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ABSTRACT

This paper addresses the problem of multiagent task allo-
cation in extreme teams. An extreme team is composed
by a large number of agents with overlapping functionality
operating in dynamic environments with possible inter-task
constraints. We present an approximate algorithm for task
allocation in extreme teams, called eXtreme-Ants. The al-
gorithm is inspired in the division of labor in social insects
and in the process of recruitment for cooperative transport
observed in ant colonies. The model of division of labor of-
fers fast and efficient decision-making, while the recruitment
ensures the allocation of constrained tasks that require si-
multaneous execution. We show that eXtreme-Ants outper-
forms other two algorithms regarding communication and
computational effort.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms

Algorithms
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Multiagent Task Allocation, Swarm Intelligence

1. INTRODUCTION
How to efficiently allocate tasks among agents in large-

scale and dynamic environments? A large-scale environment
means thousands of agents that must coordinate themselves
to allocate and perform the available tasks. Scerri et al.
call these scenarios extreme teams [7]. Task allocation in
extreme teams is associated with four features: (i) dynamic
environments, in which task can appear and disappear; (ii)
agents perform multiple tasks given their available resources;
(iii) agents have overlapping functionality to perform the
tasks but with differing levels of capability; and (iv) inter-
task constraints can be present, imposing simultaneous ex-
ecution requirements.

Extreme teams can be formalized as an extended general-
ized assignment problem (E-GAP) [7]. The E-GAP model
captures precisely the characteristics of extreme teams and
defines the solution as the allocation which maximizes a re-
ward measure, given by the capabilities of the agents that
take part of the allocation. Efficient multiagent techniques
to deal with E-GAP are a prerequisite to build teams of

robots to act in extreme situations. Besides the reward,
the communication channel must be used in the best way
possible to avoid an excessive amount of communication.
Moreover, the computational effort employed by the agents
to decide which tasks to accept must be as low as possible,
enabling they to act in environments where the available
time to make a decision is highly restricted.

Social insects (e.g. ants) have the characteristics of ex-
treme teams. Thus, we can conclude that Nature, despite
the simplicity of the insects and over years of evolution, has
provided these insects with the capability to effectively act
in these teams.

To perform the tasks related to the nest survival, social
insects adopt a division of labor among workers. Theraulaz
et al. [8] present a mathematical model to replicate some
mechanics of division of labor. This model is based on indi-
vidual response thresholds and tasks stimuli. Moreover, it
is not required that individuals have complete information
about the environment and there is no need of team leaders.

Simultaneous execution of tasks also exists in social in-
sects, as for instance in some species of ants. The task
in question is the transportation of large preys. Instead of
seize and transport individually a large prey, some species
form groups of ants to cooperatively transport a prey. These
groups are formed via a process called recruitment [2]. In
this sense, the large prey can be seen as a set of interdepen-
dent subtasks, where each one is simultaneously executed by
an ant.

We propose a multiagent approximate task allocation al-
gorithm, called eXtreme-Ants, which is inspired in the divi-
sion of labor in social insects and in the process of recruit-
ment present in ants. Agents running eXtreme-Ants are
efficient to act in extreme teams, with low computa-
tional effort and communication. We empirically eval-
uate eXtreme-Ants in a domain independent simulator
and compare it with two other algorithms that are
GAP-based: Swarm-GAP [1] and LA-DCOP [7]. The al-
gorithm eXtreme-Ants achieves total rewards close to the
ones achieved by LA-DCOP, but with lower communica-
tion and computational effort. Regarding Swarm-GAP,
eXtreme-Ants yields better total rewards, particularly in the
presence of inter-task constraints that impose simultaneous
execution.

The remaining of this paper is organized as follows. Sec-
tion 2 discusses the GAP and its extension (E-GAP), the
model of division of labor in social insects, and the pro-
cess of recruitment used by ants to cooperatively trans-
port large preys. Section 3 details other two algorithms
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for dealing with GAP-based task allocation, Swarm-GAP
and LA-DCOP. Section 4 presents the proposed algorithm.
Section 5 presents the empirical evaluation via a series of ex-
periments. Finally, section 6 points out the conclusion and
future directions.

2. BACKGROUND

2.1 GAP and EGAP models
The generalized assignment problem (GAP) is a model

used to formalize the multiagent task allocation problem [3].
A GAP is composed by a set J of tasks to be performed by a
set I of agents. Each agent i ∈ I has a capability to perform
each task j ∈ J denoted by Cap(i, j) → [0, 1]. Each agent
also has a limited amount of resource i.res and uses Res(i, j)
when performs task j. An allocation matrix M is used to
represent the allocation, where mij is given by Equation 1.

mij =



1 if i performs j

0 otherwise
(1)

The goal is to find M that maximizes the allocation re-
ward, which is given by the agents’ capabilities, as shown in
Equation 2.

M = argmax
M′

X

i∈I

X

j∈J

Cap(i, j)×m
′
ij (2)

The allocation M must respect all agents’ resources limita-
tions (Equation 3) and each task must be allocated to at
most one agent (Equation 4).

∀i ∈ I,
X

j∈J

Res(i, j)×mij ≤ i.res (3)

∀j ∈ J ,
X

i∈I

mij ≤ 1 (4)

The GAP model was extended by Scerri et al [7] to incor-
porate two features related to extreme teams: scenario dy-
namics and inter-task constraints. This extended model was
called extended generalized assignment problem (E-GAP).

Inter-task constraints are interdependencies among tasks.
We focus on AND constraints here, but the formalization can
be extended to other constraint types as well. In the case
of an AND constraint the agents only receive the reward
if all constrained tasks are simultaneously executed. The
AND constrained tasks can be viewed as a decomposition
of a large task into interdependent subtasks. The execution
of some subtasks does not leads to the successful execution
of the large task, wasting the agents’ resources and not pro-
ducing the desired effect in the system. Moreover, in the
case of physical robots, they can be damaged attempting to
perform an effort greater than their capabilities (e.g. trying
to remove a large piece of collapsed building from a blocked
road).

To formalize AND constrained tasks, the E-GAP model
defines a set  ! = {α1, . . . , αp} containing p sets α of AND
constrained tasks in the form αk = {j1 ∧ . . . ∧ jq}. Each
AND constrained task j belongs to at most one set αk. The
number of tasks that are being performed in a set αk is given
by Equation 5.

xk =
X

i∈I

X

j∈αk

mij (5)

Let vij = Cap(i, j) × mij . Given the constraints of  !,
the reward V al(i, j,  !) of an agent i performing the task j

is given by Equation 6.

V al(i, j,  !) =

8

<

:

vij if ∀αk ∈ !, j &∈ αk
vij if ∃αk ∈ ! with j ∈ αk ∧ xk = |αk|
0 otherwise

(6)
To represent the dynamics in the scenario all E-GAP vari-
ables are indexed by a time step t. The goal is to find a

sequence of allocations
−→
M one for each time step t, as shown

in Equation 7. A delay cost function DCt(jt) can be used
to define the cost of not performing a task j at time step t.

f(
−→
M) =

X

t

X

it∈It

X

jt∈J t

(V al
t(it, jt,  !t)×m

t
ij)

−
X

t

X

jt∈J t

(1−
X

it∈It

m
t
ij)×DC

t(jt)
(7)

Furthermore, the agents’ resource limitations must be re-
spected at each time step t (Equation 8) and each task must
be allocated to at most one agent (Equation 9).

∀t, ∀it ∈ It,
X

jt∈J t

Res
t(it, jt)×m

t
ij ≤ i

t
.res (8)

∀t, ∀jt ∈ J t
,

X

it∈It

m
t
ij ≤ 1 (9)

2.2 Division of Labor in Social Insects
An effective division of labor is responsible for the ecolog-

ical success of insect societies. A social insect colony with
hundreds of thousand members operates without the exis-
tence of explicit coordination. An individual cannot assess
the needs of the colony; it just has a fairly simple local in-
formation, and no one is in charge of coordination. From
individual workers aggregation, the colony behavior emerges
without any type of explicit coordination or planning. The
key point is the plasticity of the individuals, in other words,
the existence of a behavioral flexibility. This flexibility al-
lows the individuals to engage in different tasks responding
to changing conditions in the colony.

Observations regarding this behavior are the basis of the
theoretical model described by Theraulaz et al. [8]. In this
model, interactions among members of the colony and indi-
vidual perception of local needs result in a dynamic distri-
bution of tasks. The model is based on individuals’ internal
response threshold related to tasks stimuli. Assuming the
existence of J tasks to be performed, each task j ∈ J has
an associated stimulus sj . The stimulus is related to the
demand for the task execution, and can be a number of en-
counters, a chemical concentration, or any quantitative cue
sensed by individuals. Given a set of I individuals which can
perform the tasks of J , each individual i ∈ I has an internal
response threshold θij , which is related to the likelihood of
reacting to the stimulus associated with task j.

The threshold can be seen as a genetic characteristic (also
called polymorphism, which is responsible for the existence
of differences in the morphologies of insects belonging the
same society), or as a temporal polyethism (in which indi-
viduals of the same age tend to perform identical sets of
tasks), or simply as individual variability.

In the model of Theraulaz et al. [8] the individual internal
threshold θij and the task stimulus sj represent the proba-
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bility (tendency) Tij(sj) of the individual i to perform task
j, as shown in Equation 10.

Tij(sj) =
s2

j

s2

j + θ2

ij

(10)

This tendency means that any individual is able to per-
form any task if the corresponding task stimulus is high
enough to overcome the individual’s internal threshold. This
flexibility enables the survival of the colony in an eventual
absence of specialized individuals, since other individuals
start to perform the tasks when the stimulus exceeds their
thresholds.

2.3 Recruitment for Cooperative Transport
In some species of ants the transportation of large preys in

a cooperative way involves two or more ants that cannot do
the transport alone [6]. The main purpose of the cooperative
transport is to maximize the trade off between the gained
energy (food) and the energy spent to take it to the nest.
Further, this process speeds up the transport.

The group involved in the cooperative transport is formed
by a process called recruitment. When a single scout ant
discovers a prey, it firstly attempts to seize and trans-
port it individually. After unsuccessful attempts, a recruit-
ment process starts. To recruit nestmates the ants employ
a mechanism called long-range recruitment (LRR). Some
species also employ a second mechanism, called short-range
recruitment (SRR). In both mechanisms the ants use com-
munication through the environment (stigmergy) [2].

In the SRR the scout that discovers the prey releases a
secretion. Shortly thereafter, nestmates in the vicinity are
attracted to the prey location by the secretion odor. When
the prey cannot be moved by the scout and the ants recruited
via SRR, one of the ants begins the LRR. Hölldobler et
al report that SRR is sufficient to summon enough ants to
transport the prey in the majority of the cases [2].

In the LRR the scout ant that discovers the prey returns
to the nest to recruit nestmates. In the course towards the
nest, the scout lays a pheromone trail. Nestmates encoun-
tered in the course are stimulated by the scout via direct
contact. After, the stimulated nestmate also begins to lay a
pheromone trail even though it had not yet experienced the
prey stimulus itself, thus establishing a chain of communica-
tion among nestmates. When the scout arrives at the nest,
nestmates are attracted by the pheromone and run to the
prey site.

After the recruited ants arrive where the prey is, they be-
gin the cooperative transport. The number of ants engaged
in the transport is regulated at the prey site and depends
on its characteristics, such as weight, size, rotational forces,
and difficulty to move. When the number of ants present
is not enough to move the prey, more ants are recruited by
one of the aforementioned processes, until the prey is suc-
cessful transported. Although in a more economic approach
the scout ant should recruit an exact number or nestmates,
it was suggested that the scout cannot make a fine assess-
ment of the number of ants required to retrieve the prey
[6]. Therefore, the most effective strategy may be to recruit
a constant number of ants followed by a regulation of the
group size during the transport.

In summary, the recruitment for cooperative transport
consists in three steps:

1. The scout ant that discovered the prey starts the re-
cruitment, inviting netstmates with pheromones;

2. The ants that accept to join the recruitment move to
the prey site;

3. The size of the transportation group is regulated to
the prey characteristics.

3. RELATED WORK
The research regarding multiagent task allocation has

shown significant advances in the last few years (auction,
contracting, coalition formation, organizations, etc). A com-
plete review of the subject is outside the scope of this pa-
per. We just mention that auctions are normally centralized
mechanisms, in which agents put bids to an auctioneer, de-
pending on their capabilities and resources. After receiving
all bids, the auctioneer makes the allocation of the tasks
among the bidders. Centralized auctioneers can have se-
vere bottlenecks. Further, auctions require high amounts of
communication [9].

Here we concentrate in the line of research that deals with
coordination for task allocation. Within this research line,
one approach is the framework of distributed constraint op-
timization problem (DCOP). A DCOP consists of a set of
variables that can assume values from a discrete domain.
Each variable is assigned to one agent which has the control
over its value. The goal of the agents is to choose values for
the variables to optimize a global objective function. This
function can be described as an aggregation over a set of cost
functions related to pairs of variables. A DCOP can be rep-
resented by a constraint graph, where vertices are variables
and edges are cost functions between variables. Despite the
existence of complete algorithms for DCOP, such as Adopt
[4], and DPOP [5], these are not efficient to deal with the
problem of multiagent task allocation. Due to dense con-
straint graphs generated to represent the problem, Adopt
and DPOP demand high communication and space respec-
tively.

To deal with the particular characteristics of extreme
teams, Scerri et al. present an approximate algo-
rithm called Low-communication Approximate DCOP (LA-
DCOP), which uses tokens to represent tasks and further
minimize communication [7]. An agent decides whether or
not to accept a task based both on its capability and on
a threshold associated to the task. To deal with inter-task
constraints, LA-DCOP uses a differentiated kind of token,
called potential token. If an agent in LA-DCOP is able to
allocate more than one task, it must select the ones that
maximize its capability given its resources. This selection is
a maximization problem, which can be reduced to a binary
knapsack problem (BKP), proved to be NP-Complete. The
computational complexity of LA-DCOP thus depends of the
complexity of its function to deal with the BKP.

Another approximate algorithm which can deal with
extreme teams is the Swarm-GAP [1]. An agent in
Swarm-GAP decides whether or not to accept a task based
on the model of division of labor used by social insects
colonies. This algorithm also uses tokens to represent
tasks. To deal with inter-task constraints, the agents in
Swarm-GAP just increase the tendency to allocate a con-
strained task by a factor called execution coefficient. The
execution coefficient is computed using the rate between the
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number of constrained tasks which are allocated and the
total number of constrained tasks.

4. eXtreme-Ants

4.1 Basic Ideas
eXtreme-Ants is an approximate algorithm that solves

E-GAPs. Agents running eXtreme-Ants use the model of
division of labor in social insects (Equation 10) to decide
whether or not to perform the tasks. The notation used
hereafter to represent agents, tasks, and all other terms is
the one from the E-GAP model (Section 2.1) and from the
model of division of labor (Section 2.2). The internal thresh-
old θij of an agent i related to a task j is defined via the
concept of polymorphism and corresponds to the inverse of
the capability Cap(i, j), as shown in Equation 11. If an
agent is not capable regarding a particular task, then its
internal threshold is set to infinity, avoiding the allocation
of the task to the agent. This makes sense if we consider
the capability as a kind of morphism. For example, a fire
brigade agent is more capable of fighting fires than rescuing
civilians. Thus it have low thresholds related to fire fighting
tasks and high thresholds to rescue civilians.

θij =



1− Cap(i, j) if Cap(i, j) > 0
∞ otherwise

(11)

Each task j ∈ J has an associated stimulus sj . The stim-
ulus controls the allocation of the tasks by the agents. Low
stimuli mean that the tasks will only be accepted by agents
with low thresholds (thus, more capable). High stimuli in-
crease the chance of the tasks to be accepted, even by agents
with high thresholds (less capable).

Since in the E-GAP each task must be allocated to at most
one agent, eXtreme-Ants uses tokens to represent the tasks
and ensure this mutual exclusion constraint. A token con-
tains a list of tasks it represents. An agent that holds a to-
ken has the exclusive right to accept the tasks contained in a
token. If the agent does not accept all tasks, it passes the to-
ken to another teammate. In this way, eXtreme-Ants avoid
conflicts in the allocation and reduces the communication.

To deal with AND constraints among tasks, agents in
eXtreme-Ants reproduce the recruitment process of ants.
When an agent detects that it is not capable of accepting all
AND constrained tasks perceived, it recruits other agents to
form a group committed with the simultaneous execution.

4.2 Algorithm Details
Algorithms 1 and 2 present the details of our approach.

Each agent i reacts to two events: perception of a set of tasks
(which can be AND constrained), and receipt of messages.
In the following we detail the algorithm operation.

When the agent perceives a set J of tasks (line 1) it cre-
ates a token to store the perceived tasks. The agent then
decides whether or not to accept the tasks contained in the
token, given its tendency and the available resources (lines
21-30). When a task is allocated to agent i, the available
resources at i is decreased by the amount required. If some
tasks contained in the token remains unallocated, the agent
sends the token to a randomly selected teammate. As in [7],
to avoid agents passing token back and forth, each token
maintains a list of visited agents. The token can revisit an
agent only after all were visited.

Algorithm 1: eXtreme-Ants for agent i

when perceived set of tasks J1

token := newToken();2

add each j ∈ J to token.tasks;3

evaluateToken(token);4

end5

when perceived set of AND constrained tasks αk6

/* firstly try to accept all tasks by itself */7

foreach j ∈ αk do8

if roulette() < Tij and i.res ≥ Res(i, j) then9

accept task j and decrease i.res;10

end11

end12

if there are non accepted tasks in αk then13

discard previous accepted tasks of αk (lines 7-9);14

performsRecruitment(αk);15

end16

end17

when received token18

evaluateToken(token);19

end20

procedure evaluateToken(token)21

/* decides whether or not to accept the tasks */22

foreach j ∈ token.tasks do23

if roulette() < Tij and i.res ≥ Res(i, j) then24

accept task j and decrease i.res;25

token.tasks := token.tasks− j;26

end27

end28

if there are non accepted tasks in token.tasks then29

send token to a teammate;30

end31

end32

When the agent perceives a set of AND constrained tasks
αk (line 6), it acts as a scout ant. Firstly it attempts to
accept all the constrained tasks. If it fails, it begins a re-
cruitment process. We develop a protocol that reproduces
the three steps of the recruitment process of ants via the use
of messages. There are five kinds of messages used in the
recruitment protocol of eXtreme-Ants:

request: to invite an agent to join the recruitment for a
task j ∈ αk and to commit to it;

committed: to inform that the agent joins the recruitment
for a task j ∈ αk and commits to it;

engage: to inform that the agent was indeed selected to
perform the task j ∈ αk;

release: to inform that the agent was not selected to per-
form the task j ∈ αk and must uncommit with it.

timeout: to inform that a request for a task j ∈ αk reaches
its timeout.

For the first step of the recruitment, the scout agent
sends a certain number of request messages for each task
j ∈ αk (lines 33-37). These requests are sent to randomly
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Algorithm 2: eXtreme-Ants for agent i (cont.)

procedure performsRecruitment(AND set αk)33

repeat34

j := pick a task from αk;35

send(“request”, j) to a teammate;36

until the maximum number of requests sent for all37

j ∈ αk is reached or the recruitment for αk is
finished or aborted.

end38

when received (“request”, j) from agent is39

/* decides whether or not to commit */40

if roulette() < Tij and i.res ≥ Res(i, j) then41

commit to j;42

send(“committed”, j) to is;43

else44

if request timeout reached then45

send(“timeout”, j) to is;46

else47

forward(“request”, j) to a teammate;48

end49

end50

end51

when received (“committed”, j) from ic52

αk := AND group which contains j;53

if recruitment for αk is finished or aborted then54

send(“release”, j) to ic; return55

end56

if at least one agent committed with each j ∈ αk57

then

recruitment for αk is finished;58

/* forms the group of engaged agents */59

foreach j ∈ αk do60

pick a committed agent ip with probability61

proportional to Cap(ip, j);
send(“engage”, j) to ip;62

send(“release”, j) to non selected agents;63

end64

end65

end66

when received (“engage”, j)67

accept task j and decrease i.res;68

end69

when received (“release”, j)70

uncommit to j;71

end72

when received (“timeout”, j)73

αk := AND group which contains j;74

if the number of received timeouts for each j ∈ αk is75

equal the number of requests sent then
recruitment for αk is aborted;76

foreach j ∈ αk do77

send(“release”, j) to committed agents;78

end79

end80

end81

selected teammates and act as the pheromone released in
the air (SRR) or released on the way to the nest (LRR).
As it occurs with the scout ant, which recruits a fixed
number of nestmates independently of prey characteristics,
eXtreme-Ants fixes a maximum number of requests that
must be sent for each AND constrained task. This maximum
number must be experimentally determined to maximize the
total reward.

In the second step, the agents must decide whether or not
to join the recruitment. When an agent receives a request
originated by a scout agent is for a task j (lines 39-48),
it uses the tendency (Equation 10) to decide if it accepts
the request and then joins the recruitment, avoiding double
commitment. If the request is accepted, the agent commits
to perform the task, reserving the amount of resources re-
quired by the task. A committed message is send to the
scout to inform the commitment. If the request is not ac-
cepted, the agent forwards it to another randomly selected
teammate, reproducing the chain of communication present
in the LRR.

In the third step, the size of the group of agents engaged
in the simultaneous execution of the AND constrained tasks
must be regulated. In eXtreme-Ants the regulation is done
by the scout agent. When the scout receives enough commit-
ments for each constrained task j ∈ αk (line 57), it forms the
group of agents which will execute the tasks simultaneously.
Following the E-GAP definition, just one agent must be se-
lected among those committed for each constrained task.
The scout then performs a probabilistic selection, picking
an agent ip with probability proportional to its capability
Cap(ip, j). The scout then informs ip that it was the se-
lected one and thus must engage in the execution of j (via an
engage message, line 62). All other non selected agents are
released (via a release message, line 63). Agents that com-
mit to an already allocated task are also released to avoid
deadlocks. At this moment the recruitment is finished. As
the result, a group of agents is formed, in which each agent
is allocated to a task j ∈ αk, enabling the simultaneous
execution of all AND constrained tasks in αk.

After the group of engaged agents is formed, the re-
quests not yet accepted by some agent become obsolete.
To avoid agents passing obsolete requests back and forth,
eXtreme-Ants introduces a timeout mechanism. The time-
out is a number of agents that a recruitment request is al-
lowed to visit. When the timeout of a request is detected
(line 45), the scout is notified via a timeoutmessage. When
the scout agent receives a timeout notification for all re-
quests sent, it aborts the recruitment and releases the com-
mitted agents.

It is important to note that due to the algorithm asyn-
chronism, the scout agent can perform another actions while
the recruitment occurs. These actions comprise the percep-
tion of another tasks, and even a recruitment for other AND
constrained task groups. Although eXtreme-Ants reproduce
the inter-agent communication via messages, it can be easily
modified to use some kind of indirect communication (e.g.
pheromones) when the environment allows it.

5. EXPERIMENTS AND RESULTS
We compare eXtreme-Ants to Swarm-GAP[1] and

LA-DCOP[7]. We have evaluated eXtreme-Ants in a do-
main independent simulator that allows experimentation
with large number of agents and tasks, performing exper-
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iments similar to Swarm-GAP and LA-DCOP which have
also used such a simulator.

Basically, each experiment consists of 2000 tasks, grouped
in five classes, where each class determines the task charac-
teristics. The number of agents varies from 500 to 4000.
This means that the load (ratio between tasks and agents)
is 4 in the first case and 0.5 in the latter. Each agent has
a 60% probability of having a non-zero capability for each
class. In this case the agent has a randomly assigned capa-
bility ranging from 0 to 1. Regarding the AND constraints
among tasks, 60% of the tasks are related in groups of five
tasks. The simulated communication channel is reliable (ev-
ery sent message is received) and fully connected (each agent
is connected to every other agent). Each experiment consists
of 1000 time steps. The total number of tasks is kept con-
stant. At each time step, each task has a probability of 10%
to be replaced by a task potentially requiring a different ca-
pability. The tasks are persistent, which means that non
allocated tasks are kept in the next time step. At each time
step, each token or message is allowed to move from one
agent to another only once. Despite that each task can have
a particular stimulus value, we adopt the same value for all
tasks. Each datapoint in the plots we show here represents
the average over 20 runs. The standard deviations are not
shown due to their low values.

As defined by the E-GAP, the goal is to maximize the total
reward, which is the sum of the reward at each time step over
the length of the simulation. The first experiment compares
the total reward achieved by each algorithm. The param-
eters used for each algorithm are shown in Table 1. These
parameters, which were selected among a large set of tested
values, yield the maximum total reward in each scenario,
and will be used in the comparisons. Additionally, in the
case of eXtreme-Ants the total rewards are obtained with
five recruitment requests for each AND constrained task,
and with a timeout of 20 visited agents.

Table 1: Parameter values that yield the maximum

total reward for each algorithm.

eXtreme-Ants Swarm-GAP LA-DCOP
Agents

(Stimulus) (Stimulus) (Threshold)
500 0.3 0.2 0.0

1000 0.3 0.3 0.4
1500 0.2 0.2 0.6
2000 0.2 0.2 0.6
2500 0.2 0.2 0.6
3000 0.2 0.2 0.6
3500 0.2 0.2 0.7
4000 0.2 0.2 0.7

Figure 1 shows the total rewards achieved by each algo-
rithm. On average, eXtreme-Ants yields rewards that are
25% higher than those of Swarm-GAP and 19% lower than
those of LA-DCOP (t-test, 99% confidence).

When an agent accepts a task, it uses an amount of its
resources. Thus, the agents must avoid to waste their re-
sources accepting tasks that do not yield any reward (e.g.
tasks that belong to an AND constrained, but are not si-
multaneously accepted). The second experiment, shown
in Figure 2, compares the percentage of resources used
by each agent to accept tasks at each time step. As we
can see, all algorithms use almost the same percentage
of resources. There is no significative difference between
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Figure 1: Total reward versus the number of agents.

eXtreme-Ants and Swarm-GAP in the cases with 3000, 3500,
and 4000 agents, and between eXtreme-Ants and LA-DCOP
in the cases with 500 and 1000 agents (t-test, 99% confi-
dence).
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Figure 2: Percentage of resources used by each agent

at each time step to allocate tasks.

From these two experiments, we can see that despite the
fact that agents in Swarm-GAP use almost the same per-
centage of resources, the achieved total rewards are worse
than those achieved by eXtreme-Ants and LA-DCOP. This
is due to the way Swarm-GAP deals with AND constrained
tasks. The use of an execution coefficient (see Section 3)
does not ensure the simultaneous allocation of the AND
constrained tasks. Thus, the agents use their resources
to accept tasks, but this allocation does not translate into
a reward. Both eXtreme-Ants and LA-DCOP outperform
Swarm-GAP regarding the total reward. This is due to the
existence of explicit coordination mechanisms to deal with
AND constrained tasks, ensuring their simultaneous alloca-
tion.

LA-DCOP yields higher rewards than eXtreme-Ants be-
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cause each agent maximizes its capability when accepting
the tasks, taking into account the available resources. On
the other hand, agents in eXtreme-Ants make a simple one-
shot decision to allocate tasks. The maximization leads to
a better exploitation of the agents’ resources. However, as
we show in the next experiments, there is a tradeoff between
the achieved reward and the communication/computational
effort.

In the next experiment, shown in Figure 3, we compare
the amount of communication used in each algorithm. The
communication is measured as the sum of messages sent by
the agent over all time steps, regardless of message type
(e.g. token, recruitment request, etc.). The results are
statistically significant at 99% confidence t-test. On aver-
age, agents in eXtreme-Ants sent 121% fewer messages than
those in LA-DCOP and 80% more messages than those in
Swarm-GAP. The smallest difference to LA-DCOP occurs
with 3000 agents. Even in this case LA-DCOP sends 66%
more messages than eXtreme-Ants.
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Figure 3: Total number of messages sent versus the

number of agents.

As mentioned Swarm-GAP sends fewer messages than
eXtreme-Ants and LA-DCOP due to its difficulty to deal
with AND constrained tasks. The absence of an explicit co-
ordination mechanism to ensure the simultaneous allocation
leads to a small number of messages, but has a great impact
in the total reward of Swarm-GAP.

The last experiment aims at evaluating the computational
effort of the agents in each algorithm. We define the com-
putational effort as the number of evaluated tasks by each
agent at each time step. This number is computed as fol-
lows. Each time an agent decides whether or not to accept
a task, an internal counter is incremented. In the case of
eXtreme-Ants and Swarm-GAP, each probabilistic decision
causes just one increment in the counter. On the other hand,
since an agent in LA-DCOP solves a BKP to decide which
tasks to accept, the increment in the counter is related to
the number of retained tasks. To solve a BKP our imple-
mented version of LA-DCOP uses a greedy approach, which
sorts the tasks by the agent’s capability and then selects the
tasks to accept constrained by the agent’s resources. If n is
the number of retained tasks, the sort causes a increment of

n log n in the counter, followed by a increment of at most
n to select the accepted tasks.

Low computational effort means that the agents are more
efficient to act in environments in which the available time
to make a decision is restricted. Figure 4 shows the average
computational effort of each agent at each time step. The
external plot emphasizes the area which concentrates the
majority of the points. The internal plot shows the full area
just to present the points not shown in the external plot.
The results are statistically significant at 99% confidence
t-test.
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Figure 4: Computational effort as the number of

evaluated tasks by each agent at each time step.

The computational effort of Swarm-GAP is, on aver-
age, 55% lower than those from eXtreme-Ants. Since in
Swarm-GAP there is no explicit coordination mechanism
to deal with AND constrained tasks, the agents do not
have to make additional evaluations regarding the simulta-
neous allocation of constrained tasks, reducing the computa-
tional effort of Swarm-GAP. However, the absence of such
mechanism affects the total reward, as shown previously.
The higher computational effort of both eXtreme-Ants and
LA-DCOP are due to the presence of an explicit coordina-
tion mechanism to deal with constrained tasks.

eXtreme-Ants outperforms LA-DCOP, with computa-
tional efforts on average 151% lower than those from
LA-DCOP. The most significant result is for the case of
500 agents, in which the computational effort of LA-DCOP
is 493% higher than that of eXtreme-Ants.

As shown in the experiments, the probabilistic allocation
of eXtreme-Ants, based on the model of division of labor,
reduces the amount of communication and the computa-
tional effort. The reduction in the computational effort
is due to the simple one-shot decision, which does not re-
quire any local maximization. The low computational ef-
fort causes the reduction in the number of messages sent,
since in LA-DCOP the tasks which are not selected in
the local maximization are sent do other agents. In both
eXtreme-Ants and LA-DCOP the presence of an efficient
coordination mechanism to deal with inter-task constraints
leads to better total rewards regarding Swarm-GAP.

Finally, we emphasize that the choice of one particular
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algorithm must be related with the constraints of the sce-
nario. When the total reward is a key point and there
are no constraints in the communication and in the time
the agents have to make a decision, LA-DCOP is a good
choice. On the other hand, in scenarios with such constraints
eXtreme-Ants is more appropriate. It achieves low total re-
wards, but the decision is faster and there is a better use of
the communication channel.

6. CONCLUSIONS
In this paper we have presented a multiagent approxi-

mate algorithm for task allocation in extreme teams, called
eXtreme-Ants. The algorithm is inspired in the division
of labor in social insects and in the process of recruitment
present in ants that transport preys cooperatively.

The experimental results show that the use of the model
of division of labor to decide whether or not to allocate the
tasks allows the agents to make reasonable coordinated ac-
tions. Since the decision is probabilistic, it is fast, efficient,
and requires a reduced communication and computational
effort, enabling the agents to act in environments where
the available time to make a decision is highly restricted.
Moreover, the incorporated recruitment process provides ef-
ficient allocation of constrained tasks that requires simul-
taneous execution. This avoid that agents waste they re-
sources and leads to better total rewards. The efficiency of
eXtreme-Ants regarding communication and computational
effort suggests that techniques which are inspired in social
insects can be considered for multiagent task allocation.

We intend to work in the direction of changing the stim-
uli values dynamically, indicating different priorities in the
execution of the tasks. More than one kind of resource for
an agent can also be considered. Besides, these resources
can change over time, as for instance, a battery charge of a
robot. We also intend to evaluate the performance in unre-
liable communication channel, with failures and noises, and
to apply this approach in the RoboCup Rescue simulator.
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