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Abstract. This paper describes a multiagent recommender system
where agents maintain local knowledge bases and, when requested to
support a travel planning task, they collaborate exchanging information
stored in their local bases. A request for a travel recommendation is de-
composed by the system into sub tasks, corresponding to travel services.
Agents select tasks autonomously, and accomplish them with the help
of the knowledge derived from previous solutions. In the proposed archi-
tecture, agents become experts in some task types, and this makes the
recommendation generation more efficient. In this paper, we validate the
model via simulations where agents collaborate to recommend a travel
package to the user. The experiments show that specialization is useful
hence providing a validation of the proposed model.

1 Introduction

Internet is a rich source of information where users search information about
products and services related to their interests and preferences. However, this has
generated new information problems. In fact, the overabundance of information
may overload the users and ultimately can make very hard to locate the right
information [9]. Moreover, the information required for a topic or a service (e.g.,
rent a car) is usually distributed in several repositories.

In order to cope with these issues, Recommender Systems have been proposed
[11]. They are based on data mining algorithms, are capable to learn about
user preferences over time, and can automatically identify relevant products or
information that fit the user needs [1]. Different approaches are used in their
core recommendation algorithms, such as collaborative filtering, content-based
filtering or knowledge-based approaches [1]. Recommender systems have been
applied in several domains [5] such as book recommendation (amazon.com) or



movie recommendation (netflix.com). It is worth noting that these web sites can
fully support the purchase (or rent) process, they manage huge catalogues of
products and they can rely on the user information acquired by direct contact
with their customers (logs).

However in some application domains it may be possible that a single infor-
mation source (web site) does not manage all the information needed to run the
full recommendation process. The data available may be fragmented, overspe-
cialized or overgeneralized, or even irrelevant to the recommendation at hand.
There are several data sources and services distributed in Internet, which are
not always available, and sometimes can they offer information that can be am-
biguous or erroneous.

To cope with these problems, we propose the application and integration of
two technologies: distributed recommender systems and multiagent technologies.
We claim that a multiagent recommender system can be applied for retrieving,
filtering and using information that is relevant to the recommendation task, and
can better deal with the dynamic changes in the information source compared
with more traditional non-distributed recommender systems [2, 10].

In the tourism domain, for instance, a travel package recommendation is typ-
ically supported by several service providers for flights, hotels and attractions.
Moreover, specific knowledge is required to assemble all the components [12].
Usually this information cannot be found in a single repository. The tourism
market is by its nature distributed, and several service providers and interme-
diaries manage and store in their databases (or in informal repositories) service
information and users data [17]. In order to recommend a travel package, an in-
termediary (travel agent) must construct a model representing all the elements
(information) required for generating this recommendation. This model can be
implicitly defined in her mind, or explicitly documented in a formal plan in the
travel agency. These elements would include resources (information, products or
services), customers and their requirements, factors influencing the recommen-
dation (such as the season), immediate strategies for finding the best options
for the user, and so on. However, planning a travel and building a package is
not performed by an intermediary alone. Collaboration among travel agents is
required to integrate individual experiences into a coherent plan that satisfies
user’s preferences.

The main goal of a Multiagent Recommender System is therefore to im-
plement this cooperation among the agents. Each agent should work as an ex-
pert and participate to the composition of the final recommendation. This work
presents a distributed, and knowledge-based, recommender system implemented
in a multiagent environment. The recommendation computation (travel package)
is based on the collaboration of multiple agents exchanging information stored
in their local knowledge bases. A recommendation request is decomposed into
sub-tasks handled by different agents, each one maintaining its own knowledge
base and working as an expert helping to compose the final recommendation.
The proposed model supports agent specialization, i.e., the agents become ex-
perts in specific tasks. This agent specialization mimics what happens in the real



world, where it is common for travel agents to specialize in a particular kind of
service (hotel, flights, interchanges, conferences, etc) in order to provide better
and better advises to the customers. Specialization increases agent’s confidence
and improves quality of service. We want to replicate this in our multiagent
scenario, and generate expert agents by letting them to specialize.

This paper is structured as follow: the next section discusses some related
work on Multiagent Recommender Systems and Recommender Systems. Sec-
tion 3 describes the multiagent recommender model and Section 4 presents the
experiments we conducted. Finally section 5 summarizes the paper’s contribu-
tions.

2 Related work

Our approach explores the ability of multiagent systems to decompose a complex
recommendation problem into smaller ones. This allows specific knowledge to be
applied in solving each subproblem and updated when changes occur in the
domain. The baseline technologies applied in our research are introduced in this
section.

2.1 Recommender Systems

As mentioned above the three major recommendation techniques are: collabo-
rative filtering, content-based filtering and knowledge-based systems. The most
popular technique is collaborative filtering that aggregates customer’s prefer-
ences, expressed as product ratings, to recommend new products [11]. In col-
laborative filtering the system predicts the target user ratings and select the
products with highest rating. However, a large number of ratings from similar
users are required to build reliable recommendations for a target user. This is
hard to achieve and ”data sparsity” is the primary source of erroneous recom-
mendations.

Amazon.com is a very popular e-Commerce site that exploits collaborative-
filtering. In its book section for instance, the system encourages direct feedback
from customers about books that they have already read [13]. After this, the
customer may request recommendation for books that he/she might like.

In content-based filtering the preferences of a specific customer are exploited
to build new recommendations to her. NewsDude [4], for instance, observes what
online news stories the user has read and not read and learns which articles the
user may be interested in reading. In content-based systems only data related
to the current user are exploited in building a recommendation. It requires a
description of user interests that either matches the items’ catalog or provides an
input for the user model that was learned in order to output a recommendation.

Collaborative and content-based filtering can deliver poor recommendations
if not trained with an adequate number of examples (product ratings or pattern
of user preferences). This limitation mostly motivates the knowledge-based ap-
proach. A knowledge-based system learns about user preferences over time and



automatically suggests products that fit the user model. This technique tries to
better use preexisting knowledge, which is specific to the application domain, in
order to build a more accurate prediction model still based on a limited number
of training instances.

Usually knowledge-based approaches, such as case-based reasoning [14, 6], are
combined with collaborative or content-based filtering to provide better recom-
mendations. Knowledge about customers and the application domain are used to
reason about the products that fit the customer’s preferences. The most impor-
tant advantage of the combined approach is that it does not depend (exclusively)
on customer’s rates, hence avoiding the mentioned difficulty to bootstrapping the
system. The knowledge that improves the recommendation can be expressed as
a detailed user model; a model of the selection process or a description of the
items that will be suggested.

Travel recommendation is a complex task and there are still many open
issues. In this paper we are mostly focussed on the integration of different in-
formation sources distributed over the Internet, and to exploit experts’ specific
knowledge in the recommendation. In order to deal with these issues, we propose
a multiagent recommender system.

2.2 Multiagent Recommender Systems

Multiagent systems (MAS) can be applied to retrieve, filter and use information
relevant to recommendations [16] [8]. MAS can deal with distributed information
sources and there are several advantages in developing these systems [15], such as:
1) the information sources may be already distributed, and it would be wasteful
to replicate agent information gathering and problem solving capabilities for each
user and each application; 2) agents can interact flexibly in new configurations
on demand; and 3) the system performance can degrade gracefully when some
agents are out of service temporarily.

Classical recommendation technologies can be described as single agent, as
one single intelligent system provides the recommendation function [10]. In
a multiagent recommender system a collection of interacting agents manage
the recommendation generation process, trying to improve the recommendation
quality obtained by a single agent. The agents cooperate and negotiate in order
to satisfy the users, interacting among themselves to complement their partial
solutions or even to solve conflicts that may arise.

CASIS [7] is an example of multiagent case-based recommender system [14,
6], where the authors proposed a metaphor from swarm intelligence to help
the negotiation process among agents. The honey bees’ dancing metaphor is
applied with case-based reasoning approach to recommend the best travel to
the user. The recommendation process works as follows: the user elicits her
preferences; the bees visit all cases in the case base and when they find the best
case (according to the user’s preferences) they dance to that case, recruiting
other bees to that case; and the case with the most number of bees dancing for
it is the one recommended to the user.



The advantage of this application is that the bees always return some
recommendation to the user. Normally, case-based recommender systems use
similarity-based retrieval to identify the best cases. The recommendation results
depend on the retrieval algorithm (similarity function, similarity threshold, fea-
ture weights, etc.) and sometimes the system does not find cases that sufficiently
match the probe (problem definition). In a real travel package recommendation,
the travel agent always recommend something to the user, even if there is not a
travel package that matches the customer’s preferences. The travel agent always
provides to the customer an answer, as the customer could always switch to
another travel agency. Because of this, CASIS always returns some recommen-
dation. However, the main disadvantage of this system is that the case-base is
unique and centralized. It is not possible to search information located in other
sources.

Another example of multiagent recommender system is presented in [8]. This
system arranges meetings for several participants taking into account constraints
for personal agendas. In this system, three different agents were proposed: the
personal assistant agent is the interface between the user and the MAS; the
flight travel agent is connected to a database of flights; and the accommodation
hotel agent is responsible to find an accommodation on the cities involved in
the meeting. A disadvantage found in this approach is that the problem is not
solved dynamically because the recommender system has to collect information
from different information gathering agents to model the problem-solving.

3 MAS Recommendation Model

This section describes the proposed Multiagent System (MAS) approach and
uses the tourism domain as motivating scenario. Planning a travel is a difficult
task even for an expert travel agent. She needs to know many details about the
destination chosen by the passenger and many features of the whole trip such
as the attractions’ details, hotels or flights times and costs. In several cases, this
knowledge is distributed among different travel agents, and they must commu-
nicate and exchange information to compose the final recommendation.

3.1 The Agents

Using the travel recommendation example, we have created a multiagent system
where a community of agents share a common goal (the travel package recom-
mendation) as well as individual goals (the travel components that each one
must identify). A community C of agents consists of n Searcher (Src) agents
a1, a2, ..., an.

When the user asks for a recommendation, a list of tasks, here restricted to
flights, hotels or attractions, is created and communicated to the Src agents.
The agents choose a task from the received list and perform it. When a task is
performed by an agent, it is marked as not available, which means that another
agent can perform that task at the same time.



The Src agent is represented by a = (P, LocalKB) where P is the agent’s
profile and LocalKB is the agent knowledge base.

The agent’s profile is defined as P = (id, status, tcurrent, confind); id is the
identification id of the agent, status indicates if the agent is online, offline or
not available to perform a task. The agent can be offline if, for example, the
computer is switched off or the network is down. In this case, it will not be
able to perform a task. When the agent is performing a task its status becomes
not available. tcurrent is the current chosen task and confind are the confidence
indexes of the agent to each type of task.

Each confidence index is calculated through the number of tasks performed
of the respective type and the evaluation of each task done by the user. Each task
solved by an agent receives an evaluation from the user, with a rating ranging
from 0 to 10, where 0 is the worst and 10 is the best rating. The task evaluation is
then used in the agent confidence index computation so that the agent increases
more the confidence when it solved better the task.

Two features are desired when addressing the set of evaluations: quality and
uniformity. The first one is quite obvious, the goal is to give the best recommen-
dation to obtain a high evaluation. The second one relates to the evaluations
homogeneity. Here, the lower the variability of evaluations the more reliable will
be the results. Thus, we search for a set of evaluations with a high average
evaluation and low standard deviation.

confind(n)(t) =
confind(n−1)(t) + F (n−1)(t)∑

i∈T F (n−1)(i)
× evaluation (1)

Equation 1 shows the confind (confidence indexes) update function of an
agent, where t is the task type, T is the set of task types, confind(n)(t) is the
new confidence index of task type t, F (n)(t) is the number of tasks of type t
performed by the agent in the instant n. Finally, the evaluation is defined as
follow:

evaluation =
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)
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α

(
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1
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1
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)
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(2)

where: µ(t) is the evaluation average of type task t performed by the agent;
σ(t) is the evaluation standard deviation of type task t performed by the agent.

In order to get the normalized evaluations average value of the type task t,
the value is divided by the sum over all task types evaluations. The standard
deviation value is calculated in the same way. Since the formula is a recurrence
equation, it was necessary to set initial conditions, such as:

– Each agent has performed one task of each type;
– Each performed task got an evaluation equal to 5 (a neutral rate);
– There is no standard deviation in instant 0, which means that the standard

deviation was not considered in instant 0.



The α coefficient determines the relevance of the average and the standard
deviation over the confidence indexes. In the experiments, described later, α was
set to 0.5. That means that the average and the standard deviation have the
same importance in the calculation of the confidence index.

Thus, the confidence index must be proportional to the average and inversely
proportional to the standard deviation, which means that we will get best re-
sults with a high average evaluation and a low standard deviation. Equation 2
expresses the influence that the tasks evaluations have over the confidence index.

The agent updates the confidence indexes every time it must choose a task
to execute. Based on those indexes, it can check which task type, among those
available, is better considering. However, sometimes the agent can be forced to
choose a task that is not its specialty (for example, a flight recommendation is
required but the flight expert is missing and only the (agent) expert in hotels is
available).

This behaviour helps the agent to become an expert in a task type. The
agent specialization improves the system performance. If the agent has enough
information about a task type in its knowledge base, it can provide a faster
recommendation for that kind of service. But more importantly, it gives, in the
long run, high quality recommendations because the agent becomes an expert
in that type of recommendations.

LocalKB stores the knowledge the agent has already used to solve previous
recommendations. Figure 1 shows the agent’s model. The user’s preferences and
the list of tasks (appearing inside the box) do not belong to the agent, but they
are needed to understand the agent’s LocalKB. Id is the task’s identification.
type is the task’s type (flight, hotel or attractions) and timespent represents the
time spent by the agent to perform the task. requirements represent the user’s
preferences, i.e., the user’s query. Solution represents the task already performed
by the agent. The combination of the requirements and the solution attributes
represents a case, i.e., the description of the problem and the description of the
solution, respectively.

Fig. 1. Agent’s model



The agent’s knowledge base is increased with the number of tasks it decides
to save. The bigger the knowledge base becomes, the worse becomes the search
performance. On the other hand, a small knowledge base forces the agent to
search in the community or in the Web, which results in a waste of time and
slower performance. For this reason, it is important for the agent to control
the size of its knowledge base. It must have enough knowledge to give good
recommendations. The confidence indexes help to control the knowledge base
size according to the tasks the agent has performed. After performing the task,
the agent checks if that task has increased or not its confidence index and it
decides to keep or not the task in its knowledge base.

3.2 The Recommendation Algorithm

As shown in the previous subsections, each agent performs a task (of type flight,
hotel or attraction) to contribute to the final complete recommendation, i.e., a
travel package.

When the user explicit her preferences, the recommendation process starts
and the list of tasks is created. Let us now consider a hypothetical scenario where
the user has chosen Paris as destination to her vacation; she would like to travel
on March 10th, to stay in a three-stars hotel and would like to know the possible
attractions in Paris. Three new tasks are created with these preferences.

After that, each agent picks a task (considering its confidence indexes) and
turns its status to not available. This choice is made in a decentralized manner,
where the agent chooses the task it has the highest confidence index. A task can
be performed only by one agent which means that two different agents cannot
pick the same task. When an agent chooses a task, it chance its status and this
task is not available anymore.

Algorithm 1 Multiagent Recommendation
{C is the agent community}
{T is the set of tasks to be solved}
Procedure Recommendation (agentx, t, C)
repeat

taskToBeSolved = PickTask(agentx, t)
T = T \ {taskToBeSolved}
Solution = SearchLocalKB(taskToBeSolved)
if Solution = ∅ then

for each agentx ∈ C
Solution = CommunitySearch(agenty, taskToBeSolved)
if Solution = ∅ then

T = T ∪ { taskToBeSolved }
end if

end if
until (T 6= ∅)
UpdateConfind()



The agent might find the information necessary to solve the task in two ways:
searching in its own knowledge base or exchanging information with agents in
the community. As shown in algorithm 1, two levels of information search are
proposed.

Through the SearchLocalKB procedure, agents search for the information
necessary to complete their selected tasks in their own knowledge bases. Each
agent has a knowledge base that stores the task episodes already performed by
the agent. These episodes are stored as cases with attributes describing the user’s
preferences (the description of the problem) and attributes describing the task
itself (the solution of that recommendation episode).

If the agent does not find the information required to complete the selected
task in its knowledge base, then it proceeds with the second type of search,
here called CommunitySearch. In this stage, the agent communicates with the
available agents to exchange information. This communication is important be-
cause the agent can find another agent that is expert in the selected task and
exchanging information with this expert agent, it will better solve the task. It is
important to note that the CommunitySearch is not exploited in this paper and
it will be detailed in a future work.

4 Experimental Results

In order to validate the multiagent recommender approach in the tourism do-
main, a preliminary experiment was done, where we have simulated different
users asking for different recommendations and 35 users queries were generated.
From these queries, 100 new tasks to be performed were created (i.e, the list of
tasks was created from these new queries).

The agents were developed in the JADE (Java Agent Development Frame-
work) framework [3]. An acquisition knowledge step was done in a travel agency
and the Src agents’ knowledge bases were populated randomly with real cases
of clients of this agency.

Here we assume that, at instant 0, each agent has performed one task for each
type and these tasks got an evaluation equal to 5 (a neutral rate). That means
that the agent has all confidence indexes with the same value and therefore at
the beginning it will choose the task randomly.

Another goal of the experiments was to validate the scalability of the system.
For this reason, the experiments were done with different number of available
agents. We have calculated the average evaluation of agents in each solved task
and we shall show how this value changes during the whole tasks performed by
the agents.

We have run the same experiment under two conditions, to show that spe-
cializing the agents can be useful. In the first one, the agents confidence indexes
were calculated and the agents used these values to select the task to execute.
In the second one, the agents did not considered the indexes and they chose the
tasks randomly.
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Fig. 2. Average evaluation value - 3 agents (54 tasks)
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Fig. 3. Average evaluation value - 10 agents (54 tasks)

Figure 2 shows the average evaluation values for the 54 tasks performed,
where 3 agents were available to perform tasks. The average evaluation value of



expert agents was high (almost 7) which means a better result comparing to the
non-expert agents that reached only 5.

0 10 20 30 40 50
tasks

0

1

2

3

4

5

6

7

8

9

10

av
er

ag
e 

ev
al

ua
tio

n 
va

lu
e

specialized
not specialized

Fig. 4. Average evaluation value - 15 agents (54 tasks)

In the second run, 10 agents were available to perform tasks. Since we have
more agents for the same number of tasks, and the same number of task types,
the individual performance decreases. The objective was understand how the
agents behave if we increase the number of available agents to perform the tasks.
Figure 3 shows that, as expected, that increasing the number of agents and
keeping the same number of tasks, the average evaluation value is lower for the
specialized agents, than the previous scenario (with 3 agents).

Figure 4 confirms the behaviour shown in the previous figure. Here we have
15 agents and 54 tasks and the average evaluation value was around 4 for both
agents: expert and non-expert. Similary the results from the previous exper-
iment, as larger the number of agents performing tasks, lower is the average
evaluation value.

We also have run a second experiment, where we increased the number of
tasks to perform (and kept the same number of types). In this experiment we
had 100 tasks to be performed. The same number of agents were used in the
experiments: 3, 10, and 15.

Figure 5 shows the average evaluation value of specialized and non-specialized
agents, through the 100 tasks performed, with only 3 agents available. Both
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Fig. 5. Average evaluation value - 3 agents (100 tasks)

non-expert and expert agents had unstable average evaluation values in the
beginning. However, the expert agents had better results in the end.

In figure 6 we can see the average evaluation value of expert and non-expert
agents with 10 agents working. Expert agents got better results than non-expert
agents. They reached 4.5 of evaluation average value and the result was stable
starting from the thirties task. Considering that we have 10 agents and 100 tasks
to be performed, the results of expert agents were good. It was almost the same
results got in the experiment with less tasks.

Figure 7 shows the average evaluation value when we used 15 agents working
to solve the tasks. Despite the expert agents started with unstable values, the
evaluation average became stable soon and kept the same performance until all
the tasks were completed.

5 Conclusions

This paper presented a distributed knowledge-based multiagent model applied to
the tourism domain. The agents are cooperative and recommend travel packages
to the user.

A recommendation is divided in small pieces called tasks and each agent is
responsible to perform some tasks not necessarily for the same travel-package
request. As long as the agents will perform different tasks, they become experts
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Fig. 6. Average evaluation value - 10 agents (100 tasks)

in a specific task type. The agents become travel agents, where each one have
specific knowledge and the cooperation among them can bring good recommen-
dations.

It is important to mention that the tourism domain was chosen to validate
the architecture but we believe that the approach can answer the requests of
other applications that deal with problems that require the application of a
dynamic and distributed knowledge to solve that application tasks. Testing the
reusability of the proposal is going to be done in a next phase of this work.

Decomposing the problem and distribute it to several different agents that
are becoming more and more specialized can yield good recommendations, even
when applied to tourism that is a complex domain that needs specific knowledge
distributed over different sources. The agents can be considered experts, i.e.,
thanks to the confidence indexes that were added in the agent’s model in order
to help the agent to select the tasks that it is more prepared to attend.

Another interesting point is that the ideas presented here are being validated
in a real scenario. A knowledge acquisition phase was conducted and the agents’
knowledge bases were created with knowledge from a real travel agency. The
queries used in the experiments were obtained from the travel agency as well,
which provide a real scene for collecting and understand the requirements of the
application.
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