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Abstract. The aim of this work is to carry out a comparison between symbolic
and non—-symbolic approaches regarding the task of automated annotation of the
field called Keywords in SWISS—PROT. The non-symbolic technique employed
was a feedforward artificial neural network (ANN), while the symbolic ones was
CNZ2. Using an ANN trained with the well-known Backpropagation algorithm
over previously annotated data from public databases like SWISS—PROT, a clas-
sifier was built up that maps attributes of a specific protein to keywords encoun-
tered in SWISS—PROT and TrEMBL databases. The symbolic counterpart, CN2,
builds a specific classifier for each keyword. Regarding the non—-symbolic ap-
proach, the resulted classifier is much more compact than the symbolic counter-
part. However, the symbolic one had a slightly better performance and is also
more “readable” to the end user. The performance of the obtained classifier was
evaluated using data taken out SWISS—PROT (for training) and TrEMBL for val-
idation.

1 Introduction

With the increase in submission of sequences to public databases, there is a clear need
for tools to generate automatic annotation. Following previous work on automated an-
notation, we employ symbolic and non—-symbolic machine learning technigues as a
method to generate automated annotation of the field “Keywords”, an important one
in the SWISS-PROT database. The aim of this procedure is threefold: to complete the
annotation of keywords which is far from adequate; to acquire experience to be able
to propose automatic annotation on other (more complex) fields of the SWISS-PROT
database; and to compare symbolic and nhon—-symbolic techniques in this domain.

To test our approach, we employ data related to the organisms of the fislyily
coplasmataceae, because one of these organisms is the object of the PIGS project [10].
This organismMycoplasma hyopneumoniae, is a bacterium which colonizes the res-
piratory tract of swine and is the primary agent of enzootic pig pneumonia. It causes



considerable economic losses through retarded growth, poor food conversion, and in-
creased susceptibility of pigs to infection by other organisms. The disease is one of the
most relevant occuring in pigs in southern Brazil.

One of the expected results coming from the PIGS project is to fully sequence and
annotate the genome of that microorganism. Then, in a later phase, important proteins
will be expressed aiming at developing diagnostic tests and vaccine production.

This paper is organized as follows: in the next section we briefly refer to related
work, as well as to our previous work. Then, Section 3 describes the data employed, the
symbolic and the non symbolic methods. In Section 4 we compare the results achieved.

2 Previous Work

There has been an explosion of data, information and computational tools coming out
from the diverse genome projects. NCBI and EBI alone report huge databases, mostly
not clearly structured. Here, technologies originally developed with other means in
mind can help because the motivation behind their usage is the same: the necessary
data is distributed among several sources, it is dynamic, its content is heterogeneous,
and most of the work can be done in a parallel way. In [2, 4] prototypes are described
aiming at facilitating the process of annotation. Both works are based on information
gathering: search, filtering, integration, analysis, and presentation of the data to the user.

Machine learning techniques have been widely used in bioinformatics (e.g. [5, 6].
Automatic annotation and machine learning are combined in [7]. The latter work de-
scribes a machine learning based approach to generate rules based on already annotated
keywords of the SWISS—PROT database. Such rules can then be applied to yet unanno-
tated protein sequences. Since this work has actually motivated ours, we provide here
just a brief introduction. Details can be found in [7].

Basically, the authors have developed a method to automate the process of anno-
tation regarding those keywords in SWISS—PROT, which is based on the algorithm
called C4.5 [8]. This algorithm works on training data (in this case, previously anno-
tated keywords regarding proteins). Such data is, in this case, mainly taxonomy entries,
INTERPRO classification, and PFAM and PROSITE patterns. Given these data (called
attributes), C4.5 derives a classification for a target attribute (in this case the keyword).

Since dealing with the whole data in SWISS—PROT at once would be prohibitive, it
was divided in protein groups according to INTERPRO classification. Then each group
is submitted to an implementation of C4.5 contained in the software package*Weka
Rules are generated and a confidence factor for each rule is calculated. The quality of
the rules is evaluated by calculating a confidence factor based on the number of false
and true positives, by performing a cross—validation, and by testing the rate of error
in predicting keyword annotation over the TTEMBL database. The resulting framework
(called Spearmint) can be accessed at http://golgi.ebi.ac.uk/Spearmint.

The Keywords field in the SWISS-PROT database is a very important one, used
mainly when a researcher wants to compare an unknown sequence s/he is working with,
to the sequences already deposited in the SWISS—-PROT. Unfortunately, regarding the

1 http://www.cs.waikato.ac.nz/ ml/



family of Mycoplasmataceae, a high number of proteins in SWISS—PROT are classified
as “hypothetical protein” (around 50% of them according to data obtained in February
2002). Besides, the proteins in TTEMBL, which are also potential targets for compari-
son, are poorly annotated regarding the Keywords field (in the data we collected, 378
out of 1894 had no keyword at all, while 896 had no attributes).

Therefore, the good results achieved in [7] have motivated us to conduct a simi-
lar study aiming at automated rule annotation of keywords for the Mycoplasmataceae
universe of proteins. This way, we can extend the annotation in both TrEMBL and
SWISS-PROT for internal use in the PIGS project. These results are reported in [1].
Here we give just a brief introduction for the sake of clarity.

We have initiated by reproducing the approach described in [7]. Soon we realized
that since we reduced our universe to the proteins relatédytmplasmataceae we
could do better by modifying their method. Indeed, this method is based on a partition
of the SWISS—PROT proteins by INTERPRO Accession Number (henceforth IPR Acc).
Thus, rules (to recommend or not the annotation of a keyword) are genéatath
IPR Acc (when applicable) and, after that, they are ranked by a confidence factor (CF).
This may be confusing for the user. For instance, when two or more rules have close
CFs, but nonetheless recommend contrary annotation (i.e. one does recommend the
annotation while another does not), how should the user decide?

The approach we use in [1] is similar to that reported in [7] but we consider all
applicable IPR Acc’s as attributes at once. Of course, taxonomy is no attribute in our
case since we are dealing with a single family, namelyMiyeoplasmataceae.

3 Methods

3.1 Data

The data collection was done in February 2002 by means of the SRS web site (version
6 at www.srs.ebi.ac.uk). Basically, we have performed a query on the SWISS—-PROT
database in which the Organism field includdgicoplasmataceae but the Keyword

field does not include the word “hypothetical” or “Complete proteome”. This was done
to eliminate hypothetical proteins from the training set.

Also, we have created a view for the SWISS—PROT database which associates this
database with the IPRmatches (through a personal communication with SRS maintain-
ers, we found out that the association with the INTERPRO was not working properly
so we have used IPRmatches instead, which provides the required data as well). This
view included:

— for SWISS-PROT: AccNumber, keywords
— for IPRmatches: IPR AccNumber

The number of proteins related to tivycoplasmataceae family was 722 (Feb.
2002) while there were around 393 IPR Acc’s. Around 84 keywords appeared in the
data. The next step was the retrieving process, which is very easy in SRS. This has
generated a table (fields are delimited by “;”) partially depicted in Figure 1.



P47695;Cell divisionATP-bindingTransmembraneHydrolaseM etal | oproteaseZinc;| PR000642| PRO03593| PRO039591 PRO03960;
P75120;Cell divisionATP-bindingTransmembraneHydrol aseM etal | oproteaseZinc; P75120; PRO006421 PR003593| PR0039591 PRO03960;
P47631Q49371;Hydrol aseAminopepti daseM anganese; | PRO00819;

SWISSPROT:AMPA_MY CPN;P75206;Hydrol aseAminopepti daseM anganese; | PRO00819;

PA7707;Hydrol aseAminopepti daseM anganese;| PRO00819;

Fig. 1. Data Extracted from SRS

3.2 Symbolic Approach

This subsection describes the symbolic approach which uses data generated as ex-
plained before as input for the CN2 algorithm[3]. CN2 is a rule inductor algorithm
developed by Peter Clark. It constructs simple, comprehensible production rulesin do-
mains where noise may be present. The rules produced by CN2 assume the form ”if
jcondition¢, then class’. The CN2 agorithm consists of two main procedures. a search
agorithm performing abeam search for good rule and acontrol a gorithmfor repeatedly
executing the search. During the search procedure, a rule is constructed by searching
for aconditionthat coversalarge number of examples of an arbitrary class C and few of
other classes. Having found a good condition, the algorithm removes those examples it
coversfrom the training set and adds the rule ”if jcondition¢, then predict C” to theend
of the list. For the remaining set, a new rule is constructed, until no further complexes
of sufficient quality are found.

A typicd file is partialy depicted in Figure 2. The firsts lines indicate how the
attributes are mapped for the 722 proteins (in this case we have 393 lines). The last of
these is the target attribute (keyword). Finally, there come the 722 lines. Each of these
is formed by the presence or absence of IPR characteristic separated by space.

IPRO0O0005: yes no;
IPR0O00023: yes no;
IPR0O00032: yes no;
IPRO00037: yes no;
IPR004821: yes no;
class: Zincfinger no;
@

NO N0 NO N0 N0 NO NO NO NO... N0 yes ... NOo;

Fig. 2. Input to the CN2 Algorithm — Class Zincfinger

To save time, we have generated the CN2 rules only for the keywords which appear
in valid lines of the test data set (i.e. those from TrEMBL). A valid line has to have at
least akeyword and at least an attribute IPR. A ruleisdepicted in Figure 3. It ispossible



to compare the structure of these rules to the similar ones produced by the Spearmint
tool at the web site given in Section 2. Once the rules are generated, we have proceeded
to the evaluation of the quality of these rules. Of course we avoid performing the test
on the data set which was used to generate the rules. The obvious candidate to test data
set is the database TTEMBL, which has a structure similar to SWISS-PROT. The main
differenceis that TTEMBL has a poorer annotation. However, the existing annotation
of keywords is enough for evaluation purposes. The data was extracted from TrEMBL
in the same way already explained regarding the extraction of data from the SWISS-
PROT database (i.e. query, view and save procedures as explained). Many proteins do
not have either a keyword or an attribute. Therefore, these lines were deleted.

IF  1PR001241 =no
AND IPR002936 = yes
THEN class = Zincfinger [8 0]

IF  1PRO00191 = yes
THEN class = Zincfinger [3 0]

Fig. 3. Example of An Output from CN2 — Class Zincfinger

For those remaining, the following procedure of evaluation was performed: if the
proteinis annotated with keyword K, then the rulefor K (generated by CN2) is checked.
For instance, take the rule in Figure 3. It says that if the protein has the INTERPRO
classification 1PR002936 and does not have the IPR001241, then it should have the
keyword “Zincfinger”.

This procedure was repeated for each protein from the validation set (948 proteins
from TrEMBL database). Figure 4 shows the accuracy per keyword gotten by each
technigue - CN2 and ANN. The accuracy estimation is calculate based on TP (True
Positives, which means the number of examples correctly covered by therule) plus TN
(true negative, which means the number of examples correctly discarded by the rule)
divided by the total number of instances from the validation set. The CN2 algorithm
correctly predicted around 99% of the given keyword which is avery good result.

3.3 Non-Symbolic Approach

The data which was used was gathered the same way as for the symboalic tools. With
the data sets defined, we have proceeded the training neural networking stage. The
artificial neural network (ANN) model chosen was Multilayer Perceptron (MLP) with
Resilient Backpropagation (Rprop) training algorithm [9]. This choice was done due to
the philosophy used in the learning process and it effective and efficient training. The
basic network architecture configuration was composed with 393 neurons in the input
layer, 40 neuronsin the hidden layer and 84 neuronsin the output layer. It was stipul ated
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Fig. 4. Accuracy for Each Class and Over All Classes



that the neural networks would be considered trained if they reached either the mean
square error of (1% 10~3), or the maximum of 50 ephocs, or the gradient threshold of
(1% 1078). The structure and the parameters of the trained neural networks had been
stored to be used in the validation stage, where samples of test were propagated and the
outputs eval uated.

Inafirst stage, the set of 722 samplesto training stage was used; the neural network
was considered trained when the mean square error was reached (in 29 ephocs). In the
validation of the trained neural model, a set with 948 samples was used.

In a second stage, we have used a training set of 948 samples; the network was
considered trained when the maximum limit ephocs was reached; the mean square error
stabilized in 2.6 103,

The trained ANN classifier is a single blackbox that maps each protein simulta-
neously onto the various keywords. In our experiment, 393 IPR Acc's were used as
possible attributes for identifying a protein and 84 keywords were used as the domain
for annotation.

The results are shown in Figure 4. In fact, we have considered the standard data of
a contingency table: Acceptance Precision, Rejetc Precision, and Overall Accuracy as
metrics of efficiency.

4 Comparison

The ANN is more compact and normally more efficient. Besides, it generates the rules
after asinglefile containing al the data. However, as one of our goalsisto integratethis
methodsin an environment for annotation of ORFs and proteins, it isimportant that the
end user be able to “see” and analyse the rules generated. The biggest disadvantage of
ANNSsregardingthisisthefact that the rulesare not straightforward to the end user. One
the other hand, the symbolic method was not able to cope with all entrances at once,
that means, we had to generate rules one by one, i.e. one for each keyword. Thisis an
important bottleneck in the process, of course. However, since the rules are supposed to
be generated only once?, this is not a significant shortcoming.

5 Conclusion

The main objective of this work was to carry out a comparison between symbolic and
non—symbolic approaches to the task of automated annotation of the ” Keywords’ fi eld
of SWISS-PROT. The comparison focused, on the one hand, on the accuracy of the
generated model in predicting the correct keyword for previous unknown data. On the
other hand, the compactness of the model was considered as an important element for
comparison, once the symbolic approach requires the generation of a specific model for
each keyword, while the non-symbolic approach generates just one model for fulfilling
the task. Our results show the tradeoffs between both approaches. As the symbolic
approach models each keyword separatedly, it can learn better each class. On the other

2 Infact, if we consider the ever changing nature of the databases, we should speak of aperiodic
updating of the rule generation. However, this process can be done with low frequency.



hand, this leads to a considerable number of models, because in practical applications
the number of keywords can reach a hundred or more. On the other hand, the neura
network approach produces a very compact model, consisting in just one classifier with
multiple outputs. However, the neural network model must consider all data in once,
what leads to a dightly worse performace than the symbolic approach.
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