A Fully-Integrated CMOS Class-AB Power Amplifier

Mateus Bernardino Moreira and Fernando Rangel de Sousa
Federal University of Santa Catarina - UFSC
Radio Frequency Integrated Circuits Research Group - GRF
Sumario

• Introduction
• Proposed Topology
• Design Methodology
• Simulation Results
• Layout
• Conclusion
Introduction

A Power Amplifier (PA) is a circuit designed for delivering high power signal to a load, while keeping the efficiency as high as possible. Trends in the design of these circuits include its full integration in CMOS technologies and addressing the trade-offs between supply voltage, output power, power efficiency and linearity.
Proposed Topology

Fig. 1 Topology of Proposed PA
Design Methodology

Load pull

Fig. 2 Load Pull Contours example for 2.4GHz
Design Methodology

Stability

\[K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2|S_{12}S_{21}|} \]

\[\beta_{1f} = 1 + |S_{11}|^2 - |S_{22}|^2 - |\Delta|^2 \]

\[\Delta = S_{11}S_{22} - S_{21}S_{12} \]
Efficiency

\[PAE = \frac{P_{out} - P_{in}}{P_{DC}} \]

\[n = \frac{P_{out}}{P_{DC}} \]

\[n_{AVG} = \frac{P_{out, AVG}}{P_{DC, AVG}} \]
Simulation Results

Fig. 3 Spectrum of Power Output

- Power at 2.4 GHz = 17.57 mW
- Power at 4.6 GHz = 71.17 uW
- Power at 7.2 GHz = 12.46 uW

Fig. 4 Curve of S-parameters analysis for (S_{11})

- BW = 112 MHz
- S11 at 2.4 GHz = -20.38 dB
Simulation Results

Fig. 5 Stability factor K

Fig. 6 Alternative stability factor (β_{1f})
Simulation Results

Fig. 7 Curve of 1 dB Compression Point

1st Order freq = 2.4 GHz
Input Referred 1dB Compression = -11.8340 dBm
Simulation Results

Table 1- MonteCarlo Analysis

<table>
<thead>
<tr>
<th></th>
<th>σ</th>
<th>μ</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Power</td>
<td>1.74 mW</td>
<td>17.35 mW</td>
<td>442</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>1.65 mW</td>
<td>41.92 mW</td>
<td>442</td>
</tr>
<tr>
<td>K</td>
<td>0.032</td>
<td>1.70</td>
<td>442</td>
</tr>
<tr>
<td>β_{1f}</td>
<td>0.004</td>
<td>0.85</td>
<td>442</td>
</tr>
<tr>
<td>S_{11}</td>
<td>1.034 dB</td>
<td>-20.278 dB</td>
<td>442</td>
</tr>
<tr>
<td>Efficiency</td>
<td>2.67 %</td>
<td>41.4 %</td>
<td>442</td>
</tr>
</tbody>
</table>
Simulation Results

Table 2- Corners Analysis

<table>
<thead>
<tr>
<th>Corners</th>
<th>Output Power (mW)</th>
<th>DC Consumption (mW)</th>
<th>K</th>
<th>β_{1f}</th>
<th>S_{11} (dB)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>17.57</td>
<td>42.08</td>
<td>1.7</td>
<td>0.856</td>
<td>-20.38</td>
<td>41.75</td>
</tr>
<tr>
<td>ff</td>
<td>21.64</td>
<td>46.02</td>
<td>1.652</td>
<td>0.856</td>
<td>-22.09</td>
<td>47.02</td>
</tr>
<tr>
<td>ss</td>
<td>13</td>
<td>37.53</td>
<td>1.765</td>
<td>0.855</td>
<td>-18.75</td>
<td>34.63</td>
</tr>
<tr>
<td>fff</td>
<td>23.03</td>
<td>47.4</td>
<td>1.638</td>
<td>0.855</td>
<td>-22.8</td>
<td>48.58</td>
</tr>
<tr>
<td>ssf</td>
<td>12.03</td>
<td>36.57</td>
<td>1.779</td>
<td>0.855</td>
<td>-18.42</td>
<td>32.89</td>
</tr>
</tbody>
</table>
Fig. 8 Power Amplifier Layout
Conclusion

A fully-integrated 2.4 GHz power amplifier implemented in standard CMOS 0.18-µm technology was presented. By using a driver and power stage as well as on-chip input and output matching networks, the presented PA achieves high gain and high output power. It can submit an output power of 12.45 dBm with 41% of drain efficiency, in the power stage, for a input power of -11.42 dBm. The corners and montecarlo analysis showed good accuracy with the typical simulations.
Thanks

Questions?