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ABSTRACT

With the recent and outstanding advances in gene expressionmeasuring technologies,
a huge volume of data has been produced, introducing a new interesting research area in
the field of bioinformatics: the reconstruction and analysis of gene regulatory networks
from the data themselves. By constructing a graph model for the genetic interactions com-
prising organisms, scientists are able to test hypothesisin silico and make new predictions
about an organism’s response to a particular stimulus or environmental change. Computer
science has played an inportant role in this process, providing the tools and algorithms for
the analysis of such data. This work aims to outline some widely used machine learning
methods in this context and identify their respective weaknesses and strengths, as well
as review their main applications to the inference of gene regulatory networks from gene
expression data.

Keywords: Artificial Intelligence, Machine Learning, Reverse Engineering, Gene Regu-
latory Networks, Gene Expression.





RESUMO

Um Estudo sobre Métodos de Aprendizagem de Máquina para a Engenharia
Reversa de Redes Regulatórias Genéticas

Com o recente e notável avanço nas técnicas para medição de expressão gênica, um
grande volume de dados está sendo continuamente produzido,introduzindo uma inter-
essante linha de pesquisa no ramo da bioinformática: a reconstrução e análise de redes
regulatórias genéticas a partir dos dados propriamente ditos. Através da construção de
um modelo de grafo, cientistas são capazes de testar hipóteses in silico e realizar novas
predições a respeito da resposta de um organismo a diferentes estímulos e altera ções
ambientais. A ciência da computação vem desempenhando um papel importante neste
processo, fornecendo ferramentas e algoritmos para a análise dos dados biológicos. Este
trabalho visa destacar algoritmos de aprendizagem de máquina amplamente utilizados
neste contexto e identificar os pontos fracos e fortes associados a cada um deles, assim
como revisar as principais aplicações destes métodos à inferência de redes regulatórias
genéticas a partir de dados de expressão gênica.

Palavras-chave:Inteligência Artificial, Aprendizagem de Máquina, Engenharia Reversa,
Redes Regulatórias Genéticas, Expressão Gênica.
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1 INTRODUCTION

Since the discovery of DNA structure, scientists have dedicated a great effort to better
understand how the information comprised in a DNA molecule is interpreted and propa-
gated so that the phenotypic variability observed in naturemay be possible. In a general
way, all organisms cells carry the same set of genes; what distinguishes their unique prop-
erties and function is the subset of expressed genes. Gene expression is the term used to
denote the process by which functional gene products are synthesized based in the ge-
netic information coded in a gene. These products are often proteins, which have a prime
relevance for life maintenance on account of almost every cellular function be protein-
dependent. Therefore, regulation of gene expression, or gene regulation, is essential for
life versatility and adaptability (SWAIN; MANDEL; DUBITZKY, 2010).

An important goal emerged on genomic research and, more recently, in bioinformat-
ics, is to understand the nature and control of cellular function and the reasons why cel-
lular systems fail in disease. Despite all the knowledge about genes, RNA transcripts,
proteins and metabolites as individual entities, very little is known about how these el-
ements are integrated and interact in a biological system, as well as how to manipulate
their functioning (MARBACH, 2009). In contrast to the former reductionist approach,
which performs a gene-by-gene analysis in order to reveal how an organism works and
how its components relate to each other, scientists are attempting to accomplish this task
by investigating the behavior of genes in a holistic way. What prompted this shift was
the awareness that genes activity is not isolated or independent of each other (SHMULE-
VICH et al., 2002). Indeed, nowadays it is known that genes compose intricated networks
through which they work in concert to promote life sustainability. Therefore, the dis-
covery of such networks, named gene regulatory networks, based in experimental data
is a logical step towards a better understanding about the biological role played by each
gene. In literature, this problem is commonly referred to asreverse engineering of gene
regulatory networks.

Gene regulatory networks (GRN) are graph models that reflectthe mechanisms and
dynamics of gene expression and regulation by mapping the physical or influence inter-
actions between genes of a particular organism. The vertices of this graph usually rep-
resent genes, while the edges describe the regulatory relationships between genes (FO-
GELBERG; PALADE, 2009). Once modeled, these networks explain how genes are over
and under expressed in response to perturbation signals andenvironmental changes. The
main benefit of constructing a global regulation model is to provide insight about how
to control or optimise parts of the system while taking into account the consequences
for the system as a whole (HECKER et al., 2009). This genome-wide approach is rel-
evant since it renders significant information for pharmaceutical industry and medical
treatments development. If one knows, for instance, the exact target gene over which a
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particular pathogenic agent acts in its host, infections could be treated more effectively
and with reduced side effects. In plants, this knowledge could be applied for the devel-
opment of cures less environmental and health aggressive than pesticides. Additionally,
the resulting model could be used for in silico experiments in order to test hypotheses and
make predictions about the behavior of the biological system under different experimental
conditions.

The expressive and continuous progress in techniques for gene expression profiling
is another important contributing factor for the latter interest in inferring gene regulatory
networks from the data themselves. The current available technologies allow the mea-
surement of the expression of thousands of genes at once, providing valuable information
to create a comprehensive picture of cellular function. Theexpression level is often given
in terms of mRNA concentration in the cell, which acts as a proxy for the transcription
activity, since this can not be directly measured. The basicassumption is that one can
infer causality of transcription regulation from changes in the available gene expression
profiles (HACHE; LEHRACH; HERWIG, 2009). However, this approach has two im-
portant shortcomings. First, the process of regulation is in fact much more complex and
involves other biological entities than just transcripts.Therefore, the constructed model
represents a simplification of the real biological process.Yet it is a valuable source of
knowledge towards a better understanding of gene expression and regulation. Second,
the prevailing technologies produce such a massive amount of data that its analysis is no
longer achievable through manual efforts.

According to HECKER et al. (2009), the use of novel computational methods to learn
large-scale models by an integrative analysis of the available biological data is both essen-
tial and challenging. The developed methodologies must be both statistically sound and
computationally tractable for analyzing such data sets andinferring biological interactions
from them (FRIEDMAN et al., 2000). A wide range of mathematical and computational
methods have been already applied for the purpose of reverseengineering gene regulatory
networks. The proposed modeling frameworks vary from abstract boolean descriptions to
detailed differential equations, where every representation has its drawbacks and benefits.
Due to the typically limited knowledge about the biologicalsystem under study, machine
learning methods have been favored in the inference of gene regulatory networks because
they are able to extract information based solely on the biological data, without relying
on any prior knowledge that one has about the system that originated it.

The present work presents a broad review about the main machine learning techniques
used in the process of inference of gene regulatory networks. This study will concentrate,
mostly, in making a survey about the learning algorithm embedded in each method, the
source and characteristics of the input biological data and, finally, the quality of the infer-
ence result. The main goal is to identify the advantages and limitations inherent to each
computational method and possibilities of improvement in order to achieve more precise
and accurate results in the future.

This work is organized as follows. In Chapter 2 some of the main concepts involved in
gene expression and regulation processes, essentials for acomprehensive understanding
about the purpose of the current work, are explained. In Chapter 3 a review about some of
the well-known biological experiments and technologies for gene expression measuring
is provided. Next, the main machine learning methods already applied to the problem of
reverse engineering gene regulatory networks are introduced and discussed in dedicated
chapters. Chapter 4 addresses clustering algorithms, providing a detailed description of
algorithms such as hierarchical clustering, K-means and self-organizing maps. Chapter
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5 presents Bayesian networks and a commonly applied algorithm for Bayesian learning,
the Markov Chain Monte Carlo. Chapter 6 covers the modeling and learning of gene
regulatory networks by means of random Boolean networks. Chapter 7 deals with neu-
ral networks and describes the most well-known error-correction learning algorithms for
training these networks. Finally, the main conclusions raised by the literature review pre-
sented in this work are discussed in Chapter 8. This discussion is complemented with a
brief comment on promising directions for future research.



18



19

2 BIOLOGICAL ASPECTS OF GENE REGULATORY
NETWORKS

In this chapter some of the main biological concepts involved in gene expression and
regulation will be briefly presented. The goal is to provide reader with a background
on key cellular entities and events for life sustainabilityand variability. The discussed
topics are all closely related to the major subject of this work, gene regulatory networks,
and are therefore very relevant for a better understanding on the role of such networks in
organisms and the benefits of being able to infer their structure from experimental data.

2.1 The DNA structure

Every single organism in nature is composed of a genome, which carries all biolog-
ical instructions for constructing and maintaining life. More specifically, these instruc-
tions are codified in small portions of the DNA (deoxyribonucleic acid), a polymeric
molecule made up of chains of monomeric subunits called nucleotides (BROWN, 2002).
The backbone of each DNA nucleotide is composed of three components, as shown in
Figure 2.2(a): a deoxyribose sugar, which is a pentose, a phosphate group attached to the
5’-carbon of the pentose, and a nitrogenous base attached tothe 1’-carbon of the pentose.
There are four distinct nitrogenous bases: cytosine, thymine, adenine and guanine. Cy-
tosine and thymine are double-ring compounds classified as purines, while adenine and
guanine are single-ring compounds known as pyrimidines. For the sake of simplicity,
nucleotides are often represented by their base’s first letter: C, T, A, G, respectively.

Although the existence of DNA has been discovered in 1869 by Johann Friedrich
Miescher, a Swiss biochemist, the notion of DNA as a genetic material and the concept
of gene were only introduced in 1944, by Avery, MacLeod and McCarty (ZAHA et al.,

(a) Cytosine (b) Thimine (c) Adenine (d) Guanine (e) Uracile

Figure 2.1: Nucleotides present in DNA and RNA.Structure of DNA’s monomeric
subunits (a) cytosine, (b) thymine, (c) adenine and (d) guanine. The (e) uracil nucleotide
is only found in RNA, as a substitute for thymine. Reproducedfrom (BALL; HILL;
SCOTT, 2011).
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(a) Primary structure (b) Secondary structure

Figure 2.2:The DNA structure. (a) DNA is made up of nucleotides, each of which is
composed of a pentose, a phosphate group and a nitrogenous base. The nucleotide is
identified by the base it contains: adenine (A), guanine (G),cytosine (C) or thymine (T).
(b) The complementary property between pairs A – T and C – G provides a double-helix
structure to the DNA molecule. Reproduced from (BALL; HILL;SCOTT, 2011).

2003). Later, in 1953, James Watson and Francis Crick elucidated the three-dimensional
structure of DNA proposing the double-helix model, depicted in Figure 2.2(b).

In the Watson-Crick model, the two individual DNA strands are wrapped around each
other in a helix shape, with the sugar-phosphate backbone inthe outside, exposed to the
aqueous environment, and the nitrogenous bases in the internal portion. Pairs of bases
of opposite strands form bonds between each other accordingto a restrict rule: A only
pairs with T, while C only pairs with G. This process is referred to as complementary base
pairing and is a crucial feature for cellular events that will be further introduced. Another
important characteristic of the double-helix model is the antiparallel alignment of DNA
strands: one strand has direction3′ → 5′ and the other is disposed in direction5′ → 3′.

The stability of the double-helix model is guaranteed by twomain features. First,
the hydrophobic portion of the DNA molecule, i.e. the nitrogenous bases, is protected
from the aqueous environment by the sugar-phosphate backbone, which has hydrophilic
properties. Second, the chemical structure of nitrogenousbases, which comprises a ceto
and amino groups, allows the formation of hydrogen bonds between the pair of bases.
A pair C – G has three hydrogen bonds, while the pair A – T has twohydrogen bonds.
Therefore, DNA molecules with more C – G pairs are more stableas they require a higher
temperature to disassociate. The principle of complementary pairing between purine and
pyrimidine bases also provides DNA molecule with constant long dimensions and perfect
fitting between both strands.

2.2 Central Dogma of Molecular Biology

All cells within an organism carry a copy of its genome, made up of one or more long
DNA molecules. In more complex organisms, i.e. eukaryotics, as animals and plants, the
genome is inside the cell’s nucleus and is organized in the form of chromosomes. These
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Figure 2.3:Central dogma of molecular biology. Three main processes are responsi-
ble for the perpetuation and interpretation of genetic information encoded in DNA: (1)
replication, in which new copies of DNA are made; (2) transcription, in which RNA is
produced from a segment of DNA; and (3) translation, in whichthe information in RNA
is translated into a protein sequence.

cells are usually diploids, which means that they carry two instances of each chromosome,
one from each parent. In contrast, prokaryotic organisms, such as virus and bacteria, lack
a nuclear membrane. The nuclear region consists of circularDNA, known as nucleoid,
and contains only one set of chromosomes.

Regardless the cellular complexity, all organisms life depends on the cell’s ability to
save, transfer and translate the genetic instructions encoded in the DNA, which define the
structure and function of all livings things. More specifically, a DNA strand is composed
of thousands of functional portions, called genes. Each gene is composed by a coding
region, which carries the necessary and sufficient information for the production of two
other key classes of polymers through the process of gene expression – RNA and proteins,
and a regulatory region, responsible for the control of geneexpression and thus protein
biosynthesis.

RNA (ribonucleic acid) is a polymer chemically and structurally similar to DNA, dif-
fering from the latter in two main aspects: RNA is composed ofa ribose sugar and con-
tains the nitrogenous base uracil (U) instead of thymine. Some viruses use RNA rather
than DNA as their genetic material, and all organisms use messenger RNA (mRNA) to
carry the genetic information that directs the synthesis ofproteins.

Proteins are the main functional components of organisms. They are composed of
special monomers called amino acids, which are bonded together by peptide bonds, and
play a crucial role for the development and survival of organisms. In brief, proteins are
on duty of functions as: catalyse chemical reactions, as enzymes; defend organism, as
antibodies; activate or deactivate a specific set of genes, as transcription factors; and
provide structural support, as fibrous proteins such as actin, collagen and elastin.

The mechanisms by which the genetic material is perpetuatedthrough generations and
interpreted to allow the synthesis of these vital moleculesare the basis of the well-known
Central Dogma of Molecular Biology and will be discussed in what follows.

2.2.1 DNA Replication

For an organism to grow and reproduce, the cellular ability to divide and duplicate
is essential in order to increase cellular complexity and pass on the organism phenotype.
These processes, however, require DNA to be duplicated inside the cell so that it can be
split between two daughter cells, which will be identical tothe parent cell. The mecha-
nism of DNA copy is known as replication.

When Watson and Crick suggested the double-helix model for DNA structure, in
1953, they made one of the most famous statements in molecular biology: "It has not
escaped our notice that the specific pairing we have postulated immediately suggests a
possible copying mechanism for the genetic material" (BROWN, 2002). In fact, years
later it was discovered that the structure of DNA as two long nucleotide strands con-
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Figure 2.4: DNA replication. DNA is replicated through a semiconservative process:
the parental DNA chain is separated such that each one of the DNA strands work as a
template for the synthesis of the new DNA. The synthesis is based in the complementary
pairing between nitrogenous base. Reproduced from (BALL; HILL; SCOTT, 2011).

nected by the principle of complementary pairing between nitrogenous bases is indeed
the key of the replication process. Figure 2.4 depicts in a simplified form how replication
of DNA occurs.

Replication starts at particular points of DNA, known as origins, which are targeted by
helicases enzimes responsible for breaking up the hydrogenbonds between bases and un-
winding a short segment of DNA. Once initiated, two replication forks can emerge from
the origin and progress in opposite directions along the DNA: replication is therefore
bidirectional in most genomes (BROWN, 2002). With the two strands of DNA sepa-
rated, each individual strand act as a template for the synthesis of a complementary DNA
chain. Special proteins known as DNA polymerases synthesize the new DNA by adding
complementary free nucleotides that match the sequence in the template strand, as stated
by the previously mentioned rule: A only pairs with T, while Conly pairs with G. The
exact point where complementary pairing begins is determined by special strands of nu-
cleic acid called primers, which provide a short double-stranded region with a3′ end onto
which the enzyme can add new nucleotides.

However, DNA polymerases enzimes are only able to synthesize DNA in the5′ →
3′ direction, which means that only one strand of the parental double-helix, the one in
3′ → 5′ direction called the leading strand, can be copied in a continuous manner. The
replication of the lagging strand, which has5′ → 3′ direction, is carried in a discontinuous
fashion, resulting in a series of short segments known as Okazaki fragments (BROWN,
2002). These fragments are processed by a specific type of DNAPolymerase to remove
primer sequences and add new deoxyribonucleotides to fill the gaps. Finally, Okazaki
fragments are merged by the DNA ligase enzime. Note that replication requires only one
primer to initiate complementary strand synthesis on the leading polynucleotide, and one
primer for every segment of discontinuous DNA synthesized on the lagging strand. Since
one strand of the new DNA comes from the parent cell, replication is widely referred to
as a semi-conservative process.
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Figure 2.5:Transcription. The first step towards gene expression is given by the tran-
scription process, in which RNA molecules are synthesized based on information con-
tained in the nucleotides sequence of a double-helix DNA chain. This is not a regular
process in the sense that the specific DNA sequences to be transcribed and the amount of
RNA produced are regulated by special proteins and are varying parameters. Reproduced
from (BALL; HILL; SCOTT, 2011).

2.2.2 Transcription

Genetic information encoded on DNA is only useful to direct the growth and func-
tioning of an organism once it is expressed, e.g. when the protein it codes for is produced.
The first step towards gene expression is given by the transcription process. Transcrip-
tion is the mechanism by which RNA molecules are synthesizedbased on information
contained in a double-helix DNA molecule, as shown in Figure2.5.

Transcription starts and finishes at specific points of a gene’s regulatory region, called
promoter and terminator respectively. When a promoter is recognized by a RNA Poly-
merase, the class of protein in charge of transcription, thetwo strands of the double-helix
DNA unwind at specific sites along the DNA molecule, just as happens in replication,
by breaking the hydrogen bonds between nitrogenous bases. Once the DNA strands are
separated, ribonucleotides are added one after another to the growing3′ end of the RNA
transcript following the base-pairing rules and the nucleotides sequence present in the
template, which is given by the3′ → 5′ strand of DNA. The resulting RNA is antiparallel
and complementary to the template strand and is identical tothe corresponding coding
strand of the DNA (the strand in5′ → 3′ direction in the parental DNA molecule), except
that uracil replaces thymine bases.

The RNA synthesis stops when a terminator is identified by theRNA Polymerase.
At this point, the RNA transcript is released and the RNA Polymerase is responsible
for wrapping the parental DNA chains around each other in thehelix shape. The pro-
duced RNA transcript is referred to as pre-RNAs or primary transcript and in eukaryotes
species, mainly, it needs to be posteriorly processed to constitute a biologically active
RNA. The RNA processing often involves modification (insertion/deletion) of some ni-
trogenous bases, changes in the chemical structure and splicing, in which non-coding re-
gions (introns) are eliminated and coding regions (exons) are joined, forming the mature
RNA.

There are many different types of RNA, all of them produced and post-processed as
described above. However, three types are essential for protein synthesis and therefore
are more discussed in literature: messenger RNA (mRNA), ribosomal RNA (rRNA), and
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transfer RNA (tRNA). mRNA carries information about protein sequence to the ribo-
somes, the protein factories in the cell, and corresponds to5% of the total RNA. Also,
mRNA exists for a relatively short time: it is continuously being degraded and resynthe-
sized. The ribosomes are composed of rRNA, the most abundanttype of RNA, which
makes up to 80% of the total RNA found in an eukaryotic cytoplasm. Finally, tRNA
corresponds to around 15% of the total RNA and is responsiblefor transferring specific
amino acids to the ribosomal site of protein synthesis, which are attached to the growing
polypeptide chain.

Until 1990s, other classes of RNA apart from mRNA, tRNA and rRNA were essen-
tialy unknown. Nonetheless, in recent years an enormous number of non-protein-coding
RNAs (ncRNAs) have been found to play an important role on post-transcriptional gene
regulation (LI et al., 2010). Small interfering RNAs (siRNAs) and microRNAs (miR-
NAs) are the most common types of ncRNAs. SiRNAs typically induce endonucleolytic
cleavage of mRNA with near-perfect complementarity (ALI NAHVI; GREEN, 2011).
miRNAs, in turn, interfere in gene expression through both translational repression and
mRNA destabilization mechanisms. According to LI et al. (2010), many ncRNAs show
abnormal expression patterns in cancerous tissues.

2.2.3 Translation

The final result of gene expression is the proteome, the collection of functioning pro-
teins synthesized by a living cell (BROWN, 2002). The instruction for building a protein
is carried in the nucleotides sequence of the mature mRNA. Each three consecutive nu-
cleotides, called codon, code a specific amino acid. The amino acids are the monomers
that compose a protein through the formation of a polypeptide chain.

As previously mentioned, the translation of a codon, which involves the decoding of
its genetic code into an amino acid, occurs at the ribosomes,made up of rRNA. Before the
initiation of translation, amino acids need to be covalently bonded to the correct transfer
RNA (tRNA), e.g. the one carrying the complementary sequence of the codon by which
the amino acid is produced. The bond occurs between the carboxyl group of the amino
acid and the3′ OH of the tRNA and is intermediated by an enzyme known as aminoacyl-
tRNA synthetase, just as shown in Figure 2.6.

Next, the tRNA carrying the complementary nucleotides to the codon to be translated
(the anticodon), binds to the ribosome close to the growing extremity of the polypeptide
chain and interacts with the mRNA through base pairing of codon and anticodon. Once
the new amino acid is incorporated in the chain through a peptide bond with the last

Figure 2.6:Structure of transfer RNA. Before translation can takes place, the amino
acid must be attached to its unique tRNA. This crucial process requires an enzyme known
as aminoacyl-tRNA synthetase. Reproduced from (BALL; HILL; SCOTT, 2011).
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aggregated amino acid, positioned at the end of the chain, the ribosome moves right in
order to allow the next tRNA, bringing a new amino acid, to correctly attach to the mRNA
at its complementary position. This process is continuously repeated until a special codon,
called stop codon, is reached. At this point, the polypeptide chain is released from the
ribosome into the cell cytoplasm.

In prokaryotes, transcription and translation are coupled: the translation begins while
the mRNA is still being synthesized, and both processes happen at the cytoplasm. In
contrast, in eukaryotes, transcription and translation are spatially and temporally sepa-
rated: transcription occurs in a membrane-bound nucleus and translation takes place in
the cytoplasm.

2.3 Regulation of Gene Expression

In Section 2.2 the steps composing the pathway by which expression of the genome
specifies the content of the proteome were presented. According to BROWN (2002), this
biochemical signature is not entirely constant: even the simplest unicellular organisms
are able to alter their proteomes to cope with changes in the environment. Regulation
of gene expression, or simply gene regulation, is the process by which cells regulate the
exact moment and rate with which the information encoded in genes is turned into gene
products.

In procaryotes, the control of the rate of transcriptional initiation is the predominant
site for gene regulation. In contrast, gene regulation in eukaryotes is much more complex
and may happen in a wide variety of ways, as a result of different molecules’ activity,
from proteins to ncDNA. In what follows, some of the possibleregulation mechanisms in
eukaryotes are enumerated (BROWN, 2002).

• Gene acessibility:the physical structure of chromatin (complex of DNA and pro-
teins located inside the nucleus) can controls access of RNApolymerase and tran-
scription factors to the promoter region, avoiding the activation of transcription;

• Transcription initiation: initiation of transcription process is influenced by acti-
vators, repressors and other control systems like ncRNA;

• mRNA processing:mechanisms such as changes in nucleotides sequence, splicing
and mRNA degradation affects protein synthesis;

• Translation initiation: the ability of ribosomes to recognize and initiate synthesis
from the correct start codon can affect the expression of a gene product;

• Post-translational modification: the chemical modification (glycosylation, acety-
lation, fatty acylation,...) of a protein after its translation may be a control point of
protein synthesis;

• Small RNAs: small RNA-mediated control can be exerted either at the level of the
translatability of the mRNA, the stability of the mRNA or viachanges in chromatin
structure.

2.4 Genetic Regulatory Networks

As previously discussed, biological systems are complex organisms composed of in-
numerous entities, such as DNA, RNA and proteins, which interact in order to produce
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the specific features of each organism. The manner by which these components are in-
terconnected and relate to each other, allowing an harmonicwork crucial for cellular
sustainability, defines gene regulatory networks (GRN).

Genetic regulatory networks are high-level conceptual representations of the mutual
influence between genes in an organism. Their main goal is to capture the dependen-
cies between the molecular entities, representing the physical interactions gene–gene (in-
fluence interactions) and indirect gene regulation via protein, metabolites and ncRNA
(BANSAL et al., 2007; HECKER et al., 2009). The usual graphical formalism is a direct
graph, in which nodes denote genes or other molecular entity, and a connection from node
A to node B suggests that A exerts regulation over B, either ofactivating or inhibiting na-
ture.

The main purpose of exploring GRN is to understand the relationship between genes
within a cell and how they respond to intra and extracellularstimulus. In BANSAL et al.
(2007), some specific practical utilities of gene regulatory networks are outlined: 1) al-
lows the identification of functional modules1, (2) helps in the prediction of network re-
sponse to external perturbation, as well as of genes directly affected by the perturbation
and (3) efficient methodology for identifying real physicalinteractions through integration
with additional information from experimental data.

2.4.1 Macro-characteristics

According to FOGELBERG; PALADE (2009), GRN are not just random directed
graph. Instead, they carry important macro-characteristics, which will be briefly described
in the sequence.

• Connectivity: GRN are scale-free networks. The probability distributionfor the
node’s degree follows a power-law, meaning that most of the genes are regulated
by only a few others, while some nodes are known ashubsand have influence over
the expression of many others.

• Modules: genes are organized into modules, which define groups of genes co-
regulated or equi-regulated, and functionally linked by their phenotypic effects.

• Motifs: GRN are composed of subgraphs called motifs, which are much more
frequent in GRN’s structure than in a randomly generated graph. Common motifs
are auto-regulation, feed-forward triangle, cascade and convergence, depicted in
Figure 2.7.

(a) (b) (c) (d)

Figure 2.7:Common motifs in GRN. (a) auto-regulation, (b) feed-forward triangle, (c)
cascade and (d) convergence. Reproduced from (FOGELBERG; PALADE, 2009).

1In GRN context, a functional module is a subset of genes that regulate each other with multiple inter-
actions but have few regulatory relations to other genes outside the subset.
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3 MEASURING GENE EXPRESSION LEVELS

According to (FOGELBERG; PALADE, 2009), there are four types of biological data
available to address the problem of inference of GRN: expression data, perturbation data,
phylogenetic data and chemical and gene location data. Geneexpression data is nowadays
the most widely used as input for reverse engineering algorithms, as the other types are
currently not available in sufficient quantity to be incorporated in reverse engineering
analysis. Expression data measures how active a genei ∈ N is in a given moment or
under a given experimental condition. By active, the readermay understand that the
functional product, e.g. protein or RNA, coded by the gene isbeing produced. This
chapter will provide a brief review about the main techniques applied nowadays in the
measurement of gene expression levels.

3.1 Microarray

The measurement of gene expression using microarrays, alsoknown as DNA chips, is
one of the more successful techniques among the many methodsdeveloped. It allows the
identification and quantification of the mRNA transcripts present in the cells by assuming
the following procedure: given that genes are expressed by transcription and translation
of their genetic information into mRNA, which will be later used to synthesize proteins,
if one is able to find out which and how much mRNA is around, one should also be able
to discover which genes and with which intensity they are being expressed (SÁNCHEZ;
VILLA, 2008).

A microarray consists of a solid surface on which strands of polynucleotide, called
probes, are attached or synthesized by a machine in fixed positions. There are two differ-
ent types of microarray according to the way probes are placed on the slide. On Spotted
or cDNA microarrays, the probes are synthesized apart and printed mechanically on the
slide. In contrast, oligonucleotide chips, whose main representatives are Genechip and
Affymetrix (manufacturers), have the probes directly synthesized on the surface. In the
latter, the synthesis process allows the creation of only small fragments so that a gene is
not represented by one probe but by a set of them (a probe set).

Once probes are ready, mRNA is extracted from the subject cells and labeled with
a fluorescent dye. Afterwards, the labelled transcripts, called targets, are deposited over
the array and left inside a hybridization chamber for some hours. If a labelled target
is complementary to one of the gene sequences placed on the probes, it will bind by
hybridization to the corresponding spot. Finally, the array is washed in order to eliminate
those targets which have not hybridized.

The expression level of genes is measured by illuminating the microarray with a laser
light that causes the labeled molecules to emit fluorescent light proportionally to the quan-
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tity of hybridized mRNA it contains. This way, active genes will produce more mRNA,
which will attach to the DNA on the microarray producing brighter areas. Spots that are
not bright indicate that their genes are not active. The emitted light is captured by a special
scanner yielding an image that consists in a grid of shined spots, each one corresponding
to a probe. Finally, this image is processed and transformedinto numbers, consisting the
basis of the gene expression analysis.

Figure 3.1: The microarray experiment. A comparison between gene expression of
species with different features (in this case, two yeast cultures, a mutant and a wild one)
may be held by extracting mRNA from both samples, labeling itwith different fluorescent
dyes and letting it hybridize to the microarray. The fluorescence of each spot on the
microarray reflects the relative mRNA concentrations, which are later scanned and the
resulting intensity is stored as a gene expression matrix. Reproduced from supplementary
material provided by SCHLITT; BRAZMA (2007) .

3.2 Real-Time PCR

Polymerase chain reaction (PCR) is a method that allows exponential amplification
of short DNA sequences (usually 100-500 pair bases) within along DNA molecule in a
very fast fashion. The process is performed in vitro and generates an incredible amount
of DNA for further analysis. PCR use primers, which bind to the two strands of the DNA
by complementarity and define the portion of DNA to be copied.The DNA, the primers
and other components of reactions are mixed and placed in a Thermocycler, which raises
and lowers the temperature of the block in discrete, pre-programmed steps, allowing the
duplication of DNA molecule. After the copy is finished, the same primers can be used
again, not only to make another copy of the input DNA strand, but also of the short copy
made in the first round of synthesis, leading to exponential amplification.

After several rounds of amplification, the PCR product is analysed on an agarose
gel and compared with a standard or reference genetic material, providing a qualitative
tool for detecting the presence or absence of a particular DNA. Notwithstanding its wide
applicability in disease diagnosis, for instance, the needto measure mRNA to analyse
differences in gene expression between samples has driven the creation of a traditional
quantitative reverse transcriptase PCR (RT-PCR) method. In RT-PCR, the PCR method is
extended using reverse transcriptase to convert mRNA into complementary DNA (cDNA),
which is then amplified by PCR and analysed in an agarose gel byelectrophoresis. Al-
though this method has already been used to measure the levels of a particular mRNA
under different experimental conditions, it does not provide a quantitative measure for
gene expression at all due to the extra reverse transcriptase step: products are seen after
the exponential phase of amplification, which lowers the sensitivity.
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Real-time PCR is therefore, an improvement of regular PCR and allows the quanti-
tative estimation of the amount of a given sequence present in a sample. Products are
measured after each cycle by detecting a fluorescent light from labelled PCR products,
rather than at the end of the run, and the samples are analysedduring the exponential
phase, where differences in quantity of products are maximized. This method has thus
many advantages over conventional PCR: increased speed dueto reduced cycle number,
lack of post-PCR gel electrophoresis detection of productsand higher sensitivity of the
fluorescent dyes used for labeling samples. Real-Time PCR has been extensively applied
to quantitatively determine levels of gene expression. Data analysis in both traditional
and real-time PCR data require normalization to known standards to determine relative or
absolute quantity of starting target gene expression.

3.3 High-Throughput Sequencing

The increasing demand for gene expression data has driven the development of high-
throughput sequencing technologies. The goal of these new sequencing methods is to
parallelize the sequencing process, such that a larger amount of data is provided in a
shorter space of time and the overall cost of DNA sequencing is reduced, encouraging
more researches in the field. Gene expression level is measured by quantifying the number
of sequence reads for each mRNA/gene. A wide range of applications depends on the
availability of sequencing data, such as genome sequencing, metagenomic, epigenetics,
discovery discovery of non-coding RNAs and protein-binding sites (MACLEAN; JONES;
STUDHOLME, 2009), just to give a picture of the relevance in efficiently provide such
nature of data.

Figure 3.2: High-throughput sequencing methods. Reproduced from MACLEAN;
JONES; STUDHOLME (2009).
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Figure 3.2, reproduced from (MACLEAN; JONES; STUDHOLME, 2009), shows
a general picture of the main new-generation high-throughput sequencing technologies.
Features such as the read length, the number of reads and the total amount of sequence
generated in a typical run are highlighted and compared. In what follows more details are
given about two of the widespread used high-throughput sequencing methods, Roche/454
and Illumina/Solexa.

3.3.1 Roche/454 FLX Pyrosequencer

The first high-throughput sequencer to achieve commercial introduction was the
Roche/454 FLX Pyrosequencer, in 2004 (MARDIS, 2008). This method is based on the
"sequencing by synthesis" principle of pyrosequencing procedure. In pyrosequencing, a
complementary strand to the (single) DNA strand to be sequenced is enzymatically syn-
thesized. The activity of the DNA polymerase is detected with another chemiluminescent
enzyme, such that each incorporation of a nucleotide by DNA polymerase results in the
release of pyrophosphate, which initiates a series of downstream reactions that ultimately
produce light by the chemiluminescent enzyme. The amount oflight produced is propor-
tional to the number of nucleotides incorporated and the chemiluminescent signals allows
the determination of the sequence of the template.

The Roche/454 FLX method requires DNA to be amplified before sequencing proce-
dure, which is done through PCR. As explained in MARDIS (2008), the library fragments
are mixed with a population of agarose beads whose surfaces carry oligonucleotides com-
plementary to the 454-specific adapter sequences on the fragment library, so each bead is
associated with a single fragment. The agarose beads are placed in individual mixtures of
water-oil and PCR reactants, and after the process of thermal cycling about one million
copies of each DNA fragment on the surface of each bead is produced. These amplified
single molecules are then sequenced en masse. More details of Roche/454 FLX sequencer
procedure are shown in Figure 3.3.

After approximately 8 hour of processing, the Roche/454 FLXPyrosequencer pro-
vides an average read length of 250 nucleotides, which are processed by an analysis soft-
ware and filtered to remove poor-quality sequences. The resulting reads yield 100 Mb of
quality data on average. The major drawback of Roche/454 FLXPyrosequencer is that it
cannot properly interpret long stretches (more than 6 bases) of the same nucleotide (ho-
mopolymer run), so these areas are prone to base insertion and deletion errors during base
calling. By contrast, because each incorporation step is nucleotide specific, substitution
errors are rarely encountered in Roche/454 sequence reads.

3.3.2 Illumina/Solexa

Illumina released the Solexa Genome analyser in early 2007 (MACLEAN; JONES;
STUDHOLME, 2009). As the Roche/454 FLX Pyrosequencer, the method begins by lig-
ating oligonucleotide adaptors to the DNA and immobilizingthe ligation products onto
agarose beads. The beads are placed into a water-oil emulsion and DNA is amplified
by PCR. After amplification stage, the sequencing process starts by adding all four nu-
cleotides simultaneously to the flow cell channels, along with DNA polymerase, for in-
corporation into the oligo-primed cluster fragments. The nucleotides carry a base-unique
fluorescent label and the3′-OH group is chemically blocked such that each incorporation
is an unique event. An imaging step follows each base incorporation step, and after that
the3′-OH blocking group is chemically removed to prepare each strand for the next in-
corporation by DNA polymerase. This series of steps continues for a specific number of
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cycles determined by user, which permits discrete read lengths of 25-35 bases. A base-
calling algorithm assigns sequences and associated quality values to each read. Finally,
a quality checking pipeline evaluates the Illumina data from each run, removing poor-
quality sequences. Illumina Solexa Genome analyser provides about 30 million reads
with an average length of 50 nucleotides. After quality filtering, the resulting data set has
around 1.5Gb. The overall process of Solexa Genome analyseris depicted in Figure 3.4.

Figure 3.3:The Roche/454 FLX Pyrosequencer.Reproduced from (MARDIS, 2008).
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Figure 3.4: The Illumina/Solexa Genome analyser. Reproduced from (MARDIS,
2008).
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3.4 Discussion

Gene expression measuring technologies are in continuous progress. Nonetheless,
some platforms have been consolidated as reference approaches for this specific purpose.
Between those, three were highlighted in this chapter: microarray, real time PCR and
high-throughput sequencing. In the latter, two methods stand out due to the wide applica-
tion in recent years, the Roche/454 FLX Pyrosequencer and the Illumina/Solexa Genome
analyser. Despite the outstanding advances in experimentstechnology, data availability is
still an obstacle to be overcome in the process of inference of gene regulatory networks.
The volume of generated data is huge, but it usually containsa relatively small number of
experimental conditions and methods when compared with thelarge number of observed
genes. This is known as thedimensionality problemand is one of the main issues faced
by researchers nowadays.

Another important problem concerning biological data is that the gene expression data
provided by the discussed technologies quantify the concentration of mRNA and ignores
information about possible interventions and environmental changes after the transcrip-
tion phase. Chemical and structural modifications of mRNA, as well as the blocking of
translation by miRNAs, are common events. Therefore, a network reconstruction based
solely on this type of data may result in a not fully veridicalmodel. A natural course to
solve this limitation and enrich the reconstructed networkis the feeding of other types of
data, such as protein concentration measurements, to the reverse engineering algorithm.
However, those are still not available in sufficient amount to be embedded in the procses
(HACHE; LEHRACH; HERWIG, 2009).
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4 CLUSTERING ALGORITHMS

When one wants to uncover the gene regulatory networks underlying a certain organ-
ism, the goal is to somehow discover which genes are highly correlated in terms of their
expression. In other words, one aims to find out what genes respond together to a given
signal or perturbation, e.g. a virus infection, by being induced to synthesized the products
they encode, or, putting it more simply, to express themselves. Computationally, an in-
tuitive and commonly applied approach to study correlationbetween genes is clustering
algorithms.

Clustering is the process of organizing data into groups of similar objects based
only on information found in the data that describes the objects and their relationships
(BERKHIN, 2002; TAN; STEINBACH; KUMAR, 2005). Each group isreferred to as
a cluster and is composed of objects that are similar betweenthemselves and dissimilar
to objects of other groups. From a machine learning perspective, clustering is an unsu-
pervised learning technique that creates a data concept by partitioning a domain based on
observed similarities. According to BERKHIN (2002), condensing data in clusters causes
the loss of certain fine details, but achieves simplification, which is a benefit when dealing
with a large mass of information.

A wide range of fields have profited from clustering analysis,as outlined by TAN;
STEINBACH; KUMAR (2005). In biology, for instance, clustering was applied to auto-
matically find a taxonomy classification of all living things. In business, it is useful for
creating groups of potential and current customers for additional analysis and marketing
activities. In the process of information retrieval, clustering algorithms can be used to
group search results into a small number of clusters, each ofwhich captures a particular
aspect of the query. Finally, in medicine, cluster analysishas helped detecting patterns in
the spatial or temporal distribution of a disease.

In the gene expression context, the purpose of using clustering algorithms is to group
either genes or samples that share common characteristics.In the gene-based clustering,
the specific goal is to identify groups of genes that have similar expression patterns over
a set of experiments (EISEN et al., 1998). On the other hand, the sample-based clustering
regards the partition of samples into homogeneous groups based on phenotypic features
(JIANG; TANG; ZHANG, 2004). This process is usually based ona small subset of
genes, calledinformative genes, whose expression levels are strongly correlated with the
class distinction. The use ofinformative genesaims to reduce dimensionality.

According to FRIEDMAN et al. (2000), such analysis by clustering algorithms has
proven to be useful in discovering genes that are co-regulated, since co-expressed genes
have a high probability of being functionally related. In what follows, a survey of some
widely known clustering techniques already applied for data mining gene expression pro-
files is provided.
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4.1 Hierarchical Clustering

Hierarchical clustering consists of a technique for building a cluster hierarchy, usually
represented as adendogram. Such approach allows exploring data on different levels of
granularity: clusters are obtained by pruning the tree at some level (BERKHIN, 2002).
The number of clusters is therefore controlled by the level of the hierarchy of tree in which
splitting is performed. For two dimensional data, clustersmay be also represented as
nested clusters. Both graphical representations are shownin Figure 4.1 for an hypothetical
example of four data points.

(a) (b)

Figure 4.1:Graphical representation of hierarchical clustering. Example of four hy-
pothetical data points represented as a (a) dendogram and as(b) nested clusters.

This class of clustering algorithms include two distinct categories: agglomerative and
divisive. The agglomerative category applies a bottom-up strategy: given a set ofN data
points to be clustered, each data point is initialized as a singleton cluster and then clusters
are recursively merged according to common features analysis. In contrast, divisive clus-
tering has a top-down approach. The algorithm starts from one global cluster, comprising
all data points, and sequentially splits data into smaller cluster until a stopping criteria
is achieved, which is usually a specific number of clusters. The methodology difference
between this two categories is depicted in Figure 4.2. As theagglomerative approach is
by far the most common (TAN; STEINBACH; KUMAR, 2005), it willbe the focus of
this Section.

4.1.1 Agglomerative Hierarchical Clustering

Algorithm 4.1 describes the basic mechanism of the agglomerative strategy in hier-
archical clustering. The key operation is the computation of the distance between two
clusters, saved as means of a similarity matrix, in which allthe decision about merging

Algorithm 4.1: Basic algorithm for agglomerative hierarchical clustering.
Assign each data point to a cluster
Compute the similarity matrix
repeat

Merge the two closest clusters
Update the similarity matrix to reflect the new distance between the new cluster and
the original ones

until Only one cluster remains
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Figure 4.2: Difference between agglomerative and divisive hierarchical clustering
algorithms. The agglomerative category has a bottom-up approach, whilethe divisive
hierarchical clustering performs a top-down strategy.

will be based. The concept of distance or similarity is very particular of the problem
being tackled and depends directly on the features embeddedon data. For applications
such as clustering cities or objects based on their colors, one can easily imagine the use
of coordinates or RGB value, respectively, to define which instances are more similar to
each other. However, the concept of distance is not that clear for all types of applications
and may represent by itself a challenging step in the clustering analysis.

The step of joining clusters may be performed in different ways according to the
perspective by which clusters are seen or represented. Also, it significantly affects hier-
archical algorithms, since it reflects the particular concept of closeness and connectivity
(BERKHIN, 2002). For a graph-based approach, there are three major inter-cluster link-
age metrics: single link, average link, and complete link. Single link metric defines cluster
proximity as the proximity between the closest two points that are in different clusters,
or using graph terms, the shortest edge between two nodes in different subsets of nodes
(TAN; STEINBACH; KUMAR, 2005). In contrast, complete link metric calculates the
largest pairwise distance between points of distinct clusters. Finally, the average link de-
fines cluster proximity to be the average pairwise proximities, or average length of edges,
of all pairs of points from different clusters. Figure 4.3 shows a graphical representation
of the mentioned link methods.

Another cluster closeness definition, based on geometric methods, is commonly ap-
plied when a prototype-based view is used. In this case, eachcluster is represented by
a centroid, and therefore, the natural choice of most similar clusters are the ones with
nearest centroids. An alternative technique, mentioned byTAN; STEINBACH; KUMAR
(2005), is the Ward’s method: it also assumes that a cluster is represented by its centroid,
but it measures the proximity between two clusters in terms of the increase in the sum of

(a) (b) (c)

Figure 4.3: Inter-cluster linkage metrics for hierarchical clusterin g. Graphical ex-
amples of the different graph-based methods for merging clusters: (a) single link, (b)
complete link and (c) average link.
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the squared error that results from merging the two clusters.
Regarding complexity aspects, the agglomerative hierarchical clustering algorithm

as described in Algorithm 4.1 has space complexityO(m2) and time complexity
O(m2logm), according to TAN; STEINBACH; KUMAR (2005).

4.1.2 Advantages and Disadvantages

The main advantage of hierarchical clustering algorithms is the flexibility regarding
the level of granularity: it specifies clusterings at all granularities, simultaneously. This
feature brings with it the benefit of freeing the user from thetask of setting up the ap-
propriate number of clusters for the data in question. This is a very important benefit
when dealing with data for which there is not much information about and, thus, not
enough support to define the number of clusters that best represents it. Also, hierarchical
clustering allows the application of different concepts ofsimilarity between data points,
presenting, therefore a wide applicability.

Concerning the disadvantages of the method, hierarchical clustering has two important
shortcomings. First, the decision making is very deterministic and based on a greedy
strategy: clusters are merged or split towards the local optimal choice for that specific
stage, which may not necessarily lead to the global optimum.Second, individual features
of data points become less relevant as the clustering process progresses.

4.1.3 Application to Gene Expression Data

In (EISEN et al., 1998), the application of an agglomerativehierarchical clustering-
based algorithm and visualization package for clustering gene expression data is de-
scribed. The implemented software was used to analyse gene expression data collected
in microarray experiments for two distinct cases: a single time course gene expression
data of a canonical model of growth response in human cells and an aggregation of gene
expression data of yeastSaccharomyces cerevisiae.

Cluster merging was performed based on the pairwise average-link strategy, comput-
ing similarities between data points by a form of correlation coefficient. LetGi equal the
(log-transformed) primary data for geneG in conditioni. Also, considerGoffset to be the
estimated mean of the observations. For any two genesX andY observed over a series
of N conditions, the similarity score is defined as follows:

S(X, Y ) =
1

N

∑

i=1...N

(

Xi −Xoffset

φX

)(

Yi − Yoffset

φY

)

(4.1)

where

φG =

√

∑

i=1...N

(Gi −Goffset)
2

N
. (4.2)

According to the authors, whenGoffset is set to the mean of observations onG, thenφG

becomes the standard deviation ofG, andS(X, Y ) is exactly equal to the Pearson corre-
lation coefficient of the observations ofX andY . In (EISEN et al., 1998),Goffset was set
to 0, corresponding to a fluorescence ratio of 1.0.

After the application of the algorithm, the final results arerepresented in two different
ways. The first refers to the dendogram, characteristic of hierarchical clustering: genes
are assembled into a tree, where items are joined by very short branches if they are very
similar to each other, and by increasingly longer branches as their similarity decreases.
The second is a table representation using naturalistic color scale rather than numbers



39

to designate expression levels. This alternative encodingpreserves all the quantitative
information, but allows the human brain to analyse and understand the results more easily.
The twofold representation allows the observation of complex data sets in a natural way:
first a scan and survey is made in the large-scale features context and then the analysis is
focused on the interesting details.

EISEN et al. (1998) have observed in their work the presence of large contiguous
patches of color representing groups of genes that share similar expression patterns over
multiple conditions. This is more expressive for larger data sets, like the gene expres-
sion profile from yeastSaccharomyces cerevisiae, in which authors identified a strong
tendency for these genes to share common roles in cellular processes. In the human data
set, relationships among the functions of genes in clustersare obscured somewhat by the
less complete functional annotation of human gene sequences. Nonetheless, when the
clusters composition is examined, they are often found to contain genes known to share a
common role in the cell. Through their experiments and analysis, authors also concluded
that the noise inherent to single observations does not contribute significantly when genes
are compared across even a relatively small number of non-identical conditions. There-
fore, when designing experiments, authors judge more valuable to sample a wide variety
of conditions than to make repeated observations on identical conditions.

In (PEROU et al., 2000) hierarchical clustering has been applied to investigate gene
expression patterns in human breast tumours. Authors highlight the idea that phenotypic
diversity might be accompanied by a corresponding variation in gene expression patterns,
which in theory can be captured clustering data generated bymicroarray experiments.
Samples from 42 different individuals, comprising 8.102 human genes, were collected
using complementary DNA microarray. From these, 20 have been sampled twice: before
and after a 16-week chemotherapy treatment. PEROU et al. (2000) focused their work in
the clustering of a subset of 1.753 genes, whose transcriptsvaried in abundance by at least
fourfold from their median abundance in this sample set. Additionally, a sample-based
clustering is performed by grouping samples on the basis of similarity in their patterns of
expression using hierarchical clustering as well.

The results exposed in (PEROU et al., 2000) shed some light onsimilarities and dif-
ferences among the tumours and, most important, carry relevant biological information
for the study of regulatory interactions among genes. For instance, authors identified sets
of co-expressed genes for which variation in mRNA levels could be related to specific
features of physiological variation, and, therefore, could provide valuable views of activ-
ities of specific regulatory systems. PEROU et al. (2000) infer that these portraits are a
faithful representation of the tumour itself, and not only of the particular tumour sample,
as the distinctive expression pattern of a tumour was recognized in distinct independent
samples.

4.2 K-means

The K-means algorithm is a typical partition-based clustering method and by far the
most popular clustering tool used in scientific and industrial applications (BERKHIN,
2002). The basic algorithm of the method is described in Algorithm 4.2. The algorithm
begins withk initial centroids, in whichk is a user-specified parameter and the number
of desired clusters. This initialization can be performed either at random or based on
some heuristic. The goal is to partition a data set intok disjoint subjects, assigning each
data point to a centroid by optimizing an objective function, which is given by the sum of
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Algorithm 4.2: Basic algorithm for K-means.
Selectk points as initial centroids
repeat

Formk clusters by assigning each point to its closest centroid
Recompute the centroid of each cluster

until Centroids do not change

discrepancies between a point and its centroid expressed through and appropriate distance,
as shown in Equation 4.3 (BERKHIN, 2002). When dealing with numerical attributes in
an Euclidean space, the proximity measure is often quantified by means of Euclidean
distance, although others like Manhattan distance may alsobe applied.

E =

k
∑

j=1

∑

xi∈Cj

||xi − cj ||
2 (4.3)

The data points assigned to a centroid are form a cluster. Thecentroid of each cluster
is then updated based on the points delegated to it. These steps are continuously repeated
until points do not change between clusters or, equivalently, until centroids remain the
same (TAN; STEINBACH; KUMAR, 2005).

An example of the application of K-means to the partition of asample data into three
clusters is depicted in Figure 4.4 (TAN; STEINBACH; KUMAR, 2005). Each subfigure
shows the centroids at the start of the iteration, indicatedby the "+" symbol, and the
assignment of the points to those centroids. All points belonging to the same cluster have
the same marker shape.

The basic K-means algorithm has time complexityO(Ikmn), wherem is the number
of points,n the number of attributes andI the number of iterations necessary for parti-
tioning data. AsI is often small, the algorithm becomes linear inm, the number of points,
and is efficient whenk is significantly less thanm. The space complexity is very modest,
O((m+ k)n), since only data points and centroids need to be stored.

4.2.1 Advantages and Disadvantages

The K-means algorithm is relatively simple and fast, eespecially when the number of
clusters is substantially smaller than the number of data points. Also, it is based on the
firm foundation of analysis of variances. However, some issues may be faced. First, and
most important, the number of clustersk is usually not priorly known and, therefore, is

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure 4.4:Example of the application of K-means algorithm. Partitioning a sample
data into three clusters using K-means algorithm.
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by itself a parameter to be optimized. Second, the method is very sensitive to centroids
initialization: different initial partitions can result in different final clusters. Third, the
presence of noise may cause the algorithm to run poorly: K-means forces each data point
into to a cluster and thus it is not robust in handling outliers. Forth, and finally, K-means
algorithm does not work well with non-globular clusters.

The shortcomings regarding the decision about the optimal number of clusters and
the initialization of centroids may be partially tackled byperforming multiple runs of the
algorithm and comparing results. However, for a large data set, with thousands of data
points, this extensive parameter fine-tuning process may not be practical. Another possi-
ble approach is to combine hierarchical clustering with K-means: hierarchical clustering
is applied to find the optimalk value and the centroids of the returned clusters are used
as the initial configuration for K-means algorithm. Again, this is only practical for small
samples and ifk is relatively small compared to the sample size.

4.2.2 Application to Gene Expression Data

In (BAGIROV; MARDANEH, 2006), authors work in an optimization for the global
K-means algorithm proposed by (LIKAS; VLASSISB; VERBEEKB,2003), focusing in
the application to gene expression data. While K-means has the problem of converging
only to a local minima, which can significantly be different from global solutions as the
number os clusters increase, global K-means constitutes a deterministic global optimiza-
tion method that does not depend on any initial parameter values and employs the k-
means algorithm as a local search procedure (LIKAS; VLASSISB; VERBEEKB, 2003).
However, clustering algorithms based on global optimization techniques are usually not
applicable to relatively large data sets (BAGIROV; MARDANEH, 2006).

BAGIROV; MARDANEH (2006) proposed a new version of the global K-means al-
gorithm, computing a start point for thek-th clusters by minimizing a so-called auxiliary
cluster function. This function has the benefit of reducing the number of parameters to be
optimized and maintaining all variables in a continuous domain, allowing its application
to large gene expression data sets. The clustering process is then performed in an incre-
mental way: the number of clusters is successively increased. At the first iteration, the
centroid of the set A and its corresponding cluster functionare computed. Thek-partition
at thek-th iterations is performed applying K-means to thek − 1 cluster centers from
the previous iteration, iteratively, until the minimization of the cluster function reaches
a given tolerance valueǫ. Authors have validated their method with six different gene
expression data sets, comparing it afterwards with the global K-means algorithm, among
others. They conclude that their algorithm outperforms global K-means algorithm as the
number of clusters increases, but with the cost of requiringmore computational efforts
than the latter.

4.3 Self-Organizing Maps

Self-Organizing Maps (SOM) are neural network based clustering algorithms intro-
duced by KOHONEN (1982) as an unsupervised and competitive learning method. The
network consists of a set of neurons placed in the nodes of a lattice, competing between
themselves to respond to an input pattern. The number of competing neurons, which typi-
cally varies from a few dozen up to several thousand, determines the accuracy and general-
ization capability of the SOM. The input patterns are introduced in the input layer, whose
nodes are fully connected to those in the competitive layer.According to (HAYKIN,
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Algorithm 4.3: Basic algorithm for self-organizing maps.
Define neighborhood functionh
Initialize neurons with random weight valuesW
repeat

Present an input vectorxr at random
Calculate winning node:j∗ = argmin∀j ||xr − wj||
Update weight vectors of winning node and its neighbors suchthat
wj(t + 1) = wj(t) + η(t)× hj∗j(t)× ||xr − wj||
Adjustη(t) andσ(t) factors

until W do not significantly changes

1998), the SOM algorithm forms a "topographic map of the input patterns in which the
spatial locations (i.e. coordinates) of the neurons in the lattice are indicative of intrinsic
statistical features contained in the input patterns".

The basic algorithm for evolving a SOM comprises four steps:initialization, com-
petition and synaptic adaptation. In initialization, the synaptic weights of neurons are
randomly initialized. Then, for each input pattern, the network’s neurons compute their
respective values of a discriminant function. The neuron with the largest value is declared
the winner. This is the competition process. Finally, the winning neuron is moved towards
the input pattern by updating its synaptic weight accordingto a pre-defined rule.

Another possible and widely used SOM algorithm, which is a variation of the basic
algorithm described above, includes a cooperation step just before the synaptic weights
update. In this version, the winning neuron defines a spatiallocation of a topological
neighborhood of excited neurons and all the neurons in this neighborhood have their
synaptic weights updated to a given rate. This mechanism is portrayed in Algorithm 4.3,
in which t denotes time,η(t) is the learning rate andhj∗j(t) stands for the neighborhood
kernel, centered in the winning node (j∗), as shown in Equation 4.4. Note that bothη(t)
andσ(t) decrease monotonically with time (VESANTO; ALHONIEMI, 2000). This aims
to allow further topological variability at a first moment, and limit it after some cycles of
execution.

hj∗j(t) = exp

(

−
||wj∗ − wj||

2σ2(t)

)

(4.4)

The computational complexity of SOM algorithm scales linearly with the number
of samples and grows asO(n2) with the numbern of neurons in the competitive layer
(VESANTO; ALHONIEMI, 2000). This method is usually efficient in dealing with large
data sets, but its performance may decrease when the number of samples is exorbitantly
large. Improvements have already been suggested in order tomake possible its application
to extremely large data sets. In (KOHONEN et al., 2000), for instance, authors have
successfully applied SOM to the self organization of a massive collection of documents:
6.840.568 patent abstracts were organized onto a 1.002.240-neurons map.

For clustering purpose, clusters are extracted from a SOM byidentifying a group of
neurons nearly mapped. When the training is complete, SOM forms a semantic map
where similar samples are mapped next to each other and dissimilar samples are mapped
apart. This proximity is usually represented as an unified distance matrix (U-Matrix),
which stores the Euclidean distances between the weight vectors of neighboring neurons.
When such distances are depicted in a gray scale image, lightcolors denote the closely dis-
tributed neurons, while darker colors indicate the most dissimilar neurons. Thus, groups



43

Figure 4.5:The self-organizing map structure.A multidimensional data is mapped into
a two-dimensional space through a competitive learning process and the adaptation of
winning neuron and its respective neighbors weights. The output layer is also known as
competitive layer.

of light colors can be considered as a clusters, and the dark parts as the boundary regions.

4.3.1 Advantages and Disadvantages

The main benefit of SOM as a clustering algorithm is the reduction of computational
cost, since it clusters a set of prototypes, represented by the neurons, rather than directly
the data samples. Also, it is less sensitive to noise as prototypes are local averages of
the data. Regarding its output, SOM provides an intuitivelyappealing map of a high-
dimensional data set in two or three dimensional space, mapping similar samples near to
each other (JIANG; TANG; ZHANG, 2004). However, SOM has an important drawback
of requiring users to input the number of clusters and the grid structure of the neuron map.
As these parameters are preserved through the training process, improperly-specified pa-
rameters will prevent the recovering of the natural clusterstructure.

4.3.2 Application to Gene Expression Data

TÖRÖNEN et al. (1999) have applied a modified SOM algorithm, known as tree-
structured SOM, to 6400 genes comprised in a published data of yeast gene expression
during a diauxic shift, the shift from anaerobic fermentation of glucose to aerobic respira-
tion of ethanol. The tree-structured SOM consists of several SOM arranged hierarchically
in a pyramid-like fashion in several layers. The number of neurons at a higher level is
four times the number of the previous level. The training is repeated layer by layer using
knowledge about the winning neuron of previous level l-1 to compute the current winning
neuron. As search is restricted to a small set of neurons linked to the previous winning
neuron its neighbors, computational complexity is significantly reduced.

The SOM used by TÖRÖNEN et al. (1999) is a16 × 16 map, containing thus 256
neurons, whose dimension was chosen based on test experiments. The number of genes
in individual neurons varied between 10 and 49. After the training process, SOM is fur-
ther modified using Sammon’s mapping algorithm, where spatial distance correlates with
the difference in average expression profile and the circle size with the number of genes
within the neuron. Four clusters were selected for gene content analysis: two with an
increasing pattern, one with decreasing pattern and one with no change in its expression.
Authors analysis show that SOM rapidly and reliably clusters the gene expression data
set into groups that show similar gene expression profiles. According to the authors, the
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concept of similarity comprises participation in a common pathway or regulation by a
common regulatory element in a promoter region, or both. Therefore, clustering gene ex-
pression profiles using SOM approach is also efficient for discovering functionally related
genes.

In MILONE et al. (2011), a pipeline for biological data integration and discovery of
a priori unknown relationships between gene expressions and metabolite accumulations
is discussed. According to the authors, as metabolites are the final products of gene ac-
tions, they are potentially relevant to elucidate gene functions and networks, especially
when integrated with transcriptomic data. In this study, authors are particularly inter-
ested in investigating the occurrence of introgressed portions of a wild tomato (Solanum
pennelli) species genetic material in certain chromosomes segmentsof tomatoSolanum
lycopersicum.

MILONE et al. (2011) explain each of the pipeline steps, fromdata understanding
and pre-processing to visualization and biological assessment of results, and compare
the performance of three clustering methods – hierarchicalclustering, K-means and self-
organizing maps – for the data mining step according to pre-defined measures. Authors
observe that while hierarchical clustering comprises the vast majority of the patterns in
the same dendogram’s branch, K-means results in several nodes with very few patterns
and few nodes with many patterns, and self-organizing maps present a more uniform
distribution of patterns between nodes. Therefore, they assert that SOM is a more indi-
cated method for gene expression data clustering as its balance distribution allows a more
confident analysis in both neuron and neighborhood contexts, given that nearby nodes
have gradual changes and form clusters with biological meaning. Also, SOM technique
presented outstanding performance in terms of the quality measures defined by authors
and provides better visualization capabilities when compared to K-means and hierarchical
clustering.

4.4 Tools

Michael Eisen have developed a set of computational tools for clustering analysis and
visualization of results of microarray experiments. The Cluster application performs a
wide variety of types of cluster analysis and other processing on large microarray datasets.
It currently includes hierarchical clustering (as described in EISEN et al. (1998)), self-
organizing maps (SOMs), k-means clustering and principal component analysis. Tree-
View graphically browse results of clustering and other analyses from Cluster. It supports
tree-based and image based browsing of hierarchical trees,as well as it allows multiple
output formats for generation of images for publications. Both Cluster and TreeView
applications are free for academic use and available online1.

The software applied in the investigation held by (MILONE etal., 2011), named *me-
SOM, may also be downloaded2 and applied in academic research. *omeSOM is a tool
designed to give support to the data mining task of metabolicand transcriptional datasets
derived from different databases. It implementes a neural model for biological data clus-
tering and visualization. The software is focused on the easy identification of groups
including different molecular entities, independently ofthe number of clusters formed. It
provides a user-friendly interface and offers several visualization tools easy to understand
by non-expert users (MILONE et al., 2010).

1http://rana.lbl.gov/EisenSoftware.htm
2http://www.sourcesinc.sourceforge.net/omesom
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4.5 Discussion

This chapter presented some widely used methods for clustering gene expression data:
hierarchical clustering, K-means and self-organizing maps. Examples of specific appli-
cations involving these techniques were given and a common agreement among authors
conclusions is that clustering is not only efficient for grouping together genes with similar
features and expression patterns, but also that resulting clusters are biologically consis-
tent, e.g. genes clustered together are in fact involved in the same regulatory system or
activity.

However, clustering algorithms don’t completely solve theproblem of discovering
gene regulatory networks: even though genes are clustered according to their inherent
patterns, the exact biological relationship or dependenceamong them is not inferred. One
common approach, therefore, is to combine clustering algorithms to more sophisticated
techniques, using it as a pre-processing method to reduce dimensionality of the inference
problem. Following this direction, once clustering is applied and a co-expression network
is generated, this information may be used to perform a fine study about genes which are
highly correlated, aiming to uncover more detailed information about the regulatory in-
teractions ruling their expression level. In this particular formulation, methods discussed
in the following chapters are efficient and common alternatives for inferring the detailed
structure of the regulatory network underlying genes in a specific cluster.
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5 BAYESIAN NETWORKS

As discussed in Chapter 4, clustering algorithms are an useful coarse-grained ap-
proach for discovering genes that are co-regulated within an organism. However, a more
ambitious goal emerging in the last years aims to reveal the full and exact network struc-
ture of regulation mechanism, rising the need for robust methods. The main requirement
is the ability to cope with noise, which are inherent to experimental data. In this context,
Bayesian networks have performed an important role in the analysis of gene expression
data.

A Bayesian network (BN) is a graphical model that encodes probabilistic relation-
ships among variables of interest (HECKERMAN, 1995) and it has been first proposed
as a GRN reverse engineering method by FRIEDMAN et al. (2000). Its probabilistic na-
ture is an advantage when dealing with missing and noisy data. Furthermore, it allows
the learning of causal relationships between interacting entities and, therefore, are use-
ful to gain understanding about a problem domain and to predict the consequences of
intervention.

5.1 Bayesian Networks Structure

BNs are graphical models for representing the relationships between multiple inter-
acting entities by means of joint probability distributions (HECKERMAN, 1995). The
probabilities encoded by a BN are said to be Bayesian when thenetwork is learned from
prior knowledge alone, and physical when it is learnt from data. The probabilistic nature
of BNs brings four distinct advantages, as highlighted by HECKERMAN (1995): 1) can
handle incomplete data sets; 2) allows the learning of causal relationships, which in turn
is useful for domain understanding and prediction making; 3) is a powerful and easy tool
for combining prior knowledge and data; 4) avoids data overfitting.

Formally, BN models are defined by a directed acyclic graph (DAG) G, whose nodes
represent the random variablesX = X1, . . . , Xn in our domain and edges denote, intu-
itively, the direct influence of one node on another by means of conditional dependence
relations. Along with the graphical structure, the model ischaracterized by a family of
conditional probability distributionsF and their parametersq, which together specify a
unique joint distribution for each variable in the set of interest. In graphG, when a di-
rected edge exists from nodeA to nodeB, A is called the parent ofB andB is said child
of A.

Due to the acyclic property of BNs, the joint distribution ofvertices in graphG may be
decomposed in simpler conditional independence assumptions, economizing on the num-
ber of parameters. This decomposition follows the so-called Markov assumption: "Each
variableXi is conditionally independent of its non-descendants, given its parents inG".
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Figure 5.1: Example of simple Bayesian network structure. Several conditional in-
dependence statements are implied by this simple model:Ind(A;E), Ind(B;D|A;E),
Ind(C;A,D,E|B), Ind(D;B,C,E|A), Ind(E;A,D). The joint distribution has the
product form:P (A,B,C,D,E) = P (A)P (B|A,E)P (C|B)P (D|A)P (E). Reproduced
from (FRIEDMAN et al., 2000).

According to FRIEDMAN et al. (2000), by applying the chain rule of probabilities and
properties of conditional independences, any joint distribution that satisfies the Markov
assumption can be decomposed into the product form:

P (X1, . . . , XN) =

N
∏

i=1

P (Xi|PaG(Xi)) (5.1)

wherePaG(Xi) is the set of parents ofXi in graphG. The terms in the product of Equa-
tion 5.1 correspond to the conditional probability distributionsF and their respective
parametersq. To specify the complete joint distribution it is still necessary to determine
a representation for the familyF of conditional distributions. This choice will depend on
the type of variable we are dealing with, being most commonlyused a Gaussian distribu-
tion for continuous variables and a multinomial distribution for discrete variables.

Figure 5.1, reproduced from (FRIEDMAN et al., 2000), shows asimple example of
Bayesian network structure. LetInd(G) be the set of independence statements in the
form X is independent of Y given Z, i.e.Ind(X ; Y |Z). The following conditional in-
dependence statements derive from the relationships depicted in the graph:Ind(A;E),
I(B;D|A;E), Ind(C;A,D,E|B), Ind(D;B,C,E|A), Ind(E;A,D). Applying Equa-
tion 5.1 to the graph in this figure, we obtain the joint distribution in the product form:
P (A,B,C,D,E) = P (A)P (B|A,E)P (C|B)P (D|A)P (E).

It is possible to have more than one graph implying the exactly same set of indepen-
dencesInd(G). For instance, consider two graphs over variablesX andY : X → Y and
X ← Y . They both imply the set of independencesInd(G = ∅), and, therefore, they are
said to be equivalent (FRIEDMAN et al., 2000). In a general way, two graphs,G andG′,
are equivalent ifInd(G) = Ind(G′).

Equivalent classes of network structures may be uniquely represented by a partially
directed graph, in which an undirected edgeX−Y denotes that some members of the class
contain the edgeX → Y , while others contain the edgeX ← Y instead. According to
(PEARL; VERMA, 1991), two directed acyclic graphs are equivalent if and only if they
have the same underlying undirected graph and the same v-structures (i.e., converging
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directed edges into the same node, such thata → b ← c, and no edge exists between a
and c).

Although Bayesian networks are based on DAGs, it is important to stress that not all
directed edges in a Bayesian network can be interpreted causally. The DAG on which the
Bayesian network model is based just asserts a set of independence assumptions among
the domain variables (WERHLI, 2007).

5.2 Learning Bayesian Networks

The process of learning Bayesian networks aims to devise a Bayesian network model
M from a given set of training dataD such thatM is the model that better explains the
data and its embedded dependences. More precisely, we search for an equivalence class
of networks that best matchesD (FRIEDMAN et al., 2000). Although there are other
approaches to learn a Bayesian Network besides the Bayesianlearning (see, for instance,
HECKERMAN (1995)), this is the most mentioned one in literature and therefore it will
be the focus of the present section.

BN learning is performed in two distinct stages. First, we learn the network structure,
e.g. how the entities are connected by edges. DefiningM as the space of all possible
models, the first goal is to find a modelM∗ ∈M that is the most supported by the dataD:

M∗ = argmaxMP (M |D) (5.2)

The second step consists of learning the parameters sets associated with the edges
in modelM∗, and whether the relationships between these entities are of activating or
inhibitory nature, as well as its respective intensity. Having the best structureM∗ and the
data setD, we search for the best parameters setq:

q = argmaxqP (q|M∗, D) (5.3)

A common approach to the problem of finding the best model given the dataD is
to introduce a statistically motivated scoring function that evaluates each network with
respect to the training data and use it to search for the optimal network. In FRIEDMAN
et al. (2000) authors evaluate the posterior probability ofa model given the data:

S(M : D) = logP (M |D)
= logP (D|M) + logP (M) + C

(5.4)

where C is a constant independent ofM and

P (D|M) =

∫

P (D|q,M)P (q|M)dq (5.5)

is the marginal likelihood, which averages the probabilityof the data over all possible
parameter assignments toM . According to the authors, the particular choice of priors
P (M) andP (q|M) determines the exact Bayesian score to be applied. A theoretical
and mathematical review of the two most widely used Bayesianscores may be found
in WERHLI (2007): the Bayesian Dirichlet likelihood equivalent scoring metric (BDe
score) and the continuous Bayesian Gaussian likelihood equivalent scoring metric (BGe).
While the first score is used for discrete variables, which are associated to multinomial
distributions, the latter is used for continuous domain, where variables are associated to
Gaussian distributions.
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(a) (b)

Figure 5.2: Bayesian inference. The vertical axis denotes the posterior probability
P (M |D) and the horizontal axis represents the network structuresM . (a) For a large
and informative data set, the best structureM∗ is well defined in the posterior probability
distribution. (b) The same does not occur for a small and lessinformative data set, whose
posterior probability distribution is very diffuse. Reproduced from (WERHLI, 2007).

The integral in Equation 5.5 is analytically tractable whenthe data is complete and
the priorP (q|M) satisfies certain regularity conditions discussed in GEIGER; HECKER-
MAN (1994) and HECKERMAN (1995). Additionally, in this case, the posterior score
has several properties, as highlighted by FRIEDMAN et al. (2000). First, the score is
structure equivalent, i.e., ifG andG′ are equivalent graphs they are guaranteed to have
the same posterior score. Second, the score is decomposable: it can be written as the sum

S(M : D) =
∑

i

ScoreContribution(Xi, PaG(Xi) : D), (5.6)

where the contribution of every variableXi to the total network score depends only on
the values ofXi andPaG(Xi) in the training instances. Finally, the local contributions
for each variable can be computed using a closed form equation.

However, the computation ofP (D|M) is not enough for the assessment of score
S(M : D), and hence for the identification of the optimal modelM∗, due to the high
similarity between networks in the same equivalence class.Prior knowledgeP (M) may
be useful when deciding which model is the most proper one in the given equivalence
class. Nevertheless, finding the best modelM∗ by direct computation of scoreS is still
an impractical approach for two main reasons: the number of structures increases rapidly
with the number of nodes and the posteriorP (M |D) is usually diffuse and is not ad-
equately represented by a single network at the mode when thedata set is small and
slightly informative.

The problem of learning the structureM∗ that maximizes the scoreS(M : D) is
known to be a NP-hard problem (CHICKERING, 1996). Several high-scoring networks
may be found. Thus, heuristic search and sampling methods are often applied in this
context. According to FRIEDMAN et al. (2000), the use of local search, by which one

Table 5.1:Number of nodes vs. number of networks.The number of networks grows
super-exponentially with the number of nodes. Reproduced from WERHLI (2007).

Number of nodes 2 4 6 8 10
Number of topologies 3 543 3.7× 106 7.8× 1011 4.2× 1018
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arc is changed at each move and the gains provided by the modification are evaluated,
does not necessarily find a global maximum but it does performwell in practice. As
examples, authors cite beam-search, (stochastic) hill-climbing and simulated annealing.
However, a much more usual solution in recent years is to resort to sampling methods in
order to obtain a representative sample of high scoring network structures.

5.3 Markov Chain Monte Carlo: a Sampling Method

In this section we present a sampling method commonly combined to Bayesian
networks in the problem of learning networks structure. Markov Chain Monte Carlo
(MCMC) was proposed by METROPOLIS et al. (1953) and HASTINGS(1970), and ap-
plied to the context of inferring gene regulatory networks using the BN formalism by
MADIGAN; YORK (1995).

Since data sets D are usually sparse, and this includes the special case of postgenomic
data, the posterior probabilityP (M |D) over structures is diffuse and not properly rep-
resented by a single optimum modelM∗. Therefore, an appropriate solution consists of
sampling networks from the posterior probability:

P (M |D) =
P (D|M)P (M)

P (D)
=

P (D|M)P (M)
∑

M ′ P (D|M ′)P (M ′)
(5.7)

A direct approach to sample fromP (M |D) is impossible though, as the denominator
in Equation 5.7 is a sum over the whole model space and is intractable (see Table5.1).
METROPOLIS et al. (1953) and HASTINGS (1970) proposed, therefore, to create a
Markov Chain, in the following form:

Pn+1(Mi) =
∑

k

T (Mi|Mk)Pn(Mk) (5.8)

whereMk is the current structure,Mi the new proposed model andT represents the
Markov transition matrix, which is a matrix of transition probabilities. Under the condi-
tion of ergodicity1 the distributionPn(Mk) converges to a stationary distributionP∞(Mk),
such that:

P∞(Mi) =
∑

k

T (Mi|Mk)P∞(Mk), (5.9)

In Equation 5.9, the posterior distribution in stepn + 1 is equal to the distribu-
tion in stepn, following the Markov assumption. As the transition matrixT com-
pletely determines the stationary distribution in Equation 5.9, it needs to be designed
so that the posterior probability equals the stationary distribution of the Markov chain,
i.e.P (M |D) = P∞(M). A sufficient condition for this to be true is given by the equation
of detailed balance:

T (Mi|Mk)

T (Mk|Mi)
=

P (Mi|D)

P (Mk|D)
=

P (D|Mi)P (Mi)

P (D|Mk)P (Mk)
(5.10)

The transition to a new structure,Mk → Mi, is performed in two steps: first a new
structure is proposed with proposal probabilityQ(Mi|Mk). The action of proposing new

1An ergodic Markov chain is aperiodic and irreducible: all states are reachable from all other states and
the probability that the next state is the same as the currentstate is non-zero.
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Algorithm 5.1: Metropolis-Hastings algorithm.
Start with an initial structureM0

for i = 1 to I do
Obtain a new DAG structureMi from the proposal distributionQ(Mi|Mi−1).
Accept the new model with probabilityA(Mi|Mi−1) given by Eq. 5.11, otherwise
leave the model unchanged.

end for
Allow the Markov chain to reach stationarity by discarding some initial samples,
Mi . . .M I

2

for instance. This is burn-in period.
Compute the expectation values from the MCMC sampleM I

2
+1 . . .MI :

〈f〉 =
∑

M f(M)P (M |D) ≈ 2
I

∑I

i= I
2+1

f(Mi)

Algorithm 5.2: Metropolis algorithm.
Start with an initial structureM0

for i = 1 to I do
Obtain a new DAG structureMi from the proposal distributionQ(Mi|Mi−1).
If the new model is not a DAG, reject it and go back to previous step.
Accept the new model with probabilityA(Mi|Mi−1) given by Eq. 5.12, otherwise
leave the model unchanged.

end for
Allow the Markov chain to reach stationarity by discarding some initial samples,
Mi . . .M I

2

for instance. This is burn-in period.
Compute the expectation values from the MCMC sampleM I

2
+1 . . .MI :

〈f〉 =
∑

M f(M)P (M |D) ≈ 2
I

∑I

i= I
2+1

f(Mi)

structures means to choose, at each iteration, one of the basic operations of adding, delet-
ing or reversing an edge. Some of this actions may occasionally lead to invalid networks,
e.g. cyclic networks, which must be dismissed. Finally, theproposed structure is accepted
with acceptance probabilityA(Mi|Mk), referred to as Metropolis-Hastings criteria, and
defined according to the following equation:

A(Mi|Mk)

A(Mk|Mi)
= min

{

P (D|Mi)P (Mi)Q(Mk|Mi)

P (D|Mk)P (Mk)Q(Mi|Mk)
, 1

}

(5.11)

Accept a new modelMi according to Equation 5.11 guarantees that the Markov chain
will converge for the desired posterior distribution (WERHLI, 2007). The termQ(Mk|Mi)

Q(Mi|Mk)

is called Hastings factor and must be computed when an asymmetry exists between the
networks. This asymmetry results from the different neighborhood sizes, which are de-
fined by the set of all valid DAGs that might be reached from thecurrent model with
a single edge modification. When the neighborhoods have the same size, the Hastings
factor equals to 1.

In order to avoid the computation of the Hastings factor, which is not trivial, it is
possible to modify the step of proposing new structures suchthat all non DAGs models
are rejected based in the prior knowledge that they can not been accepted as they are
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invalid BN structures. In this case, the acceptance probability is given by:

A(Mi|Mk)

A(Mk|Mi)
= min

{

P (D|Mi)P (Mi)

P (D|Mk)P (Mk)
, 1

}

(5.12)

Algorithms 5.1 and 5.2 summarize both presented solutions for MCMC application:
the Metropolis-Hastings algorithm and the Metropolis algorithm, respectively. In short,
these algorithms start from an initial state and probabilistically transitions through a so-
lution space, accepting transitions to better state with high probability and transitions to
worse states with lower probability. According to WERHLI (2007), the possibility to
avoid the finding of all neighbors in Hastings algorithm comes at a price: many more
structures will be rejected, decreasing the acceptance rate and slowing down the conver-
gence of the algorithm.

5.3.1 MCMC Convergence Assessment

According to WERHLI (2007), the MCMC approximation is exactin the limit of an
infinitely long Markov chain if the condition of detailed balance (Eq. 5.10) is satisfied
and if the Markov chain is ergodic. The convergence of MCMC isthe guarantee that the
resulting sample has been drawn from the correct and expected distribution. In WERHLI
(2007), the MCMC convergence was assessed based in a simple heuristic approach, de-
scribed in what follows.

The application of the MCMC algorithm results in a square matrix n× n of posterior
probabilities, in whichn denotes the number of nodes in the network. The technique
used in WERHLI (2007) consists in running two MCMC simulations with different initial
configuration, obtaining matricesP 1 andP 2, whose elements are denoted byp1ij andp2ij,
respectively, and represent the probability of existing anedge between nodesXi andXj.
After simulations are finished, both matrices are plotted against each other, e.g.p1ij vs. p2ij,
generating a scatter plot. Examples of scatter plots for distinct performances of MCMC
are shown in Figure 5.3. One can observe that the longer the simulation time, the better
the convergence of the algorithm.

(a) (b) (c)

Figure 5.3:MCMC convergence test.The marginal posterior probabilities of the edges
are plotted for two different simulation initializations.(a) For an infinite time, all the
posterior probabilities of the edges are the same for both simulations. However, as the
simulation length becomes shorter, the convergence startsto fail. Panels (b) and (c) exem-
plify the convergence test for a not long enough and a too short simulations, respectively.
Reproduced from (WERHLI, 2007).
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Algorithm 5.3: Bootstrap method applied by FRIEDMAN et al. (2000).
for i = 1 . . .m do

Re-sample with replacementN instances fromD. Denote byDi new data set.
Apply the learning procedure onDi to induce a network structureGi.

end for
for each featuref of interestdo

Computeconf(f) = 1
m

∑m

i=1 f(Gi), wheref(G) is 1 if f is a feature inG and 0
otherwise.

end for

The convergence test proposed in (WERHLI, 2007) is necessary but not sufficient
to guarantee algorithm convergence: the two simulations can reach the same meta-
stable equilibrium, which might be different from the true equilibrium. Theoretically,
the Markov chain will converges regardless the chosen proposal distributionQ and the
initialization values. However, in practice it is known that some issue, such as extreme
initialization values, may slow down the convergence of MCMC.

5.4 Application to Gene Expression Data

The pioneer work combining BN to the inference of gene regulatory networks was
published by FRIEDMAN et al. (2000). Authors proposed to model the system as a joint
distribution over a collection of random variables that describe system states. As the
scaling of MCMC for large domains was still not clear, FRIEDMAN et al. (2000) opted
for applying a nonparametric bootstrap method to estimate the confidence of features of
Bayesian Networks learned from expression profiles. The bootstrap method (EFRON;
TIBSHIRANI, 1993) is a very general re-sampling procedure for estimating the distribu-
tions of statistics based on independent observations. Themain idea behind the bootstrap
is to generate perturbed versions of the original data set and apply the learning algorithm
over them. This way, all collected networks are fairly reasonable models of the data and
reflect the effect of small perturbations to the data on the learning process.

The bootstrap algorithm is applied by FRIEDMAN et al. (2000)as shown in Algo-
rithm 5.3. Authors limit the search space by focusing the attention of the search procedure
on relevant regions of the search space. First, a relativelysmall number of candidate par-
ents is identified for each gene based on simple local statistics (such as correlation). Later,
the search is restricted to networks in which only the candidate parents of a variable can
be its parents, resulting in a much smaller search space and,consequentially, in a faster
search for a good structure. The proposed algorithm was applied to a data set with 800
genes and 76 gene expression measurements of the mRNA levelsof 6177S. cerevisiae
open reading frames, in which authors managed to extract many biologically plausible
conclusions through this analysis.

PE’ER et al. (2001) extended the framework proposed in (FRIEDMAN et al., 2000)
to better handle perturbations and to identify significant subnetworks of interacting genes,
which are shown to be related to known biological pathways. The bootstrap analysis is
applied in the extraction of potential models, just like in PE’ER et al. (2001). In the
sequence, authors extract from these high-scoring networks new statistically confident
features (mediator, activator and inhibitor), which are further used in the identification
of subnetworks of strong statistical significance along with features previously defined
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by FRIEDMAN et al. (2000). The idea of searching for subnetworks comes from the
inherent limitation to BN’s learning procedures of examining relations between two or
three genes at a time. This way, authors not only broaden their viewpoint but also gain
confidence about features that are not significant when isolated.

The results achieved by PE’ER et al. (2001) show that meaningful biological informa-
tion can be extracted even from pairwise relations. Many uncovered genetic links were
already identified by previous works. Yet, new biological insight has also been provided
with strong evidence from literature. However, the full power of the proposed approach
comes from the exploration of subnetworks: a comparison with a clustering approach
shows that the reconstruction by means of BN provides a much richer context for regula-
tory and functional analysis.

In (IMOTO et al., 2003), authors explored a question alreadyraised by PE’ER et al.
(2001): how to include prior knowledge in the inference process in order to improve qual-
ity of analysis and the number of novel interactions discovered? According to IMOTO
et al. (2003), the main issue faced in the reverse engineering of GRN is the limited amount
of independent experimental conditions and the inherent noise in measurements, suggest-
ing that the inclusion of prior knowledge might result in a higher reconstruction accuracy.

Following this direction, authors proposed a learning scheme using a Bayesian frame-
work, in which a new networks’ evaluation criteria is derived such that networks are
selected based on microarray data and biological knowledge. In this approach, gene ex-
pression data is systematically integrated with biological knowledge from other types of
postgenomic data and from literature, with automatic tuning of the balance between the
both sources of data, aiming a more accurate reconstruction. This integration is per-
formed via a prior distribution over network structures, which takes the form of a Gibbs
distribution. The prior knowledge is encoded as an energy function and an inverse tem-
perature hyperparameter determines the weight that is assigned to it. The hyperparam-
eters are inferred together with the network structure by maximizing the joint posterior
distribution with a heuristic greedy optimization algorithm. As prior knowledge, the au-
thors extracted protein-DNA interactions from the Yeast Proteome Database. However,
this framework has also been successfully applied to a wide variety of distinct sources
of biological prior knowledge: transcription factor binding motifs in promoter sequences
(TAMADA et al., 2003), protein-protein interactions (NARIAI et al., 2004), evolutionary
information (TAMADA et al., 2005), and pathways from the KEGG database (IMOTO
et al., 2006).

The integration of expression data with multiple sources ofprior knowledge was in-
vestigated in (WERHLI; HUSMEIER, 2007). Each source was expressed in terms of an
energy function and a prior distribution was later obtainedin the form of a Gibbs distri-
bution. The hyperparameters associated with the differentsources of prior knowledge,
which measure the influence of the respective prior relativeto the data, are sampled from
the posterior distribution with MCMC. Experiments with twoindependent sources of tran-
scription factor binding locations from immunoprecipitation experiments with microarray
gene expression data from the yeast cell cycle, and with the integration of KEGG path-
ways with cytometry experiments for determining protein interactions related to the Raf
signaling pathway, have stressed the efficiency of this method to generate more accurate
models.

The works published by IMOTO et al. (2006) and WERHLI; HUSMEIER (2007), as
well as other papers in the GRN context, have the common feature of assuming that a
molecular biological system may be successfully represented by a single regulatory net-
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Figure 5.4:Bayesian Hierarchical Model. The nodes represent: data sets (D1, . . . , Dn)
obtained in different experimental conditions; hyperparameters (β1, . . . , βn) and network
structures (M1, . . . ,Mn). The hypernetworkMG acts as a coupling among the networks
M1, . . . ,Mn, inciting them to be similar.

work, when what is in fact inferred in the reconstruction process is its active parts, which
may vary according to available experimental conditions. In (WERHLI; HUSMEIER,
2008), a method to reconstruct the regulatory structure of anetwork considering that its
active parts can differ under different experimental conditions is proposed. The coupling
scheme, depicted in Figure 5.4, is a compromise between learning networks from dif-
ferent subsets separately and learning networks from a monolithic fusion of individual
data sets. While in the first approach no information is shared between the data sets, the
latter does not provide a mechanism for discovering differences between the networks
associated with the different experimental conditions.

The Bayesian hierarchical model proposed by WERHLI; HUSMEIER (2008) have
achieved very good results in terms of reconstruction accuracy. However, the probabilis-
tic model, when sampled with MCMC algorithm, have not alwaysproperly converged.
The difficulty in crossing the valleys increases the chancesof the algorithm to be trapped
in a local optima, causing some high posterior probability samples to go unexplored in
the analysis. MENDOZA; WERHLI (2010) proposed to tackle this problem by applying
a parallel sampling scheme, known as Metropolis Coupled Markov Chain Monte Carlo
(MC)3. (MC)3 involves the parallel execution of multiple Markov chains,some of which
are heated by raising its posterior probability by a factorγ, and a state swap proposal
between chains in predetermined intervals. Heated chains tend to have a higher accep-
tance probability because they perceive the landscape flatter than unheated chains, thus,
they can more promptly cross valleys. An unheated chain, also known as cold chain, is
able to jump a deep valley in a single step when swapping statewith a heated chain. The
acceptance probability for a cold chain is given by Equation5.12, while a heated chain
accepts new states with probability defined as:

A(Mi|Mk) = min

{(

P (D|Mi)P (Mi)

P (D|Mk)P (Mk)

)γ

, 1

}

(5.13)

The results obtained in (MENDOZA; WERHLI, 2010) were satisfactory and a conver-
gence improvement was observed, which occurred more frequently and in less simulation
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steps. However, authors stress that the tuning of the parameters involved in (MC)3 algo-
rithm is by itself a complex phase, as they are data-dependent and have direct effect over
convergence properties.

5.5 Advantages and Disadvantages

Comparing to the clustering approach, introduced in Chapter 4, Bayesian networks
have the clear advantage of providing a mechanism to model the problem domain as
a whole by constructing a joint probability distribution over different combinations of
the domain variables. Unlike clustering, BNs results in a graphical model, which not
only group together genes involved in the same biological pathway, but also explicitly
denotes the dependence relations and the conditional independences among genes and
their expression levels.

Its probabilistic nature makes it robust to deal with uncertainty and, consequentially,
with noisy data. Furthermore, as they are models of the problem domain probability
distribution, they can be easily used for in silico predictions, computing the predictive
distribution on the outcomes of possible actions. Following this direction, once modeled,
BNs may also be applied in decision making process, assisting in the choice of actions
that maximize the expected utility or score. Finally, a relevant advantage of Bayesian
modeling is the possibility of aggregating expert domain knowledge within the training
data whenever it is available. This prior knowledge is extremely helpful in accelerating
and improving the learning process.

Nevertheless, BNs suffer from an important shortcoming: its underlying graphical
model, the DAG, can not contain cycles, limiting its application to steady-state data. As
feedback loops are known to be present in real biological networks, this is a significant
drawback. Moreover, when applying standard MCMC methods itis necessary to check
the acyclicity of proposed structures; this checking of acyclicity is one of the bottlenecks
of MCMC simulations (WERHLI, 2007). Dynamic Bayesian networks (DBNs) overcome
these limitations. DBNs are an extension of BNs able to inferinteractions from time-
series data (BANSAL et al., 2007). The nodes are split in input and output nodes, in order
to unfold the basic DAG representation and avoid the formation of cycles. An example,
reproduced from (HECKER et al., 2009), is shown in Figure 5.5. For further details
about DBNs and its applications to gene regulatory networksinference, see (HUSMEIER,
2003).

(a) (b)

Figure 5.5:Difference between static BNs and dynamic BNs.Cycles in (a) static BNs
are unfold in (b) dynamic BNs and represented as a temporal sequence. Reproduced from
(HECKER et al., 2009).



58

5.6 Tools

The most well-known software for reverse engineering of GRNbased on the Bayesian
formalism is Banjo2, developed in the Department of Computer Science at Duke Univer-
sity under the direction of Alexander J. Hartemink (YU et al., 2004). Banjo implements
both static and dynamic Bayesian networks, allowing, hence, its application to steady-
state and time-series data. Heuristic approaches are applied to search the network space in
order to identify the network structure that best represents the relations hidden in the input
biological data. The search algorithm in Banjo consists of aset of individual core com-
ponents: proposing a new network (or networks), handled by a"proposer" component;
checking the proposed network(s) for cycles, handled by a "cycle checker" component;
computing the score(s) of the proposed network(s), handledby an "evaluator" component;
and deciding whether to accept a proposed network, handled by a "decider" component.
Networks are evaluated according to the BDe metric, and the output network, e.g. the
one with maximum score, is presented to user as a signed directed graph. The software is
available for download under a non-commercial license agreement.

5.7 Discussion

Bayesian networks is, perhaps, one of the most applied computational techniques to
the problem of reconstructing regulatory networks from postgenomic data. Most of its
popularity is due to the probabilistic formalism, which makes it specially suitable for
coping with the inherent noise in data and the large uncertainty about the biological sys-
tem structure. In fact, the probabilistic nature of Bayesian networks is a promising tool
for uncovering implicit relations among genes, providing amore detailed picture about
regulatory pathways underlying organisms. Genetic regulatory networks are believed to
be sparse and Bayesian networks are especially suited for learning in such sparse domains
(FRIEDMAN et al., 2000). Moreover, whenever biological knowledge is available, the
method allows its integration as a prior distribution over networks structure, speeding up
the learning process and increasing the significance of the achieved results.

Since the direct computation of the best network structure is impractical, as previ-
ously explained in this chapter, a sampling method or heuristic search is needed, which
can be time demanding and, specially in the latter, sensitive to local optima. Therefore,
current research on the application of BNs to the inference of GRN focus mainly on im-
provements in the learning algorithm, aiming to reduce computational time and reach
more accurate results. The improvements vary from small buthigh impact changes in
the classical algorithms, such as the inclusion of a new edgereversal move in MCMC to
enhance convergence (GRZEGORCZYK; HUSMEIER, 2008), to parallel computation
(MENDOZA; WERHLI, 2010) and the application of distinct optimization algorithms,
such as evolutionary algorithms (AULIAC; FROUIN; BUC, 2008).

More efficient ways to deal with the dimensionality problem is also a point of in-
terest in current researchs. The available experiments areable to measure the expres-
sion of a massive number of genes, but provide only a small number of samples, which
makes difficult the estimation of model’s parameters. As computational methods such as
Bayesian networks usually need a good volume of data to correctly reconstruct models,
this is an important point of improvement. The inclusion of apriori knowledge is one
of the directions to deal with this issue. Its integration tothe learning algorithm is not

2http://www.cs.duke.edu/∼amink/software/banjo/download
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completely elucidated, but it is known that it helps to improve convergence and results
accuracy. However, as biological prior knowledge is as limited as the gene expression
data, researchers have suggested alternative ways of increasing the volume of the training
data set, like, for instance, learning from a combination ofbiological data sets (WERHLI;
HUSMEIER, 2008).
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6 BOOLEAN NETWORKS

One class of models that has received lot of attention in GRN reverse engineering pro-
cess is Boolean networks. While Bayesian networks, presented in Chapter 5, is a typical
continuous and stochastic modeling framework, Boolean networks is the most common
discrete and deterministic approach for regulatory networks reconstruction. Its inherent
simplicity, which at first sight might seen a shortcoming of the method, is in fact an
appealing property, emphasizing generic network behaviorrather than quantitative bio-
chemical details (LÄHDESMÄKI; SHMULEVICH; YLI-HARJA, 2003). Therefore, in
the current chapter the Boolean network formalism and its application to model the dy-
namics underlying gene expression data are introduced. Thechapter begins by a formal
definition of Boolean networks and some well-known learningapproaches. In the se-
quence, relevant works regarding the application of this formalism for the inference of
GRNs, are well as available software, are outlined. The current chapter ends with a dis-
cussion on the positive and negative features of Boolean networks.

6.1 Random Boolean Networks

A random Boolean network (RBN) is a directed graphG(V, F ) defined by a set of
nodesV = {x1, x2, . . . , xN}, which in GRNs context represent genes, and a set of
Boolean functionsF = {f1, f2, . . . , fN}. Each nodexi, i = 1, . . . , N , is a Boolean
device that stands for the state of variablei: it can assume values 0/1, true/false, on/off,
etc. In GRN context,xi = 1 denotes that genei is expressed, whilexi = 0 means that
it is not expressed (LÄHDESMÄKI; SHMULEVICH; YLI-HARJA, 2003). An example
of a simple Boolean network structure is depicted in Figure 6.1, where the double line
node represents an expressed gene (state 1), while the single dashed line nodes denote not

Figure 6.1:Example of a Boolean network with simple structure.The picture shows
an example ofN = 3 interacting genes, withK = 2, modeled as Boolean devices. The
double line node represents an expressed gene (state 1), while the single dashed line nodes
denote not expressed ones (state 0)



62

Table 6.1:Boolean functions for the example Boolean network.The Boolean functions
for nodes A, B, and C, depicted in the example network of Figure 6.1, are specified in this
table. Nodes A and B are controlled by function OR, while nodeC is controlled by
function NAND.

(OR) (OR) (NAND)
B C A A C B A B C
0 0 0 0 0 0 0 0 1
0 1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

expressed ones (state 0).
Each node has its value determined by a Boolean functionfi ∈ F , which represents

the rules of regulatory interactions between nodes, andKi specific inputs, denoting its
regulatory factors (also calledin-degree). A functionfi specifies, for each possible com-
bination ofKi input values, the state of the regulated variablexi. Thus, beingKi the
number of input variables regulating a given node, since each of these inputs can be either
at state 1 or 0, the number of combinations of states of theKi inputs is2Ki. Furthermore,
for each of these combinations, a specific Boolean function must output either 1 or 0.
Therefore, the total number of Boolean functions overKi inputs is22

Ki . WhenKi = 2,
some of these functions are well-known (AND, OR, XOR, NAND, etc.), but in the gen-
eral case functions have no obvious semantics. Given the values of nodesV at timet, the
Boolean functions are used to synchronously update the values of nodes at timet+ 1.

To illustrate the regulation process, consider the networkof Figure 6.1: the GRN is
modeled as a RBN ofN = 3 genes, withKi = 2. The parents’s set for nodes A, B and
C are, respectively,{B,C}, {A,C} and{A,B}. A Boolean function is randomly assigned
to each gene and the final regulatory rules are shown in Table 6.1: genes A and B are
regulated by function OR, while gene C is regulated by a NAND function. Since the
network has a fixed number of genes, each of which has a constant set of possible values,
the network can assume just a finite set of states, given by2N , whereN is the number
nodes in the network. Therefore, given the Boolean functions from Table 6.1, Table 6.2
shows the resulting expression of each genexi at timet + 1 for all possible23 states of
network, based on their mapping functions and corresponding values in timet.

As system passes along a sequence of states, triggered from arandom initial one, it
may eventually re-enter a previously visited state due to its deterministic feature and finite
set of possible states. This bring us the notion ofcycleor attractor, which is the set of
revisited states. The attractors and the states that lead into them comprise thebasins of
attraction. According to SHMULEVICH; DOUGHERTY (2010), the attractorrepresents
the fixed-point of the system, thus capturing the system’s long-term behavior. Starting
from any state on an attractor, the number of transitions necessary for the system return
to it is called the cycle length. If a state re-enters itself,then it is known as an equilibrium
state or point attractor. According to KAUFFMAN (1969), a formal genetic network must
contain at least one behavior cycle. In figure 6.2, one sees that there is only one attractor
state for this example, namely110.

Random Boolean networks are randomly constructed in twofold directions. First, the
Ki inputs of each node are defined at random. Second, one of the22

Ki possible functions
is randomly assign to each gene. After being assembled thesenetworks are deterministic
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000 → 001
↓ x state

010 → 101 → 111 → 110 cycle 1
↑

100 → 011

Figure 6.2:State transition graph for the example Boolean network.The state tran-
sitions in Table 6.1, concerning the network in Figure 6.1, may also be represented as a
directed graph. For this example there is only one attractorstate, namely110.

unless perturbations occur. We refer as perturbations the operations of flipping the value
of a node or changing its function at random. Since GRN are highly stable in the presence
of perturbations to genes, the Boolean network formalism should preferably be able to re-
produce this same behavior. In fact, when a minimal number ofgenes transiently change
value due to some external stimulus, the system usually transitions between states that
compose the basin of attraction and eventually flows back to the same attractor, holding a
so-called structural stability. In short, the structural stability captures the idea of a behav-
ior that is not destroyed by small changes to the system (SHMULEVICH; DOUGHERTY,
2010).

6.2 Learning Random Boolean Networks

Although many different approaches for learning RBNs have been already proposed,
as later discussed in Section 6.3, two problem formulationshave been widely applied
in the field: the Consistency Problem and the Best-fit Problem(AKUTSU; MIYANO;
KUHARA, 1999; SHMULEVICH et al., 2003). In what follows we define both for-
mulations focusing in their application for one function (gene) only, as specified in
LÄHDESMÄKI; SHMULEVICH; YLI-HARJA (2003). Their extensions to a RBN can
be obtained by repeating the same definition for all genes in the network.

Table 6.2:State transition table for the example Boolean network.Since the network
has a fixed number of genes with a constant set of possible values,xi = {0, 1}, the
network can assume just a finite set of states, of size2N .

(t) (t+1)
A B C A B C
0 0 0 0 0 1
0 0 1 1 1 1
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 1 1 0
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6.2.1 Consistency Problem

An issue related to inference of GRNs is to identify a networkconsistent with the
observations in the given gene expression profile or determine if this network exists at all.
This approach is known as Consistency Problem (or Extensionproblem) and resides in
finding a Boolean functionf from a class of functionsC such thatf is a perfect Boolean
classifier, e.g. it correctly separates the given binary examples in true and false sets. In
other words, the Consistency Problem entails a search for a rule from given examples.

A partially defined Boolean function,pdBf(T, F ) is defined by two sets,T andF ∈
{0, 1}n, whereT andF denote the set of true and false examples. These vector are
determined byT (f) = {x ∈ {0, 1}n : f(x) = 1} andF (f) = {x ∈ {0, 1}n : f(x) = 0},
respectively. The functionf is said to be a consistent extension ofpdBf(T, F ) when
T ⊆ T (f) andF ⊆ F (f). If a consistent extensions exists, then this function is returned.

However, as expression patterns exhibits uncertainty, andconsidering that real gene
regulatory networks comprise many other elements beside genes, e.g proteins, one may
argue that the simple Consistency Problem may not be used to infer network structure
from data. In this case, it may seen more reasonable to conduct a search for Boolean
functions that minimize the number of misclassification with respect to the given exam-
ples.

6.2.2 Best-Fit Extension Problem

As gene expression data are known to be noisy, another, new problem formulation
has been proposed for the model inference: the Best-Fit Extension Problem. While the
Consistency Problem aims to find the perfect Boolean classifier, the Best-Fit Extension
Problem looks for the Boolean functions that causes as few misclassification as possible.

Suppose we are given two sets of binary vectors,T andF , as in the Consistency
Problem. LetT (f) = {v ∈ {0, 1}n : f(v) = 1} be called the on-set of functionf and
F (f) = {v ∈ {0, 1}n : f(v) = 0} be the off-set off . Consider, also, that positive weights
(w) are available for all vectorsx ∈ T ∪ F and that for a subsetS ⊆ T ∪ F . We have
then the following definition:w(S) =

∑

x∈S w(x). Thus, the magnitude of the error of
functionf is defined as:

ε(f) = w(T ∩ F (f)) + w(F ∩ T (f)). (6.1)

The goal is to output subsetsT ∗ andF ∗ such thatT ∗ ∩ F ∗ = ∅ andT ∗ ∪ F ∗ =
T ∪ F for which pdBf(T ∗, F ∗) has an extension in some class of functionsC and so that
w(T ∗ ∩ F ) + w(F ∗ ∩ T ) is minimum. Consequentially, any extensionf ∈ C of gT ∗,F ∗

has minimum error size. The Consistency Problem can be, thus, defined as a special case
of the Best-Fit Extension Problem, whenε(f) = 0.

6.3 Application to Gene Expression Data

Random Boolean networks have been used to explain adaptation and self-organization
in complex systems. However, the groundbreaker suggestionof studying the behavior
of gene regulatory systems by means of networks of Boolean functions was introduced
by Kauffman in (KAUFFMAN, 1969). As the number of regulatoryfactor per genes is
unknown, even nowadays, Kauffman studied topologies in which each gene has direct
inputs from all genes, as well as topologies withK = 1, K = 2 andK = 3 input(s)
per gene. One of the22

Ki possible Boolean functions was randomly assigned to each
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gene based in the assumption that in nature there is no reasonto suppose that all elements
within an organism’s underlying regulatory network perform the same activity, e.g. carry
the same Boolean function. Kauffman’s experiments suggested that large randomly con-
nected feedback networks of binary nodes (genes) behave with stability comparable to
that in living organisms. Furthermore, the author presentsevidence that these systems
undergo short stable cycles, which parallel and predicts the time required for cell replica-
tion in many species. As conclusion, Kauffman asserts that "large, randomly assembled
nets of binary elements behave with simplicity, stability,and order. It seems unlikely that
Nature has made no use of such probable and reliable systems,both to initiate evolution
and protect its progeny".

Since Kauffman’s seminal work, most of research on Boolean networks has focused
on unraveling the structure of GRNs from gene expression data. LIANG; FUHRMAN;
SOMOGYI (1998) investigated the viability of inferring a complex regulatory network
architecture, modeled as a RBN, through a systematic analysis of mutual information be-
tween input/output states, such as state transition tables. The algorithm, named REVEAL,
starts by testing if a particular gene is an effective one-input rule device. The Shannon
entropyH regarding every possible single input is computed in turn. For genes whose
output is not determined by a single input, the effectiveK for the rule of that gene is
larger than one. Then, in the next step, the REVEAL algorithmtests whether the gene is
determined by a rule with two effective inputs. This procedure continues until all genes
have their rule established, gradually increasing the number of input whenever appropri-
ated. The advantage of REVEAL algorithm is that simple networks can be calculated
very quickly by a simple comparison between entropies of state transition pairs. The al-
gorithm computes the entropy for higherK only when required. In this case, however,
the computational cost is much higher and authors suggest the inclusion of parallel com-
putation. LIANG; FUHRMAN; SOMOGYI (1998) suggested that only a small number
of state transition pairs (around 100 pairs) were sufficientfor inferring Boolean networks
with 50 nodes, regulated by 3 other genes at most.

AKUTSU; MIYANO; KUHARA (1999) also proposed an algorithm for learning a
Boolean network from data based on state transition tables and on the concepts of Consis-
tency Problem, the BOOL-1 algorithm. The algorithm performs an exhaustive search: for
each pair of nodes (vk, vh) in V and for each Boolean functionf ∈ F , it checks whether
or notOj(vi) = fi(Ij(vk), Ij(vh)) holds for allj = 1, . . . , m, e.g. if f is consistent, in
which I refers to the input andO to the output. If there is only one consistent network,
the algorithm returns the function that satisfies the above condition. According to the au-
thors, this algorithm is much simpler than REVEAL, enablingits mathematical analysis,
although it may not be so computationally efficient as the latter: it works inO(n3m) time
for K = 2 and inO(n4m) time for K = 3, , wheren is the number of nodes andm
the number of samples. The authors proved that for a Boolean network with in-degrees
bounded by a constantK and transition pairs given uniformly randomly from2N possible
pairs, the algorithm requiresO(logn) input/output pairs to correctly identify its structure.

One of the most common criticisms regarding the use of the Consistency Problem
for inference of regulatory networks is that gene expression data are inherently noisy.
Therefore, aiming to cope with the noise in data, AKUTSU; MIYANO; KUHARA (2000)
modified the BOOL-1 algorithm, proposing a new robust inference algorithm, BOOL-2,
for the so-called noisy Boolean networks. A noisy Boolean network consists of a graph
G(V, F ) andpnoise, wherepnoise is a constant taken over all possible input patternsIj such
that0 < pnoise < 1. The inference of the network structure is similar as in BOOL-1, ex-
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cept that the new algorithm checks if the conditionOj(vi) = fi(Ij(v), Ij(vh)) holds with
probabilitypnoise for each node in a noisy Boolean network. Thus, instead of discarding
all inconsistent functions during the exhaustive search, BOOL-2 discards only functions
inconsistent with at leastθ · m patterns, whereθ = 1

22K+1 . According to the authors,
BOOL-2 requires a larger number of data sets, which must comprise different experi-
mental environments or conditions, when compared to BOOL-1. Regarding its computa-
tional complexity, computation time is not a serious problem. As REVEAL and BOOL-1,
BOOL-2 is suitable for handling several hundred of genes simultaneously, which may be
improved by the application of different search heuristicsand parallel computation.

Following the direction of aggregating probability to random Boolean networks as
a way to cope with uncertainty, SHMULEVICH et al. (2002) proposed an extension of
random Boolean networks. According to the authors, given several ’good’ competing
functions for a given gene, there is no reason to put all the faith in just one of them.
Therefore, they extend the classical RBN model in order to allow a single node to hold
more than one possible function, creating the so-called probabilistic Boolean networks
(PBN). In PBN, at any given point in time, the value of each node is determined by
one of the possible functions, chosen according to its corresponding probability. The
inference process in based on the coefficient of determination (COD), which measures the
degree to which the transcriptional levels of an observed gene set can be use to improve
the prediction of the transcriptional level of a target generelative to the best possible
prediction in the absence of observations (SHMULEVICH et al., 2002). The COD is in
interval [0, 1] and is estimated from the data themselves. The main advantage of PBN
formalism is the fact that it is more flexible and powerful while retaining all the appealing
properties of RBNs.

Apart from heuristic search, an alternative method for inference of random Boolean
networks is correlation measurement, for example, the information-theoretic approach.
MAUCHER et al. (2011) developed a method suitable for learning the network structure
from large-scale data. Authors rely on the observation thatmost transcriptional regulators
will be either activators or inhibitors of a certain gene in aspecific cell type. Further-
more, the activating or repressing effect of a transcription factor monotonically depends
on its cellular concentration, such that an increase in the concentration of an activator
(repressor) will increase (decrease) but never decrease (increase) transcription of its tar-
get. According to MAUCHER et al. (2011), this kind of transcriptional regulation can be
modeled mathematically in a very simple manner by the use of monotone Boolean func-
tions. In order to detect the directed causal regulatory dependencies in a network, authors
examined how the expression of different genes correlates with the successive states of
potential target genes by means of Pearson correlation. Theproposed algorithm performs
a faster and more reliable identification of interactions than the best-fit problem with an
overall running time of the orderO(n2m), wheren is the number of nodes andm the
number of samples.

In addition to the Consistency Problem, the Best-Fit Problem and their extensions,
the other class to infer Boolean networks is machine learning-based algorithms, in which
genetic algorithm1 (GA) is perhaps the most applied method. Discrete models were used
in REPSILBER; LILJENSTROM; ANDERSSON (2002) to develop a ranking method

1Genetic algorithms consists of an optimization process inspired by the natural phenomenon of adapta-
tion. A population of candidate solutions is evolved based on operations inspired from biology, i.e. selec-
tion, crossover and mutation, and the principle ofsurvival of the fittestis applied such that fitter solutions
have more probability of surviving through generations, while weaker ones perish.
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of alternative hypothesis models to a target GRN. Since experimental data has limited
availability, authors propose a more realistic approach, in which the set of alternative
hypotheses is given as input file to a GA together with the geneexpression data. Through
the minimization of a quadratic error function between expression profiles obtained from
generated and target networks, the method successfully ranked the alternative hypothesis,
identifying the most probable class of network structures given the input gene expression
patterns.

GAs were also used in MENDOZA; BAZZAN (2011) to explore the search space of
all possible network structures coded as RBNs, rather than using exhaustive search, which
usually requires a prohibitive amount of computation time for high dimensional prob-
lems. In this work, authors evaluate the power of inference of this approach and how far
is possible to reconstruct an accurate model using solely experimental data, e.g. without
supplying any biological prior knowledge. This is useful when no such prior knowledge
is available, which is a common situation. The implemented algorithm reached a good
accuracy level, representing a valuable start point for biologists in the investigation of
gene interactions. The reported precision is low, a fact associated by the authors not only
to the high frequency of false positives, but also to the stochastic nature of GA, which al-
lows individuals to explore different sites of search spaceand, therefore, to have different
topologies between themselves. However, exploring different solutions simultaneously is
extremely advantageous when the solutions found by the GA are combined into a consen-
sus network: almost all interactions in the target GRN have been correctly inferred by the
model.

6.4 Advantages and Disadvantages

Perhaps the main advantages in using random Boolean networks for the reverse en-
gineering of regulatory networks are the dynamic and rule-based properties of this for-
malism, which are common features of real GRN. In addition, Boolean networks are
computationally simple, allowing their exploitation on larger scales more easily than in
other modeling frameworks. Despite their simplicity, RBN are able to capture much of
the complex dynamics of gene networks and allow the extraction of meaningful biological
information (LÄHDESMÄKI; SHMULEVICH; YLI-HARJA, 2003). When the interest
lies in the qualitative features of the network, RBN is indeed a suitable and efficient tool.

In contrast, the binary property of the devices in RBN is a strong abstraction, which
can cause loss of information and interfere with the qualityof reconstruction. Further-
more, RBN are inherently deterministic, which goes againstthe stochasticity observed in
real biological systems (ARKIN, 1999). The assumption of only one logical rule per node
may lead to incorrect conclusions when inference is based ongene expression data, as the
latter are typically noisy and the number of samples is usually much lower than the num-
ber of parameters to be inferred (SHMULEVICH et al., 2002). In PBN, an extension of
the standard Boolean networks, the determinism has been relaxed allowing the identifica-
tion of a set of functions together with their correspondingselection probabilities and the
quantification of the influence of genes on other genes. This adaptation not only allows
the modeling of stochastic processes, but also the handlingand learning from noisy data,
providing a good balance between computational complexityand inference performance.
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6.5 Tools

The BN/PBN toolbox is a MATLAB Toolbox maintained by Harri Lähdesmäki and
Ilya Shmulevich. The software works with both random Boolean networks and prob-
abilistic Boolean networks and it includes functions for performing a wide variety of
simulations and network analysis. Some examples of features available are: simulation
of network dynamics, computation of network statistics (numbers and sizes of attractors,
basins, transient lengths, influence matrices), computation of state transition matrices and
stationary distributions, inference of networks from data, generation of random networks
and functions, visualization, intervention and membership testing of Boolean functions.
The toolbox is available for download in a webpage2 that comprises a comprehensive
source of information about research work on probabilisticBoolean networks and related
topics.

6.6 Discussion

The Boolean network formalism for modeling GRN discussed inthe current chapter
is the simplest and the first applied technique for inferenceof regulatory networks. Exper-
iments held by Stuart Kauffman in (KAUFFMAN, 1969) suggested that random Boolean
networks are as stable, ordered and simple as biological systems and since then they have
been widely applied in the study of gene interactions and regulation. The simplicity built
into random Boolean networks offers more benefits than disadvantages in the process of
reverse engineering in which we are interested. For instance, the lower complexity of
learning algorithms allows their application to high dimensional problems more easily
and efficiently than other approaches. Furthermore, as the main interest is often the ex-
traction of a global picture of gene regulation, due specially to the restricted information
available for creating a detailed description of such mechanism, RBNs are a suitable and
practical tool as they summarize the entire set of possible gene activities and states in only
two basic conditions: a gene can be either expressed or not ina given time. Although this
may seem a strong abstraction, is in fact one of the most appealing features of RBNs,
making it a robust modeling framework.

Notwithstanding all the advantages introduced by this method, RBNs have a relevant
shortcoming of being extremely vulnerable to noisy data. Inthis special case, the method
is not robust enough to deal with uncertainty as it is based ondeterministic transitions
between possible network states. To overcome this limitation, a probabilistic extension of
RBNs have been proposed, allowing each gene to hold more thanone Boolean function
and computing its value by choosing one of the possible functions according to its cor-
responding probability. The need for discretized data is also a disadvantage of Boolean
networks as it causes information loss and introduces even more uncertainty to training
data, interfering with the quality of reverse engineering process.

Nowadays, most of researches on the application of random orprobabilistic Boolean
networks to the modeling of regulatory networks focus on more efficient algorithms to
identify the best network structure. The sought-after efficiency refers to both the compu-
tational time and the results’ quality, often assessed in terms of metrics like precision, ac-
curacy and area under the ROC curve. Although the most commonly used techniques are
learning algorithms and search methods, statistical techniques such as correlation anal-
ysis have proven themselves a reliable and fast alternativeto find dependencies in the

2http://personal.systemsbiology.net/ilya/PBN/PBN.htm
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network. Once captured the structure and dynamics of GRN by means of Boolean net-
works, in silico experiments and hypothesis-testing may beeasily performed, elucidating
the functional mechanisms and basic dependencies of gene regulation in a given organism.
The generated model represents a coarse-grained description of GRN for studying large
scale gene networks through macroscopic variables in a global fashion. Even when not
able to completely explain the process of gene regulation, the modeled Boolean network
is at least a good source of information to define new experimental targets and conditions
in order to collect more data for reverse engineering gene regulatory networks.
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7 NEURAL NETWORKS

Despite the wide application in reverse engineering of GRN,the computational meth-
ods presented so far have inherent performance limitations. Bayesian networks, intro-
duced in Chapter 5, are known to cope well with noise, incompleteness and stochastic
aspects found in gene expression data. However, they do not consider the dynamical as-
pects of gene regulation and leave temporal information unaddressed (XU; WUNSCH;
FRANK, 2007). Random Boolean networks, discussed in Chapter 6, are useful in ex-
ploring the dynamics of GRN in a global fashion. Yet, they ignore the effect of genes
at intermediate levels and assume transitions between genes’ states to be synchronous,
which is biologically implausible.

Neural networks, as Boolean networks, are a coarse-grainedapproach to analyse large
gene regulatory networks, but differently from those, theywork at an intermediate level.
In this formalism, nodes still represent genes, while connections between nodes denote
regulatory influences on gene expression. However, in contrast to the latter, the gene
expression and regulation is measured in a continuous rangein order to capture properties
that are not identified by the discrete models.

7.1 Artificial Neural Networks

The formal definition of an Artificial Neural Network (ANN) isgiven according to
HAYKIN (1998).

A neural network is a massively parallel distributed processor made up of
simple processing units, named artificial neurons, which has a natural propen-
sity for storing experimental knowledge and making it available for use. It
resembles the brain in two aspects:

1. Knowledge is acquired by the network from its environmentthrough a
learning process.

2. Interneuron connection strengths, known as synaptic weights, are used
to store the acquired knowledge.

The structure of an ANN is uniquely determined by the number of nodes and the
wiring, e.g the connections among these nodes. Figure 7.1 shows the basic elements of an
individual neuron. Each neuron has a set of links or synapsescharacterized by a weight,
such that a signalxj at inputj of neuronk is multiplied by the synaptic weightwkj. All
the input signals are summed up by an adder according to Equation 7.1, which constitutes
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Figure 7.1:Elements of the neuronal model.Each neuron in the ANN is composed by a
set of synapses with individual weights, a linear adder, a bias and an activation function.
Reproduced from HAYKIN (1998).

a linear combiner:

uk =

m
∑

j=0

wkjxj (7.1)

Also, the neuronal model includes a biasbk, which has the effect of applying an affine
transformation to the outputuk of the adder. The bias increases or decreases the input to
the activation function, depending on whether it is a positive or negative factor, respec-
tively. Considering the bias and the output of the linear adder, the input to the activation
function is thus defined as:

vk = uk + bk (7.2)

Finally, a neuron has an activation functionϕk() for limiting the amplitude of a neu-
ron’s outputyk, transferring it to a normalized transcriptional response. Three common
used activation functions are the threshold function, the piecewise linear function and the
sigmoid function (HAYKIN, 1998). The latter is shown in Equation 7.3.

ϕk() =
1

1 + e−vk(t)
(7.3)

When applied to gene expression data, the nodes represent genes, the value of the
node is the corresponding gene expression value and the connections define the regulatory
interactions. Also, the number of nodes is often defined as the number of genes observed,
although it may also include other factors involved in the regulatory process.

It is assumed that the state of gene expression at timet + dt depends on the state
of expression at timet and on the synaptic weights. Let aN-dimensional vectorx(t)
be the expression state of a GRN withN genes, such that the elementxk(t) denotes the
expression level of genek at timet. Also, considerw to be the matrix of synaptic weights
of all connections in the network.A positive weight impliesa stimulating effect (positive
feedback) while a negative weight implies repression (negative feedback). Given these
definitions, the expression level of genek at timet may be computed as:

vk =

m
∑

j=0

wkjxj + bk (7.4)
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Figure 7.2:Multilayer artificial neural network structure. ANN are organized in the
form of layers. The input layer receives information from the input vector, which con-
stitute the input signals to the second layer (i.e. the first hidden layer). The model may
have more than one hidden layer. The set of output signals of the neurons in the out-
put (final) layer are the overall response of the network to the activation pattern supplied
by the nodes in the input layer. Reproduced from the SANY IP website, available at
http://www.sany-ip.eu/book/export/html/3271.

where, regarding the gene expression context, the biasbk represents the influence of ex-
ternal inputs or reaction delay (TIAN; BURRAGE, 2003). After the application of the
activation function, the outputyk is a value between 0 and 1, where 0 represents complete
repression and 1 represents maximal expression.

Nodes are organized in layers, whose number and arrangementdefines the classifi-
cation of the ANN. In Figure 7.2, an example of a multilayer ANN is given. The input
layer receives information from the input vector, which constitute the input signals to the
second layer (i.e. the first hidden layer). In this figure, theinput information corresponds
to different features (feature A, feature B,...). However,when applying this model to gene
expression data, the input refers to the expression level ofgenes in the target system.
Despite the illustration of only one hidden layer, the modelmay have more than one hid-
den layers, providing better tools for extracting higher-order statistics. The set of output
signals of the neurons in the output (final) layer are the overall response of the network
to the activation pattern supplied by the nodes in the input layer. As the information is
conducted in a single direction, from the input nodes to the hidden nodes and finally to
the output layer, this network is referred to as feedforwardANN. Feedforward networks
do not contain any cycles or loops. In contrast, recurrent neural networks (RNN) have at
least one feedback loop, which has a deep impact in the learning capacity of the network
and its performance.

7.2 Learning Artificial Neural Networks

In most cases, ANNs are adaptive systems, which means that their structure, or more
specifically their synaptic weights, change with time basedon the information flowing
through the network. This process is known as learning and isa relevant property in the
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performance improvement of neural networks. At the end of each time step, the network
becomes more knowledgeable about its environment, providing more precise information
on the data being analysed.

According to HAYKIN (1998), the learning process comprisesthree steps:

1. The neural network is stimulated by the environment in which is embedded.

2. The neural network undergoes changes in its free parameters as a result of the stim-
ulation.

3. The neural network responds in a new way to the environmentbecause of the
changes that have occurred in its internal structure.

In what follows the fundamental learning paradigms are overviewed and the most well
known learning algorithms in the neural network field are introduced.

7.2.1 Paradigms

All learning methods used not only for adaptive neural networks, but also for other
classes of modeling frameworks, can be classified into threemajor categories: supervised,
unsupervised and reinforcement learning.

Supervised learning assumes the existence of a teacher, or expert, who has knowledge
about the environment represented as a set of examples (input–output data) and provides
the neural network with a desired response for a given instance of a training vector. Ac-
cording to HAYKIN (1998), the desired response is the optimum action to be performed
by the neural network. The synaptic weights are iterativelyadjusted under the combined
influence of the training vector and the error signal, which is defined as the difference
between the desired and the actual response of the network. Therefore, the knowledge
available to the teacher is gradually captured by the neuralmodel, such that at each time
step the ANN is more likely to produce the appropriate response to a given input. This
process is depicted in Figure 7.3(a).

In contrast, unsupervised and reinforcement learning methods do not rely on an expert
to oversee the learning process. The mechanism underlying unsupervised learning is
illustrated in Figure 7.3(b). In unsupervised methods, thelearning is based only on local
information and is usually referred to as self-organization. The parameters adaptation is
performed based on the similarities and differences among the input patterns, given by a
task-independent measure of the quality of representationthat the network is required to
learn.

Likewise, reinforcement learning differs from standard supervised learning in that
correct input/output pairs are never presented by an expert. Although an interaction with
the environment exists, the learning process happens due tothe observation of the con-
sequences of the previously chosen actions, rather than dueto a explicit teaching by an
expert. The learning is essentialy based on the “trial and error" principle: for each se-
lected choice a numerical reward is received, which encodesthe success of an action’s
outcome. In the sequence, new decisions are made such that the accumulated reward is
maximized over time. The described process is depicted in Figure 7.3(c).
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(a)

(b)

(c)

Figure 7.3: Learning paradigms Learning methods used not only for adaptive neural
networks, but also for other classes of formalisms, can be classified into three major
categories: (a) supervised, (b) unsupervised and (c) reinforcement learning. Adapted
from HAYKIN (1998).
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7.2.2 Error-Correction Learning

Error correction learning is a supervised learning method which consists in comparing
the system output to the desired output value and directing the training based on the
feedback from this comparison. The error signalek(n) is defined as

ek(n) = dk(n)− yk(n) (7.5)

wheredk(n) is the expected output andyk(n) is the actual output, ans acts as a control
mechanism, which applies a sequence of corrective adjustments to the synaptic weights
of neuronk. The consequence is that the outputyk(n) gradually becomes closer to the
desired responsedk(n) (HAYKIN, 1998). This is achieved by the minimization of a cost
function, defined in terms of the error signal:

En =
1

2
e2k(n) (7.6)

En is the instantaneous value of the error energy. The minimization of the cost func-
tionEn leads to a learning rule referred to asdelta rule, which adjusts the synaptic weights
of neurons proportionally to the computed error signal and to the input signal. The delta
rule is computed according to the following equation:

∆wkj(n) = ηek(n)xj(n) (7.7)

whereη is a positive constant that determines the rate of learning.The synaptic weights
are then updated adding up the synaptic adjustment∆wkj(n) to the weights in the current
time step, as shown in what follows:

wkj(n+ 1) = wkj(n) + ∆wkj(n) (7.8)

7.2.2.1 Least Mean Square

The least mean square algorithm applies the error-correction learning to single layer
ANNs, whose simplest form is known as perceptron. The algorithm incorporates an iter-
ative procedure that makes successive corrections to the weight vector in the direction of
the negative of the gradient vector, which eventually leadsto the minimum mean square
error.

Algorithm 7.1: Least mean square algorithm.
w(0) = 0;
repeat

for each training examplen do
Activate the perceptron by providing input vectorx(n) and desired outputd(n);
Compute the output valuey(n) = wT (n)x(n);
Adjust the perceptron’s weight vector:w(n+ 1) = w(n) + µ[d(n)− y(n)]x(n);

end for
until no more updates are made in the weight vector
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Algorithm 7.2: Backpropagation algorithm.
Initialize weights with non-zero arbitrary values
repeat

for each training examplen do
Activate the multilayer ANN by providing input vectorx(n) and desired output
d(n);
Propagatex(n) until the output layer;
Compute the instant errorek(n) in the output layer;
Compute the local gradients of output layerδok(n);
Adjust the weights of nodes in the output layer according to equation:
wo

kj(n + 1) = wo
kj(n) + µδok(n)ij(n);

Compute the local gradients of hidden layerδhj (n);
Adjust the weights of nodes in the output layer according to equation:
wh

ji(n+ 1) = wh
ji(n) + µδhj (n)xi(n);

end for
until the mean square error is still under a given threshold

7.2.2.2 Backpropagation

For the multilayer neural network architecture, in which the input signal propagates
through the network, layer by layer, in a forward direction,a commonly used training
algorithm is called the error backpropagation algorithm. The backpropagation (BP) algo-
rithm is also based on the error-correction learning rule and consists of a generalization
of the least mean square method. In contrast to the latter, the BP algorithm passes twice
through the network’s layers: in the forward pass a stimulusis applied to the input layer
and its effect is propagated through the network, layer by layer, producing a set of outputs.
In the backward pass, the synaptic weights are adjusted according to the error correction
rule. Henceforth, at each pass, the synaptic weights becomecloser to the desired output.

The major difference between learning a single-layer ANN and a multiple-layer ANN
is that in the first one there are no hidden layers and the errorat the output layer is very
clear and of easy computation. Nonetheless, error at the hidden layers are not obvious
as the training data does no provide us with the expected values of the nodes in these
layers. Therefore, the practice is to back-propagate the error from the output layer to the
hidden(s) layer(s), since the nodes in the hidden layers aresomehow “responsible" for a
fraction of the error in each of the output nodes in which is connected.

In multilayer ANNs, the update equation of nodes in output layer is similar to the one
defined in the least mean square algorithm:

wo
kj(n+ 1) = wo

kj(n) + µδok(n)ij(n) (7.9)

where the notationo denotes the elements in the output layer,µ is the learning rate,ij is
the input provenient from the neuronj in the previous layer and the local gradientδok is
computed as:

δok ≡ (dk(n)− yk(n))(1− yk(n)
2). (7.10)

Similarly, the nodes in the hidden layer are updated according to the following equa-
tion:

wh
ji(n+ 1) = wh

ji(n) + µδhj (n)xi(n) (7.11)
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where the notationh denotes the elements in the hidden layer, the termxi(n) refers to the
stimulus in the neuroni of the input layer and the gradientδhj (n) is defined as:

δhj ≡ (1− ij(n)
2)

M
∑

k=1

(δok(n)w
o
kj(n)). (7.12)

7.3 Application to Gene Expression Data

One of the seminal works establishing the capability of ANN to describe the dynamic
behavior of gene regulatory networks was carried out by Vohradsky in 2001 (VOHRAD-
SKY, 2001). Vohradsky states that ANNs are able to explain the experimental observa-
tions and, more importantly, to predict the specific functions of the system in experimen-
tally inaccessible situations, allowing the extraction ofconclusions about the stability and
functionality of GRNs. Moreover, the author highlights thesuitability of recurrent neural
networks for this specific application, due to their abilityto cope with feedbacks and their
flexibility to fit the data. The RNN model is applied to simulate how the virus bacterio-
phageλ chooses the pathway for growing (lytic or lysogenic growth)soon after infection
of E. Coli.

RNN models were also used by XU; WUNSCH; FRANK (2007) in the inference of
GRNs. Authors propose a two-step algorithm for learning GRNmodeled as recurrent
neural network. First, the algorithm unveils potential genetic network architectures that
fit well with the time-series data by means of a particle swarmoptimization1 (PSO) al-
gorithm. In other words, this step determines which weightsof the ANN have a nonzero
value. The PSO-based search avoids making an exhaustive enumeration of all possible
connectivity, which is very time demanding. After defining the optimum structure, PSO
is applied in the RNN training. In this step, the algorithm performs the evolution of the
weight matrix such that the nonzero weights can be fine-tuned, whereas the nonsignificant
weights remain equal to zero. The RNN/PSO approach was tested with both synthetic and
real data sets and the results suggest that, as the techniques presented in previous chap-
ters, RNNs are meaningful in revealing potential regulatory interactions between genes.
Nonetheless, in contrast to those, RNN is also very promising to capture the nonlinear
dynamics of gene regulatory systems.

HACHE et al. (2007) proposed to applied the BackpropagationThrough Time (BPTT)
algorithm, described by WERBOS (1990), to reconstruct GRNsmodeled as RNNs. The
BPTT is an extension of the standard Backpropagation algorithm: it is also a gradient
based parameter learning method which minimizes the error function

E(y(t), ŷ(t)) =
1

2

∑

t

∑

i

[yi(t)− ŷi(t)]
2 (7.13)

by varying the parameters of the model during every iteration step. This way, the esti-
mated valuey(t) of each node converges to the data pointsŷ(t). However, the BPTT
unfolds the temporal operation of a network in a multilayer network, to whose topology
is added a new layer at each time step. Therefore, considering a RNN with two layers,
f andg, when the network is unfolded through time, the unfolded network containsk

1Particle swarm optimization is a computational optimization method that improves a population of
potential solutions, called particles, with regard to a given measure of quality by iteratively changing the
velocity of (accelerating) each particle towards the coordinates in the problem space which are associated
with the best local and global solutions so far.
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Figure 7.4:Backpropagation Through Time. The temporal operation of the RNN is
unfolded in a multilayer network, to whose topology is addeda new layer at each time
step. Considering a RNN with two layers,f andg, when the network is unfolded through
time, the unfolded network containsk instances off and one instance ofg.

instances off and one instance ofg. Figure 7.4 shows a graphical representation of this
example, available at Wikipedia2.

HACHE et al. (2007) resort to the simulation tool PyBioS to generate data for testing
purposes. Both simple and complex networks were implemented, in which the latter re-
flect the features of a real biological system. The interest lies particularly in the evaluation
of performance with respect to the reconstruction of network motifs of different sizes. As
an example of complex network, authors modeled part of the gene developmental regula-
tory network of sea urchin.

Results were compared with the ARACNe software, developed by BASSO et al.
(2005) based on mutual information, with a Dynamic BayesianModel and a linear least
square fit approach. Since the output of BPTT is not unique, the BPTT result is computed
as the mean of ten learning processes with the same data set. In addition, the weight
matrix generated by BPTT algorithm was discretized in threelevels (activation, inhibi-
tion and non-regulation) based on an optimal threshold, so that comparison with the other
mentioned methods is possible. Authors found that BPTT gives the best result in term of
a distance measured defined as

d(sen, spe) =
√

(1− sen)2 + (1− spe)2 (7.14)

wheresen is the computed sensitivity andspe is the computed specificity. The BPTT
found the most true regulations and true non-regulations, having the highest sensitivity
among all methods. However, as it also erroneously associated a lot of weights to regula-
tions, its specificity is lower than ARACNe and DBN approaches. HACHE et al. (2007)
states that a compromise among Bayesian methods and ANN learning techniques may
introduce promising improvements.

7.4 Advantages and Disadvantages

Due to their nonlinearity feature, ANNs can perform complextasks and solve difficult
problems that are not feasible by linear methods. In addition, they deal with important
aspects of real GRNs that are not addressed by the methods reviewed in previous chap-
ters. First of all, ANNs allow a dynamic and temporal analysis of gene expression data,
which is not possible with Bayesian networks. Second, sincethis is a continuous method,

2http://en.wikipedia.org/wiki/File:Unfold_through_time.png
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it considers the intermediate level of gene expression ignored in the Boolean network for-
malism. As a consequence, data discretization is not required. Another appealing feature
is the network ability to learn from example data and be laterused to predict the response
of the system under a new conditions. Last but not least, ANNsenables an asynchronous
simulation of the system, which is not covered by Boolean networks and is still in its
infancy in Boolean networks.

Concerning their drawbacks, ANNs need to be trained before actually beginning to
operate, which demands time and a large training data set. Also, the training stage must
be executed only as much as the network needs for learning, and not more, because ANNs
have proneness to overfitting, becoming unable to detect newpatterns or make new pre-
dictions in respect to original data. The processing phase is also time consuming, specially
for large neural networks. Finally, the right decision about the network architecture, e.g.
the number of layers and the number of nodes in each layer, is not obvious and is by itself
a challenge.

7.5 Tools

Hendrik Hache and his group developed GNRevealer (HACHE et al., 2007), a soft-
ware based on neural networks for reverse engineering of gene regulatory networks. GN-
Revealer is available for download3 and is executed by C++ command line. No manual
with user instructions and details about software implementation was found for download.
Therefore, information about the use of GNRevealer is very restricted.

7.6 Discussion

Artificial neural network is a recent modeling framework forgene regulatory networks
and its application has not been so widely explored as the useof clustering algorithms,
Bayesian networks and Boolean networks, which were reviewed in previous chapters.
While the seminal work about the application of Boolean networks to GRNs context dates
to 1969 in KAUFFMAN (1969), ANNs were proposed as an alternative solution only in
the beginning of the 21st century, by Vohradsky in VOHRADSKY(2001). In these ten
years since Vohradsky’s work, a greater attention has been turned to the learning of gene
regulatory networks by means of Bayesian networks, which have been introduced to this
context in FRIEDMAN et al. (2000) just one year before the publication of Vohradsky’s
paper. Bayesian networks seemed so promising at first sight that it was exhaustively
exploited in several angles, thus rapidly establishing itself as a powerful solution to the
problem. Hence, although neural networks are broadly knownas an efficient method
for solving complex problems, they are not as consolidated as Boolean networks and
Bayesian networks in the context of gene regulatory networks modeling due to a matter
of time and lack of efforts, which does not means that it do notoffer important advantages
in contrast those formalisms.

In fact, ANNs provide some features that are not covered by Boolean and Bayesian
networks. For instance, ANNs are specially suitable for drawing meaning from domains
with many parameters, interdependencies and uncertainty.Their most appealing feature is
perhaps the ability to learn from data through a training stage and later perform predictions
about new situations based on acquired knowledge. Their recurrent topology is able to

3http://www.molgen.mpg.de/ hache/GNRevealer/
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cope with feedback loops and is flexible enough to fit well the data. The model is also
noise-resistant and very robust: a failure in one neuron does not necessarily causes the
collapse of the whole system.

Differently from Boolean networks, artificial neural networks is a continuous method
and therefore considers the intermediate level of gene expression in the model inference,
which improves its learning capacity. This factor also brings the advantage of not being
necessary to discretize data, which is by itself a process that introduces uncertainty to the
domain. When compared to Bayesian networks, ANNs introducethe benefit of allowing
the analysis of the network’s dynamic behavior and an asynchronous simulation of the
system. The latter, although also possible to be performed with Boolean networks, is not
an inherent feature of these and is still in an early stage of experimentation.

Notwithstanding all these advantages, ANNs have meaningful weaknesses which per-
haps have influenced the low popularity of the method to this specific area of interest. First
of all, due to its computational complexity, this modeling approach can currently only be
applied to very small systems. The training stage is very time demanding, with no war-
ranty of convergence, and the computation of the output may require too much time for
large data sets and networks. In addition, figuring out what network structure will give
the optimal solution is a big issue: even when trying out manydifferent architectures,
which is obviously extremely time consuming, is not possible to assure that the chosen
network if the best solution. This is by itself an important research area concerning neural
networks.
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8 CONCLUSION

The recent improvements in biological experiments and the consequent amazing in-
crease in the volume of biological data have introduced a newinteresting research area
in the field of bioinformatics: the reconstruction and analysis of gene regulatory net-
works. Nowadays it is known that organisms are regulated by intricated networks which
interconnect all functioning entities within an organism,such as genes, proteins and RNA
transcripts. Scientists believe that the pathway to effective drugs and treatments is to learn
the functioning of these networks and how to control them.

The great amount of gene expression data available nowadayshave brought the neces-
sity of an interface between biological and computer sciences. More specifically, the use
of machine learning methods for the analysis of such data aiming the reconstruction of the
corresponding gene regulatory networks have become a common practice. The present
work have outlined and reviewed some widely used methods forthis purpose: clustering
algorithms, Bayesian networks, Boolean networks and neural networks.

The survey shows that all methods have their own drawbacks and benefits and that
each method covers different aspects of the reverse engineering problem. Clustering algo-
rithms, for instance, identify similarities between genes, grouping them together accord-
ing to these features. However, clustering algorithms do not provide the exact relationship
among a group of genes and hence are not self-contained methods for the reconstruction
of the gene regulatory network. In practice, they are very useful when combined with
other methods as a pre-processing stage: once groups of closely related genes are iden-
tified, the network underlying these genes may be identified by the application of other
modeling frameworks.

Bayesian networks, Boolean networks and neural networks also differ between them-
selves in respect to the type of information recovered from data. While Boolean networks
provide a discrete and deterministic description, neural networks are continuous and adap-
tive systems, being specially suitable for capturing properties from domains with many
parameters, interdependencies and uncertainty. This comes with a price tough: the com-
plexity and the amount of data required by the learning algorithms are significantly higher
in neural networks than in Boolean networks. Also, both modeling frameworks allow a
temporal simulation of the biological system.

In contrast, Bayesian networks are limited for applications involving steady-state data,
since its underlying graphical model, the directed acyclicgraph, does not allow the occur-
rence of cycles. The niche occupied by Bayesian networks refers to the formulation of the
domain’s probability distribution, which are easily used to perform in silico prediction by
computing the predictive distribution on the outcomes of possible actions, such as system
interventions. The probabilistic nature of Bayesian networks is a favorable feature when
dealing with missing and noisy data.
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Given this brief review of the methods discussed, one can conclude that is difficult to
assert that a particular method is better or worse for the inference of gene regulatory net-
works. All methods own relevant weaknesses and advantages:the decision about which
one to apply depends on one’s goal for the study. Furthermore, the method’s performance
is highly dependent on the scenario, on the target network’sfeatures and on the a priori
knowledge available during the reverse engineering process.

Researchers have already suggested the integration of different types of biological data
or even biological data collected under distinct experimental conditions as an interesting
solution for the improvement of the model’s accuracy. By joining data sets concerning
different aspects of the same domain we provide further support for the inference process,
which in turn will result in a richer computational model forthe gene regulatory network.
What was observed during this survey is that the natural course for the application of
the reviewed modeling frameworks to this specific issue follows the same direction: the
aggregation of distinct machine learning methods becomes agood strategy as it com-
bines their particular strenghts and circumvents as much aspossible their weaknesses. By
joining efforts one would expect to improve the overall result of the inference process,
forming more robust and accurate emsemble predictions.
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