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ABSTRACT

With the recent and outstanding advances in gene expras&asuring technologies,
a huge volume of data has been produced, introducing a nevesting research area in
the field of bioinformatics: the reconstruction and anaysfi gene regulatory networks
from the data themselves. By constructing a graph modeh&génetic interactions com-
prising organisms, scientists are able to test hypothesitco and make new predictions
about an organism’s response to a particular stimulus ora@mwmental change. Computer
science has played an inportant role in this process, prayttie tools and algorithms for
the analysis of such data. This work aims to outline some lyidged machine learning
methods in this context and identify their respective wegkes and strengths, as well
as review their main applications to the inference of gegeletory networks from gene
expression data.

Keywords: Artificial Intelligence, Machine Learning, Reverse Enginiag, Gene Regu-
latory Networks, Gene Expression.






Um Estudo sobre Métodos de Aprendizagem de Maquina para a Ermharia
Reversa de Redes Regulatérias Genéticas

RESUMO

Com o recente e notavel avanco nas técnicas para medica@ess&o génica, um
grande volume de dados esta sendo continuamente prodirtidmuzindo uma inter-
essante linha de pesquisa no ramo da bioinformatica: astogéo e analise de redes
regulatorias genéticas a partir dos dados propriameras. ditraves da construcéo de
um modelo de grafo, cientistas sdo capazes de testar lepdtesiico e realizar novas
predi¢cdes a respeito da resposta de um organismo a diferestienulos e altera ¢cdes
ambientais. A ciéncia da computagcéo vem desempenhando p@h ipgportante neste
processo, fornecendo ferramentas e algoritmos para aamtls dados bioldgicos. Este
trabalho visa destacar algoritmos de aprendizagem de ma&quinplamente utilizados
neste contexto e identificar os pontos fracos e fortes asbogia cada um deles, assim
como revisar as principais aplicacfes destes métodos r@nmeia de redes regulatorias
genéticas a partir de dados de expressao génica.

Palavras-chave:Inteligéncia Atrtificial, Aprendizagem de Maquina, Engerid&eversa,
Redes Regulatorias Genéticas, Expressao Génica.






15

1 INTRODUCTION

Since the discovery of DNA structure, scientists have dedita great effort to better
understand how the information comprised in a DNA molecsiliaterpreted and propa-
gated so that the phenotypic variability observed in natag be possible. In a general
way, all organisms cells carry the same set of genes; whiaglisshes their unique prop-
erties and function is the subset of expressed genes. Gpnession is the term used to
denote the process by which functional gene products anhesized based in the ge-
netic information coded in a gene. These products are ofteips, which have a prime
relevance for life maintenance on account of almost eveltulae function be protein-
dependent. Therefore, regulation of gene expression,rog gEgulation, is essential for
life versatility and adaptability (SWAIN; MANDEL; DUBITZK, 2010).

An important goal emerged on genomic research and, moratigc@ bioinformat-
ics, is to understand the nature and control of cellular ioncand the reasons why cel-
lular systems fail in disease. Despite all the knowledgeaualgenes, RNA transcripts,
proteins and metabolites as individual entities, veryelitt known about how these el-
ements are integrated and interact in a biological systesmyedl as how to manipulate
their functioning (MARBACH, 2009). In contrast to the formeductionist approach,
which performs a gene-by-gene analysis in order to revealdmorganism works and
how its components relate to each other, scientists anmptitieg to accomplish this task
by investigating the behavior of genes in a holistic way. YWir@mpted this shift was
the awareness that genes activity is not isolated or inckpeof each other (SHMULE-
VICH et al., 2002). Indeed, nowadays it is known that genespse intricated networks
through which they work in concert to promote life sustaitigb Therefore, the dis-
covery of such networks, named gene regulatory networkseda experimental data
is a logical step towards a better understanding about tiledical role played by each
gene. In literature, this problem is commonly referred toea®rse engineering of gene
regulatory networks.

Gene regulatory networks (GRN) are graph models that refiectnechanisms and
dynamics of gene expression and regulation by mapping tiasigdd or influence inter-
actions between genes of a particular organism. The vertit¢éhis graph usually rep-
resent genes, while the edges describe the regulatoryoredatps between genes (FO-
GELBERG; PALADE, 2009). Once modeled, these networks explaw genes are over
and under expressed in response to perturbation signalsmrdnmental changes. The
main benefit of constructing a global regulation model is tovgge insight about how
to control or optimise parts of the system while taking inte@unt the consequences
for the system as a whole (HECKER et al., 2009). This genomde-approach is rel-
evant since it renders significant information for pharnugical industry and medical
treatments development. If one knows, for instance, thetemaget gene over which a
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particular pathogenic agent acts in its host, infectiondatde treated more effectively
and with reduced side effects. In plants, this knowledgddcbe applied for the devel-
opment of cures less environmental and health aggressavepbsticides. Additionally,
the resulting model could be used for in silico experimentsrder to test hypotheses and
make predictions about the behavior of the biological systader different experimental
conditions.

The expressive and continuous progress in techniques far gepression profiling
is another important contributing factor for the latteeirgst in inferring gene regulatory
networks from the data themselves. The current availallenogies allow the mea-
surement of the expression of thousands of genes at onaédimgvaluable information
to create a comprehensive picture of cellular function. @@ression level is often given
in terms of MRNA concentration in the cell, which acts as apror the transcription
activity, since this can not be directly measured. The bassumption is that one can
infer causality of transcription regulation from changedhe available gene expression
profiles (HACHE; LEHRACH; HERWIG, 2009). However, this appch has two im-
portant shortcomings. First, the process of regulation f&act much more complex and
involves other biological entities than just transcripthierefore, the constructed model
represents a simplification of the real biological procegst it is a valuable source of
knowledge towards a better understanding of gene expressid regulation. Second,
the prevailing technologies produce such a massive amduaita that its analysis is no
longer achievable through manual efforts.

According to HECKER et al. (2009), the use of novel compotal methods to learn
large-scale models by an integrative analysis of the availaiological data is both essen-
tial and challenging. The developed methodologies mustolie $tatistically sound and
computationally tractable for analyzing such data setsredring biological interactions
from them (FRIEDMAN et al., 2000). A wide range of mathemali@nd computational
methods have been already applied for the purpose of regegieeering gene regulatory
networks. The proposed modeling frameworks vary from absboolean descriptions to
detailed differential equations, where every represemtdias its drawbacks and benefits.
Due to the typically limited knowledge about the biologisgstem under study, machine
learning methods have been favored in the inference of gandatory networks because
they are able to extract information based solely on theogiohl data, without relying
on any prior knowledge that one has about the system thahateyl it.

The present work presents a broad review about the main madarning techniques
used in the process of inference of gene regulatory netwadiiis study will concentrate,
mostly, in making a survey about the learning algorithm etoleel in each method, the
source and characteristics of the input biological data anally, the quality of the infer-
ence result. The main goal is to identify the advantages iamthtions inherent to each
computational method and possibilities of improvementrioteo to achieve more precise
and accurate results in the future.

This work is organized as follows. In Chapter 2 some of thernaincepts involved in
gene expression and regulation processes, essentials€éon@rehensive understanding
about the purpose of the current work, are explained. In @n&oa review about some of
the well-known biological experiments and technologiesgene expression measuring
is provided. Next, the main machine learning methods ayregblied to the problem of
reverse engineering gene regulatory networks are intextiaad discussed in dedicated
chapters. Chapter 4 addresses clustering algorithmsidimgva detailed description of
algorithms such as hierarchical clustering, K-means atfebsganizing maps. Chapter
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5 presents Bayesian networks and a commonly applied aigofior Bayesian learning,

the Markov Chain Monte Carlo. Chapter 6 covers the modelimg) laarning of gene

regulatory networks by means of random Boolean networksap€h 7 deals with neu-
ral networks and describes the most well-known error-ctioa learning algorithms for

training these networks. Finally, the main conclusionsediby the literature review pre-
sented in this work are discussed in Chapter 8. This disoassicomplemented with a
brief comment on promising directions for future research.
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2 BIOLOGICAL ASPECTS OF GENE REGULATORY
NETWORKS

In this chapter some of the main biological concepts invivegene expression and
regulation will be briefly presented. The goal is to providader with a background
on key cellular entities and events for life sustainabiéityd variability. The discussed
topics are all closely related to the major subject of thiskygene regulatory networks,
and are therefore very relevant for a better understandirtgerole of such networks in
organisms and the benefits of being able to infer their stredtom experimental data.

2.1 The DNA structure

Every single organism in nature is composed of a genome,hnddcries all biolog-
ical instructions for constructing and maintaining life.oM specifically, these instruc-
tions are codified in small portions of the DNA (deoxyribolaic acid), a polymeric
molecule made up of chains of monomeric subunits calledaatides (BROWN, 2002).
The backbone of each DNA nucleotide is composed of three oaegs, as shown in
Figure 2.2(a): a deoxyribose sugar, which is a pentose, sgblate group attached to the
5’-carbon of the pentose, and a nitrogenous base attacltled 16-carbon of the pentose.
There are four distinct nitrogenous bases: cytosine, thgmmadenine and guanine. Cy-
tosine and thymine are double-ring compounds classifiediasgs, while adenine and
guanine are single-ring compounds known as pyrimidines. th® sake of simplicity,
nucleotides are often represented by their base’s firstrieglt, T, A, G, respectively.

Although the existence of DNA has been discovered in 1869dhadn Friedrich
Miescher, a Swiss biochemist, the notion of DNA as a genetitenal and the concept
of gene were only introduced in 1944, by Avery, MacLeod andCislity (ZAHA et al.,

o
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(a) Cytosine (b) Thimine (c) Adenine (d) Guanine (e) Uracile

Figure 2.1: Nucleotides present in DNA and RNA.Structure of DNA'S monomeric
subunits (a) cytosine, (b) thymine, (c) adenine and (d) ongarnThe (e) uracil nucleotide
is only found in RNA, as a substitute for thymine. Reproduéedn (BALL; HILL;
SCOTT, 2011).
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(a) Primary structure (b) Secondary structure

Figure 2.2: The DNA structure. (a) DNA is made up of nucleotides, each of which is
composed of a pentose, a phosphate group and a nitrogensels e nucleotide is
identified by the base it contains: adenine (A), guanine ¢&psine (C) or thymine (T).
(b) The complementary property between pairs A—T and C — @iges a double-helix
structure to the DNA molecule. Reproduced from (BALL; HILBCOTT, 2011).

2003). Later, in 1953, James Watson and Francis Crick edtmibthe three-dimensional
structure of DNA proposing the double-helix model, depddteFigure 2.2(b).

In the Watson-Crick model, the two individual DNA strands arapped around each
other in a helix shape, with the sugar-phosphate backbotieinutside, exposed to the
aqueous environment, and the nitrogenous bases in th@ahfeortion. Pairs of bases
of opposite strands form bonds between each other accotdiagestrict rule: A only
pairs with T, while C only pairs with G. This process is reéefto as complementary base
pairing and is a crucial feature for cellular events that laél further introduced. Another
important characteristic of the double-helix model is thagarallel alignment of DNA
strands: one strand has directitin— 5" and the other is disposed in directigh— 3'.

The stability of the double-helix model is guaranteed by twain features. First,
the hydrophobic portion of the DNA molecule, i.e. the nittagus bases, is protected
from the aqueous environment by the sugar-phosphate baekldniich has hydrophilic
properties. Second, the chemical structure of nitrogebasss, which comprises a ceto
and amino groups, allows the formation of hydrogen bondw/éen the pair of bases.
A pair C — G has three hydrogen bonds, while the pair A — T hashydyogen bonds.
Therefore, DNA molecules with more C — G pairs are more stablbey require a higher
temperature to disassociate. The principle of complemgptzring between purine and
pyrimidine bases also provides DNA molecule with constangldimensions and perfect
fitting between both strands.

2.2 Central Dogma of Molecular Biology

All cells within an organism carry a copy of its genome, magdetione or more long
DNA molecules. In more complex organisms, i.e. eukarypaissanimals and plants, the
genome is inside the cell’s nucleus and is organized in thra fif chromosomes. These
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Transcription Translation

Replication —» RNA |—» Protein

Figure 2.3:Central dogma of molecular biology. Three main processes are responsi-
ble for the perpetuation and interpretation of geneticrimf@tion encoded in DNA: (1)
replication, in which new copies of DNA are made; (2) transan, in which RNA is
produced from a segment of DNA; and (3) translation, in whiehinformation in RNA

is translated into a protein sequence.

cells are usually diploids, which means that they carry twatances of each chromosome,
one from each parent. In contrast, prokaryotic organisow) as virus and bacteria, lack
a nuclear membrane. The nuclear region consists of cir@MN#&, known as nucleoid,
and contains only one set of chromosomes.

Regardless the cellular complexity, all organisms lifeategs on the cell’s ability to
save, transfer and translate the genetic instructionsdeacim the DNA, which define the
structure and function of all livings things. More specifigea DNA strand is composed
of thousands of functional portions, called genes. Eacle gerwomposed by a coding
region, which carries the necessary and sufficient infaondbr the production of two
other key classes of polymers through the process of gemessipn — RNA and proteins,
and a regulatory region, responsible for the control of gexggession and thus protein
biosynthesis.

RNA (ribonucleic acid) is a polymer chemically and struelly similar to DNA, dif-
fering from the latter in two main aspects: RNA is composed abose sugar and con-
tains the nitrogenous base uracil (U) instead of thyminen&uwgiruses use RNA rather
than DNA as their genetic material, and all organisms usesergger RNA (MRNA) to
carry the genetic information that directs the syntheszrofeins.

Proteins are the main functional components of organisnigey Bre composed of
special monomers called amino acids, which are bondedtegby peptide bonds, and
play a crucial role for the development and survival of oigars. In brief, proteins are
on duty of functions as: catalyse chemical reactions, agreag; defend organism, as
antibodies; activate or deactivate a specific set of geresraascription factors; and
provide structural support, as fibrous proteins such as,amtilagen and elastin.

The mechanisms by which the genetic material is perpetultedgh generations and
interpreted to allow the synthesis of these vital molecaleshe basis of the well-known
Central Dogma of Molecular Biology and will be discussed imatvfollows.

2.2.1 DNA Replication

For an organism to grow and reproduce, the cellular abititditzide and duplicate
is essential in order to increase cellular complexity arskpan the organism phenotype.
These processes, however, require DNA to be duplicateddribe cell so that it can be
split between two daughter cells, which will be identicatiie parent cell. The mecha-
nism of DNA copy is known as replication.

When Watson and Crick suggested the double-helix model f8A Btructure, in
1953, they made one of the most famous statements in motdaolagy: "It has not
escaped our notice that the specific pairing we have posidlahmediately suggests a
possible copying mechanism for the genetic mate{RROWN, 2002). In fact, years
later it was discovered that the structure of DNA as two longleotide strands con-
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// Leading Strand 3’
/ Old
s
W New
p 5

DNA polymerase

DNA nucleotide
«

Helicase

Okazaki Fragments .
Adenine
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—_— Guanine

Primers = Cytosine
Lagging Strand

Figure 2.4: DNA replication. DNA is replicated through a semiconservative process:
the parental DNA chain is separated such that each one of i#e dirands work as a
template for the synthesis of the new DNA. The synthesissethan the complementary
pairing between nitrogenous base. Reproduced from (BAULLHSCOTT, 2011).

nected by the principle of complementary pairing betwedrogenous bases is indeed
the key of the replication process. Figure 2.4 depicts imgpbfied form how replication
of DNA occurs.

Replication starts at particular points of DNA, known agjors, which are targeted by
helicases enzimes responsible for breaking up the hydrogeds between bases and un-
winding a short segment of DNA. Once initiated, two replicatforks can emerge from
the origin and progress in opposite directions along the Digflication is therefore
bidirectional in most genomes (BROWN, 2002). With the twaistls of DNA sepa-
rated, each individual strand act as a template for the sgiglof a complementary DNA
chain. Special proteins known as DNA polymerases synteeész new DNA by adding
complementary free nucleotides that match the sequenbe itreinplate strand, as stated
by the previously mentioned rule: A only pairs with T, whileo@ly pairs with G. The
exact point where complementary pairing begins is detexthby special strands of nu-
cleic acid called primers, which provide a short doublesstied region with & end onto
which the enzyme can add new nucleotides.

However, DNA polymerases enzimes are only able to synted3MA in thes —

3’ direction, which means that only one strand of the parergabt-helix, the one in
3’ — 5’ direction called the leading strand, can be copied in a naotis manner. The
replication of the lagging strand, which hiés— 3’ direction, is carried in a discontinuous
fashion, resulting in a series of short segments known ag&kkdragments (BROWN,
2002). These fragments are processed by a specific type of Bolyinerase to remove
primer sequences and add new deoxyribonucleotides to dilgdps. Finally, Okazaki
fragments are merged by the DNA ligase enzime. Note thaicegn requires only one
primer to initiate complementary strand synthesis on thditeg polynucleotide, and one
primer for every segment of discontinuous DNA synthesizethe lagging strand. Since
one strand of the new DNA comes from the parent cell, repbioas widely referred to
as a semi-conservative process.
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Coding strand
of DNA

Template
strand
of DNA

Direc

transcription @ Adenine

I:] Thymine
D Guanine
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lj Uracil

Figure 2.5:Transcription. The first step towards gene expression is given by the tran-
scription process, in which RNA molecules are synthesizeskt on information con-
tained in the nucleotides sequence of a double-helix DNAnch@ihis is not a regular
process in the sense that the specific DNA sequences to lsetitaed and the amount of
RNA produced are regulated by special proteins and arengparameters. Reproduced
from (BALL; HILL; SCOTT, 2011).

2.2.2 Transcription

Genetic information encoded on DNA is only useful to dirdat growth and func-
tioning of an organism once itis expressed, e.g. when theiori codes for is produced.
The first step towards gene expression is given by the trgiser process. Transcrip-
tion is the mechanism by which RNA molecules are synthesimes®d on information
contained in a double-helix DNA molecule, as shown in Figlite

Transcription starts and finishes at specific points of a’geagulatory region, called
promoter and terminator respectively. When a promoterdsgrized by a RNA Poly-
merase, the class of protein in charge of transcriptiontwoestrands of the double-helix
DNA unwind at specific sites along the DNA molecule, just apgens in replication,
by breaking the hydrogen bonds between nitrogenous bases e DNA strands are
separated, ribonucleotides are added one after anothiee tréwing3’ end of the RNA
transcript following the base-pairing rules and the nuites sequence present in the
template, which is given by th# — 5’ strand of DNA. The resulting RNA is antiparallel
and complementary to the template strand and is identicddga@orresponding coding
strand of the DNA (the strand &1 — 3’ direction in the parental DNA molecule), except
that uracil replaces thymine bases.

The RNA synthesis stops when a terminator is identified byRN&A Polymerase.
At this point, the RNA transcript is released and the RNA Radyase is responsible
for wrapping the parental DNA chains around each other inhilex shape. The pro-
duced RNA transcript is referred to as pre-RNAs or primaayscript and in eukaryotes
species, mainly, it needs to be posteriorly processed tetitote a biologically active
RNA. The RNA processing often involves modification (ingertdeletion) of some ni-
trogenous bases, changes in the chemical structure awcthgpin which non-coding re-
gions (introns) are eliminated and coding regions (exore)aned, forming the mature
RNA.

There are many different types of RNA, all of them produced post-processed as
described above. However, three types are essential fegipreynthesis and therefore
are more discussed in literature: messenger RNA (mMRNA9Qsomal RNA (rRNA), and
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transfer RNA (tRNA). mRNA carries information about pretesequence to the ribo-
somes, the protein factories in the cell, and correspon@8dmf the total RNA. Also,
MRNA exists for a relatively short time: it is continuouslgibg degraded and resynthe-
sized. The ribosomes are composed of rRNA, the most abugamtof RNA, which
makes up to 80% of the total RNA found in an eukaryotic cytepla Finally, tRNA
corresponds to around 15% of the total RNA and is responBibleansferring specific
amino acids to the ribosomal site of protein synthesis, Wwhie attached to the growing
polypeptide chain.

Until 1990s, other classes of RNA apart from mRNA, tRNA aniNARwere essen-
tialy unknown. Nonetheless, in recent years an enormousauof non-protein-coding
RNAs (ncRNAs) have been found to play an important role ort-pasiscriptional gene
regulation (LI et al., 2010). Small interfering RNAs (siRNAand microRNAs (miR-
NAs) are the most common types of ncRNAs. SiRNAs typicaltuce endonucleolytic
cleavage of mRNA with near-perfect complementarity (ALI NMXI; GREEN, 2011).
mMiRNAs, in turn, interfere in gene expression through bodinglational repression and
MRNA destabilization mechanisms. According to LI et al.}@)) many ncRNAs show
abnormal expression patterns in cancerous tissues.

2.2.3 Translation

The final result of gene expression is the proteome, theatale of functioning pro-
teins synthesized by a living cell (BROWN, 2002). The instian for building a protein
is carried in the nucleotides sequence of the mature mRNgh Baee consecutive nu-
cleotides, called codon, code a specific amino acid. The @aids are the monomers
that compose a protein through the formation of a polypeptithin.

As previously mentioned, the translation of a codon, whialoives the decoding of
its genetic code into an amino acid, occurs at the ribosomade up of rRNA. Before the
initiation of translation, amino acids need to be covalehtinded to the correct transfer
RNA (tRNA), e.g. the one carrying the complementary segeeri¢he codon by which
the amino acid is produced. The bond occurs between thexcdrgmup of the amino
acid and thed’ OH of the tRNA and is intermediated by an enzyme known as aaaiyle
tRNA synthetase, just as shown in Figure 2.6.

Next, the tRNA carrying the complementary nucleotides todbdon to be translated
(the anticodon), binds to the ribosome close to the growxtgeeity of the polypeptide
chain and interacts with the mRNA through base pairing ofocoand anticodon. Once
the new amino acid is incorporated in the chain through aigepgiond with the last
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Figure 2.6: Structure of transfer RNA. Before translation can takes place, the amino
acid must be attached to its unique tRNA. This crucial precequires an enzyme known
as aminoacyl-tRNA synthetase. Reproduced from (BALL; HIBICOTT, 2011).
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aggregated amino acid, positioned at the end of the chanibbsome moves right in
order to allow the next tRNA, bringing a new amino acid, tareotly attach to the mRNA
at its complementary position. This process is contingoggieated until a special codon,
called stop codon, is reached. At this point, the polypeptidain is released from the
ribosome into the cell cytoplasm.

In prokaryotes, transcription and translation are couplled translation begins while
the mRNA is still being synthesized, and both processesdrapp the cytoplasm. In
contrast, in eukaryotes, transcription and translatiensgatially and temporally sepa-
rated: transcription occurs in a membrane-bound nucleddranslation takes place in
the cytoplasm.

2.3 Regulation of Gene Expression

In Section 2.2 the steps composing the pathway by which egpme of the genome
specifies the content of the proteome were presented. Aogoiw BROWN (2002), this
biochemical signature is not entirely constant. even thgpkst unicellular organisms
are able to alter their proteomes to cope with changes inrthieomment. Regulation
of gene expression, or simply gene regulation, is the psobgavhich cells regulate the
exact moment and rate with which the information encodeckimeg is turned into gene
products.

In procaryotes, the control of the rate of transcriptiomatiation is the predominant
site for gene regulation. In contrast, gene regulation kaegotes is much more complex
and may happen in a wide variety of ways, as a result of diffeneolecules’ activity,
from proteins to ncDNA. In what follows, some of the possit@dgulation mechanisms in
eukaryotes are enumerated (BROWN, 2002).

e Gene acessibility:the physical structure of chromatin (complex of DNA and pro-
teins located inside the nucleus) can controls access of jiymerase and tran-
scription factors to the promoter region, avoiding thewaditon of transcription;

e Transcription initiation: initiation of transcription process is influenced by acti-
vators, repressors and other control systems like ncCRNA;

e MRNA processing: mechanisms such as changes in nucleotides sequence)gplici
and mRNA degradation affects protein synthesis;

e Translation initiation: the ability of ribosomes to recognize and initiate synthesi
from the correct start codon can affect the expression oha geoduct;

¢ Post-translational modification: the chemical modification (glycosylation, acety-
lation, fatty acylation,...) of a protein after its trartsd@ may be a control point of
protein synthesis;

e Small RNAs: small RNA-mediated control can be exerted either at thd tevie
translatability of the mRNA, the stability of the mRNA or wedanges in chromatin
structure.

2.4 Genetic Regulatory Networks

As previously discussed, biological systems are complgamsms composed of in-
numerous entities, such as DNA, RNA and proteins, whichratein order to produce
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the specific features of each organism. The manner by whesethomponents are in-
terconnected and relate to each other, allowing an harmear& crucial for cellular
sustainability, defines gene regulatory networks (GRN).

Genetic regulatory networks are high-level conceptualasgntations of the mutual
influence between genes in an organism. Their main goal isyptuce the dependen-
cies between the molecular entities, representing theigddyateractions gene—gene (in-
fluence interactions) and indirect gene regulation viagnptmetabolites and ncRNA
(BANSAL et al., 2007; HECKER et al., 2009). The usual graphformalism is a direct
graph, in which nodes denote genes or other molecular gatitiya connection from node
A to node B suggests that A exerts regulation over B, eithact¥ating or inhibiting na-
ture.

The main purpose of exploring GRN is to understand the mlatiip between genes
within a cell and how they respond to intra and extracellatanulus. In BANSAL et al.
(2007), some specific practical utilities of gene reguhatogtworks are outlined: 1) al-
lows the identification of functional modufgg2) helps in the prediction of network re-
sponse to external perturbation, as well as of genes diraffécted by the perturbation
and (3) efficient methodology for identifying real physicdkractions through integration
with additional information from experimental data.

2.4.1 Macro-characteristics

According to FOGELBERG; PALADE (2009), GRN are not just randdirected
graph. Instead, they carry important macro-charactesistvhich will be briefly described
in the sequence.

e Connectivity: GRN are scale-free networks. The probability distributionthe
node’s degree follows a power-law, meaning that most of #eeg are regulated
by only a few others, while some nodes are knowhwassand have influence over
the expression of many others.

e Modules: genes are organized into modules, which define groups ofsgeme
regulated or equi-regulated, and functionally linked bgitiphenotypic effects.

e Motifs: GRN are composed of subgraphs called motifs, which are mumte m
frequent in GRN’s structure than in a randomly generate@lgr&ommon motifs
are auto-regulation, feed-forward triangle, cascade amyergence, depicted in
Figure 2.7.
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Figure 2.7:Common motifs in GRN. (a) auto-regulation, (b) feed-forward triangle, (c)
cascade and (d) convergence. Reproduced from (FOGELBERGKIPE, 2009).

1In GRN context, a functional module is a subset of genes tatlate each other with multiple inter-
actions but have few regulatory relations to other genesideithe subset.
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3 MEASURING GENE EXPRESSION LEVELS

According to (FOGELBERG; PALADE, 2009), there are four tgpé biological data
available to address the problem of inference of GRN: exwagata, perturbation data,
phylogenetic data and chemical and gene location data. &gmession data is nowadays
the most widely used as input for reverse engineering dlyuos, as the other types are
currently not available in sufficient quantity to be incor@ied in reverse engineering
analysis. Expression data measures how active a genéV is in a given moment or
under a given experimental condition. By active, the readay understand that the
functional product, e.g. protein or RNA, coded by the genbamgg produced. This
chapter will provide a brief review about the main techngjapplied nowadays in the
measurement of gene expression levels.

3.1 Microarray

The measurement of gene expression using microarraykrasm as DNA chips, is
one of the more successful techniques among the many medkwd®bped. It allows the
identification and quantification of the mRNA transcriptegent in the cells by assuming
the following procedure: given that genes are expresseddogdription and translation
of their genetic information into mMRNA, which will be latesed to synthesize proteins,
if one is able to find out which and how much mRNA is around, dmaugd also be able
to discover which genes and with which intensity they aredyeixpressed (SANCHEZ;
VILLA, 2008).

A microarray consists of a solid surface on which strandsatynpucleotide, called
probes, are attached or synthesized by a machine in fixetigpessi There are two differ-
ent types of microarray according to the way probes are glacethe slide. On Spotted
or cDNA microarrays, the probes are synthesized apart antedrmechanically on the
slide. In contrast, oligonucleotide chips, whose mainespntatives are Genechip and
Affymetrix (manufacturers), have the probes directly $ysized on the surface. In the
latter, the synthesis process allows the creation of onplldnagments so that a gene is
not represented by one probe but by a set of them (a probe set).

Once probes are ready, mRNA is extracted from the subjelst aetl labeled with
a fluorescent dye. Afterwards, the labelled transcriptibedaargets, are deposited over
the array and left inside a hybridization chamber for somer$io If a labelled target
iIs complementary to one of the gene sequences placed ondhesprit will bind by
hybridization to the corresponding spot. Finally, the pisawashed in order to eliminate
those targets which have not hybridized.

The expression level of genes is measured by illuminatiagnitroarray with a laser
light that causes the labeled molecules to emit fluoresagritproportionally to the quan-
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tity of hybridized mRNA it contains. This way, active gene#l wroduce more mRNA,
which will attach to the DNA on the microarray producing linigr areas. Spots that are
not bright indicate that their genes are not active. Thetenhlight is captured by a special
scanner yielding an image that consists in a grid of shinetsspach one corresponding
to a probe. Finally, this image is processed and transfoiinmtechumbers, consisting the
basis of the gene expression analysis.

Samples
OCC)) % gd,?; , A
wild type yeast -2 \ »
mRNA cONA —Y—— —* 2
hybridise to 8
i : microarray
OR)¢2ee #¥2e
O 2P0 T
mutant yeast Gene expression
matrix

Figure 3.1: The microarray experiment. A comparison between gene expression of
species with different features (in this case, two yeastioes, a mutant and a wild one)
may be held by extracting mRNA from both samples, labelingtih different fluorescent
dyes and letting it hybridize to the microarray. The fluoessm®e of each spot on the
microarray reflects the relative mRNA concentrations, Whace later scanned and the
resulting intensity is stored as a gene expression mataprétiuced from supplementary
material provided by SCHLITT; BRAZMA (2007) .

3.2 Real-Time PCR

Polymerase chain reaction (PCR) is a method that allowsrexg@al amplification
of short DNA sequences (usually 100-500 pair bases) withomg DNA molecule in a
very fast fashion. The process is performed in vitro and geae an incredible amount
of DNA for further analysis. PCR use primers, which bind te tvo strands of the DNA
by complementarity and define the portion of DNA to be copiElde DNA, the primers
and other components of reactions are mixed and placed ieanbtycler, which raises
and lowers the temperature of the block in discrete, prgmarmmed steps, allowing the
duplication of DNA molecule. After the copy is finished, trerge primers can be used
again, not only to make another copy of the input DNA strand abso of the short copy
made in the first round of synthesis, leading to exponentgdldication.

After several rounds of amplification, the PCR product islgsed on an agarose
gel and compared with a standard or reference genetic raatproviding a qualitative
tool for detecting the presence or absence of a particulak.Ddtwithstanding its wide
applicability in disease diagnosis, for instance, the nipetheasure mRNA to analyse
differences in gene expression between samples has dheetre¢ation of a traditional
guantitative reverse transcriptase PCR (RT-PCR) metmdTIPCR, the PCR method is
extended using reverse transcriptase to convert mRNA ortgptementary DNA (cDNA),
which is then amplified by PCR and analysed in an agarose geldayrophoresis. Al-
though this method has already been used to measure the tdvalparticular mMRNA
under different experimental conditions, it does not pdeva quantitative measure for
gene expression at all due to the extra reverse transaiptap: products are seen after
the exponential phase of amplification, which lowers thesgmity.
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Real-time PCR is therefore, an improvement of regular PCiRadllows the quanti-
tative estimation of the amount of a given sequence preseatsample. Products are
measured after each cycle by detecting a fluorescent light fabelled PCR products,
rather than at the end of the run, and the samples are analysi) the exponential
phase, where differences in quantity of products are masechi This method has thus
many advantages over conventional PCR: increased spedd deduced cycle number,
lack of post-PCR gel electrophoresis detection of prodants higher sensitivity of the
fluorescent dyes used for labeling samples. Real-Time PGRd®@n extensively applied
to quantitatively determine levels of gene expression.alatalysis in both traditional
and real-time PCR data require normalization to known steaglto determine relative or
absolute quantity of starting target gene expression.

3.3 High-Throughput Sequencing

The increasing demand for gene expression data has drigatettelopment of high-
throughput sequencing technologies. The goal of these egwesicing methods is to
parallelize the sequencing process, such that a larger nodwdata is provided in a
shorter space of time and the overall cost of DNA sequenamgduced, encouraging
more researches in the field. Gene expression level is meghyiquantifying the number
of sequence reads for each mRNA/gene. A wide range of apipisadepends on the
availability of sequencing data, such as genome sequentiatgagenomic, epigenetics,
discovery discovery of non-coding RNAs and protein-bigsites (MACLEAN; JONES;
STUDHOLME, 2009), just to give a picture of the relevance filceently provide such
nature of data.
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Figure 3.2: High-throughput sequencing methods. Reproduced from MACLEAN,;
JONES; STUDHOLME (2009).
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Figure 3.2, reproduced from (MACLEAN; JONES; STUDHOLME,(®), shows
a general picture of the main new-generation high-througepquencing technologies.
Features such as the read length, the number of reads amataharhount of sequence
generated in a typical run are highlighted and compared hiat ¥ollows more details are
given about two of the widespread used high-throughputesgzjng methods, Roche/454
and Illumina/Solexa.

3.3.1 Roche/454 FLX Pyrosequencer

The first high-throughput sequencer to achieve commeratabduction was the
Roche/454 FLX Pyrosequencer, in 2004 (MARDIS, 2008). Thethuod is based on the
"sequencing by synthesis" principle of pyrosequencing@dare. In pyrosequencing, a
complementary strand to the (single) DNA strand to be setpobis enzymatically syn-
thesized. The activity of the DNA polymerase is detectedhaitother chemiluminescent
enzyme, such that each incorporation of a nucleotide by Dhlmerase results in the
release of pyrophosphate, which initiates a series of divears reactions that ultimately
produce light by the chemiluminescent enzyme. The amoulnglaf produced is propor-
tional to the number of nucleotides incorporated and thendinbeninescent signals allows
the determination of the sequence of the template.

The Roche/454 FLX method requires DNA to be amplified befepgncing proce-
dure, which is done through PCR. As explained in MARDIS (20@€&: library fragments
are mixed with a population of agarose beads whose surfacgsatigonucleotides com-
plementary to the 454-specific adapter sequences on thedradibrary, so each bead is
associated with a single fragment. The agarose beads aexipfaindividual mixtures of
water-oil and PCR reactants, and after the process of theynbng about one million
copies of each DNA fragment on the surface of each bead isupeatd These amplified
single molecules are then sequenced en masse. More déRdsle/454 FLX sequencer
procedure are shown in Figure 3.3.

After approximately 8 hour of processing, the Roche/454 HRyfosequencer pro-
vides an average read length of 250 nucleotides, which aeepsed by an analysis soft-
ware and filtered to remove poor-quality sequences. Thdtiregueads yield 100 Mb of
quality data on average. The major drawback of Roche/454 Pyi$sequencer is that it
cannot properly interpret long stretches (more than 6 haddebke same nucleotide (ho-
mopolymer run), so these areas are prone to base insertiatesation errors during base
calling. By contrast, because each incorporation step dtentide specific, substitution
errors are rarely encountered in Roche/454 sequence reads.

3.3.2 lllumina/Solexa

lllumina released the Solexa Genome analyser in early 2RINCLEAN; JONES;

STUDHOLME, 2009). As the Roche/454 FLX Pyrosequencer, tethod begins by lig-
ating oligonucleotide adaptors to the DNA and immobilizthg ligation products onto
agarose beads. The beads are placed into a water-oil emalstb DNA is amplified
by PCR. After amplification stage, the sequencing processssby adding all four nu-
cleotides simultaneously to the flow cell channels, alonip \WNA polymerase, for in-
corporation into the oligo-primed cluster fragments. Thelaotides carry a base-unique
fluorescent label and t#-OH group is chemically blocked such that each incorponatio
Is an unique event. An imaging step follows each base incatjpm step, and after that
the 3’-OH blocking group is chemically removed to prepare eacnstifor the next in-
corporation by DNA polymerase. This series of steps coersrfor a specific number of
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cycles determined by user, which permits discrete readtesngf 25-35 bases. A base-
calling algorithm assigns sequences and associatedyjualites to each read. Finally,
a quality checking pipeline evaluates the Illumina datanfreach run, removing poor-
quality sequences. lllumina Solexa Genome analyser pesvabout 30 million reads
with an average length of 50 nucleotides. After quality filtg, the resulting data set has
around 1.5Gb. The overall process of Solexa Genome ana$ydepicted in Figure 3.4.
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Figure 3.3:The Roche/454 FLX PyrosequenceiReproduced from (MARDIS, 2008).
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3.4 Discussion

Gene expression measuring technologies are in continumgggss. Nonetheless,
some platforms have been consolidated as reference appofr this specific purpose.
Between those, three were highlighted in this chapter: eaicay, real time PCR and
high-throughput sequencing. In the latter, two methodsdstaut due to the wide applica-
tion in recent years, the Roche/454 FLX Pyrosequencer antlitimina/Solexa Genome
analyser. Despite the outstanding advances in experirtesitsology, data availability is
still an obstacle to be overcome in the process of inferefhgeioe regulatory networks.
The volume of generated data is huge, but it usually contanetatively small number of
experimental conditions and methods when compared withatiye number of observed
genes. This is known as tlitémensionality problenand is one of the main issues faced
by researchers nowadays.

Another important problem concerning biological data & the gene expression data
provided by the discussed technologies quantify the caraton of mMRNA and ignores
information about possible interventions and environrakchanges after the transcrip-
tion phase. Chemical and structural modifications of mRNAwall as the blocking of
translation by miRNAs, are common events. Therefore, a ortweconstruction based
solely on this type of data may result in a not fully veridicabdel. A natural course to
solve this limitation and enrich the reconstructed netwstthe feeding of other types of
data, such as protein concentration measurements, toveseeengineering algorithm.
However, those are still not available in sufficient amowbé embedded in the procses
(HACHE; LEHRACH; HERWIG, 2009).
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4 CLUSTERING ALGORITHMS

When one wants to uncover the gene regulatory networks lymiga certain organ-
ism, the goal is to somehow discover which genes are highteladed in terms of their
expression. In other words, one aims to find out what geng@®nektogether to a given
signal or perturbation, e.g. a virus infection, by beingioed to synthesized the products
they encode, or, putting it more simply, to express theneseNComputationally, an in-
tuitive and commonly applied approach to study correlabetween genes is clustering
algorithms.

Clustering is the process of organizing data into groupsimila objects based
only on information found in the data that describes the abjand their relationships
(BERKHIN, 2002; TAN; STEINBACH; KUMAR, 2005). Each group referred to as
a cluster and is composed of objects that are similar betwremnselves and dissimilar
to objects of other groups. From a machine learning perseaiustering is an unsu-
pervised learning technique that creates a data conce@rh{igning a domain based on
observed similarities. According to BERKHIN (2002), conding data in clusters causes
the loss of certain fine details, but achieves simplificatwamich is a benefit when dealing
with a large mass of information.

A wide range of fields have profited from clustering analyass,outlined by TAN;
STEINBACH; KUMAR (2005). In biology, for instance, clusteg was applied to auto-
matically find a taxonomy classification of all living thingk business, it is useful for
creating groups of potential and current customers fortamfdil analysis and marketing
activities. In the process of information retrieval, ckratg algorithms can be used to
group search results into a small number of clusters, eawlhmh captures a particular
aspect of the query. Finally, in medicine, cluster analiisis helped detecting patterns in
the spatial or temporal distribution of a disease.

In the gene expression context, the purpose of using cingtalgorithms is to group
either genes or samples that share common characteristit® gene-based clustering,
the specific goal is to identify groups of genes that havelamexpression patterns over
a set of experiments (EISEN et al., 1998). On the other htwiedsample-based clustering
regards the partition of samples into homogeneous grougedban phenotypic features
(JIANG; TANG; ZHANG, 2004). This process is usually basedaosmall subset of
genes, calleihformative genesvhose expression levels are strongly correlated with the
class distinction. The use offormative geneaims to reduce dimensionality.

According to FRIEDMAN et al. (2000), such analysis by clustg algorithms has
proven to be useful in discovering genes that are co-regalildince co-expressed genes
have a high probability of being functionally related. Inatfiollows, a survey of some
widely known clustering techniques already applied foadaining gene expression pro-
files is provided.
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4.1 Hierarchical Clustering

Hierarchical clustering consists of a technique for buidpa cluster hierarchy, usually
represented as@ndogram Such approach allows exploring data on different levels of
granularity: clusters are obtained by pruning the tree atestevel (BERKHIN, 2002).
The number of clusters is therefore controlled by the leffti@hierarchy of tree in which
splitting is performed. For two dimensional data, cluste@y be also represented as
nested clusters. Both graphical representations are simdvigure 4.1 for an hypothetical
example of four data points.
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Figure 4.1:Graphical representation of hierarchical clustering. Example of four hy-
pothetical data points represented as a (a) dendogram ghjlreested clusters.

This class of clustering algorithms include two distindiecgries: agglomerative and
divisive. The agglomerative category applies a bottomtrtadegy: given a set aV data
points to be clustered, each data point is initialized asglsion cluster and then clusters
are recursively merged according to common features asalyscontrast, divisive clus-
tering has a top-down approach. The algorithm starts froengbobal cluster, comprising
all data points, and sequentially splits data into smallester until a stopping criteria
is achieved, which is usually a specific number of clustete methodology difference
between this two categories is depicted in Figure 4.2. Asagwomerative approach is
by far the most common (TAN; STEINBACH; KUMAR, 2005), it wible the focus of
this Section.

4.1.1 Agglomerative Hierarchical Clustering

Algorithm 4.1 describes the basic mechanism of the agglativerstrategy in hier-
archical clustering. The key operation is the computatibthe distance between two
clusters, saved as means of a similarity matrix, in whichhal decision about merging

Algorithm 4.1: Basic algorithm for agglomerative hierarchical clustgri

Assign each data point to a cluster

Compute the similarity matrix

repeat
Merge the two closest clusters
Update the similarity matrix to reflect the new distance lestavthe new cluster and
the original ones

until Only one cluster remains
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Figure 4.2: Difference between agglomerative and divisive hierarcha clustering
algorithms. The agglomerative category has a bottom-up approach, wiel@livisive
hierarchical clustering performs a top-down strategy.

will be based. The concept of distance or similarity is vesaytigular of the problem
being tackled and depends directly on the features embenltedta. For applications
such as clustering cities or objects based on their coloms,can easily imagine the use
of coordinates or RGB value, respectively, to define whigtances are more similar to
each other. However, the concept of distance is not that fdeall types of applications
and may represent by itself a challenging step in the clmgt@nalysis.

The step of joining clusters may be performed in differenysvaccording to the
perspective by which clusters are seen or represented, ikEgnificantly affects hier-
archical algorithms, since it reflects the particular cquiad closeness and connectivity
(BERKHIN, 2002). For a graph-based approach, there are tmagor inter-cluster link-
age metrics: single link, average link, and complete linkg& link metric defines cluster
proximity as the proximity between the closest two pointst re in different clusters,
or using graph terms, the shortest edge between two nodeffaredt subsets of nodes
(TAN; STEINBACH; KUMAR, 2005). In contrast, complete link etric calculates the
largest pairwise distance between points of distinct ehsgstFinally, the average link de-
fines cluster proximity to be the average pairwise proxiesitor average length of edges,
of all pairs of points from different clusters. Figure 4.2wl$ a graphical representation
of the mentioned link methods.

Another cluster closeness definition, based on geometrthads, is commonly ap-
plied when a prototype-based view is used. In this case, €lasker is represented by
a centroid, and therefore, the natural choice of most sincilasters are the ones with
nearest centroids. An alternative technique, mentionegdy; STEINBACH; KUMAR
(2005), is the Ward's method: it also assumes that a clustepiresented by its centroid,
but it measures the proximity between two clusters in terfib@increase in the sum of

@) (b)

Figure 4.3: Inter-cluster linkage metrics for hierarchical clustering. Graphical ex-
amples of the different graph-based methods for mergingtets: (a) single link, (b)
complete link and (c) average link.
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the squared error that results from merging the two clusters

Regarding complexity aspects, the agglomerative hier@atlelustering algorithm
as described in Algorithm 4.1 has space complexitym?) and time complexity
O(m?logm), according to TAN; STEINBACH; KUMAR (2005).

4.1.2 Advantages and Disadvantages

The main advantage of hierarchical clustering algorithenthe flexibility regarding
the level of granularity: it specifies clusterings at allrgrkarities, simultaneously. This
feature brings with it the benefit of freeing the user from thek of setting up the ap-
propriate number of clusters for the data in question. Téia very important benefit
when dealing with data for which there is not much informatabout and, thus, not
enough support to define the number of clusters that besigepts it. Also, hierarchical
clustering allows the application of different conceptshilarity between data points,
presenting, therefore a wide applicability.

Concerning the disadvantages of the method, hierarcHigstbering has two important
shortcomings. First, the decision making is very deterstiniand based on a greedy
strategy: clusters are merged or split towards the locaima@btchoice for that specific
stage, which may not necessarily lead to the global optinttecond, individual features
of data points become less relevant as the clustering pp@regresses.

4.1.3 Application to Gene Expression Data

In (EISEN et al., 1998), the application of an agglomeraltiigrarchical clustering-
based algorithm and visualization package for clusteriagegexpression data is de-
scribed. The implemented software was used to analyse ggmession data collected
in microarray experiments for two distinct cases: a singieetcourse gene expression
data of a canonical model of growth response in human ceflsasaraggregation of gene
expression data of yeaSaccharomyces cerevisiae

Cluster merging was performed based on the pairwise awdiragstrategy, comput-
ing similarities between data points by a form of correlatoefficient. Let&; equal the
(log-transformed) primary data for geggin conditioni. Also, consideiG ose: to be the
estimated mean of the observations. For any two géhasdY observed over a series
of N conditions, the similarity score is defined as follows:

1 Xz‘ - Xoffset Yz - Yoffset
S(X,)Y)=— 4.1
o=y ¥ () () e
where
L 2
b= > % (4.2)
i=1...N

According to the authors, whef s IS set to the mean of observations Gnthengg
becomes the standard deviationtéfandS(.X,Y') is exactly equal to the Pearson corre-
lation coefficient of the observations af andY". In (EISEN et al., 1998)7 osse: WaS set
to O, corresponding to a fluorescence ratio of 1.0.

After the application of the algorithm, the final results ezpresented in two different
ways. The first refers to the dendogram, characteristic efanchical clustering: genes
are assembled into a tree, where items are joined by very Btarches if they are very
similar to each other, and by increasingly longer branclsethair similarity decreases.
The second is a table representation using naturalistar cmlale rather than numbers
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to designate expression levels. This alternative encopiegerves all the quantitative
information, but allows the human brain to analyse and wstdad the results more easily.
The twofold representation allows the observation of caxplata sets in a natural way:
first a scan and survey is made in the large-scale featurésxt@nd then the analysis is
focused on the interesting details.

EISEN et al. (1998) have observed in their work the presetdarge contiguous
patches of color representing groups of genes that sharksarpression patterns over
multiple conditions. This is more expressive for largeradsets, like the gene expres-
sion profile from yeasSaccharomyces cerevisja@ which authors identified a strong
tendency for these genes to share common roles in cellaepses. In the human data
set, relationships among the functions of genes in clusierebscured somewhat by the
less complete functional annotation of human gene seqaendenetheless, when the
clusters composition is examined, they are often found maio genes known to share a
common role in the cell. Through their experiments and aigyauthors also concluded
that the noise inherent to single observations does notibate significantly when genes
are compared across even a relatively small number of nemtiwhl conditions. There-
fore, when designing experiments, authors judge more bldua sample a wide variety
of conditions than to make repeated observations on iddmomnditions.

In (PEROU et al., 2000) hierarchical clustering has beerieghpo investigate gene
expression patterns in human breast tumours. Authorsiglgtthe idea that phenotypic
diversity might be accompanied by a corresponding varidtiggene expression patterns,
which in theory can be captured clustering data generateahibyoarray experiments.
Samples from 42 different individuals, comprising 8.102naumn genes, were collected
using complementary DNA microarray. From these, 20 have Baepled twice: before
and after a 16-week chemotherapy treatment. PEROU et &0§206cused their work in
the clustering of a subset of 1.753 genes, whose transedptd in abundance by at least
fourfold from their median abundance in this sample set. ialtally, a sample-based
clustering is performed by grouping samples on the basiswfasity in their patterns of
expression using hierarchical clustering as well.

The results exposed in (PEROU et al., 2000) shed some lighinoitarities and dif-
ferences among the tumours and, most important, carryamedeéviological information
for the study of regulatory interactions among genes. Fataimce, authors identified sets
of co-expressed genes for which variation in mRNA levelsl@¢de related to specific
features of physiological variation, and, therefore, dquiovide valuable views of activ-
ities of specific regulatory systems. PEROU et al. (200®ritiiat these portraits are a
faithful representation of the tumour itself, and not oniyhee particular tumour sample,
as the distinctive expression pattern of a tumour was razednn distinct independent
samples.

4.2 K-means

The K-means algorithm is a typical partition-based clustemethod and by far the
most popular clustering tool used in scientific and indas@pplications (BERKHIN,
2002). The basic algorithm of the method is described in Algm 4.2. The algorithm
begins withk initial centroids, in whichk is a user-specified parameter and the number
of desired clusters. This initialization can be performéties at random or based on
some heuristic. The goal is to partition a data set intbsjoint subjects, assigning each
data point to a centroid by optimizing an objective functishich is given by the sum of
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Algorithm 4.2: Basic algorithm for K-means.
Selectk points as initial centroids
repeat
Formk clusters by assigning each point to its closest centroid
Recompute the centroid of each cluster
until Centroids do not change

discrepancies between a point and its centroid expressaafinand appropriate distance,
as shown in Equation 4.3 (BERKHIN, 2002). When dealing witimerical attributes in
an Euclidean space, the proximity measure is often quashtifiemeans of Euclidean
distance, although others like Manhattan distance maylespplied.

k
E=Y" " llzi— gl (4.3)

j=1 $i60j

The data points assigned to a centroid are form a clusterc@imieoid of each cluster
is then updated based on the points delegated to it. Thgseate continuously repeated
until points do not change between clusters or, equivaleatitil centroids remain the
same (TAN; STEINBACH; KUMAR, 2005).

An example of the application of K-means to the partition saanple data into three
clusters is depicted in Figure 4.4 (TAN; STEINBACH; KUMARQ®5). Each subfigure
shows the centroids at the start of the iteration, indicétedhe "“+" symbol, and the
assignment of the points to those centroids. All points hgilog to the same cluster have
the same marker shape.

The basic K-means algorithm has time complexity kmn), wherem is the number
of points,n the number of attributes andthe number of iterations necessary for parti-
tioning data. Ad is often small, the algorithm becomes lineaninthe number of points,
and is efficient whet is significantly less tham. The space complexity is very modest,
O((m + k)n), since only data points and centroids need to be stored.

4.2.1 Advantages and Disadvantages

The K-means algorithm is relatively simple and fast, eeslgavhen the number of
clusters is substantially smaller than the number of daiatpoAlso, it is based on the
firm foundation of analysis of variances. However, somedssuay be faced. First, and
most important, the number of clusteérss usually not priorly known and, therefore, is

A A A A A A A A
A A A A a A Al A
AAgAAAA A§AAA AA%AAAA v
A A A A %
N SN A ABNABAA A A%AAA A ALAKOAL A
g nA@fo o8 ® AAAAAAAAOA ﬁAAAAAAAA & AAN NS
o 40%°§ o 28§ A BOAR A pNACAA
A
o o o o A To N
o =} A A
o o ) o+ 8 o .o o
o0 of oo o
90 Q0 o} 890
000 883 000 883 I e O
) O
& 00 o 00 o %o o oo
(a) Iteration 1 (b) Iteration 2 (c) lteration 3 (d) Iteration 4

Figure 4.4:Example of the application of K-means algorithm. Partitioning a sample
data into three clusters using K-means algorithm.
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by itself a parameter to be optimized. Second, the methodrig sensitive to centroids

initialization: different initial partitions can resulhidifferent final clusters. Third, the

presence of noise may cause the algorithm to run poorly: Krséorces each data point
into to a cluster and thus it is not robust in handling ouslidforth, and finally, K-means

algorithm does not work well with non-globular clusters.

The shortcomings regarding the decision about the optimaiber of clusters and
the initialization of centroids may be partially tackled fpgrforming multiple runs of the
algorithm and comparing results. However, for a large datawith thousands of data
points, this extensive parameter fine-tuning process mapeapractical. Another possi-
ble approach is to combine hierarchical clustering with Kams: hierarchical clustering
is applied to find the optimat value and the centroids of the returned clusters are used
as the initial configuration for K-means algorithm. Againistis only practical for small
samples and ik is relatively small compared to the sample size.

4.2.2 Application to Gene Expression Data

In (BAGIROV; MARDANEH, 2006), authors work in an optimizat for the global
K-means algorithm proposed by (LIKAS; VLASSISB; VERBEEKB)03), focusing in
the application to gene expression data. While K-meansheproblem of converging
only to a local minima, which can significantly be differentrih global solutions as the
number os clusters increase, global K-means constituteteandinistic global optimiza-
tion method that does not depend on any initial parameteregadnd employs the k-
means algorithm as a local search procedure (LIKAS; VLASSNERBEEKB, 2003).
However, clustering algorithms based on global optimaratechniques are usually not
applicable to relatively large data sets (BAGIROV; MARDANE2006).

BAGIROV; MARDANEH (2006) proposed a new version of the glbKameans al-
gorithm, computing a start point for thieth clusters by minimizing a so-called auxiliary
cluster function. This function has the benefit of reducimgriumber of parameters to be
optimized and maintaining all variables in a continuous domallowing its application
to large gene expression data sets. The clustering pracéssn performed in an incre-
mental way: the number of clusters is successively incteasdé the first iteration, the
centroid of the set A and its corresponding cluster funciimcomputed. The-partition
at thek-th iterations is performed applying K-means to the- 1 cluster centers from
the previous iteration, iteratively, until the minimizati of the cluster function reaches
a given tolerance value Authors have validated their method with six different gen
expression data sets, comparing it afterwards with theaglidbmeans algorithm, among
others. They conclude that their algorithm outperform$gld-means algorithm as the
number of clusters increases, but with the cost of requinge computational efforts
than the latter.

4.3 Self-Organizing Maps

Self-Organizing Maps (SOM) are neural network based cliggealgorithms intro-
duced by KOHONEN (1982) as an unsupervised and competéaming method. The
network consists of a set of neurons placed in the nodes dfieelacompeting between
themselves to respond to an input pattern. The number of ebngoneurons, which typi-
cally varies from a few dozen up to several thousand, detersithe accuracy and general-
ization capability of the SOM. The input patterns are introed in the input layer, whose
nodes are fully connected to those in the competitive laysscording to (HAYKIN,
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Algorithm 4.3: Basic algorithm for self-organizing maps.

Define neighborhood functiol

Initialize neurons with random weight valués

repeat
Present an input vectat. at random
Calculate winning nodej* = argminy, ||z, — w||
Update weight vectors of winning node and its neighbors shiah
wi(t+ 1) = w;(t) +n(t) X hyei(t) X [z, — wy]]
Adjustn(t) ando(t) factors

until W do not significantly changes

1998), the SOM algorithm forms ddpographic map of the input patterns in which the
spatial locations (i.e. coordinates) of the neurons in thitice are indicative of intrinsic
statistical features contained in the input patterns”

The basic algorithm for evolving a SOM comprises four stepgialization, com-
petition and synaptic adaptation. In initialization, thaaptic weights of neurons are
randomly initialized. Then, for each input pattern, thewwk’s neurons compute their
respective values of a discriminant function. The neurdh tie largest value is declared
the winner. This is the competition process. Finally, thenimg neuron is moved towards
the input pattern by updating its synaptic weight accordog pre-defined rule.

Another possible and widely used SOM algorithm, which is aagen of the basic
algorithm described above, includes a cooperation stegfere the synaptic weights
update. In this version, the winning neuron defines a sphatcation of a topological
neighborhood of excited neurons and all the neurons in teightborhood have their
synaptic weights updated to a given rate. This mechanismorisgyed in Algorithm 4.3,
in which ¢ denotes timey(¢) is the learning rate ankl;-;(¢) stands for the neighborhood
kernel, centered in the winning nodg?), as shown in Equation 4.4. Note that bajf1)
ando (t) decrease monotonically with time (VESANTO; ALHONIEMI, 200 This aims
to allow further topological variability at a first momentdlimit it after some cycles of
execution.

Wy — W;
hj«;(t) = exp (—%) (4.4)

The computational complexity of SOM algorithm scales Inheavith the number
of samples and grows &3(n?) with the numbem of neurons in the competitive layer
(VESANTO; ALHONIEMI, 2000). This method is usually efficiem dealing with large
data sets, but its performance may decrease when the nuiinkemples is exorbitantly
large. Improvements have already been suggested in ordexke possible its application
to extremely large data sets. In (KOHONEN et al., 2000), ftance, authors have
successfully applied SOM to the self organization of a nvassollection of documents:
6.840.568 patent abstracts were organized onto a 1.00224@ns map.

For clustering purpose, clusters are extracted from a SOMdytifying a group of
neurons nearly mapped. When the training is complete, SOWda semantic map
where similar samples are mapped next to each other anthdemssamples are mapped
apart. This proximity is usually represented as an unifietiadice matrix (U-Matrix),
which stores the Euclidean distances between the weighingeaf neighboring neurons.
When such distances are depicted in a gray scale imagecblgits denote the closely dis-
tributed neurons, while darker colors indicate the mostidigar neurons. Thus, groups
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Figure 4.5:The self-organizing map structure. A multidimensional data is mapped into
a two-dimensional space through a competitive learninggs® and the adaptation of
winning neuron and its respective neighbors weights. Thpuddayer is also known as

competitive layer.

of light colors can be considered as a clusters, and the a@aitk @s the boundary regions.

4.3.1 Advantages and Disadvantages

The main benefit of SOM as a clustering algorithm is the redoaif computational
cost, since it clusters a set of prototypes, representedéogeurons, rather than directly
the data samples. Also, it is less sensitive to noise as fypee are local averages of
the data. Regarding its output, SOM provides an intuitiaghpealing map of a high-
dimensional data set in two or three dimensional space, mggomilar samples near to
each other (JJANG; TANG; ZHANG, 2004). However, SOM has apamant drawback
of requiring users to input the number of clusters and thegructure of the neuron map.
As these parameters are preserved through the traininggspienproperly-specified pa-
rameters will prevent the recovering of the natural clustercture.

4.3.2 Application to Gene Expression Data

TORONEN et al. (1999) have applied a modified SOM algorithmpwn as tree-
structured SOM, to 6400 genes comprised in a published dateast gene expression
during a diauxic shift, the shift from anaerobic fermergatof glucose to aerobic respira-
tion of ethanol. The tree-structured SOM consists of sé&Dd arranged hierarchically
in a pyramid-like fashion in several layers. The number afroas at a higher level is
four times the number of the previous level. The trainingejsaated layer by layer using
knowledge about the winning neuron of previous level |I-ldmpute the current winning
neuron. As search is restricted to a small set of neurongdiné the previous winning
neuron its neighbors, computational complexity is sigaifity reduced.

The SOM used by TORONEN et al. (1999) isdé x 16 map, containing thus 256
neurons, whose dimension was chosen based on test exptxiiiée number of genes
in individual neurons varied between 10 and 49. After thaning process, SOM is fur-
ther modified using Sammon’s mapping algorithm, where apdistance correlates with
the difference in average expression profile and the ciizkewsith the number of genes
within the neuron. Four clusters were selected for geneetranalysis: two with an
increasing pattern, one with decreasing pattern and orfrengithange in its expression.
Authors analysis show that SOM rapidly and reliably clustitie gene expression data
set into groups that show similar gene expression profilesoAding to the authors, the
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concept of similarity comprises participation in a commaihpvay or regulation by a
common regulatory element in a promoter region, or bothrdfioee, clustering gene ex-
pression profiles using SOM approach is also efficient faralisring functionally related
genes.

In MILONE et al. (2011), a pipeline for biological data intatjon and discovery of
a priori unknown relationships between gene expressiodsratabolite accumulations
is discussed. According to the authors, as metabolitesharértal products of gene ac-
tions, they are potentially relevant to elucidate gene tione and networks, especially
when integrated with transcriptomic data. In this studythats are particularly inter-
ested in investigating the occurrence of introgressedgwtof a wild tomato $olanum
pennell) species genetic material in certain chromosomes segroétisatoSolanum
lycopersicum

MILONE et al. (2011) explain each of the pipeline steps, frdata understanding
and pre-processing to visualization and biological assess of results, and compare
the performance of three clustering methods — hierarchklaatering, K-means and self-
organizing maps — for the data mining step according to pfexeld measures. Authors
observe that while hierarchical clustering comprises @& majority of the patterns in
the same dendogram’s branch, K-means results in severasnoith very few patterns
and few nodes with many patterns, and self-organizing magsept a more uniform
distribution of patterns between nodes. Therefore, thegrashat SOM is a more indi-
cated method for gene expression data clustering as itsdwtiistribution allows a more
confident analysis in both neuron and neighborhood contgiten that nearby nodes
have gradual changes and form clusters with biological imngarAlso, SOM technique
presented outstanding performance in terms of the quakgsures defined by authors
and provides better visualization capabilities when camgéo K-means and hierarchical
clustering.

4.4 Tools

Michael Eisen have developed a set of computational toolsléstering analysis and
visualization of results of microarray experiments. ThesBr application performs a
wide variety of types of cluster analysis and other procggssh large microarray datasets.
It currently includes hierarchical clustering (as deseditin EISEN et al. (1998)), self-
organizing maps (SOMs), k-means clustering and principadgonent analysis. Tree-
View graphically browse results of clustering and otherdyses from Cluster. It supports
tree-based and image based browsing of hierarchical sesell as it allows multiple
output formats for generation of images for publicationsttBCluster and TreeView
applications are free for academic use and available dnline

The software applied in the investigation held by (MILONEE;2011), named *me-
SOM, may also be download&ednd applied in academic research. *omeSOM is a tool
designed to give support to the data mining task of metalaolittranscriptional datasets
derived from different databases. It implementes a neucalehfor biological data clus-
tering and visualization. The software is focused on the edentification of groups
including different molecular entities, independentlytloé number of clusters formed. It
provides a user-friendly interface and offers severalalization tools easy to understand
by non-expert users (MILONE et al., 2010).

http://rana.l bl .gov/Ei senSof t ware. ht m
2htt p: // www. sour cesi nc. sour cef or ge. net / omesom



45

4.5 Discussion

This chapter presented some widely used methods for dlugigene expression data:
hierarchical clustering, K-means and self-organizing sndpxamples of specific appli-
cations involving these techniques were given and a comrgoeeanent among authors
conclusions is that clustering is not only efficient for goong together genes with similar
features and expression patterns, but also that resuliistecs are biologically consis-
tent, e.g. genes clustered together are in fact involvetlersame regulatory system or
activity.

However, clustering algorithms don’t completely solve tireblem of discovering
gene regulatory networks: even though genes are clustecstding to their inherent
patterns, the exact biological relationship or dependanoeng them is not inferred. One
common approach, therefore, is to combine clustering algos to more sophisticated
techniques, using it as a pre-processing method to redotengdionality of the inference
problem. Following this direction, once clustering is apgland a co-expression network
is generated, this information may be used to perform a fudystbout genes which are
highly correlated, aiming to uncover more detailed infotioraabout the regulatory in-
teractions ruling their expression level. In this partasudbormulation, methods discussed
in the following chapters are efficient and common altexeatifor inferring the detailed
structure of the regulatory network underlying genes inecs cluster.
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5 BAYESIAN NETWORKS

As discussed in Chapter 4, clustering algorithms are anulsefirse-grained ap-
proach for discovering genes that are co-regulated withiarganism. However, a more
ambitious goal emerging in the last years aims to revealutamd exact network struc-
ture of regulation mechanism, rising the need for robushot. The main requirement
is the ability to cope with noise, which are inherent to expental data. In this context,
Bayesian networks have performed an important role in tladyars of gene expression
data.

A Bayesian network (BN) is a graphical model that encodeggndistic relation-
ships among variables of interest (HECKERMAN, 1995) andag been first proposed
as a GRN reverse engineering method by FRIEDMAN et al. (20@®probabilistic na-
ture is an advantage when dealing with missing and noisy. datehermore, it allows
the learning of causal relationships between interactmgies and, therefore, are use-
ful to gain understanding about a problem domain and to prede consequences of
intervention.

5.1 Bayesian Networks Structure

BNs are graphical models for representing the relatiorsshgiween multiple inter-
acting entities by means of joint probability distributto(HECKERMAN, 1995). The
probabilities encoded by a BN are said to be Bayesian whenetwork is learned from
prior knowledge alone, and physical when it is learnt frortadd@he probabilistic nature
of BNs brings four distinct advantages, as highlighted byOHERMAN (1995): 1) can
handle incomplete data sets; 2) allows the learning of ¢aakdionships, which in turn
is useful for domain understanding and prediction makings & powerful and easy tool
for combining prior knowledge and data; 4) avoids data otterdg.

Formally, BN models are defined by a directed acyclic graphGPG, whose nodes
represent the random variabl&s= X, ..., X,, in our domain and edges denote, intu-
itively, the direct influence of one node on another by medronditional dependence
relations. Along with the graphical structure, the modetharacterized by a family of
conditional probability distributiong” and their parameterg which together specify a
unique joint distribution for each variable in the set ofeirgst. In graplG, when a di-
rected edge exists from nodeto nodeB, A is called the parent aB andB is said child
of A.

Due to the acyclic property of BNs, the joint distributionvefrtices in grapltt: may be
decomposed in simpler conditional independence assung&conomizing on the num-
ber of parameters. This decomposition follows the so-ddilarkov assumption:Each
variable X; is conditionally independent of its non-descendants,rgiteeparents inG".
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Figure 5.1: Example of simple Bayesian network structure. Several conditional in-
dependence statements are implied by this simple mddel{ A; ), Ind(B; D|A; E),
Ind(C; A, D, E|B), Ind(D; B,C, E|A), Ind(E; A, D). The joint distribution has the
product form:P(A, B,C, D, E) = P(A)P(B|A, E)P(C|B)P(D|A)P(E). Reproduced
from (FRIEDMAN et al., 2000).

According to FRIEDMAN et al. (2000), by applying the chairewf probabilities and
properties of conditional independences, any joint digtron that satisfies the Markov
assumption can be decomposed into the product form:

P(Xy,...,Xy) = | [ P(Xi|Pa®(X;)) (5.1)

i=1

wherePa®(X;) is the set of parents of; in graphG. The terms in the product of Equa-
tion 5.1 correspond to the conditional probability distitibns ' and their respective
parameterg. To specify the complete joint distribution it is still nessary to determine
a representation for the family of conditional distributions. This choice will depend on
the type of variable we are dealing with, being most commaskd a Gaussian distribu-
tion for continuous variables and a multinomial distriloutfor discrete variables.

Figure 5.1, reproduced from (FRIEDMAN et al., 2000), shovsraple example of
Bayesian network structure. Léhd(G) be the set of independence statements in the
form X is independent of Y given Z, i.eInd(X;Y|Z). The following conditional in-
dependence statements derive from the relationshipstddpit the graph:nd(A; E),
I(B;D|A; E), Ind(C; A, D, E|B), Ind(D; B,C, E|A), Ind(E; A, D). Applying Equa-
tion 5.1 to the graph in this figure, we obtain the joint diaition in the product form:
P(A,B,C,D,E)= P(A)P(B|A,E)P(C|B)P(D|A)P(E).

It is possible to have more than one graph implying the exaetine set of indepen-
dencednd(G). For instance, consider two graphs over variatfeandY: X — Y and
X + Y. They both imply the set of independendesl(G = ), and, therefore, they are
said to be equivalent (FRIEDMAN et al., 2000). In a generay,wao graphs(z andG’,
are equivalent if nd(G) = Ind(G').

Equivalent classes of network structures may be uniqugdsesented by a partially
directed graph, in which an undirected edge Y denotes that some members of the class
contain the edg&X’ — Y, while others contain the edgeé < Y instead. According to
(PEARL; VERMA, 1991), two directed acyclic graphs are ealawt if and only if they
have the same underlying undirected graph and the sameattsis (i.e., converging
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directed edges into the same node, suchdhat b + ¢, and no edge exists between a
and c).

Although Bayesian networks are based on DAGs, it is impottastress that not all
directed edges in a Bayesian network can be interpreteclitaushe DAG on which the
Bayesian network model is based just asserts a set of indepea assumptions among
the domain variables (WERHLI, 2007).

5.2 Learning Bayesian Networks

The process of learning Bayesian networks aims to deviseg/adgan network model
M from a given set of training dat® such that) is the model that better explains the
data and its embedded dependences. More precisely, wd $eaan equivalence class
of networks that best matchds (FRIEDMAN et al., 2000). Although there are other
approaches to learn a Bayesian Network besides the Bayeaianing (see, for instance,
HECKERMAN (1995)), this is the most mentioned one in literatand therefore it will
be the focus of the present section.

BN learning is performed in two distinct stages. First, warihethe network structure,
e.g. how the entities are connected by edges. Defikings the space of all possible
models, the first goal is to find a modef* € M that is the most supported by the data

M* = argmaxy P(M|D) (5.2)

The second step consists of learning the parameters setsasd with the edges
in model M*, and whether the relationships between these entitiesfaaetivating or
inhibitory nature, as well as its respective intensity. idgwhe best structur@/* and the
data setD, we search for the best parametersgset

q = argmax,P(q|M*, D) (5.3)

A common approach to the problem of finding the best modelgthe dataD is
to introduce a statistically motivated scoring functioattlevaluates each network with
respect to the training data and use it to search for the aptigtwork. In FRIEDMAN
et al. (2000) authors evaluate the posterior probability ofodel given the data:

S(M : D) =logP(M|D)

= logP(D|M) + logP(M) + C -4
where C is a constant independent\éfand
P(DIM) = [ P(Dlg. M)P(alM)dg (55)

is the marginal likelihood, which averages the probabitifythe data over all possible
parameter assignments 4d. According to the authors, the particular choice of priors
P(M) and P(q|M) determines the exact Bayesian score to be applied. A thealret
and mathematical review of the two most widely used Bayes@res may be found
in WERHLI (2007): the Bayesian Dirichlet likelihood equigat scoring metric (BDe
score) and the continuous Bayesian Gaussian likelihoow&egut scoring metric (BGe).
While the first score is used for discrete variables, whiehagsociated to multinomial
distributions, the latter is used for continuous domainerehvariables are associated to
Gaussian distributions.
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P(M|D) P(M|D)
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Figure 5.2: Bayesian inference. The vertical axis denotes the posterior probability
P(M|D) and the horizontal axis represents the network structlifes(a) For a large
and informative data set, the best structliféis well defined in the posterior probability
distribution. (b) The same does not occur for a small andifdesmative data set, whose
posterior probability distribution is very diffuse. Regued from (WERHLI, 2007).

The integral in Equation 5.5 is analytically tractable wihika data is complete and
the priorP(q|M) satisfies certain regularity conditions discussed in GERGHECKER-
MAN (1994) and HECKERMAN (1995). Additionally, in this casthe posterior score
has several properties, as highlighted by FRIEDMAN et @0(®. First, the score is
structure equivalent, i.e., i andG’ are equivalent graphs they are guaranteed to have
the same posterior score. Second, the score is decomposahle be written as the sum

S(M : D) = Z ScoreContribution(X;, Pa®(X;) : D), (5.6)

where the contribution of every variablg; to the total network score depends only on
the values ofX; and Pa“(X;) in the training instances. Finally, the local contribugon
for each variable can be computed using a closed form equatio

However, the computation aP(D|M) is not enough for the assessment of score
S(M : D), and hence for the identification of the optimal modéf, due to the high
similarity between networks in the same equivalence clagsr knowledgeP (M) may
be useful when deciding which model is the most proper onéengiven equivalence
class. Nevertheless, finding the best matlel by direct computation of scorg is still
an impractical approach for two main reasons: the numbearaétsires increases rapidly
with the number of nodes and the posteriof)/| D) is usually diffuse and is not ad-
equately represented by a single network at the mode whedatzeset is small and
slightly informative.

The problem of learning the structufd* that maximizes the scor€(M : D) is
known to be a NP-hard problem (CHICKERING, 1996). Severghkscoring networks
may be found. Thus, heuristic search and sampling methalsfeen applied in this
context. According to FRIEDMAN et al. (2000), the use of losaarch, by which one

Table 5.1:Number of nodes vs. number of networks.The number of networks grows

super-exponentially with the number of nodes. Reprodumad WERHLI (2007).
Numberof nodes |2 4 6 8 10

Number of topologies 3 543 3.7 x 10° 7.8 x 101t 4.2 x 10'®
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arc is changed at each move and the gains provided by the oaidifi are evaluated,
does not necessarily find a global maximum but it does perfosth in practice. As
examples, authors cite beam-search, (stochastic) mbahg and simulated annealing.
However, a much more usual solution in recent years is tatréssampling methods in
order to obtain a representative sample of high scoringorétatructures.

5.3 Markov Chain Monte Carlo: a Sampling Method

In this section we present a sampling method commonly coatbio Bayesian
networks in the problem of learning networks structure. RdarChain Monte Carlo
(MCMC) was proposed by METROPOLIS et al. (1953) and HASTINGS70), and ap-
plied to the context of inferring gene regulatory networlssng the BN formalism by
MADIGAN; YORK (1995).

Since data sets D are usually sparse, and this includese¢b&@bpase of postgenomic
data, the posterior probabiliti (M| D) over structures is diffuse and not properly rep-
resented by a single optimum modgl. Therefore, an appropriate solution consists of
sampling networks from the posterior probability:

P(D[M)P(M) P(D[M)P(M)

PP = ==py = 5., P(DIAF) (D)

(5.7)

A direct approach to sample from(M | D) is impossible though, as the denominator
in Equation 5.7 is a sum over the whole model space and isciatrke (see Table5.1).
METROPOLIS et al. (1953) and HASTINGS (1970) proposed, éftee, to create a
Markov Chain, in the following form:

Poyi(M;) = > T(M;|My) P, (My) (5.8)

where M, is the current structure)/; the new proposed model ard represents the
Markov transition matrix, which is a matrix of transitiongtrabilities. Under the condi-
tion of ergodicity the distribution?, (M, ) converges to a stationary distributiéy, (M),
such that:
Poo(M;) =Y " T(M;|My,) Poo (M), (5.9)
k

In Equation 5.9, the posterior distribution in step+ 1 is equal to the distribu-
tion in stepn, following the Markov assumption. As the transition matiixcom-
pletely determines the stationary distribution in Equatt9, it needs to be designed
so that the posterior probability equals the stationaryridigtion of the Markov chain,
i.e. P(M|D) = P, (M). A sufficient condition for this to be true is given by the etjoa
of detailed balance:

T(M;|My) _ P(M;|D) _ P(D|M;)P(M;)

T(M[M,) ~ P(My|D) ~ P(D|My)P(My) (5.10)

The transition to a new structuré/,, — M;, is performed in two steps: first a new
structure is proposed with proposal probabit@y)M;|M;). The action of proposing new

1An ergodic Markov chain is aperiodic and irreducible: aditst are reachable from all other states and
the probability that the next state is the same as the custatd is non-zero.
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Algorithm 5.1: Metropolis-Hastings algorithm.

Start with an initial structuré/,,

fori=1to [ do
Obtain a new DAG structur#/; from the proposal distributio@(A/;|M;_,).
Accept the new model with probabilityt(A/;| M;_1) given by Eqg. 5.11, otherwise
leave the model unchanged.

end for

Allow the Markov chain to reach stationarity by discardimgree initial samples,

M;. .. M% for instance. This is burn-in period.

Compute the expectation values from the MCMC sami\ni%e+1 .. My

(f) = Xn JOOP(MID) ~ 730 1 f(M))

Algorithm 5.2: Metropolis algorithm.
Start with an initial structuré/,,
fori=1to 7 do
Obtain a new DAG structurg/; from the proposal distributio@(M;|M;_1).
If the new model is not a DAG, reject it and go back to prevideps
Accept the new model with probabilityt( ;| M;_1) given by Eqg. 5.12, otherwise
leave the model unchanged.
end for
Allow the Markov chain to reach stationarity by discardimgree initial samples,
M; ... M% for instance. This is burn-in period.
Compute the expectation values from the MCMC sami\ni%e+1 ... My

(f) =Xy JOOP(MID) ~ 730 1 f(M))

structures means to choose, at each iteration, one of tieed@erations of adding, delet-
ing or reversing an edge. Some of this actions may occasydea to invalid networks,
e.g. cyclic networks, which must be dismissed. Finallygheposed structure is accepted
with acceptance probabilityl(M;| M), referred to as Metropolis-Hastings criteria, and
defined according to the following equation:

A(M|My) in{P(D‘Mi)P(Mi)Q(Mk‘Mi) 1} (5.11)

A(M|M;) P (D[ M) P(M;)Q(M;| M)

Accept a new model/; according to Equation 5.11 guarantees that the Markov chain
will converge for the desired posterior distribution (WERH2007). The term%
is called Hastings factor and must be computed when an asymnmasts between the
networks. This asymmetry results from the different neahbod sizes, which are de-
fined by the set of all valid DAGs that might be reached from ¢berent model with
a single edge modification. When the neighborhoods haveame size, the Hastings

factor equals to 1.
In order to avoid the computation of the Hastings factor, clhis not trivial, it is

possible to modify the step of proposing new structures sighall non DAGs models
are rejected based in the prior knowledge that they can net becepted as they are
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invalid BN structures. In this case, the acceptance prdibatsi given by:

A(M;|M;) P(D|Mj)P(My)’

Algorithms 5.1 and 5.2 summarize both presented solutionMCMC application:
the Metropolis-Hastings algorithm and the Metropolis ailidpon, respectively. In short,
these algorithms start from an initial state and probaizhdly transitions through a so-
lution space, accepting transitions to better state wig probability and transitions to
worse states with lower probability. According to WERHLIO(®), the possibility to
avoid the finding of all neighbors in Hastings algorithm cenag¢ a price: many more
structures will be rejected, decreasing the acceptanearat slowing down the conver-
gence of the algorithm.

5.3.1 MCMC Convergence Assessment

According to WERHLI (2007), the MCMC approximation is exatthe limit of an
infinitely long Markov chain if the condition of detailed laaice (Eq. 5.10) is satisfied
and if the Markov chain is ergodic. The convergence of MCM@esguarantee that the
resulting sample has been drawn from the correct and expddwibution. In WERHLI
(2007), the MCMC convergence was assessed based in a simpistlt approach, de-
scribed in what follows.

The application of the MCMC algorithm results in a squarermat x n of posterior
probabilities, in whichn denotes the number of nodes in the network. The technique
used in WERHLI (2007) consists in running two MCMC simulasavith different initial
configuration, obtaining matrice8" and P?, whose elements are denoted;jyandp;;,
respectively, and represent the probability of existingdge between nodes; and.X;.
After simulations are finished, both matrices are plottealragj each other, e.gzlj VS. pfj,
generating a scatter plot. Examples of scatter plots famdisperformances of MCMC
are shown in Figure 5.3. One can observe that the longertingdaion time, the better
the convergence of the algorithm.

T infinite T long enough T too short
* N ”’,% * o
o~ ’ .
[8) . o . o
= K g * % =
MCMC1 I MCMCH1 MCMCH1

(@) (b) (c)

Figure 5.3:MCMC convergence test.The marginal posterior probabilities of the edges
are plotted for two different simulation initializationga) For an infinite time, all the
posterior probabilities of the edges are the same for batlulsitions. However, as the
simulation length becomes shorter, the convergence stdes. Panels (b) and (c) exem-
plify the convergence test for a not long enough and a toa siraulations, respectively.
Reproduced from (WERHLI, 2007).
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Algorithm 5.3: Bootstrap method applied by FRIEDMAN et al. (2000).

fori=1...mdo
Re-sample with replacement instances fronD. Denote byD, new data set.
Apply the learning procedure ab; to induce a network structur@;.

end for

for each featurg of interestdo
Computeconf(f) = L 3", f(G;), wheref(G)is 1if f is a feature inG and 0
otherwise.

end for

The convergence test proposed in (WERHLI, 2007) is necgdsarnot sufficient
to guarantee algorithm convergence: the two simulatiomsreach the same meta-
stable equilibrium, which might be different from the trugudibrium. Theoretically,
the Markov chain will converges regardless the chosen mapistribution) and the
initialization values. However, in practice it is known tlsme issue, such as extreme
initialization values, may slow down the convergence of MCM

5.4 Application to Gene Expression Data

The pioneer work combining BN to the inference of gene regmanetworks was
published by FRIEDMAN et al. (2000). Authors proposed to midtle system as a joint
distribution over a collection of random variables thatald®e system states. As the
scaling of MCMC for large domains was still not clear, FRIEBM et al. (2000) opted
for applying a nonparametric bootstrap method to estinfeeconfidence of features of
Bayesian Networks learned from expression profiles. Thesbt@p method (EFRON;
TIBSHIRANI, 1993) is a very general re-sampling proceduredstimating the distribu-
tions of statistics based on independent observationsmHlie idea behind the bootstrap
is to generate perturbed versions of the original data seapply the learning algorithm
over them. This way, all collected networks are fairly rewdale models of the data and
reflect the effect of small perturbations to the data on thenieg process.

The bootstrap algorithm is applied by FRIEDMAN et al. (20@8)shown in Algo-
rithm 5.3. Authors limit the search space by focusing therditbn of the search procedure
on relevant regions of the search space. First, a relatsrabll number of candidate par-
ents is identified for each gene based on simple local stat(stuch as correlation). Later,
the search is restricted to networks in which only the caaigigharents of a variable can
be its parents, resulting in a much smaller search spacecandequentially, in a faster
search for a good structure. The proposed algorithm waseabid a data set with 800
genes and 76 gene expression measurements of the mRNA &\&l3F7S. cerevisiae
open reading frames, in which authors managed to extracy miafogically plausible
conclusions through this analysis.

PE'ER et al. (2001) extended the framework proposed in (ERIEN et al., 2000)
to better handle perturbations and to identify significamreetworks of interacting genes,
which are shown to be related to known biological pathwayse Bootstrap analysis is
applied in the extraction of potential models, just like iB'ER et al. (2001). In the
sequence, authors extract from these high-scoring nesnvoely statistically confident
features (mediator, activator and inhibitor), which arghar used in the identification
of subnetworks of strong statistical significance alonghvigatures previously defined
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by FRIEDMAN et al. (2000). The idea of searching for subneksocomes from the
inherent limitation to BN’s learning procedures of exammrelations between two or
three genes at a time. This way, authors not only broadentesvpoint but also gain
confidence about features that are not significant whentesbla

The results achieved by PE’ER et al. (2001) show that meé&nlibgplogical informa-
tion can be extracted even from pairwise relations. Manyuered genetic links were
already identified by previous works. Yet, new biologicaight has also been provided
with strong evidence from literature. However, the full mvef the proposed approach
comes from the exploration of subnetworks: a comparisoh witlustering approach
shows that the reconstruction by means of BN provides a mahbrrcontext for regula-
tory and functional analysis.

In (IMOTO et al., 2003), authors explored a question alreised by PE'ER et al.
(2001): how to include prior knowledge in the inference sxin order to improve qual-
ity of analysis and the number of novel interactions discest2 According to IMOTO
et al. (2003), the main issue faced in the reverse engirgeefi@RN is the limited amount
of independent experimental conditions and the inhereisterio measurements, suggest-
ing that the inclusion of prior knowledge might result in gliier reconstruction accuracy.

Following this direction, authors proposed a learning sohesing a Bayesian frame-
work, in which a new networks’ evaluation criteria is dedvsuch that networks are
selected based on microarray data and biological knowleligihis approach, gene ex-
pression data is systematically integrated with biologic@wledge from other types of
postgenomic data and from literature, with automatic tgrahthe balance between the
both sources of data, aiming a more accurate reconstrucfldrs integration is per-
formed via a prior distribution over network structures,iethtakes the form of a Gibbs
distribution. The prior knowledge is encoded as an energgtfan and an inverse tem-
perature hyperparameter determines the weight that igreesito it. The hyperparam-
eters are inferred together with the network structure byimiing the joint posterior
distribution with a heuristic greedy optimization algbri. As prior knowledge, the au-
thors extracted protein-DNA interactions from the Yeagit®ome Database. However,
this framework has also been successfully applied to a wadiety of distinct sources
of biological prior knowledge: transcription factor bindi motifs in promoter sequences
(TAMADA et al., 2003), protein-protein interactions (NARI et al., 2004), evolutionary
information (TAMADA et al., 2005), and pathways from the KEGlatabase (IMOTO
et al., 2006).

The integration of expression data with multiple sourcepradr knowledge was in-
vestigated in (WERHLI; HUSMEIER, 2007). Each source wasregged in terms of an
energy function and a prior distribution was later obtaimethe form of a Gibbs distri-
bution. The hyperparameters associated with the diffeseatces of prior knowledge,
which measure the influence of the respective prior relatitbe data, are sampled from
the posterior distribution with MCMC. Experiments with tiwalependent sources of tran-
scription factor binding locations from immunoprecipitatexperiments with microarray
gene expression data from the yeast cell cycle, and withnitegiation of KEGG path-
ways with cytometry experiments for determining proteiteractions related to the Raf
signaling pathway, have stressed the efficiency of this atetb generate more accurate
models.

The works published by IMOTO et al. (2006) and WERHLI; HUSNERI (2007), as
well as other papers in the GRN context, have the commonrieatuassuming that a
molecular biological system may be successfully represkby a single regulatory net-
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Figure 5.4:Bayesian Hierarchical Model. The nodes represent: data seis (..., D,,)

obtained in different experimental conditions; hyperpaggers (1, . . ., £,) and network
structures {14, . .., M,). The hypernetwork//; acts as a coupling among the networks
M, ..., M,, inciting them to be similar.

work, when what is in fact inferred in the reconstructiongass is its active parts, which
may vary according to available experimental conditions.(WERHLI; HUSMEIER,
2008), a method to reconstruct the regulatory structurersdtevork considering that its
active parts can differ under different experimental ctods is proposed. The coupling
scheme, depicted in Figure 5.4, is a compromise betweenitganetworks from dif-
ferent subsets separately and learning networks from a httmodusion of individual
data sets. While in the first approach no information is shaetween the data sets, the
latter does not provide a mechanism for discovering diffees between the networks
associated with the different experimental conditions.

The Bayesian hierarchical model proposed by WERHLI; HUSEREI(2008) have
achieved very good results in terms of reconstruction amyurHowever, the probabilis-
tic model, when sampled with MCMC algorithm, have not alwaysperly converged.
The difficulty in crossing the valleys increases the chawnédise algorithm to be trapped
in a local optima, causing some high posterior probabilégnples to go unexplored in
the analysis. MENDOZA; WERHLI (2010) proposed to tacklestproblem by applying
a parallel sampling scheme, known as Metropolis CoupledkMaChain Monte Carlo
(MC)3. (MC)? involves the parallel execution of multiple Markov chaissme of which
are heated by raising its posterior probability by a faetpand a state swap proposal
between chains in predetermined intervals. Heated chantstb have a higher accep-
tance probability because they perceive the landscaperftatin unheated chains, thus,
they can more promptly cross valleys. An unheated chai, kaiewn as cold chain, is
able to jump a deep valley in a single step when swapping siigttea heated chain. The
acceptance probability for a cold chain is given by Equafdi®?, while a heated chain
accepts new states with probability defined as:

A1 ) = min{ (5((5|%£%;>))v 1 5-13)

The results obtained in (MENDOZA; WERHLI, 2010) were sattbry and a conver-
gence improvement was observed, which occurred more frglguand in less simulation
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steps. However, authors stress that the tuning of the paeasriavolved in (MCJ algo-
rithm is by itself a complex phase, as they are data-depeahehhave direct effect over
convergence properties.

5.5 Advantages and Disadvantages

Comparing to the clustering approach, introduced in Chiapt@ayesian networks
have the clear advantage of providing a mechanism to modeptbblem domain as
a whole by constructing a joint probability distributioneswvdifferent combinations of
the domain variables. Unlike clustering, BNs results in apgical model, which not
only group together genes involved in the same biologicgiyay, but also explicitly
denotes the dependence relations and the conditionalendepces among genes and
their expression levels.

Its probabilistic nature makes it robust to deal with uraiety and, consequentially,
with noisy data. Furthermore, as they are models of the prolddomain probability
distribution, they can be easily used for in silico predino8, computing the predictive
distribution on the outcomes of possible actions. Follaitims direction, once modeled,
BNs may also be applied in decision making process, asgistithe choice of actions
that maximize the expected utility or score. Finally, a valg advantage of Bayesian
modeling is the possibility of aggregating expert domaiowledge within the training
data whenever it is available. This prior knowledge is er&ly helpful in accelerating
and improving the learning process.

Nevertheless, BNs suffer from an important shortcoming:uiderlying graphical
model, the DAG, can not contain cycles, limiting its appioa to steady-state data. As
feedback loops are known to be present in real biologicavowrds, this is a significant
drawback. Moreover, when applying standard MCMC methodsniecessary to check
the acyclicity of proposed structures; this checking ofcdicity is one of the bottlenecks
of MCMC simulations (WERHLI, 2007). Dynamic Bayesian netk®(DBNSs) overcome
these limitations. DBNs are an extension of BNs able to infegractions from time-
series data (BANSAL et al., 2007). The nodes are split intapd output nodes, in order
to unfold the basic DAG representation and avoid the foromadif cycles. An example,
reproduced from (HECKER et al., 2009), is shown in Figure 5Fr further details
about DBNs and its applications to gene regulatory netwnifiesence, see (HUSMEIER,
2003).

Static BN Dynamic BN

@& ® © t

(a) (b) (c) t+at

Not allowed !
(a) (b)

Figure 5.5:Difference between static BNs and dynamic BNSCycles in (a) static BNs
are unfold in (b) dynamic BNs and represented as a tempagaksee. Reproduced from
(HECKER et al., 2009).
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5.6 Tools

The most well-known software for reverse engineering of GRRled on the Bayesian
formalism is Banjé, developed in the Department of Computer Science at Dukeddni
sity under the direction of Alexander J. Hartemink (YU et 2D04). Banjo implements
both static and dynamic Bayesian networks, allowing, heitseapplication to steady-
state and time-series data. Heuristic approaches aresdpplsearch the network space in
order to identify the network structure that best represtd relations hidden in the input
biological data. The search algorithm in Banjo consists sétaof individual core com-
ponents: proposing a new network (or networks), handled tyr@poser" component;
checking the proposed network(s) for cycles, handled byyalécchecker" component;
computing the score(s) of the proposed network(s), harmieoh "evaluator" component;
and deciding whether to accept a proposed network, hangled'tdecider" component.
Networks are evaluated according to the BDe metric, and theud network, e.g. the
one with maximum score, is presented to user as a signedatirgcaph. The software is
available for download under a non-commercial licenseegemnt.

5.7 Discussion

Bayesian networks is, perhaps, one of the most applied ctatipoal techniques to
the problem of reconstructing regulatory networks fromtgesomic data. Most of its
popularity is due to the probabilistic formalism, which neakit specially suitable for
coping with the inherent noise in data and the large unceytaibout the biological sys-
tem structure. In fact, the probabilistic nature of Bayesiatworks is a promising tool
for uncovering implicit relations among genes, providinare detailed picture about
regulatory pathways underlying organisms. Genetic regufanetworks are believed to
be sparse and Bayesian networks are especially suitechioimg in such sparse domains
(FRIEDMAN et al., 2000). Moreover, whenever biological kviedge is available, the
method allows its integration as a prior distribution ovetworks structure, speeding up
the learning process and increasing the significance ofdhiewed results.

Since the direct computation of the best network structsinenpractical, as previ-
ously explained in this chapter, a sampling method or hecisgarch is needed, which
can be time demanding and, specially in the latter, selsitivocal optima. Therefore,
current research on the application of BNs to the infereri¢g@RN focus mainly on im-
provements in the learning algorithm, aiming to reduce aataijional time and reach
more accurate results. The improvements vary from smalhlght impact changes in
the classical algorithms, such as the inclusion of a new eelggrsal move in MCMC to
enhance convergence (GRZEGORCZYK; HUSMEIER, 2008), taldrcomputation
(MENDOZA; WERHLI, 2010) and the application of distinct apization algorithms,
such as evolutionary algorithms (AULIAC; FROUIN; BUC, 2008

More efficient ways to deal with the dimensionality problesnaiso a point of in-
terest in current researchs. The available experimentaldesto measure the expres-
sion of a massive number of genes, but provide only a smalbeurof samples, which
makes difficult the estimation of model’s parameters. Asgotational methods such as
Bayesian networks usually need a good volume of data to atyneconstruct models,
this is an important point of improvement. The inclusion gfréori knowledge is one
of the directions to deal with this issue. Its integratiorthie learning algorithm is not

2htt p: // www. cs. duke. edu/ ~ani nk/ sof t war e/ banj o/ downl oad
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completely elucidated, but it is known that it helps to im@aonvergence and results
accuracy. However, as biological prior knowledge is astkehias the gene expression
data, researchers have suggested alternative ways cdgnogehe volume of the training
data set, like, for instance, learning from a combinatiohiofogical data sets (WERHLI;
HUSMEIER, 2008).
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6 BOOLEAN NETWORKS

One class of models that has received lot of attention in G&drse engineering pro-
cess is Boolean networks. While Bayesian networks, predentChapter 5, is a typical
continuous and stochastic modeling framework, Booleawaowds is the most common
discrete and deterministic approach for regulatory ndt&/oeconstruction. Its inherent
simplicity, which at first sight might seen a shortcoming lbé tmethod, is in fact an
appealing property, emphasizing generic network behawibrer than quantitative bio-
chemical details (LAHDESMAKI; SHMULEVICH; YLI-HARJA, 208). Therefore, in
the current chapter the Boolean network formalism and ifgiegtion to model the dy-
namics underlying gene expression data are introduced chfigngter begins by a formal
definition of Boolean networks and some well-known learnapgproaches. In the se-
quence, relevant works regarding the application of thismedism for the inference of
GRNs, are well as available software, are outlined. Theecrchapter ends with a dis-
cussion on the positive and negative features of Booleamanks.

6.1 Random Boolean Networks

A random Boolean network (RBN) is a directed gra@hV, F') defined by a set of
nodesV = {zy,z,...,2x}, Which in GRNs context represent genes, and a set of
Boolean functions = {fi, fo,..., fn}. Each noder;, i = 1,..., N, is a Boolean
device that stands for the state of variablé can assume values 0/1, true/false, on/off,
etc. In GRN contexty; = 1 denotes that geneis expressed, while; = 0 means that
it is not expressed (LAHDESMAKI; SHMULEVICH; YLI-HARJA, 203). An example
of a simple Boolean network structure is depicted in Figufie &here the double line
node represents an expressed gene (state 1), while the damiied line nodes denote not

Figure 6.1:Example of a Boolean network with simple structure. The picture shows
an example ofV = 3 interacting genes, witlkk' = 2, modeled as Boolean devices. The
double line node represents an expressed gene (state B tmésingle dashed line nodes
denote not expressed ones (state 0)
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Table 6.1:Boolean functions for the example Boolean networkThe Boolean functions
for nodes A, B, and C, depicted in the example network of Fagul, are specified in this
table. Nodes A and B are controlled by function OR, while n@lés controlled by
function NAND.

(OR) (OR) | (NAND)
B CA|ACB|ABTC
0 0 0/]0 0 0/0 0 1
0 1 1/0 1 1|0 1 1
1 0 1|1 0 1|1 0 1
1 1 1|1 1 1|1 1 0

expressed ones (state 0).

Each node has its value determined by a Boolean fungtian F’, which represents
the rules of regulatory interactions between nodes, ngdpecific inputs, denoting its
regulatory factors (also callad-degre@. A function f; specifies, for each possible com-
bination of K; input values, the state of the regulated variable Thus, beingk; the
number of input variables regulating a given node, sincl e&these inputs can be either
at state 1 or 0, the number of combinations of states ofdhi@puts is2”:. Furthermore,
for each of these combinations, a specific Boolean functiostroutput either 1 or 0.
Therefore, the total number of Boolean functions okglinputs is22. WhenK; = 2,
some of these functions are well-known (AND, OR, XOR, NAN.g but in the gen-
eral case functions have no obvious semantics. Given thievalf noded” at timet, the
Boolean functions are used to synchronously update thesalfinodes at time+ 1.

To illustrate the regulation process, consider the netvabrikigure 6.1: the GRN is
modeled as a RBN aV = 3 genes, withK; = 2. The parents’s set for nodes A, B and
C are, respectively;B,C}, {A,C} and{A,B}. A Boolean function is randomly assigned
to each gene and the final regulatory rules are shown in Tablegg&nes A and B are
regulated by function OR, while gene C is regulated by a NANBDction. Since the
network has a fixed number of genes, each of which has a casstaof possible values,
the network can assume just a finite set of states, given*ywhereN is the number
nodes in the network. Therefore, given the Boolean funstioom Table 6.1, Table 6.2
shows the resulting expression of each genat timet + 1 for all possible2?® states of
network, based on their mapping functions and correspgniues in time.

As system passes along a sequence of states, triggered framd@m initial one, it
may eventually re-enter a previously visited state duestdeterministic feature and finite
set of possible states. This bring us the notioryfle or attractor, which is the set of
revisited states. The attractors and the states that |léadhem comprise thbasins of
attraction According to SHMULEVICH; DOUGHERTY (2010), the attract@presents
the fixed-point of the system, thus capturing the systemnig-@rm behavior. Starting
from any state on an attractor, the number of transitiongssary for the system return
toitis called the cycle length. If a state re-enters itdbkn it is known as an equilibrium
state or point attractor. According to KAUFFMAN (1969), arftal genetic network must
contain at least one behavior cycle. In figure 6.2, one sesdliare is only one attractor
state for this example, namelyi 0.

Random Boolean networks are randomly constructed in twlafokctions. First, the
K; inputs of each node are defined at random. Second, one ¥ thpossible functions
is randomly assign to each gene. After being assembled treta@rks are deterministic
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000 — 001

4 | state

010 — 101 — 111 — 110 |cyclel
T
100 — 011

Figure 6.2:State transition graph for the example Boolean network.The state tran-
sitions in Table 6.1, concerning the network in Figure 6.&yralso be represented as a
directed graph. For this example there is only one attrattie, namelyL 10.

unless perturbations occur. We refer as perturbationsgheations of flipping the value
of a node or changing its function at random. Since GRN arelfgtable in the presence
of perturbations to genes, the Boolean network formalisoukhpreferably be able to re-
produce this same behavior. In fact, when a minimal numbgeags transiently change
value due to some external stimulus, the system usuallgitrans between states that
compose the basin of attraction and eventually flows badkd@ame attractor, holding a
so-called structural stability. In short, the structutalslity captures the idea of a behav-
ior that is not destroyed by small changes to the system (SHBAUCH; DOUGHERTY,
2010).

6.2 Learning Random Boolean Networks

Although many different approaches for learning RBNs hasenbalready proposed,
as later discussed in Section 6.3, two problem formulatimenge been widely applied
in the field: the Consistency Problem and the Best-fit Probl@KkUTSU; MIYANO;
KUHARA, 1999; SHMULEVICH et al., 2003). In what follows we fiee both for-
mulations focusing in their application for one functiorefg) only, as specified in
LAHDESMAKI; SHMULEVICH; YLI-HARJA (2003). Their extensias to a RBN can
be obtained by repeating the same definition for all gendsamétwork.

Table 6.2:State transition table for the example Boolean network.Since the network
has a fixed number of genes with a constant set of possiblesatuy = {0,1}, the
network can assume just a finite set of states, of zize

(®) (t+1)
A B C|ABC
0 0 0/0 0 1
0 0 1|1 1 1
0 1 0[1 0 1
0 1 1|1 1 1
1 0 0/0 1 1
1 0 1|1 1 1
1 1 0/1 10
1 1 1/1 10
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6.2.1 Consistency Problem

An issue related to inference of GRNs is to identify a netwooksistent with the
observations in the given gene expression profile or deterihthis network exists at all.
This approach is known as Consistency Problem (or Extermioblem) and resides in
finding a Boolean functiorf from a class of function§’ such thatf is a perfect Boolean
classifier, e.g. it correctly separates the given binaryrgptas in true and false sets. In
other words, the Consistency Problem entails a search fdedrom given examples.

A partially defined Boolean functiomdBf(T', F') is defined by two setg andF' €
{0,1}", whereT and F' denote the set of true and false examples. These vector are
determined byI'(f) = {z € {0,1}": f(z) = 1} andF(f) = {z € {0,1}" : f(z) = 0},
respectively. The functiorf is said to be a consistent extensionmBf(T', F') when
T CT(f)andF C F(f). If a consistent extensions exists, then this functiontisrned.

However, as expression patterns exhibits uncertainty,candidering that real gene
regulatory networks comprise many other elements besidesge.g proteins, one may
argue that the simple Consistency Problem may not be useddonetwork structure
from data. In this case, it may seen more reasonable to comadsearch for Boolean
functions that minimize the number of misclassificationhwigspect to the given exam-
ples.

6.2.2 Best-Fit Extension Problem

As gene expression data are known to be noisy, another, navepn formulation
has been proposed for the model inference: the Best-FinBxte Problem. While the
Consistency Problem aims to find the perfect Boolean classthe Best-Fit Extension
Problem looks for the Boolean functions that causes as fesglassification as possible.

Suppose we are given two sets of binary vect@rsand F', as in the Consistency
Problem. Letl'(f) = {v € {0,1}" : f(v) = 1} be called the on-set of functiohand
F(f)={ve{0,1}": f(v) = 0} be the off-set off. Consider, also, that positive weights
(w) are available for all vectors € T'U F' and that for a subseét C T U F. We have
then the following definitionw(S) = Y s w(z). Thus, the magnitude of the error of
function f is defined as:

e(f) =w(TNE(f) +w(FNT(f)). (6.1)

The goal is to output subsefs” and F* such thatl™ N F* = @ andT* U F* =
T U F for which pdBf(T*, F'*) has an extension in some class of functichand so that
w(T* N F)+w(F*NT)is minimum. Consequentially, any extensipre C of g« p-
has minimum error size. The Consistency Problem can be, defised as a special case
of the Best-Fit Extension Problem, whe(yf) = 0.

6.3 Application to Gene Expression Data

Random Boolean networks have been used to explain adapéettbself-organization
in complex systems. However, the groundbreaker suggesfistudying the behavior
of gene regulatory systems by means of networks of Booleactifins was introduced
by Kauffman in (KAUFFMAN, 1969). As the number of regulatdactor per genes is
unknown, even nowadays, Kauffman studied topologies ircivigiach gene has direct
inputs from all genes, as well as topologies with= 1, K = 2 and K = 3 input(s)
per gene. One of the>" possible Boolean functions was randomly assigned to each
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gene based in the assumption that in nature there is no reasappose that all elements
within an organism’s underlying regulatory network penficthe same activity, e.g. carry
the same Boolean function. Kauffman’s experiments suggedsbtat large randomly con-
nected feedback networks of binary nodes (genes) behabestability comparable to
that in living organisms. Furthermore, the author presemidence that these systems
undergo short stable cycles, which parallel and prediésithe required for cell replica-
tion in many species. As conclusion, Kauffman asserts thagé, randomly assembled
nets of binary elements behave with simplicity, stabidihg order. It seems unlikely that
Nature has made no use of such probable and reliable systmtisto initiate evolution
and protect its progenly

Since Kauffman’s seminal work, most of research on Boolestworks has focused
on unraveling the structure of GRNs from gene expressioa. datANG; FUHRMAN;
SOMOGYI (1998) investigated the viability of inferring aroplex regulatory network
architecture, modeled as a RBN, through a systematic asallysutual information be-
tween input/output states, such as state transition tablesalgorithm, named REVEAL,
starts by testing if a particular gene is an effective onmsirrule device. The Shannon
entropy H regarding every possible single input is computed in turar genes whose
output is not determined by a single input, the effectivefor the rule of that gene is
larger than one. Then, in the next step, the REVEAL algoritests whether the gene is
determined by a rule with two effective inputs. This proaedcontinues until all genes
have their rule established, gradually increasing the rarmabinput whenever appropri-
ated. The advantage of REVEAL algorithm is that simple nekea@an be calculated
very quickly by a simple comparison between entropies dgéstansition pairs. The al-
gorithm computes the entropy for high&r only when required. In this case, however,
the computational cost is much higher and authors suggestthusion of parallel com-
putation. LIANG; FUHRMAN; SOMOGY!I (1998) suggested thatlypa small number
of state transition pairs (around 100 pairs) were suffideninferring Boolean networks
with 50 nodes, regulated by 3 other genes at most.

AKUTSU; MIYANO; KUHARA (1999) also proposed an algorithmrféearning a
Boolean network from data based on state transition tabl@ea the concepts of Consis-
tency Problem, the BOOL-1 algorithm. The algorithm perferan exhaustive search: for
each pair of nodesy(, v;,) in V and for each Boolean functighe F, it checks whether
or notO;(v;) = f;(I;(vk), I;(vs)) holds for allj = 1,...,m, e.g. if f is consistentin
which I refers to the input an@® to the output. If there is only one consistent network,
the algorithm returns the function that satisfies the abowelition. According to the au-
thors, this algorithm is much simpler than REVEAL, enablitsgnathematical analysis,
although it may not be so computationally efficient as theetait works inO(n®m) time
for K = 2 and inO(n*m) time for K = 3, , wheren is the number of nodes and
the number of samples. The authors proved that for a Booletmonk with in-degrees
bounded by a constaif and transition pairs given uniformly randomly frahY possible
pairs, the algorithm require3(log n) input/output pairs to correctly identify its structure.

One of the most common criticisms regarding the use of thesiStency Problem
for inference of regulatory networks is that gene expressiata are inherently noisy.
Therefore, aiming to cope with the noise in data, AKUTSU; MNO; KUHARA (2000)
modified the BOOL-1 algorithm, proposing a new robust imeealgorithm, BOOL-2,
for the so-called noisy Boolean networks. A noisy Booleatwnek consists of a graph
G(V, F) andpy,eise, Wherep,,.;s. iIs a constant taken over all possible input pattéirsich
that0 < p,.ise < 1. The inference of the network structure is similar as in BODIex-
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cept that the new algorithm checks if the condit@f(v;) = f;(/;(v), I;(v4)) holds with
probability p,..;s. for each node in a noisy Boolean network. Thus, instead chditng
all inconsistent functions during the exhaustive sear€dQB-2 discards only functions
inconsistent with at least - m patterns, wherd = 22}(% According to the authors,
BOOL-2 requires a larger number of data sets, which must cemplifferent experi-
mental environments or conditions, when compared to BOORegarding its computa-
tional complexity, computation time is not a serious prainlé&s REVEAL and BOOL-1,
BOOL-2 is suitable for handling several hundred of genesikameously, which may be
improved by the application of different search heuristiod parallel computation.

Following the direction of aggregating probability to ramd Boolean networks as
a way to cope with uncertainty, SHMULEVICH et al. (2002) pospd an extension of
random Boolean networks. According to the authors, giverrsé 'good’ competing
functions for a given gene, there is no reason to put all tith fa just one of them.
Therefore, they extend the classical RBN model in order ltmeh single node to hold
more than one possible function, creating the so-callebabilistic Boolean networks
(PBN). In PBN, at any given point in time, the value of each enagl determined by
one of the possible functions, chosen according to its spaeding probability. The
inference process in based on the coefficient of deternoim&@OD), which measures the
degree to which the transcriptional levels of an observer get can be use to improve
the prediction of the transcriptional level of a target geekative to the best possible
prediction in the absence of observations (SHMULEVICH et2002). The COD is in
interval [0, 1] and is estimated from the data themselves. The main adwofagBN
formalism is the fact that it is more flexible and powerful {ehietaining all the appealing
properties of RBNSs.

Apart from heuristic search, an alternative method forrieriee of random Boolean
networks is correlation measurement, for example, therimétion-theoretic approach.
MAUCHER et al. (2011) developed a method suitable for leagrihe network structure
from large-scale data. Authors rely on the observationrtiat transcriptional regulators
will be either activators or inhibitors of a certain gene is@ecific cell type. Further-
more, the activating or repressing effect of a transcnpfactor monotonically depends
on its cellular concentration, such that an increase in treentration of an activator
(repressor) will increase (decrease) but never decreaseéise) transcription of its tar-
get. According to MAUCHER et al. (2011), this kind of trangtional regulation can be
modeled mathematically in a very simple manner by the usearsfatone Boolean func-
tions. In order to detect the directed causal regulatorgdédencies in a network, authors
examined how the expression of different genes correlaiéstire successive states of
potential target genes by means of Pearson correlationpip®sed algorithm performs
a faster and more reliable identification of interactiorantithe best-fit problem with an
overall running time of the ordeP(n?m), wheren is the number of nodes and the
number of samples.

In addition to the Consistency Problem, the Best-Fit Pnobénd their extensions,
the other class to infer Boolean networks is machine legrbesed algorithms, in which
genetic algorithrh(GA) is perhaps the most applied method. Discrete models weed
in REPSILBER; LILJENSTROM; ANDERSSON (2002) to develop akimg method

1Genetic algorithms consists of an optimization processiiad by the natural phenomenon of adapta-
tion. A population of candidate solutions is evolved base@perations inspired from biology, i.e. selec-
tion, crossover and mutation, and the principlesofvival of the fittesis applied such that fitter solutions
have more probability of surviving through generationsil@tveaker ones perish.
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of alternative hypothesis models to a target GRN. Since raxgatal data has limited

availability, authors propose a more realistic approanhyhich the set of alternative
hypotheses is given as input file to a GA together with the gaipeession data. Through
the minimization of a quadratic error function between esgron profiles obtained from
generated and target networks, the method successfukgdahe alternative hypothesis,
identifying the most probable class of network structuigsmthe input gene expression
patterns.

GAs were also used in MENDOZA; BAZZAN (2011) to explore thas#h space of
all possible network structures coded as RBNSs, rather theng@exhaustive search, which
usually requires a prohibitive amount of computation tiroe liigh dimensional prob-
lems. In this work, authors evaluate the power of infererfaéie approach and how far
is possible to reconstruct an accurate model using solglgraxental data, e.g. without
supplying any biological prior knowledge. This is usefulemhno such prior knowledge
is available, which is a common situation. The implementigdréhm reached a good
accuracy level, representing a valuable start point fololgists in the investigation of
gene interactions. The reported precision is low, a faci@aged by the authors not only
to the high frequency of false positives, but also to thelsstic nature of GA, which al-
lows individuals to explore different sites of search spaue, therefore, to have different
topologies between themselves. However, exploring diffesolutions simultaneously is
extremely advantageous when the solutions found by the @ A@nbined into a consen-
sus network: almost all interactions in the target GRN haenlcorrectly inferred by the
model.

6.4 Advantages and Disadvantages

Perhaps the main advantages in using random Boolean netiarkhe reverse en-
gineering of regulatory networks are the dynamic and raseldl properties of this for-
malism, which are common features of real GRN. In additiooplBan networks are
computationally simple, allowing their exploitation ondar scales more easily than in
other modeling frameworks. Despite their simplicity, RBi able to capture much of
the complex dynamics of gene networks and allow the extracti meaningful biological
information (LAHDESMAKI; SHMULEVICH; YLI-HARJA, 2003). When the interest
lies in the qualitative features of the network, RBN is indl@esuitable and efficient tool.

In contrast, the binary property of the devices in RBN is arggrabstraction, which
can cause loss of information and interfere with the qualftyeconstruction. Further-
more, RBN are inherently deterministic, which goes agamsstochasticity observed in
real biological systems (ARKIN, 1999). The assumption dfame logical rule per node
may lead to incorrect conclusions when inference is basegna expression data, as the
latter are typically noisy and the number of samples is igualich lower than the num-
ber of parameters to be inferred (SHMULEVICH et al., 2002)PBN, an extension of
the standard Boolean networks, the determinism has begxerkhllowing the identifica-
tion of a set of functions together with their correspondetection probabilities and the
guantification of the influence of genes on other genes. Tdaptation not only allows
the modeling of stochastic processes, but also the hanaliddearning from noisy data,
providing a good balance between computational complexityinference performance.
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6.5 Tools

The BN/PBN toolbox is a MATLAB Toolbox maintained by Harri hdesmaki and
llya Shmulevich. The software works with both random Boale&tworks and prob-
abilistic Boolean networks and it includes functions forfpeming a wide variety of
simulations and network analysis. Some examples of festawvailable are: simulation
of network dynamics, computation of network statisticsniiners and sizes of attractors,
basins, transient lengths, influence matrices), compurtati state transition matrices and
stationary distributions, inference of networks from dagtgneration of random networks
and functions, visualization, intervention and membgrsesting of Boolean functions.
The toolbox is available for download in a webpagieat comprises a comprehensive
source of information about research work on probabilBtolean networks and related
topics.

6.6 Discussion

The Boolean network formalism for modeling GRN discussethencurrent chapter
is the simplest and the first applied technique for inferarfcegulatory networks. Exper-
iments held by Stuart Kauffman in (KAUFFMAN, 1969) suggelstigat random Boolean
networks are as stable, ordered and simple as biologica@mgsand since then they have
been widely applied in the study of gene interactions andleggn. The simplicity built
into random Boolean networks offers more benefits than desatdges in the process of
reverse engineering in which we are interested. For instath@ lower complexity of
learning algorithms allows their application to high dirsemal problems more easily
and efficiently than other approaches. Furthermore, as tie imterest is often the ex-
traction of a global picture of gene regulation, due spéctalthe restricted information
available for creating a detailed description of such meigdm, RBNs are a suitable and
practical tool as they summarize the entire set of possie gctivities and states in only
two basic conditions: a gene can be either expressed or agjiren time. Although this
may seem a strong abstraction, is in fact one of the most dpgdaatures of RBNSs,
making it a robust modeling framework.

Notwithstanding all the advantages introduced by this wetRBNs have a relevant
shortcoming of being extremely vulnerable to noisy datahis special case, the method
is not robust enough to deal with uncertainty as it is basedeatarministic transitions
between possible network states. To overcome this liroitat probabilistic extension of
RBNs have been proposed, allowing each gene to hold moreotiaBoolean function
and computing its value by choosing one of the possible fanstaccording to its cor-
responding probability. The need for discretized datass al disadvantage of Boolean
networks as it causes information loss and introduces ewwe omcertainty to training
data, interfering with the quality of reverse engineeringoess.

Nowadays, most of researches on the application of randgenodabilistic Boolean
networks to the modeling of regulatory networks focus onergificient algorithms to
identify the best network structure. The sought-after iefficy refers to both the compu-
tational time and the results’ quality, often assessedrmgef metrics like precision, ac-
curacy and area under the ROC curve. Although the most cortyrnead techniques are
learning algorithms and search methods, statistical igqals such as correlation anal-
ysis have proven themselves a reliable and fast alternadivimd dependencies in the

2http://personal.systemsbiology.net/ilya/PBN/PBN.htm
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network. Once captured the structure and dynamics of GRN égns of Boolean net-
works, in silico experiments and hypothesis-testing magdsely performed, elucidating
the functional mechanisms and basic dependencies of ggul@tien in a given organism.
The generated model represents a coarse-grained destptGRN for studying large

scale gene networks through macroscopic variables in aagfabhion. Even when not
able to completely explain the process of gene regulati@niodeled Boolean network
Is at least a good source of information to define new experiatéargets and conditions
in order to collect more data for reverse engineering gegelagory networks.
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7 NEURAL NETWORKS

Despite the wide application in reverse engineering of GRRE computational meth-
ods presented so far have inherent performance limitati®ayesian networks, intro-
duced in Chapter 5, are known to cope well with noise, incetepless and stochastic
aspects found in gene expression data. However, they dansider the dynamical as-
pects of gene regulation and leave temporal informatiorddressed (XU; WUNSCH,;
FRANK, 2007). Random Boolean networks, discussed in Clndjtare useful in ex-
ploring the dynamics of GRN in a global fashion. Yet, theyagnthe effect of genes
at intermediate levels and assume transitions betweersgsia¢es to be synchronous,
which is biologically implausible.

Neural networks, as Boolean networks, are a coarse-grajpgwach to analyse large
gene regulatory networks, but differently from those, theyk at an intermediate level.
In this formalism, nodes still represent genes, while catioes between nodes denote
regulatory influences on gene expression. However, in ashto the latter, the gene
expression and regulation is measured in a continuous rarayder to capture properties
that are not identified by the discrete models.

7.1 Artificial Neural Networks

The formal definition of an Artificial Neural Network (ANN) igiven according to
HAYKIN (1998).

A neural network is a massively parallel distributed precesnade up of
simple processing units, named artificial neurons, whiceeatural propen-
sity for storing experimental knowledge and making it aaalié for use. It
resembles the brain in two aspects:

1. Knowledge is acquired by the network from its environmténbugh a
learning process.

2. Interneuron connection strengths, known as synaptight®j are used
to store the acquired knowledge.

The structure of an ANN is uniquely determined by the numidenamles and the
wiring, e.g the connections among these nodes. Figure dvsstine basic elements of an
individual neuron. Each neuron has a set of links or synagisasacterized by a weight,
such that a signat; at inputj of neuronk is multiplied by the synaptic weighty;. All
the input signals are summed up by an adder according to Bquat., which constitutes
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Figure 7.1:Elements of the neuronal modelEach neuron in the ANN is composed by a
set of synapses with individual weights, a linear adderaa bnd an activation function.
Reproduced from HAYKIN (1998).

a linear combiner:

up = Z Wi, (7.1)
=0

Also, the neuronal model includes a biaswhich has the effect of applying an affine
transformation to the output, of the adder. The bias increases or decreases the input to
the activation function, depending on whether it is a pesitr negative factor, respec-
tively. Considering the bias and the output of the lineareadhe input to the activation
function is thus defined as:

Finally, a neuron has an activation functipp() for limiting the amplitude of a neu-
ron’s outputy,, transferring it to a normalized transcriptional responEleree common
used activation functions are the threshold function, ikeqwise linear function and the
sigmoid function (HAYKIN, 1998). The latter is shown in Ediga 7.3.

1

ok PO (7.3)

er()

When applied to gene expression data, the nodes represess,gbe value of the
node is the corresponding gene expression value and thectoms define the regulatory
interactions. Also, the number of nodes is often definedastimber of genes observed,
although it may also include other factors involved in thgulatory process.

It is assumed that the state of gene expression at timelt depends on the state
of expression at time and on the synaptic weights. LetM-dimensional vector(t)
be the expression state of a GRN withgenes, such that the elemen{t) denotes the
expression level of geneat timet. Also, considerw to be the matrix of synaptic weights
of all connections in the network.A positive weight impleestimulating effect (positive
feedback) while a negative weight implies repression (tiegdeedback). Given these
definitions, the expression level of gehat timet may be computed as:

Vi = Z wijj + bk (74)
7=0
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Figure 7.2:Multilayer artificial neural network structure. ANN are organized in the
form of layers. The input layer receives information frone ihput vector, which con-
stitute the input signals to the second layer (i.e. the ficdddn layer). The model may
have more than one hidden layer. The set of output signalseohéurons in the out-
put (final) layer are the overall response of the network &oattivation pattern supplied
by the nodes in the input layer. Reproduced from the SANY IPsite, available at
http://ww. sany-i p. eu/ book/ export/htm /3271.

where, regarding the gene expression context, thethiespresents the influence of ex-
ternal inputs or reaction delay (TIAN; BURRAGE, 2003). Afthe application of the
activation function, the outpuy, is a value between 0 and 1, where O represents complete
repression and 1 represents maximal expression.

Nodes are organized in layers, whose number and arrangetegnés the classifi-
cation of the ANN. In Figure 7.2, an example of a multilayer AN given. The input
layer receives information from the input vector, which stnite the input signals to the
second layer (i.e. the first hidden layer). In this figure,itfput information corresponds
to different features (feature A, feature B,...). Howewdten applying this model to gene
expression data, the input refers to the expression levgkenés in the target system.
Despite the illustration of only one hidden layer, the madaly have more than one hid-
den layers, providing better tools for extracting highedes statistics. The set of output
signals of the neurons in the output (final) layer are the al/eesponse of the network
to the activation pattern supplied by the nodes in the ingyel. As the information is
conducted in a single direction, from the input nodes to tlelén nodes and finally to
the output layer, this network is referred to as feedforwaNN. Feedforward networks
do not contain any cycles or loops. In contrast, recurrentalenetworks (RNN) have at
least one feedback loop, which has a deep impact in the tepoaipacity of the network
and its performance.

7.2 Learning Artificial Neural Networks

In most cases, ANNSs are adaptive systems, which means #iastructure, or more
specifically their synaptic weights, change with time basedhe information flowing
through the network. This process is known as learning aadéevant property in the
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performance improvement of neural networks. At the end ohegne step, the network
becomes more knowledgeable about its environment, proyitiore precise information
on the data being analysed.

According to HAYKIN (1998), the learning process comprifa®e steps:

1. The neural network is stimulated by the environment incviié embedded.

2. The neural network undergoes changes in its free parasreete result of the stim-
ulation.

3. The neural network responds in a new way to the environrbeoause of the
changes that have occurred in its internal structure.

In what follows the fundamental learning paradigms areiegred and the most well
known learning algorithms in the neural network field areadticed.

7.2.1 Paradigms

All learning methods used not only for adaptive neural nekspbut also for other
classes of modeling frameworks, can be classified into timager categories: supervised,
unsupervised and reinforcement learning.

Supervised learning assumes the existence of a teachepent,avho has knowledge
about the environment represented as a set of examples{mpput data) and provides
the neural network with a desired response for a given icstafa training vector. Ac-
cording to HAYKIN (1998), the desired response is the optimmaction to be performed
by the neural network. The synaptic weights are iteratiaelysted under the combined
influence of the training vector and the error signal, whlléfined as the difference
between the desired and the actual response of the netwbwefbre, the knowledge
available to the teacher is gradually captured by the nenoalel, such that at each time
step the ANN is more likely to produce the appropriate respdo a given input. This
process is depicted in Figure 7.3(a).

In contrast, unsupervised and reinforcement learning austdo not rely on an expert
to oversee the learning process. The mechanism underlyisgpervised learning is
illustrated in Figure 7.3(b). In unsupervised methods |éaening is based only on local
information and is usually referred to as self-organizatibhe parameters adaptation is
performed based on the similarities and differences amioagput patterns, given by a
task-independent measure of the quality of represent#i@irthe network is required to
learn.

Likewise, reinforcement learning differs from standargbexwised learning in that
correct input/output pairs are never presented by an exfkhiough an interaction with
the environment exists, the learning process happens dihe tobservation of the con-
sequences of the previously chosen actions, rather thatoduexplicit teaching by an
expert. The learning is essentialy based on the “trial anai'eprinciple: for each se-
lected choice a numerical reward is received, which enctii®success of an action’s
outcome. In the sequence, new decisions are made such ¢hat¢bmulated reward is
maximized over time. The described process is depictedyarEi7.3(c).
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Figure 7.3:Learning paradigms Learning methods used not only for adaptive neural
networks, but also for other classes of formalisms, can hsesdied into three major
categories: (a) supervised, (b) unsupervised and (c)am@ment learning. Adapted
from HAYKIN (1998).
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7.2.2 Error-Correction Learning

Error correction learning is a supervised learning methbitkvconsists in comparing
the system output to the desired output value and direchegtriaining based on the
feedback from this comparison. The error signah) is defined as

er(n) = dr(n) — yr(n) (7.5)

whered,.(n) is the expected output ang(n) is the actual output, ans acts as a control
mechanism, which applies a sequence of corrective adjussnte the synaptic weights
of neuronk. The consequence is that the outputn) gradually becomes closer to the
desired responsé,(n) (HAYKIN, 1998). This is achieved by the minimization of a tos
function, defined in terms of the error signal:

1
2

E,, is the instantaneous value of the error energy. The mintmizaf the cost func-
tion F,, leads to a learning rule referred todmedta rule which adjusts the synaptic weights
of neurons proportionally to the computed error signal anthé input signal. The delta
rule is computed according to the following equation:

Awyj(n) = ney(n)z;(n) (7.7)

wheren is a positive constant that determines the rate of learniing. synaptic weights
are then updated adding up the synaptic adjustmemnt (n) to the weights in the current
time step, as shown in what follows:

wi(n+ 1) = wgj(n) + Awy;(n) (7.8)

7.2.2.1 Least Mean Square

The least mean square algorithm applies the error-coorettiarning to single layer
ANNSs, whose simplest form is known as perceptron. The dlgwrincorporates an iter-
ative procedure that makes successive corrections to tigitnector in the direction of
the negative of the gradient vector, which eventually ldadtie minimum mean square
error.

Algorithm 7.1: Least mean square algorithm.
w(0) = 0;
repeat
for each training example do
Activate the perceptron by providing input vectar) and desired output(n);
Compute the output valugn) = w? (n)x(n);
Adjust the perceptron’s weight vectari(n + 1) = w(n) + pld(n) — y(n)]z(n);
end for
until no more updates are made in the weight vector
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Algorithm 7.2: Backpropagation algorithm.
Initialize weights with non-zero arbitrary values
repeat
for each training example do
Activate the multilayer ANN by providing input vectarn) and desired output
d(n);
Propagate:(n) until the output layer;
Compute the instant errey,(n) in the output layer;
Compute the local gradients of output layé(n);
Adjust the weights of nodes in the output layer accordingje¢ion:
wg;(n + 1) = wf;(n) + pog(n)i;(n);
Compute the local gradients of hidden Iaﬁ?(n);
Adjust the weights of nodes in the output layer accordinge¢ion:
whn +1) = wh(n) + pdl (n)zi(n);
end for
until the mean square error is still under a given threshold

7.2.2.2 Backpropagation

For the multilayer neural network architecture, in whick thput signal propagates
through the network, layer by layer, in a forward directiangommonly used training
algorithm is called the error backpropagation algorithine Backpropagation (BP) algo-
rithm is also based on the error-correction learning rulé @mnsists of a generalization
of the least mean square method. In contrast to the lateeBEhalgorithm passes twice
through the network’s layers: in the forward pass a stimidwgpplied to the input layer
and its effect is propagated through the network, layer pgrigoroducing a set of outputs.
In the backward pass, the synaptic weights are adjusteddingdo the error correction
rule. Henceforth, at each pass, the synaptic weights bectoser to the desired output.

The major difference between learning a single-layer ANN amultiple-layer ANN
is that in the first one there are no hidden layers and the atrbre output layer is very
clear and of easy computation. Nonetheless, error at thaehithyers are not obvious
as the training data does no provide us with the expectedsaltithe nodes in these
layers. Therefore, the practice is to back-propagate tiog #om the output layer to the
hidden(s) layer(s), since the nodes in the hidden layers@reehow “responsible” for a
fraction of the error in each of the output nodes in which isrexted.

In multilayer ANNSs, the update equation of nodes in outpyétas similar to the one
defined in the least mean square algorithm:

w4+ 1) = wfy(n) + 03 n)is (n) (7.9)

where the notation denotes the elements in the output layeis the learning rate; is
the input provenient from the neurgnn the previous layer and the local gradieéptis
computed as:

0 = (di(n) — ye(n))(1 = yr(n)?). (7.10)
Similarly, the nodes in the hidden layer are updated acogrtti the following equa-
tion:
wyi(n +1) = wj(n) + pd} (n)wi(n) (7.12)
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where the notatioh denotes the elements in the hidden layer, the tefm) refers to the
stimulus in the neuronof the input layer and the gradie(ﬁ';l(n) is defined as:

M

0F = (1—1i;(n)*) Y_(8(n)wg;(n)). (7.12)

k=1

7.3 Application to Gene Expression Data

One of the seminal works establishing the capability of AlNescribe the dynamic
behavior of gene regulatory networks was carried out by &d$ky in 2001 (VOHRAD-
SKY, 2001). Vohradsky states that ANNs are able to explagnetkperimental observa-
tions and, more importantly, to predict the specific funtsiof the system in experimen-
tally inaccessible situations, allowing the extractioonclusions about the stability and
functionality of GRNs. Moreover, the author highlights thetability of recurrent neural
networks for this specific application, due to their abitiycope with feedbacks and their
flexibility to fit the data. The RNN model is applied to sim@dtow the virus bacterio-
phage\ chooses the pathway for growing (lytic or lysogenic grovahdn after infection
of E. Coli.

RNN models were also used by XU; WUNSCH; FRANK (2007) in thieiance of
GRNs. Authors propose a two-step algorithm for learning GRdteled as recurrent
neural network. First, the algorithm unveils potential ggnnetwork architectures that
fit well with the time-series data by means of a particle swaptimization! (PSO) al-
gorithm. In other words, this step determines which weiglithie ANN have a nonzero
value. The PSO-based search avoids making an exhaustiveeeation of all possible
connectivity, which is very time demanding. After definidgetoptimum structure, PSO
is applied in the RNN training. In this step, the algorithntfpems the evolution of the
weight matrix such that the nonzero weights can be fine-tunkdreas the nonsignificant
weights remain equal to zero. The RNN/PSO approach wagsitestteboth synthetic and
real data sets and the results suggest that, as the techmicpsented in previous chap-
ters, RNNs are meaningful in revealing potential regulatoteractions between genes.
Nonetheless, in contrast to those, RNN is also very promitancapture the nonlinear
dynamics of gene regulatory systems.

HACHE et al. (2007) proposed to applied the Backpropagattmough Time (BPTT)
algorithm, described by WERBOS (1990), to reconstruct GRNgeled as RNNs. The
BPTT is an extension of the standard Backpropagation dlguori it is also a gradient
based parameter learning method which minimizes the eurmtion

E(y(t ZZ yi(t) — Gi( (7.13)

by varying the parameters of the model during every itenasitep. This way, the esti-
mated valuey(t) of each node converges to the data poijits. However, the BPTT
unfolds the temporal operation of a network in a multilayetwork, to whose topology
is added a new layer at each time step. Therefore, consgdarRNN with two layers,
f andg, when the network is unfolded through time, the unfoldedvoek containsk

Particle swarm optimization is a computational optimizatmethod that improves a population of
potential solutions, called particles, with regard to aegivneasure of quality by iteratively changing the
velocity of (accelerating) each particle towards the cowtes in the problem space which are associated
with the best local and global solutions so far.
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Figure 7.4:Backpropagation Through Time. The temporal operation of the RNN is
unfolded in a multilayer network, to whose topology is addedew layer at each time
step. Considering a RNN with two layersandg, when the network is unfolded through
time, the unfolded network contaikanstances off and one instance af

instances off and one instance af. Figure 7.4 shows a graphical representation of this
example, available at Wikipedia

HACHE et al. (2007) resort to the simulation tool PyBioS togeate data for testing
purposes. Both simple and complex networks were implerdeiievhich the latter re-
flect the features of a real biological system. The interestdarticularly in the evaluation
of performance with respect to the reconstruction of neltwootifs of different sizes. As
an example of complex network, authors modeled part of the gevelopmental regula-
tory network of sea urchin.

Results were compared with the ARACNe software, develope@ASSO et al.
(2005) based on mutual information, with a Dynamic Bayesitdel and a linear least
square fit approach. Since the output of BPTT is not uniqueB®TT result is computed
as the mean of ten learning processes with the same datansatdition, the weight
matrix generated by BPTT algorithm was discretized in thesels (activation, inhibi-
tion and non-regulation) based on an optimal thresholdhaodomparison with the other
mentioned methods is possible. Authors found that BPT Tsgilre best result in term of
a distance measured defined as

d(sen, spe) = /(1 — sen)2 + (1 — spe)? (7.14)

wheresen is the computed sensitivity angbe is the computed specificity. The BPTT
found the most true regulations and true non-regulatioaginiy the highest sensitivity
among all methods. However, as it also erroneously assac#alot of weights to regula-
tions, its specificity is lower than ARACNe and DBN approaehbdACHE et al. (2007)
states that a compromise among Bayesian methods and ANNHrgaechniques may
introduce promising improvements.

7.4 Advantages and Disadvantages

Due to their nonlinearity feature, ANNs can perform compbesks and solve difficult
problems that are not feasible by linear methods. In additieey deal with important
aspects of real GRNs that are not addressed by the methad&eevin previous chap-
ters. First of all, ANNs allow a dynamic and temporal anaysi gene expression data,
which is not possible with Bayesian networks. Second, dimsds a continuous method,

2http://en.wikipedia.org/wiki/File:Unfold_throughntie.png
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it considers the intermediate level of gene expressionrgghim the Boolean network for-
malism. As a consequence, data discretization is not redu&knother appealing feature
Is the network ability to learn from example data and be lagsed to predict the response
of the system under a new conditions. Last but not least, AdiNdbles an asynchronous
simulation of the system, which is not covered by Booleamnvodts and is still in its
infancy in Boolean networks.

Concerning their drawbacks, ANNs need to be trained befogadly beginning to
operate, which demands time and a large training data set, &le training stage must
be executed only as much as the network needs for learnidgnamore, because ANNs
have proneness to overfitting, becoming unable to detectpagi®rns or make new pre-
dictions in respect to original data. The processing pl&alkso time consuming, specially
for large neural networks. Finally, the right decision atitne network architecture, e.g.
the number of layers and the number of nodes in each layest @avious and is by itself
a challenge.

7.5 Tools

Hendrik Hache and his group developed GNRevealer (HACHHE. g2@07), a soft-
ware based on neural networks for reverse engineering & igggiulatory networks. GN-
Revealer is available for downloddnd is executed by C++ command line. No manual
with user instructions and details about software impleiaté&n was found for download.
Therefore, information about the use of GNRevealer is vesyricted.

7.6 Discussion

Artificial neural network is a recent modeling framework ¢@me regulatory networks
and its application has not been so widely explored as thelskistering algorithms,
Bayesian networks and Boolean networks, which were redewerevious chapters.
While the seminal work about the application of Boolean roeks to GRNs context dates
to 1969 in KAUFFMAN (1969), ANNs were proposed as an altaugasolution only in
the beginning of the 21st century, by Vohradsky in VOHRADSK2001). In these ten
years since Vohradsky’s work, a greater attention has heeed to the learning of gene
regulatory networks by means of Bayesian networks, whicfe lh&en introduced to this
context in FRIEDMAN et al. (2000) just one year before thelmation of Vohradsky'’s
paper. Bayesian networks seemed so promising at first digititt was exhaustively
exploited in several angles, thus rapidly establishinglfitas a powerful solution to the
problem. Hence, although neural networks are broadly knasvian efficient method
for solving complex problems, they are not as consolidage@®@olean networks and
Bayesian networks in the context of gene regulatory netsvarkdeling due to a matter
of time and lack of efforts, which does not means that it doofiler important advantages
in contrast those formalisms.

In fact, ANNs provide some features that are not covered hyldam and Bayesian
networks. For instance, ANNSs are specially suitable forniilng meaning from domains
with many parameters, interdependencies and uncertdingr most appealing feature is
perhaps the ability to learn from data through a trainingstand later perform predictions
about new situations based on acquired knowledge. Thairned topology is able to

3http://www.molgen.mpg.de/ hache/GNRevealer/
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cope with feedback loops and is flexible enough to fit well taead The model is also
noise-resistant and very robust: a failure in one neurors to¢ necessarily causes the
collapse of the whole system.

Differently from Boolean networks, artificial neural netks is a continuous method
and therefore considers the intermediate level of geneesgfmn in the model inference,
which improves its learning capacity. This factor also psnthe advantage of not being
necessary to discretize data, which is by itself a procedsntroduces uncertainty to the
domain. When compared to Bayesian networks, ANNs introtluedenefit of allowing
the analysis of the network’s dynamic behavior and an asymcus simulation of the
system. The latter, although also possible to be perform#dBoolean networks, is not
an inherent feature of these and is still in an early stage@é@mentation.

Notwithstanding all these advantages, ANNs have meanimgfaknesses which per-
haps have influenced the low popularity of the method to fhesiic area of interest. First
of all, due to its computational complexity, this modelimgpaoach can currently only be
applied to very small systems. The training stage is verg tilmmanding, with no war-
ranty of convergence, and the computation of the output regyire too much time for
large data sets and networks. In addition, figuring out wiediivark structure will give
the optimal solution is a big issue: even when trying out mdifferent architectures,
which is obviously extremely time consuming, is not possital assure that the chosen
network if the best solution. This is by itself an importaggearch area concerning neural
networks.
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8 CONCLUSION

The recent improvements in biological experiments and tresequent amazing in-
crease in the volume of biological data have introduced aingsvesting research area
in the field of bioinformatics: the reconstruction and asayof gene regulatory net-
works. Nowadays it is known that organisms are regulatechtricated networks which
interconnect all functioning entities within an organisuach as genes, proteins and RNA
transcripts. Scientists believe that the pathway to effecirugs and treatments is to learn
the functioning of these networks and how to control them.

The great amount of gene expression data available nowadagdrought the neces-
sity of an interface between biological and computer s@sndlore specifically, the use
of machine learning methods for the analysis of such datagithe reconstruction of the
corresponding gene regulatory networks have become a carpnagtice. The present
work have outlined and reviewed some widely used methodhi®purpose: clustering
algorithms, Bayesian networks, Boolean networks and heetaorks.

The survey shows that all methods have their own drawbaadttdanefits and that
each method covers different aspects of the reverse emgiggeoblem. Clustering algo-
rithms, for instance, identify similarities between gerg®uping them together accord-
ing to these features. However, clustering algorithms d@ravide the exact relationship
among a group of genes and hence are not self-contained dsdthrathe reconstruction
of the gene regulatory network. In practice, they are vesfulsvhen combined with
other methods as a pre-processing stage: once groups efyctetated genes are iden-
tified, the network underlying these genes may be identifiethb application of other
modeling frameworks.

Bayesian networks, Boolean networks and neural netwosksdiffer between them-
selves in respect to the type of information recovered frata.dWhile Boolean networks
provide a discrete and deterministic description, newstdorks are continuous and adap-
tive systems, being specially suitable for capturing propge from domains with many
parameters, interdependencies and uncertainty. Thisswitle a price tough: the com-
plexity and the amount of data required by the learning algas are significantly higher
in neural networks than in Boolean networks. Also, both niaddrameworks allow a
temporal simulation of the biological system.

In contrast, Bayesian networks are limited for applicagimvolving steady-state data,
since its underlying graphical model, the directed acyglaph, does not allow the occur-
rence of cycles. The niche occupied by Bayesian networkss¢d the formulation of the
domain’s probability distribution, which are easily usegerform in silico prediction by
computing the predictive distribution on the outcomes «fgplole actions, such as system
interventions. The probabilistic nature of Bayesian neksas a favorable feature when
dealing with missing and noisy data.



84

Given this brief review of the methods discussed, one caclade that is difficult to
assert that a particular method is better or worse for trexémice of gene regulatory net-
works. All methods own relevant weaknesses and advantéigestecision about which
one to apply depends on one’s goal for the study. Furtherntfoeenethod’s performance
is highly dependent on the scenario, on the target netwéek®ires and on the a priori
knowledge available during the reverse engineering psoces

Researchers have already suggested the integrationefadifftypes of biological data
or even biological data collected under distinct experitakeconditions as an interesting
solution for the improvement of the model’s accuracy. Byiog data sets concerning
different aspects of the same domain we provide furtheraugr the inference process,
which in turn will result in a richer computational model fiie gene regulatory network.
What was observed during this survey is that the naturalseotor the application of
the reviewed modeling frameworks to this specific issuefedl the same direction: the
aggregation of distinct machine learning methods becomgsod strategy as it com-
bines their particular strenghts and circumvents as mupbssible their weaknesses. By
joining efforts one would expect to improve the overall fesid the inference process,
forming more robust and accurate emsemble predictions.
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