Portuguese Native Language Identification

Shervin Malmasi¹, Iria del Rio², Marcos Zampieri³

¹Harvard University, USA ¹Amazon Inc., USA ²University of Lisbon, Portugal ³University of Wolverhampton, UK

1 Introduction

2 Dataset

Image: A matrix of the second seco

э

- Native Language Identification (NLI) is the task of automatically identifying the native language (L1) of an individual based on their foreign or learned language production (L2).
- Based on L1 interference or language transfer.
- Applying machine learning classifiers to (annotated) learner corpora/L2 data.
- Most work has been done on English. A few papers on other languages: Arabic, Chinese, Finnish, Norwegian.
- No papers published on Portuguese thus far.

- Engineering and NLP:
 - Author profiling.
 - Forensics.
 - Tailoring NLP tools to non-native speakers.

Language learning:

- Studies in second language acquisition.
- Educational NLP applications.

- Named entities play an important role. Annotation and other strategies can help reducing them for linguistic analysis.
- NLI can be used to study L1 interference (Bykh and Meurers, 2014).
- Positive vs. negative language transfer.
- Examples included in the top 10 most informative features (unigrams and bigrams) for English L2 according to Gebre et al. (2013).
 - Arabic L1: advertisment, statment
 - French L1: exemple, developped
 - Italian L1: infact
 - Spanish L1: necesary, an specific, diferent

- Several studies on English and a few other languages (Jarvis, 2013; Bykh and Meurers, 2014; Malmasi and Dras, 2016).
- Two shared tasks have been organized at BEA:
 - **NLI 2013**¹ (Tetreault et al. 2013): TOEFL 11 dataset (Blanchard, 2013). It contains 11,000 TOEFL essays written by speakers of each of the following L1s: Arabic, Chinese, French, German, Hindi, Italian, Japanese, Korean, Spanish, Telugu, and Turkish.
 - **NLI 2017**² (Malmasi et al., 2017): Same 11 L1s as the 2013 edition. 11,000 essays written by speakers of each L1, orthographic transcriptions of 45-second English spoken responses, and iVectors (1,000 instances for each of the eleven native languages).

²https://sites.google.com/site/nlisharedtask/home

PROPOR 2019

¹https://sites.google.com/site/nlisharedtask2013/home

- In previous work we compiled and annotated a dataset called NLI-PT (del Río et al., 2018).
- Written production of learners of European Portuguese.
- Here we use a sub-set of the NLI-PT dataset with texts for five L1 groups: Chinese, English, German, Italian, and Spanish
- L1s with the greatest number of texts in NLI-PT
- Sub-set balanced in terms of proficiency level by L1, texts and tokens

L1	Texts	Tokens	Types	TTR
Chinese	215	50,750	6,238	0.12
English	215	49,169	6,480	0.13
German	215	52,131	6,690	0.13
Italian	215	51,171	6,814	0.13
Spanish	215	47,935	6,375	0.13
Total	1,075	251,156	32,597	0.13

Table: Distribution of the five L1s in the NLI-PT datasets in terms of texts, tokens, types, and type/token ratio (TTR).

(日) (周) (三) (三)

- Texts in NLI-PT are automatically annotated using available NLP tools at two levels: Part of Speech (POS) and syntax
- Simple POS: only type of word (LX tagger)
- Fine-grained POS: type of word+morphological features (Freeling)
- Constituency analysis (LX parser)
- Dependency analysis (DepPattern)

- Standard multi-class classification approach. Linear Support Vector Machine and feature vectors are created using relative frequency values, in line with previous NLI research (Malmasi and Dras, 2017).
- A single model is trained on each feature type. We then combine all our features using a mean probability ensemble.
- We report our results as classification accuracy under *k*-fold cross-validation, with *k* = 10.

- Function words: a list of 220 Portuguese function words.
- POS Tags: arranged in n-gram size 1 to 3.
- CFG production rules.
- Traditional character and word n-grams were not used due to thematic bias.
- Orthographic errors and named entities not taken into account.

Feature Type	Accuracy (%)		
Random Baseline	20.0		
Function Words	38.5		
POS 1-grams	46.3		
POS 2-grams	52.8		
POS 3-grams	44.9		
CFG Production Rules	43.3		
Ensemble Combination	54.1		

Table: Classification results under 10 fold cross-validation (accuracy is reported).

Image: A matrix of the second seco

æ

Class	Precision	Recall	F1-Score
CHI	0.571	0.796	0.665
ENG	0.507	0.326	0.397
GER	0.542	0.547	0.545
ITA	0.549	0.577	0.562
SPA	0.510	0.460	0.484
Average	0.536	0.541	0.531

Table: Ensemble system per-class results: precision, recall and the F1-score are reported.

æ

(日) (周) (三) (三)

Figure: Confusion matrix for our ensemble system.

PR	ΩP	OR.	20	19
	<u> </u>	010	20	12

- First study on Portuguese NLI.
- Best results obtained using the ensemble system.
- Best performance on Chinese L1.
- Delexicalized representation.

- Feature analysis.
- Brazilian Portuguese NLI. Anyone?
- Annotation accuracy.
- Proficiency levels.
- Thematic bias.

Portuguese Native Language Identification

Shervin Malmasi¹, Iria del Rio², Marcos Zampieri³

¹Harvard University, USA ¹Amazon Inc., USA ²University of Lisbon, Portugal ³University of Wolverhampton, UK

- If you are interested in offensive language and hate speech please check the **SemEval 2019 Task 6**. Training data available in October.
- https://competitions.codalab.org/competitions/20011
- OffensEval: Identifying and Categorizing Offensive Language in Social Media
 - Sub-task A: Offensive language identification;
 - Sub-task B: Automatic categorization of offense types;
 - Sub-task C: Offense target identification.