

Automatic Construction of Large Readability Corpora

Jorge Alberto Wagner Filho, Rodrigo Wilkens and Aline Villavicencio

{jawfilho,rodrigo.wilkens,avillavicencio}@inf.ufrgs.br

1. Introduction

Text readability assessment measures how easy it is for a reader to understand a text, e.g. for student reading material selection (Petersen and Ostendorf, 2009) and text simplification (Aluisio et al., 2010).

- ▷ Viewed as a text classification task (Petersen and Ostendorf (2009), Vajjala and Meurers (2014)).
- > However: lack of availability of reliably annotated data, and possibly subjective task.

This work presents a framework for the automatic construction of large Web corpora classified by readability level, comparing the performance of different classifiers for the task of readability assessment.

- ▶ Hypothesis (H1): the use of deeper (syntactic) attributes contributes to a better classification than just shallow attributes and
- ▶ Hypothesis (H2): a classifier trained on a reference annotated corpus is able to capture significant linguistic differences among classes.

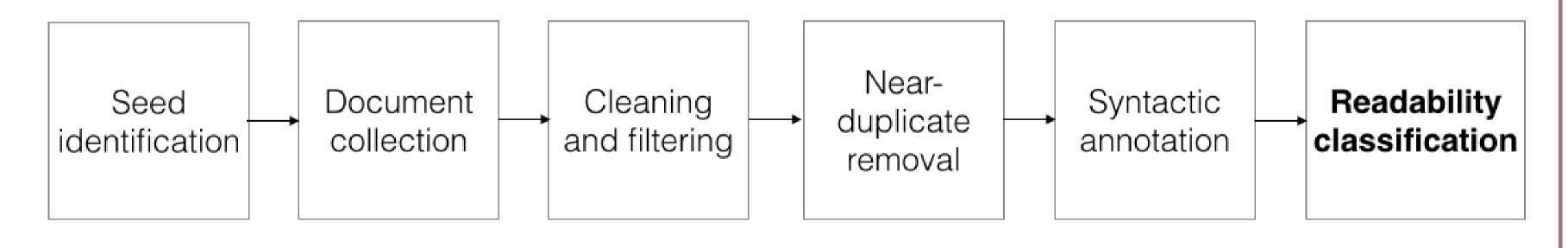
Evaluation focuses on **Portuguese and English** corpora.

2. Materials and Methods

Corpora:

Language	Corpus	Classes	Documents	Sentences
	Wikilivros	3	78	38,865
PT	ESOC	2	130	21,667
	PSFL	2	259	3,075
	ZH	3	279	7,127
	BrEscola	2	9,083	200,132
EN	Wikibooks	4	35	65,704
	SW	2	4,480	515,230
	BB	3	2,385	101,149

Wide range of classifiers to evaluate any possible algorithm bias in the task:


> SMO, SimpleLogistic, DecisionStump and RandomForest from Weka, using 10 fold cross-validation.

Features:

- ▶ Varying types of information: sub-categorization, readability formulas, text descriptors and corpora-based.
- ▶ Varying depth of processing: shallow (counts and lists), medium (POS) tags) and deep (parses and WordNet information).
- □ Total of 134 for Portuguese and 89 for English.

3. Web corpus collection framework

⊳ Web as a Corpus crawling extends Bernardini et al. (2006) with a readability classifier.

- ▷ 6k random pairs of average frequency words used as input to a search engine API \rightarrow 60k URLs expanded by BFS in two levels \rightarrow 24 million seeds for Brazilian Portuguese.
- \triangleright Final corpus with 1.56 billion tokens and 4.15 million types (TTR 0.0026).
- ▷ All documents annotated with Palavras parser.

4. H1 Feature analysis

- ▷ Evaluation based in the average features rank with information gain.
 - Classical formulas relevant for English but not for Portuguese;
 - Textual descriptors informative for both languages;
 - For both languages shallow features outperform medium and deep features.

5. H2 Model performance analysis

- ▷ The linear logistic regression algorithm got best results for both languages.
- ▶ Intermediary classes more challenging.
- > Shallow features informative for classification with low computational cost.
- ▶ In over 62% of the cases combination of shallow features with deep features brought increase in performance.
- ▷ As classifiers have complementary performance, use agreement among them for more generalisable classification.

6. Web corpus classification

- □ Using SimpleLogistic classifier, trained in two class scenarios with all features.
- > All classifiers resulted in **significant differences** between simple and complex documents for all sets of features of varying depth.
- \triangleright The **agreement** among 3 classifiers (12.5% of the corpus as simple and 8.8% as difficult) brought increase in performance.

Category	PSFL train	PSFL	ZH	Wikil.	3-model agreement
Shallow	0.15	0.15	0.08	0.11	0.27
Medium	0.30	0.06	0.09	0.09	0.17
Deep	0.29	0.10	0.10	0.16	0.23
Subcat	0.07	0.03	0.06	0.05	0.10
Formulas	0.19	0.06	0.09	0.08	0.20
Descriptors	0.16	0.62	0.27	0.11	0.82
C-based	0.09	0.04	0.01	0.12	0.09

7. Conclusions and Future work

- ⊳ Hypotheses **H1** and **H2** were validaded. **H1**: using deeper (syntactic) features improved performance in most cases. **H2**: significant differences found between classes in automatically readability assessed Web corpus.
- ▶ Using classifier agreement resulted in stricter classification, less prone to over-fitting.
- ▷ Collected Web corpus available at http://www.inf.ufrgs.br/pln/wiki/index.php?title=BrWaC
- ▶ Future Work: new analysis, including a manual sample assessment by linguists; approach can be straightforwardly expanded for other languages.