100s
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Main laneset
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50s

Fig. 2. Basic Signal Plans (the dark strip represents the time of green

has turning probabilies which can be computed from real data. Therefore, each
vehicle either stays in the direction it is, or turns to another one.

4.2 Results from Simulations

The simulations presented in this section were generated using the simulator
discussed in Section 2 with the scenario presented in Section 4.1. In the beginning
of the simulation the network is empty and some time is needed for vehicles to
reach all the portions of the network. Thus, in order to have a stable situation
in the network, with a representative number of vehicle, we do not consider the
initial time window. The average density of the arterial is computed in each
simulation step.

The aim of this experiment is to compare the density achieved in the network
using both our approach and standard ones. Two situations are evaluated. In
the first, there is no synchronisation (i.e. plans like Plan 2 in Figure 2 are used
in each junction). In the second case, we compare our approach to the situation
in which a synchronisation is present but it is fix, i.e. the designer or engineer
decides that all traffic lights are synchronised in a fix way.

In each case, we also evaluate and compare the different possibilities of our
extension of the specialization model (the success function). Thus, our approach
was simulated in four diferent ways: one do not uses reiforcement (the tresholds
do not change during the simulation); one uses the original idea about the thresh-
old, updating the threshold with a learning and forgetting coefficients; one uses
the linear function to update the threshold; and the last uses the exponential
function to update the threshold.

In this paper we adopt α = 0.2, β = 0.5 and θ starting with 0.5. When
changing the threshold using the original idea we adopt ξ = 0.5 and ρ = 0.05. Our
extension uses the linear function presented in Equation 8 and the exponential
function presented in Equation 9.

As we can see in Figure 3, the swarm approach achieves the best result when
we use our extension on threshold variation using Equation 9 as the success



Fig. 3. Change in densities over time for the simulations.



function. The manual synchronisation shows a slightly better result because, in
this scenario, we are not changing significantly the traffic flow in the adjacent
streets, so the main street has a more intense traffic. Besides, in the simulation
beginning (from step 5,000 to step 6,000), when the main street has a lower
traffic flow than the adjacent ones, we can see that the manual synchronisation
shows worst results than our approach. It is happen because the traffic flow
in the adjacents streets are growing while the main street stays almost empty.
Our approach was able to perceive this difference and to adapt the traffic lights
to priorize the grater traffic flow. A total lack of synchronisation among the
agents shows the highest densities levels, as expected. The fixed threshold curve
indicates lower densities than the original model of learning and forgetting and
also the success based variation that uses Equation 8 as learning and forgetting
coefficient.

5 Conclusions and Outlook

This paper proposes an approach to reduce traffic jams based on a swarm-
inspired method of selecting signal plans. We have discussed some approaches
to reducing traffic jams, focusing on signal plan selection, either via classical ap-
proaches or via more flexible ones like the one proposed in [3]. We also discussed
the need for even more flexible approaches in which the preferences of the traffic
lights regarding the coordination or synchronisation do not have to be explicitly
stated.

The swarm approach is well suited here because it profits from the metaphor
of vehicles leaving a pheromone trail when stopped at a junction. This metaphor
is used as a kind of stigmergy between adjacent junctions.

The approach was realized in a microscopic traffic simulator, to which models
of social insects were added. These insects thus perceive the pheromone trails
and act accordingly which in this case means a selection of an appropriate signal
plan.

The average density in the arterial was measured in order to compare the
following situations: i) the traffic lights are not coordinated; ii) they are coordi-
nated in the classical way, i.e., using a central decision component (normally the
traffic engineer) which determines the unique synchronisation for all junctions;
iii) they are free to decide, at local level, whether or not to coordinate. This last
approach is more flexible and depends only on flow detectors installed at each
junction.

Quantitatively, when the agents are free to decide coordinating according
to the swarm approach the system behaves almost as if a central decision sup-
port was given. Our experiments shows that the agents achieve synchronisation
without any management, that indicates a successful swarm based application.

This works foresees some extensions as for instance increasing the set of signal
plans an insect has. Additional signal plans can be designed either to coordinate
in other directions or to coordinate in the main direction with other shares of



green time and offsets. To implement this we depend on the traffic engineer who
has to design such plans.

Other possible extensions are the simulation of the enlarged network (which
is currently being done and again, depends on the engineers) so to consider
parallel streets and so on. The case in which both arterials crossing at junction S6

(Figure 1 are allowed to coordinate is very interesting because both are important
arterials in the city.
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Abstract

One of the well studied issues in multi-agent systems
is the standard action-selection and sequencing problem
where a goal task can be performed in different ways, by
different agents. Tasks have constraints such as dead-
lines and characteristics such as duration, resources, etc.
Agents also have different characteristics such as capac-
ity, access to resources, motivations, etc. This class of
problems has been tackled under different approaches. At
the high-level coordination, the specification of the orga-
nizational issues is crucial. However, in open, dynamic
environments, agents must be able to adapt to the chang-
ing organizational goals, available resources, their rela-
tionships to another agents, and so on. This problem is a
key one in multi-agent systems and relates to models of
learning and adaptation, such as those observed among
social insects. The present paper tackles the process of
generating, adapting, and changing multi-agent organi-
zation dynamically at system runtime, using a swarm in-
spired approach. This approach is used here mainly for
task allocation with low need of pre-planning and specifi-
cation, and no need of explicit coordination. The results
of our approach and another quantitative one are com-
pared here and it is shown that in dynamic domains, the
agents adapt to changes in the organization, just as so-
cial insects do.

1. Introduction

The organizational structure of multi-agent systems
(MAS) is one of the most significant aspect for its suc-
cess [10]. The agent’s organization depends on the sys-
tem needs to achieve the goals, to perceive the envi-
ronment and to configure the agent’s activities and its

∗ Student Paper

interactions. One problem is to define which organiza-
tion form fits those needs best.

A simple way to solve this problem is to define the
organization statically, that means to find the system
needs and design an appropriate organization. Once
this is made off-line the advantages of a well defined or-
ganization turn into disadvantages in an unstable envi-
ronment. As MAS are used in dynamic problems, static
organizational structures with rigid definitions become
inefficient.

MAS need to manage the problems dynamics such
as variation in the number of agents, changes in envi-
ronment and in the system’s goals. The question is how
to derive such specific organizational structure given a
particular situation. Most of the works in this area fo-
cus on adapting some specific aspects of the organi-
zation or on structure generation. Each of these ap-
proaches shows good results in their specific scenarios,
but they are not general solutions to the problem. Re-
cently an approach that intends to be more general,
based on the TÆMS/GPGP/DTC framework plus sys-
tem self-diagnosis was proposed [8]. This is a high-
level coordination framework based on specification (of
the organization goals, etc.), planning, and scheduling
(which we call task allocation here). This framework
also shows good results but some questions about their
general efficiency are still open: regarding communica-
tion issues, especially in large organizations, how effi-
cient are the resulting organizations?

The process of generating, adapting and changing
organization dynamically at system runtime in MAS is
usually called self-organization. Some authors prefer to
call this process organizational adaptation [9] or orga-
nization self-design. Some critics to each of this defi-
nitions can be found in [12]. In these work we use or-
ganizational adaptation because our approach is based
in organizational self-adaptation according to the dy-
namic changes in organizational needs.



This motivation for studying organizational adapta-
tion in MAS can also be found in some biological en-
tities such as the social insects. Social insect colonies
(also called swarms) show evidences of ecological suc-
cess due to their organization which is observed in divi-
sion of labor, specialization, collective regulation, etc.
[2, 3]. The needs of the colony organization change over
time. These changes are associated with the phase of
colony development, time of year, food availability, pre-
dation pressure, and climatic conditions. Despite this
drastic variations in colony’s conditions, social insects
do have ecological success [16].

A social insect colony operates without any explicit
coordination. An individual worker cannot assess the
needs of the colony, it just has a fairly simple local in-
formation, and no one is in charge of coordination [7].
From individual workers aggregation, the colony be-
havior emerges without any type of explicit coordina-
tion or planning. The key feature of this emergent be-
havior is the plasticity in division of labor inside the
colony [11]. Colonies respond to changing conditions
by adjusting the ratios of individual workers engaged
in the various tasks.

In this paper we propose an approach to adapt or-
ganization in MAS inspired on social insects colonies
organization. Due to its domain-independence, we use
TÆMS [5] to represent agents activities. TÆMS is fur-
ther discussed in Section 2.1 together with GPGP, and
the Design-to-Criteria (DTC) scheduler. In our ap-
proach, a TÆMS task structure is used to model the
necessary activities to achieve the system goal: the task
structure is read and our approach determines the al-
location of the tasks. This is performed using the theo-
retical model of task allocation in social insect colonies
discussed in Section 2.2.

In Section 3 we present our approach in detail. The
target scenarios and the simulations over it are pre-
sented in Section 4. Also in Section 4, we discuss the
results and the performance of the current version of
our approach. Section 5 concludes with further direc-
tions for this work.

2. Organization in MAS and Social In-
sects

Although many approaches to organization in
MAS exist, this section focuses only on orga-
nizational representation, planning and schedul-
ing (TÆMS/GPGP/DTC framework), and on the
swarm based model necessary to explain our ap-
proach.

2.1. TÆMS, GPGP, and DTC

TÆMS [5], GPGP [6], and the Design-to-Criteria
(DTC) [15] have been used as a domain-independent
language for description of tasks associated with
agents, planning and scheduling of agent’s tasks.
TÆMS allows the construction of a task model
in which the relation of the actions available to
choice is shown, providing ways to model scenar-
ios where tasks have deadlines and some kind of result
must be reached.

Agent’s activities are represented as a graph in terms
of their task groups aiming at achieving agent’s goals.
The leaves of the graph are called executable meth-
ods, which have probability distribution on their char-
acteristics like quality, cost, and duration. The qual-
ity of a task group depends on what is executed and
when. For example, quality can be accrued by a qual-
ity accumulation function (QAF) like sum(), which in-
dicates that all tasks in the structure need to be ac-
complished.

Besides the local effects of the execution of meth-
ods on the quality and duration of their supertasks,
there exist non-local effects (NLE) such as enables, fa-
cilitates, etc. Generally speaking, a task T may enable
a method M in the sense that the quality of M can-
not be accrued until T is completed, i.e. the earliest
start time of M is the finish time of T . Therefore en-
ables is a hard relationship, i.e. it has to be necessarily
observed.

By using these tools, it is possible to construct the
task structure of a problem-solving situation. The ac-
tual structure is called an objective model of the envi-
ronment, and is inaccessible to agents. However, agents
have each a subjective and a conditioned model or view
of it, which they use to predict other agents actions’.
The subjective view contains tasks and relationships
the agent believes to be the complete model of its al-
ternatives.

NLE’s which involve more than one agent are called
coordination relationships. Coordination mechanisms
can recognize the features of the agent’s subjective
view, such as redundancies and soft and hard relation-
ships. GPGP and DTC perform analysis of the pro-
cesses modeled in TÆMS, and decides on the commit-
ments and appropriate courses of action for the agent
given the constraints (deadline, resources, etc.).

2.2. Swarm-Like Organization

Theraulaz et al. [13] present a model for self-
organization inspired on the plasticity of division
of labor in colonies of social insects [11]. Interac-



tions among members of the colony and the individual
perception of local needs result in a dynamic distribu-
tion of tasks.

This model describes the colony task distribution us-
ing the stimulus produced by tasks that need to be per-
formed and an individual response threshold related to
each task. Each individual insect has a response thresh-
old to each task to be performed. That means, at indi-
vidual level, each task has an associated stimulus (e.g.
the amount of food need to be carried to the nest, if
the task is to forage). The levels of the stimulus in-
crease if tasks are not performed, or not performed by
enough individuals, etc. An individual that perceives
(e.g. after walking around randomly) a task stimu-
lus higher than its associated threshold, has a higher
probability to do this task. This model also includes
a simple way of reinforcement learning where individ-
ual thresholds decreases when performing some task
and increases when not performing. This double rein-
forcement process leads to the emergence of specialized
individuals.

Let us assume that there are M tasks to be per-
formed, each denoted by j, and that each of this tasks
are associated with a stimulus sj . Also assume that
there are N individuals, each denoted by i, with re-
sponse thresholds θij associated with task j stimulus.
An individual i engages in task j with probability:

Tθij (sj) =
s2
j

s2
j + θ2

ij

(1)

where:

sj stimulus associated with task j

θij response threshold of individual i to task j

Each individual in the model has one response
threshold to each task. Those thresholds are updated
(increase or decrease) according to two different coef-
ficients. The response threshold θ is expressed as units
of intensity of stimulus.The response threshold θij of
an individual i when performing task j during time in-
terval of duration ∆t is:

θij = θij − ξ∆tij (2)

where ξ is the learning coefficient and ∆t is the time
interval.

The response threshold θij of the agent i when not
performing method j during time interval of duration
∆t is:

θij = θij + ρ∆tij (3)

where ρ is the forgetting coefficient.

Each particular task in the model has one associ-
ated stimulus. The intensity of this stimulus can be as-
sociated with a pheromone concentration, a number of
encounters between individuals performing the task, or
any other quantitative cue sensed by individuals.

Variations in stimulus intensity can result from task
performance or natural increase of task’s demand.
Bonabeau et al. [3] present two distinct ways to model
this stimuli variation: performing a given task increases
the demand for another tasks; and applying different
success rates according to the task performance, chang-
ing to each specific task. The equations and results of
this approaches are also presented in [3].

3. A Swarm Based Approach for Task
Allocation

We use the swarm-based model to allocate insects-
like agents to perform specific methods of a TÆMS task
structure. This means that each agent deals with a dy-
namically changing TÆMS task structure and sched-
ule its methods according to the TÆMS semantic.

Next, we discuss how the ideas of social insect orga-
nizations are used in order to allocate agents to tasks,
and their application in the actual simulated scenar-
ios.

3.1. Stimulus

As mentioned in section 2.1, a method is the ele-
ment in a TÆMS task structure that represents what
the agent can actually do (hereafter we call the in-
sects tasks as methods). All methods in the TÆMS
task structure have probability distributions of qual-
ity, cost, and duration. This values describes the possi-
ble results of the method execution. Therefore methods
have quality (qj), cost (cj) and duration (dj) and these
are used to compute the stimulus sj of a method j.
The intensity of this stimulus is associated with the re-
sults of the methods execution. Each method j have
one stimulus sj :

sj = ϕ∗(α∗ q̂j−β∗ ĉj−γ∗ d̂j+β+γ)+(1−ϕ)∗xj (4)

where:

q̂j normalized expected quality of method j.

ĉj normalized expected cost of method j.

d̂j normalized expected duration of method j.

xj stimulus associated with the QAF related to the
method j.

α, β, γ, ϕ constants.



The constants are employed to set different priorities to
the quality, cost and duration values (the sum of those
constants should be 1). In this paper, these constants
have the following values: α = β = γ = 1/3 (in or-
der to give quality, cost, or duration the same weight),
and ϕ = 0.5.

The stimulus sj for each method j is recalculated
every time one method is performed by an agent (here-
after we call this an iteration). This stimulus updating
is performed to model the emergent task succession dis-
cussed by Bonabeau et al. [3]. In social insects colonies,
performing a given task increases the demand for an-
other related task. For instance, creating a waste pile
at the entrance of the nest generates a need for clean-
ing. In our approach, performing a method influences
the stimulus associated with all methods of the same
TÆMS task according the tasks’ QAF.

Let us assume that there are M methods in the
TÆMS task structure perceived by a given agent (only
methods that are allowed to be performed in the cur-
rent interaction). When any method k of M is per-
formed, all methods j, related by a QAF with k, will
have the xj stimulus updated:

xj = xj + κ (5)

where κ is the constant related to the QAF, as defined
in Table 1.

This influence is recursive to each method of the par-
ents tasks in the task structure tree. A constant κ as-
sociated with the QAF is used to model the influence
of interrelated methods. We adopt small values for κ
(0 < κ ≤ 1) because the stimulus xj is cumulative (in-
creasing in each iteration) and takes values only be-
tween 0 and 1.

In Equation 4 we use the constant ϕ in order to set
different priorities to the stimulus associated with the
results of the methods execution (quality, cost and du-
ration) and to the stimulus related to the emergent task
succession.

QAF κ
SeqMax, Max, SeqMin, Min 0

SeqSum, Sum 0.01
ExactlyOne -0.01

Table 1. QAF related constants

Our approach was developed focusing on dynamic
environments where the TÆMS task structure can be
modified on the fly: methods can appear or disappear;
the number of available agents can change; and the in-
terrelationship among methods can also change. The

latter is supported by the stimulus model presented
above. However, this stimulus model does not take into
account the changes in the number of agents and meth-
ods. Bonabeau et al. [3] show that emergent task suc-
cession can be achieved using fixed thresholds; however
this has only limited applicability. In order to overcome
these limitations of the stimulus model, our approach
uses a modification of the specialization model (Sec-
tion 2.2). This modification is discussed next.

3.2. Polyethism

Division of labor, in which a set of workers special-
ize in different set of tasks, is an important and well-
studied aspect of colony behavior [11]. The age ori-
ented specialization are called by the biologists tempo-
ral polyethism. In honey bees (Apis mellifera) this is
the main form of division of labor. Young workers per-
form tasks within the hive, while older workers perform
tasks outside the hive, such as foraging and colony de-
fense.

Theraulaz et al. [13] only suggests an extension to
model the temporal polyethism. His original model,
without polyethism, uses two constants as learning and
forgetting coefficients (Equations 2 and 3). To calcu-
late the response thresholds with polyethism, we mod-
ify the Theraulaz et al. [13] specialization model. Our
version uses two variables as coefficients of learning
and forgetting based on temporal polyethism. The re-
sponse threshold θij of an individual i when perform-
ing method j is given by:

θij = θij − ai
Ai
∗ A −mj

A (6)

where:

ai age of the agent i.

Ai maximum age of the agent i.

mj age of the method j.

A age of the oldest available method.

The response threshold θij of an individual i when
not performing method j:

θij = θij +
ai
Ai
∗ mj

A (7)

In this specialization model, all agents start with
the same θij (usually an intermediate value). When a
method is performed by an agent, the response thresh-
old changes. For the agent to specialize in selecting
a specific method, it is necessary that it selects this
method some times. Thus, it is necessary to run the
model for several rounds. In each round our approach
produces a task allocation for the given task structure.



Given the probabilistic nature of the model, these allo-
cations are not necessarily the same. If the task struc-
ture does not change, we consider an allocation of tasks
to be the final one when it does not change after a spe-
cific number of consecutive rounds.

In equations 6 and 7, we consider the agents’ age
(proportional to the task deadline) and the methods’
age (proportional to the oldest method’s age). The age
of methods and agents is computed at each iteration. A
method’s age increases until the method does not fin-
ish. An agent can survive a single round or stay alive
during several rounds. The agents has higher thresholds
regarding old methods and lower thresholds regarding
new ones. Besides, a young agent has a lower thresh-
old that an old agent regarding the same method. The
idea behind this is to specialize old agents regarding
a wider range of methods, and young agents regard-
ing specific methods as it occurs in Nature.

4. Experiments

The simulations presented in this section were gen-
erated using a simulation tool developed in JAVA and
using the TÆMS API.

In our approach we adopt the Bonabeu et al. ten-
dency (Equation 1). This equation computes a prob-
ability distribution over the tendency of an agent to
respond to each method’s stimulus. As it is the case
with social insects that inspire Bonabeu et al. mod-
els, with the use of this equation, each methods in the
task structure can be performed since each has a prob-
ability of being carried out by an agent. Therefore, the
best way to present and discuss the results is via the
use of statistics: the results presented here are aver-
ages over 1,000 repetitions of each experiment.

4.1. Scenario I

We use the TÆMS task structure of Figure 1 as ba-
sis for our simulations. This task structure can rep-
resent, for instance, a typical problem of job schedul-
ing among multi-purpose machines [4] in which the au-
thors associate a small number of machines (2–4) with
wasps. This task structure can also be related to the
aircraft servicing scenario discussed in [14].

Task T1 is the first stage of production/servicing.
Jobs or aircrafts of type a, b, or c can arrive. If it is of
type a, for example, then m1a is allocated to an agent.
This enables method m2a and so on. Notice that in
this scenario, there are hard relationships of type en-
ables which make the task allocation little flexible.

Figure 1 shows only the duration distribution prob-
ability of each method. All methods have the same

τ

T T1 2

m3cm2cm1c

m2b m3bm1b

m1a m3am2a

q_sum

q_max q_max q_max

5 0.8 10 0.2

10 0.8 15 0.2

15 0.8 20 0.2

6 0.8 11 0.2

4 0.8 9 0.2

2 0.8 7 0.2

3 0.8 8 0.2

5 0.8 10 0.2

7 0.8 12 0.2

T3

Figure 1. Objective TÆMS task structure.

cost and quality probability distribution: the cost for
all methods is (0 0.8 1 0.2). The quality for all meth-
ods is (5 0.8 4 0.2). Unless said, we use deadline equal
to 25.

We run DTC to compare our task allocation to the
standard output produced by DTC, which is shown in
Table 2. This table presents the start and end time
for each method, qualities, and costs. Not shown there:
the total quality is 14.35, the total cost 0.6, and the to-
tal duration 17.0.

method start finish quality cost duration
m1a 0.0 6.0 4.8 0.2 6.0
m2a 6.0 13.0 4.8 0.2 7.0
m3a 13.0 17.0 4.76 0.2 4.0

Table 2. DTC schedule

Although DTC deals with the probability distribu-
tions of quality, cost, and duration coming from the
semantic of TÆMS , it does not handle these distribu-
tions probabilistically (e.g. using a roulette wheel). In-
stead it computes an average for each probability dis-
tribution. We use both, the probabilistic and the DTC
approaches. The latter is useful when we compare re-
sults; the former is used otherwise.

Using our approach in a non-probabilistic variant
produces the task allocation shown in Table 3. In fact,
our approach produces 1000 outputs (as mentioned be-
fore), one for each repetition. The one shown in this
table is the top one (more frequent) and is produced
32.7% of the time. The total quality equals to 14.4, the
total cost 0.6, and the total duration 17.0. That means
that our more frequent output is the one which resem-
bles the output of DTC.

The same task structure was scheduled with prob-



abilistic treatment of the quality, cost, and duration
distributions (second variant). Table 4 shows the most
frequent schedule, produced 22.3% of the 1000 repe-
titions. The total quality equals to 15, the total cost
0.0, and the total duration 24.0. All the three methods
scheduled in the first variant are also present in the sec-
ond one. However, due to the probabilistic variation of
the duration, sometimes more methods can be sched-
uled within the deadline. In total, 41.5% of the repeti-
tions scheduled at least the 3 methods DTC did, within
the deadline.

method start finish quality cost duration
m1a 0.0 6.0 4.8 0.2 6.0
m2a 6.0 13.0 4.8 0.2 7.0
m3a 13.0 17.0 4.8 0.2 4.0

Table 3. Top schedule (first variant)

method start finish quality cost duration
m1a 0.0 5.0 5.0 0.0 5.0
m2a 5.0 11.0 5.0 0.0 6.0
m3a 11.0 14.0 5.0 0.0 3.0
m1b 14.0 24.0 5.0 0.0 10.0

Table 4. Top schedule (second variant)

Of course, in both variants, the overall results of our
approach are not as good as the one DTC computes.

However, our approach is intended not for static en-
vironments but for dynamically evolving ones. This
means that our agents can adapt to changes in the
environment with no need of commitments and com-
munication. Such environments are now presented and
discussed.

4.2. Scenario II

In order to measure the performance of our approach
in dynamic environments, we schedule four different
TÆMS task structures appearing randomly with the
same probability. The first task structure (TS1) is the
one depicted in Figure 1. The other three are variants
of it: one has no enable relationships between the tasks
(TS2); one has not the task T3 (TS3); and the last
has the deadline changed to 30 (TS4). Beside, we have
changed the quality distribution: in TS2 it is (15 0.8
10 0.2), in TS3 (50 0.8 40 0.2), and in TS4 (100 0.8 90
0.2).
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Figure 2. Change in quality over time (black
line); Changes in the environment are depicted
as shadow boxes.

Of course, we can only compare individual tasks
structures to the DTC outputs. In our simulation, these
4 outputs appear 48% of the 1000 repetitions. How-
ever, the real power of this approach is when the envi-
ronment changes dynamically.

Figure 2 shows these changes and how agents adapt
to them. We change task structures randomly. In the
beginning (first 50 steps), agents are still adapting. The
gray shadow in the figure indicates which task struc-
ture is the actual one at a given time step. When the
shadow goes up to 300, this means TS4. Remember
that the total quality is the sum over three tasks in
TS1, TS2, and TS4, and over two tasks in TS3. When
the shadow goes up to 100, 50, and 15, the actual task
structure is TS3, TS2, or TS1 respectively.

Ideally, each time a task structure changes, agents
should adapt and so the quality would change instantly.
Due to the time necessary for agents to adapt their
stimuli, etc., there is a small delay in this process which
can be seen in Figure 2 (black line does not match the
shadow exactly).

Because of the probabilistic aspects of our ap-
proach (probabilistic distribution of methods’ qual-
ity and probabilistic tendency to schedule a method)
the black line is not constant, there is a varia-
tion in the schedules’ quality for the same task struc-
ture. However, Figure 2 shows that when the task
structure changes, so does the total quality associ-
ated with it.

This results show that modifying the task structure
on the fly disturbs only slightly the performance of the



agents regarding the quality of the schedules produced
because each time the task structure changes, agents
do adapt to this situation.

4.3. Scenario III

With the same aim of the simulation described
above, we now change dynamically the number of
agents available to perform the task structure. In this
scenario, we also employed the basis task structure of
Figure 1. This time three of these task structures are
subtasks of a new task group (root task) whose QAF
is sum(). The new task group has now 3 times as many
methods as the basis taks structure, i.e. 27 methods.
Therefore we vary the number of agents between 1 and
27. To cope with the probabilistic nature of the prob-
lem, we perform 100 repetitions each time we vary the
number of agents, totalizing 2700 repetitions.

Figure 3 shows the influence of the number of agents
over the number of methods scheduled and also over
the quality. Nine methods of those 27 do not have
any enable NLE. As we increase the number of agents,
the number of this enable-free methods performed in-
creases. When the number of agents is equal to the
number of the enable-free methods, that means 9
agents, the number of performed methods stabilizes
because even if we put more agents, they cannot per-
form methods which are not enabled. The same rea-
soning applies to the quality: the best one is achieved
after this stabilization, that means when the number
of agents is equal to the number of enable-free meth-
ods. The highest possible quality, around 40, is reached
when we have 9 agents.

5. Conclusions

The approach presented here deals with the action-
selection and sequencing problem. It aims at situations
when the environment changes and so demands dif-
ferent organizations of tasks and agents. In other ap-
proaches, this adaptation requires a learning compo-
nent, normally based on explicit coordination and/or
communication.

We focus on a paradigm based on colonies of social
insects, where there are plenty of evidences of ecological
success, despite the apparent lack of explicit coordina-
tion. These insects adapt to the changes in the environ-
ment and to the needs of the colony using the mech-
anisms explained here. The key issues are the learn-
ing/forgetting specialization and the plasticity in divi-
sion of labor.

Our aim is to show that such an approach can be
used to allocate tasks to agents in MAS, when orga-
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Figure 3. Number of methods and quality, for
varying number of agents.

nizations change dynamically. As already pointed out
in [2], there is no standard way of evaluating the per-
formance of algorithms dealing with dynamic environ-
ments, because benchmark problems (e.g. travel sales-
man) are static problems. Therefore, we use the
GPGP/DTC/TÆMS framework as comparison, al-
though this is somehow limited to the static cases.
When it comes to dynamic situations, we can only dis-
cuss the qualitative advantage of our approach. The
main one is that it does not need the explicit com-
mitments each time the number of agents changes.
This is especially important when it comes to do-
mains with large number of agents. In the scenarios
we discussed here, although it takes some time for the
agents to adapt, this adaptation is reached and dead-
lines were kept. Also, in our approach we ensure
the synchronization of team members and han-
dle teamwork redundancy. As discussed in [1], GPGP
mechanisms support neither synchronization nor han-
dle teamwork redundancy. For instance, in sce-
nario III, more than one agent can be performing the
same task but no more than one agent is able to per-
form the same method.

In summary, there is a tradeoff between explicit co-
ordination leading to highly accurate outputs versus
implicit coordination via learning and adaptation lead-
ing to more relaxed outputs (less quality, higher costs
or durations in the scenarios discussed here). Our ap-
proach is certainly not the best in static situations,
while it is effective in dynamic ones. The efficiency is an
issue related to the specific scenarios. For instance, if,
besides deadline constraints, there are also constraints



related to quality or cost, then in some cases these will
not be respected.

In order to tackle these limitations, we intend to
work on different parameters of the functions discussed
in Section 2.2 and also study new extensions to those
equations so that we can accommodate a wider range
of types of agents. For instance, we might need agents
with shorter life spans than others (this would imply
different life probability functions), or different thresh-
olds to the tasks in order to respond faster or slower.

We also intend to compare our results with one dead-
line with a large number of agents. In our approach,
having such a large number of agents is straightfor-
ward since they all follow the same basic specializa-
tion/plasticity model. Even if we consider the exten-
sions just discussed, having a large number of agents
would not be a problem. What makes the comparison
difficult now is the lack of such a result in the litera-
ture.

Also, resources are not explicitly modelled in our ap-
proach. We decided to do this because we are still look-
ing for a suitable model (from the theoretical biology
point of view) explaining whether or not insects have a
different behavioral model for tasks and resources such
as food. Handling resources and increasing the range
of non-local relationships are necessary extensions in
order to be able to compare other scenarios already
used by the GPGP/DTC/TÆMS framework. We in-
tend to do this next. Finally, it would be desirable to
have probabilistic definitions of non-local relationships
(e.g. an enables exist between Tx and Ty with proba-
bility p). In this case, this would have to be extended
in TÆMS as well.
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