Self-Organization of Agents to solve Machine Sequencing
Problems

Paulo R. Ferreira Jr. and Ana L. C. Bazzan
Instituto de Informatica
Universidade Federal do Rio Grande do Sul
Caixa Postal 15064 - CEP 90501-970
Porto Alegre / RS, Brasil

{prferreiraj, bazzan}@inf.ufrgs.br

ABSTRACT

In dynamic environments, agents must be able to adapt to
the changing organizational goals, available resources, their
relationships to another agents, and so on. This problem
is a key one in multiagent systems and relates to models of
learning and adaptation, such as those observed among so-
cial insects. The present paper tackles the Machine Sequenc-
ing Problem using a swarm inspired approach. In this kind
of problem, limited shop-floor resources must be allocated
under technological constraints to produce a specific artifact
minimizing the production time. This is a critical problem
in the modern production style because of its dynamism.
We focus specifically on the case when the necessary activ-
ities to produce a specific artifact change over time. Our
results show that, in dynamic domains, the agents adapt to
changes in the environment just as social insects do.

1. INTRODUCTION

When cooperative agents work towards a common goal
they must coordinate their actions considering the others’
activities. A simplistic way to solve this problem is to de-
fine who-does-what statically, that means to find the system
needs and design an appropriate organization. Multiagent
systems need to manage the problems dynamics such as vari-
ation in the number of agents, changes in environment, and
in the system’s goals.

Manufacturing scheduling is a critical problem in the mod-
ern production style: the set of artifacts to be produced
changes over time; the resources can become unavailable or
additional ones can appear, the necessary activities to pro-
duce a specific artifact can variate, the time consumed by
each activity can change, etc. Multiagent systems (MASs)
are powerful to represent and solve complex problems, as
those posed by manufacturing systems. Agents working on
this scenario must be able to deal with requests of service
arriving at any time, changes in the available resources, un-
predicted failures, etc. These assumptions make the apriori

Permission to make digital or hard copies of all or part o thvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

design of an organization difficult because it is not possible
to predict all future situations. As MASs are used in dy-
namic problems, static organizational structures with rigid
definitions become ineffective.

The motivation for studying how agents organize and
adapt can also be found in some biological entities such as
the social insects. Social insect colonies show evidences of
ecological success due to their organization which is observed
in division of labor, specialization, collective regulation, etc.
[2]. The needs of the colony organization change over time.
These changes are associated with the phase of colony devel-
opment, time of the year, food availability, predation pres-
sure, and climatic conditions. Despite these drastic varia-
tions in colony’s conditions, social insects do have ecological
success. A social insect colony operates without any explicit
coordination. An individual worker cannot assess the needs
of the colony, it just has a fairly simple local information,
and none is in charge of coordination [6]. The key feature of
this emergent behavior is the plasticity in division of labor
inside the colony. Colonies respond to changing conditions
by adjusting the ratios of individual workers engaged in the
various tasks.

In a previous work [5] we proposed an approach to adapt
organization in MAS inspired on social insects colonies or-
ganization. We used a T/EMS [4] task structure to model
the necessary activities to achieve the system goal: given
a task structure, our approach determines the allocation of
the tasks with no need of explicit coordination, communi-
cation, control hierarchy, or global view. This is done using
the model which is based on task allocation used in social
insect colonies. Our approach was experimented in abstract
scenarios showing a good performance. These results en-
couraged us to model and experiment a real world problem.

In this paper we propose a way to solve dynamic manufac-
turing scheduling problems using our approach for MAS or-
ganizational adaptation. We focus on the Machine Sequenc-
ing Problem (MSP) [7]. In this problem, a set of activities
must be sequenced under a set of constraints to optimize
a given criterion. In the MSP, n parts of a product arrive
in a production line and must be processed by m machines.
Each part j must pass through the m machines in a specific
sequence. This sequence is established by technological con-
straints. Each machine spends a specific amount of time to
process each part. The sequence in which the n parts will
be processed by each machine ¢ must be chosen to minimize
the production time. We show that the MSP can be mod-
elled with T/AEMS and solved in a distributed fashion by a

swarm-like organization.

Another approach for manufacturing dynamic scheduling
based on the same social insects model of task allocation was
presented in [3]. This approach was applied on a dynamic
shop floor routing problem where wasp-like agents represent
machines capable of processing different jobs. New jobs ar-
rive in a production line and there is a setup cost when ma-
chine change from one type of job to another. Their target
is to minimize the total processing time through specializa-
tion.

However, there are two main differences between our sce-
nario and their job routing one. First, more than one ma-
chine is necessary to process the jobs (parts of an artifact).
Second, there are technological constraints which imposes a
specific sequence of this machines to process each job. The
approach in [3] is not able to deal with the MSP because
their solution is beyond the specialization of the machines.
The necessary improvements to allow their approach to deal
with MSP, or more generally with different scheduling prob-
lems, are open questions. More details about these limita-
tions are discussed in Section 4.

This paper is structured as follows. Section 2.2 presents
our approach in detail. The MSP scenario and the simula-
tions are presented in Section 3. Also in this section, we dis-
cuss the results and the performance of our approach. The
related work is discussed in Section 4. Section 5 concludes
with further directions for this work.

2. ADAPTATION AND TASK ALLOCA-
TION USING A SWARM-INSPIRED
APPROACH

Designing an organization of agents generally involves a
functional and a structural dimension. Regarding the for-
mer, in our approach we use the TAEMS language [4] to
model the tasks, their interrelationships and the necessary
activities to achieve the system goal. For the structural di-
mension, we use our approach, based on a theoretical model
of task allocation in social insect colonies.

2.1 Functional Dimension: TAEMS

In T/AEMS, agents’ activities are represented as a graph
in terms of their task groups aiming at achieving agent’s
goals. The leaves of the graph are called executable meth-
ods, which have probability distribution on their character-
istics like quality, cost, and duration. The quality of a task
group depends on what is executed and when. For example,
quality can be accrued by a quality accumulation function
(QAF) like all(), which indicates that the quality of the task
is equal to the sum of the qualities of its subtasks (regard-
less of order or which methods are actually invoked) and all
subtasks in the structure need to be accomplished for the
task to have quality. Besides the local effects of the execu-
tion of methods on the quality and duration of their super-
tasks, there exist non-local effects (NLEs) such as enables,
facilitates, etc. NLEs which involve more than one agent
are called coordination relationships. Coordination mech-
anisms can recognize the features of the agent’s subjective
view, such as redundancies and soft and hard relationships.

2.2 Proposed Structural Dimension

Theraulaz et al. [8] present a model for self-organization
inspired on the plasticity of division of labor in colonies of so-

cial insects. This model describes the task distribution using
the stimulus produced by tasks that need to be performed
and an individual response threshold related to each task.
This means, at individual level, each task has an associated
stimulus (e.g. food needs to be carried to the nest, if the task
is to forage). The level of the stimulus increase if a task is not
performed, or is not performed by enough individuals, etc.
An individual that perceives (e.g. after walking around ran-
domly) a task stimulus higher than its associated threshold,
has a higher probability to perform this task. This model
also includes a simple way of reinforcement learning where
individual thresholds decreases when performing some task
and increase when not performing. Assuming the existence
of M tasks to be performed, each task j have a s; stimu-
lus associated. If N different individuals can perform them,
each individual ¢ have a response threshold 6;; associated to
a task j. The individual ¢ engages in the task j performance
with probability:

- (1)

TG,L (s;) = ————
](J) S? 4 9?]

where: s; is the stimulus associated with task j, and 6;; is
the response threshold of individual ¢ to task j. Each indi-
vidual in the model has one response threshold to each task.
Those thresholds are updated (increase or decrease) accord-
ing to two different coefficients. The response threshold 6
is expressed as units of intensity of stimulus. The response
threshold 0;; of an individual ¢ when performing task j dur-
ing time interval of duration At is 0;; = 6;; — {At;; where £
is the learning coefficient and At is the time interval.

The response threshold 6;; of the agent ¢ when not per-
forming method j during time interval of duration At is
0:; = 0:; + pAt;;, where p is the forgetting coefficient.

Each particular task in the model has one associated stim-
ulus. The intensity of this stimulus can be associated with
a pheromone concentration, a number of encounters among
individuals performing the task, or any other quantitative
cue sensed by individuals.

We use the swarm-based model to assign insects-like
agents to perform specific methods of a TAMS task struc-
ture. This means that each agent deals with a dynamically
changing TAEMS task structure and schedule its methods
according to the TAMS semantic. Next, we discuss how
the ideas of social insect organizations are used to assign
agents to tasks, and their applications.

In T/AEMS, a method is the element in a task structure
that represents what the agent can actually do (hereafter
we call the insects tasks as methods). All methods in the
TZAEMS have probability distributions over quality (g;), cost
(¢;) and duration (d;). Here, these are used to compute
the stimulus s; of the task to be performed (or not) by the
agent. The intensity of this stimulus is associated with the
results of the methods execution. Each method j have one
stimulus s;:

sj=@* (axdi—Bxéj—yxdj+B+7)+(1—¢)xa; (2)

where ¢, ¢;, and Cij are the normalized quality, cost, and
duration of method j; x; is the stimulus associated with the
QAF related to the method j; and «, (3,7, ¢ are constants.

In Equation 2, the constants are employed to set different
weights to the quality («), cost (8) and duration () values

(the sum of those constants should be 1). The stimulus in
our approach must increase as the quality increases (directly
proportional) and decrease as cost and duration (inversely
proportional) decrease. To obtain this behavior we subtract
cost and duration from quality. As cost and duration as-
sume values in the same order of magnitude of quality (each
variable is normalized using the sum of its respective values
for all methods.), we add 8 and ~ (the cost and duration
constants) to the equation in order to balance the influence
of both directly and inversely proportional variables.

Besides, we use the constant ¢ to set different weights to
the stimulus associated with the quality, cost and duration
of the methods execution (ax ¢; — B+ ¢ —yxd; + 8+ 7)
and to the stimulus related to the emergent task succession
(z;), explained next. In this paper, these constants have the
following values: o = 8 =~ = 1/3 (in order to give quality,
cost, and duration the same weight), and ¢ = 0.5.

The stimulus s; for each method j is recalculated every
time one method is performed by an agent (hereafter we call
this an iteration). In our approach, performing a method in-
fluences the stimulus associated with all methods of the same
TAMS task according its QAF. This influence is computed
in Equation 2 by z;.

Let us assume the existence of M methods in the TAEMS
task structure perceived by a given agent (only methods
that are allowed to be performed in the current interaction).
When any method k of the set of M methods is performed,
all related methods j have the x; stimulus updated as fol-
lows: z; = z;+k, where k is the constant related to the type
of QAF, as defined in Table 1. This influence is recursive to
each method of the parents tasks in the task structure graph.
A constant x associated with the QAF is used to model the
influence of interrelated methods. We adopt small values
for k (0 < k < 1) because the stimulus z; is cumulative
(increasing in each iteration) and takes values only between
0 and 1 (we assume 1 as an upperbound, not increasing the
stimulus more than this value).

Table 1: QAF related constants

QAF | K

SeqMax, Max, SeqMin, Min 0
SeqSum, Sum, All 0.01
ExactlyOne -0.01

Our approach was developed focusing on dynamic envi-
ronments where the TAEMS task structure can be modified
on the fly: methods can appear or disappear; the number of
available agents can change; and the interrelationship among
methods can also change. The latter is supported by the
stimulus model presented above. However, this model does
not take into account the changes in the number of agents
and methods. Bonabeau et al. [2] show that emergent task
succession can be achieved using fixed thresholds, but with
limited applicability. In order to overcome these limitations
of the stimulus model, our approach uses a modification of
the specialization model discussed next.

3. EXPERIMENTAL RESULTS

In this section, we discuss the scenario where our approach
was applied as well as the achieved results in the domain of
MSP (see general description in Section 1).

Figure 1 shows one instance of the MSP, modelled in

Machine_D_Part_1
Machine_C_Part_1

Machine_B_Part_1
‘Part_l_AIIocate_AH Part_l_Use_AH Part_1_Rel _A‘ —
Chowsen |-~ voxsien |~

/

seq_sum_all

Figure 1: Objective TAMS task structure for the
MSP (subtasks for Machines B, C , D with part 1
and for all the part 2 omitted).

TAMS. The goal here is to produce an artifact which is
composed by two parts. and 2). In our approach, the agents
play the role of a manufacturing worker. One agent gets
some part and goes through each required machine process-
ing this part. If all machines are busy when a new part
arrives, the agent must stay in the queue waiting for a ma-
chine to became available. Furthermore, there is no infor-
mation in the TAMS task structure about the agents. They
are all free to choose any available task to perform. Also,
there is no need for information about commitments in the
structure. Our approach allows each agent to decide by it-
self which task to perform according the constraints without
any explicit commitment among agents.

In this figure we detail only the task structure for the ma-
chine A processing part 1 (Machine_A_Part_1). Additional
tasks are necessary (Machine_B_Part_1, Machine_C_Part_1
and Machine_D_Part_1) but are not shown here due to lack
of space. However, they are all similar. For simplicity, tasks
which are not further detailed in Figure 1 are shown using
gray rectangles. Besides, each artifact must have n subtasks,
one for each part. These subtasks are related by the QAF
seq-sum_all meaning that both must be completed. Any in-
stance of the MSP can be modelled this way, with more or
less parts or machines, different technological constraints,
resources, etc.

Table 2 shows the processing sequence for each part. For
instance, part 1 must be processed by machine A, then D, C
and finally by B. This sequence is not represented in Figure 1
to keep it clear and more simple. We model these constraints
as enable interrelationships between the sub tasks of each
part task (parts 1 and 2).

Table 2: Parts Sequence Constraints
Part | Machine Sequence
1 A-D-C-B
2 B-A-C-D

Each machine is a consumable resource that can only
be used by a single agent at each time. When the agent
needs to use a machine, it first requests it thus mak-
ing it unavailable to other agents (interrelationship Allo-
cate_A). When the agent finishes the task, it releases the
machine (interrelationship Release_A). There are also en-
able interrelationships (NeztStep) relating the methods al-
locate (e.g.Part_1_Allocate_A), use (e.g.Part_1_Use_A) and

Machine_A_Part_1

sed\sum_all

Reconfigure_A_Part_1 [Part_1_Allocate_A| [Parn_1_Use_A| [Part_1_Release_A|
'seq_sum’ / \ \

[Machine_A_1 to_1]

‘ Machine_A_2 to_1 ‘

Configure_A Configure_A

Figure 2: Task Structure for part 1 and machine A
(all others omitted) with Machine Setup.

Configure_1

release (e.g.Part_1_Release_A) which determine the se-
quence of this process.

Table 3 shows the amount of time spent by each machine
when processing the parts. It was modelled as duration in
the TAMS methods. For simplicity, cost and quality were
not considered and we adopt 0 for both. However, it would
be no problem to model, say, that part 1 can be processed
by machine A with quality ga or by machine B with quality
gs. The same holds for cost. Since both are handled by our
approach (see Equation 2), no extension is necessary if the
designer wants to consider all these aspects.

Table 3: Parts Processing Time
Part|A|B|C|D
1 ‘ 6 ‘ 3 ‘ 1 ‘ 1

2 5|5 |62

In the MSP, a setup time could be necessary to reconfig-
ure a machine when processing different parts in a sequence.
Figure 2 shows the setup model for part 1 when processing
parts using machine A. For simplicity we do not show the
entire MSP model here; the model shown in Figure 2 must
be combined with the one in Figure 1 to be complete. The
allocate method can only be performed after the end of the
configuration task. We use two consumable resources to
model the configuration state of each machine. When a ma-
chine is released, the resource becomes available. There is a
interrelationship between the release task and the related re-
source (e.g. the Configure_1 between task Part_1_Release_A
and resource A_1). One method of the reconfiguration (Re-
configure_A_Part_1) task is chosen (e.g. Machine_A_2_to_1
or Machine_A_1_to_1) by the agent according to the resource
state. Only the method that has available resources will be
performed. The performed method consumes the resource
through the Consumes interrelationship (Configure_A). If
the setup is necessary, it takes 10 units of time.

3.1 A Simple Scenario

In this simplified scenario there are two agents to produce
one artifact (made with the two parts described before) and
the machines do not need to be reconfigured (no setup time
in this case). The aim of this experiment is to verify the
agents abilities to perform all required tasks cooperatively.

To validate our approach, we compare our two part
scheduling with the optimum selected by the Akers and
Friedman algorithm [1]. Using this algorithm, in each ma-
chine we must know which part must be processed first.
Each schedule indicates the sequence of parts for each ma-

P2, B || A] C [D]
PY A [D[c] B]
1] 101 20
Time

Figure 3: Best scheduling to produce 1 artifact with-
out setup.

chine. In a four machine scenario, there exists 2* possible
schedules. Processing times are as in Table 3. After elabo-
rating the 16 schedules, we eliminate the ones that are not
technically possible. The remaining schedules are examined
in order to remove the non-optimum plans. Finally we cal-
culate the processing time for the four remaining schedules
possibilities.

Figure 3 shows the best scheduling, which takes 19 time
units. This is the same scheduling achieved in our system
because the agents do not stay idle when any available task
to be executed exists. Our agents, like the social insects, try
to perform all available tasks as soon as possible. In this
Figure we can see the time interval each machine was used
to process each part. The white rectangles represents part
1 and the grey ones part 2. The dark rectangle represents
the amount of time the part is not in any machine during
its total processing time.

In the scenario discussed here, when the best solution
could be manually computed, our approach was very effi-
cient. We expect a similar behavior in other simple scenar-
ios: our approach should achieve the best scheduling or, in
the worst case, achieve a good scheduling closed to the best.

3.2 Scenario with Dynamic Changes

Here we simulate a dynamic change in the production de-
mand. Initially, the aim is to produce 5 artifacts (five parts 1
and five parts 2) without setup time. Later, the task struc-
ture is changed on the fly. Five more artifacts (five parts 1
and five parts 2) must be produced with setup time. Here
we are interested in letting our approach decide about the
processing ordering in both stages without explicit coordi-
nation and/or communication.

We cannot apply the Akers and Friedman algorithm in
neither stages of this scenario because the number of possible
solutions grows exponentially with the number of parts.

To compare the performance of our approach with other
possible solutions, we developed a greedy algorithm with
two different strategies: to produce each artifact as soon as
possible; or to produce all parts 1 and, once this is done,
produce all parts 2.

Figure 4 shows the production time of each of the 5 arti-
facts (10 parts) for the first greedy strategy (a), the second
greedy strategy (b), and for our approach (c). As we can
see, for this case, both greedy strategies show a worse per-
formance than our approach. Moreover, the swarm organi-
zation of the agents has achieved a better solution with no
previous strategy being defined regarding this scenario. The
organization of agents in terms of which task to perform has
emerged.

After finishing the production of that 5 artifacts, where
setup is not necessary, agents have their thresholds modified
according to the methods they perform. The stimulus re-
garding each method also changes according to the TAMS
semantic. The agents tendency to perform each method at

Time

=
[6 1
Ce T > 7T
I
Time
I

L
Bl @]
[Bble]
e
5

P11 P2 PL,P2, Pl PPl P4PlsP% 0 Pl Pl, PRPL, Pl P P2 PBP2PE 0 P2Pl P2PI, P3 PRPZ% PBPLPE
Parts Parts Parts

(@ (b) ©

Figure 4: Production time of 5 artifacts without
setup.

each time was modified during every time step according the
characteristics of the problem. The decision about which
task to perform in order to achieve the goal was guided by
this tendency.

At this point we introduce a change in the production de-
mand: 5 more artifacts are demanded and this time setup is
necessary. Thus the agents must keep the number of setups
as low as possible. One simple way to solve this problem
is to accumulate demands of artifacts and produce them in
batches of different parts. For example, the batch of parts
1 is produced first (again according to machine sequences
and times as in Tables 2 and 3). Then the batch of parts 2
is produced. The second greedy strategy makes sense when
considering the setup time (the first strategy are not rea-
sonable because it intercalates parts 1 and 2, resulting in
several unnecessary setups).

Now, the performance of the solution is related with the
production of batches of parts with the same characteristics.
The decision process according the tendency computed be-
fore should adapts as soon as possible to tackle this new
demand. This adaptation occurs as shown below.

Figure 5 shows the production time of each part with
setup time (represented by an hypothetic X machine). We
can see that the our approach (a) creates the production
batch, reducing the total setup time. The different types
of parts overlap twice: in the first case, because the agents
need to learn with the first results to adapt (part P2; with
all parts P1). As we can see, this overlap happens at the
beginning of the simulation. The second overlap occurs be-
cause there is no more parts 1 to be processed (part P22).

Our approach generates 4 more setups than the greedy strat-
egy (b). Machine B is used to process one part 2 in the
scheduling begging causing more 3 setups. However, even
with twice the number of setups, our approach achieve a to-
tal time closed to the greedy strategy. This shows that the
agents react to the setup cost and adapt the organization to
improve the scheduling process.

3

Time

S

[o]

[o]
¢l |
o]
[
20
o]
H
o]

I A

Pl P1; PE Pl Pk P3 P2, P3P24P25 0 Pl Pl PRPl; PL PAP2; P3P P2
Parts Parts

(@) ()

Figure 5: Production time of 5 artifacts with setup.

4. RELATED WORK

Several methods have been used trying to solve schedul-
ing problems: heuristics, constraint propagation techniques,
constraint satisfaction problem formalism, simulated an-
nealing, taboo search, genetic algorithms, neural networks,
etc. Agents technology is part of this effort, bringing a
bottom-up view of the problem.

The YAMS (Yet Another Manufacturing System) was
one of the earliest agent-based manufacturing systems. In

YAMS, each agent plays the role of one factory and has a
collection of plans, representing its capabilities. The MAS
coordination is done by the Contract Net that is used for
inter-agent negotiation. Further, two classes of agent-based
approaches exist: the functional decomposition and the
physical decomposition. In the former, agents perform the
scheduling as a local incremental search process very simi-
lar to centralized schedulers. This approach is as inflexible
and inefficient for dynamic scenarios as the centralized ap-
proaches. In the physical decomposition approach, agents
are used to represent entities in the physical world, such as
workers, machines, or parts. The scheduling is generally re-
alized through negotiation among agents. Several protocols
for negotiation have been used as coordination mechanism,
which cause high communication costs. In our approach,
there is no explicit communication or coordination among
the agents whose behavior is modelled as social insects.

As said, a previous approach for manufacturing dynamic
scheduling based on social insects model was proposed [3].
However, this approach only tackles routing of jobs, with
machines specializing in performing one or a few types of
jobs. They use wasp like agents to represent multi-purpose
machines capable of processing different jobs. There is a
cost to setup the machine from one type of job to another.
New jobs arrive and the machines choose whether or not
to process the jobs. Their target is to minimize the setup
time in order to minimize the total processing time. Ini-
tially, three cases with different probability for two types of
jobs were analyzed: 50-50, 75-25 and 100-0. Their approach
was capable to specialize the machines to these probabilities.
Later, in a “controlled” way, the initial distribution of jobs
changes after the first half of the simulation. The results
shown that the adaptation requires a significant amount of
time. Despite this limitation and the simple dynamic as-
pects of this problem, their results shown that the social
insect model was competitive, or in some cases superior to
previously successful agent based systems.

However, there are open questions in their work about
the specificity of the proposed solutions. When applied to
MSP, the machines specialization used to reduce the setup
time are not enough to route the parts through the machine
sequence when more than one machine is required to process
the part. In this case, after being processed, the part should
return to the production line to be processed by the next
machine in the sequence and at this point it is not possible
to know what machine will select the part next.

Our approach is more general: the stimulus changes with
all characteristics of each task (quality, cost, and duration),
as well as with the interrelationships among them. In [3],
this kind of adaptation is left as a future work.

5. CONCLUSIONS

The approach presented here deals with the machine se-
quencing problem, and with situations when the environ-
ment changes and demands different organizations of tasks
and agents. In other approaches, this adaptation requires an
explicit learning component, and/or explicit communication
and coordination.

We focus on a paradigm based on colonies of social insects,
where plenty of evidences of ecological success exists, despite
the apparent lack of explicit coordination. These insects
adapt to the changes in the environment and to the needs
of the colony using the mechanisms explained here. The

key issues are the learning/forgetting specialization and the
plasticity in division of labor. Our aim is to show that such
an approach can be used to organize agents in MAS, when
the systems’ needs change dynamically.

In the scenarios we discussed here, the agents adapt in
order to complete all tasks in the minimal time. As seen in
the Dynamic Scenario, when there was setup time, agents
produce parts of equal characteristics (which do not require
machine setup) in order to minimize the global manufactur-
ing time.

Besides, our results confirm our intuition that MAS can be
self-organized just as social insects are, achieving the same
success it does when working with cooperative distributed
problem solving.

In the future we intend to analyze the characteristics of
the emergent organization, mainly regarding agents special-
ization. Besides, we intend to use temporal polyethism and
accommodate a wider range of types of agents. For instance,
we might need agents with shorter life spans than others
(this would imply different life probability functions), or dif-
ferent thresholds for the tasks to respond faster, slower or
do not respond the stimulus.

6. REFERENCES

[1] S. Akers and J. Friedman. A non-numerical approach
to production scheduling problems. Operations
Research, 3:429-442, 1955.

[2] E. Bonabeau, G. Thraulaz, and M. Dorigo. Swarm
Intelligence: From Natural to Artificial Systems.
Oxford Univ Press, 1999.

[3] V. Cicirello and S. Smith. Improved routing wasps for
distributed factory control. Journal of Autonomous
Agents and Multi-Agent Systems, 8(3):237-266, May
2004.

[4] K. S. Decker and V. R. Lesser. Quantitative modeling
of complex computational task environments. In
Proceedings of the 12th International Workshop on
Distributed Artificial Intelligence, pages 67-82, Hidden
Valley, Pennsylvania, 1993.

[5] P. R. Ferreira Jr., D. Oliveira, and A. C. Bazzan. A
swarm based approach to adapt the structural
dimension of agents’ organizations. Journal of Brazilian
Computer Society - JBCS - Special Issue on Agents
Organizations, 11(1):63-73, July 2005.

[6] D. Gordon. The organization of work in social insect
colonies. Nature, 380:121-124, 1996.

[7] V. Strusevich. Shop scheduling problems under
precedence constraints. Operations Research,
69:351-377, 1955.

[8] G. Theraulaz, E. Bonabeau, and J. Deneubourg.
Response threshold reinforcement and division of
labour in insect societies. In Royal Society of London
Series B — Biological Sciences, volume 265, pages
327-332, 2 1998.

