ASCEND: A STANDARD CELL LIBRARY FOR SEMI-CUSTOM ASYNCHRONOUS DESIGN

Matheus Moreira, Carlos Oliveira, Ney Calazans

matheus.moreira@acad.pucrs.br, carlos.oliveira.004@acad.pucrs.br, ney.calazans@pucrs.br
Contents

- Introduction
- Asynchronous Circuits
- The ASCEnD Flow and Library
- Conclusions and Future Work
Introduction

- Evolution of technologies used to fabricate ICs
 - SoCs, VLSI circuits
 - Limitations of the synchronous paradigm

- Asynchronous circuits
 - Possible solution
 - ITRS
 - Not recent paradigm
 - Limited research, limited quality
Asynchronous Circuits

- No clock signal to control sequencing of events
- Synchronization, communication and operation employ handshaking
 - Registers clocked only when and where needed!!

![Diagram of asynchronous circuits with registers and control signals](image)
Asynchronous Circuits

- **The C-element**
 - Fundamental in async.
 - Event synchronization

\[Q = (A \times B) + (A \times Q) + (B \times Q) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(Q_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(Q_{i-1})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(Q_{i-1})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Asynchronous Circuits

- Delay-Insensitive Minterm Synthesis (DIMS)
 - Semi-custom Design
 - C-Elements and OR gates

- MUTEXs
 - Mutual Exclusion Elements
 - Electric race

\[
Aa = \overline{Rb} \lor Ra \\
Ab = \overline{Ra} \lor Rb
\]
Null Convention Logic (NCL)
- Theseus Logic, Inc.
- Low power, high speed, high density, fault tolerance
- Semi-custom Design

NCL Gates
- Threshold Function with positive weights + hysteresis
 - m-of-n for logical 1s
 - n-of-n for logical 0s
- 2-of-3

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Q_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Q_{i-1}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Q_{i-1}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Q_{i-1}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The ASCEnD Flow and Library

- ASCEnD Flow \(\rightarrow\) Used for generating over 500 C-Elements (SoCC’11)
The ASCEnD Flow and Library

- **ASCEnD-ST65**
 - STMicroelectronics 65nm CMOS
 - C-Elements
 - Metastability Filters X1, X2, X3 and X4
 - 14 NCL Primitives (X1, X2, X3 and X4)
Conclusions and Future Work

- Vertical Integration of ASCEnD Flow with CMOS Technologies
- Parameterizable Design Flow
- Future
 - ASCEnD-IBM130
 - Integrated with ARM/ARTISAN Libraries
 - Compatible with MOSIS
 - Development of new tools
THANK YOU!

QUESTIONS?