XXVII SIM - South Symposium on Microelectronics 1

PARALLEL MOTION ESTIMATION IMPLEMENTATION FOR DIFFE ~ RENT
BLOCK MATCHING ALGORITHMS ONTO GPGPU
Eduarda Monteiro, Marilena Maule, Felipe Sampaio, Gaudio Diniz, Bruno Zatt,
Sergio Bampi
{ermonteiro, mmaule, fmsampaio, cmdiniz, bzatt, pg@inf.ufrgs.br

Federal University of Rio Grande do Sul (UFRGS), Pdo Alegre, Brazil

Abstract

This work presents an efficient method to map Motion Estimation (ME) algorithms onto General Purpose
Graphic Processing Unit (GPGPU) architectures using CUDA programming model. Our method jointly
exploits the massive parallelism available in current GPGPU devices and the parallelization potential of ME
algorithms: Full Search (FS) and Diamond Search (DS). Our main goal is to evaluate the feasibility of
achieving real-time high-definition video encoding performance running on GPUs. For comparison reasons,
multi-core parallel and distributed versions of these algorithms were developed using OpenMP and MPI
(Message Passing Interface) libraries, respectively. The CUDA-based solutions achieve the highest speed-up in
comparison with OpenMP and MPI versions for both algorithms and, when compared to the state-of-the-art,
our FSand DS solutions reach up to 18x and 11x speed-up, respectively.

1. Introduction

Among all innovative tools featured by the lateistee coding standards, e.g. H.264/AVC [1], the Milt s
provides most of compression gains by reducingdgh®oral redundancy between frames. ME employskear
algorithms to find in the reference frames (thevjmasly reconstructed frames) the most similar gagito the
current frame. Full Search (FS) ME algorithm is wnaas optimal since it finds the best match by astiaely
searching in the reference frames. Typically thetlmatch is defined considering the Sum of Absolute
Differences (SAD) between blocks [2]. To reduce thember of SAD calculations, the search may be
constrained to a search area (a region in the eneder frame). However, the FS still requires inadas
computational effort. To reduce this complexitystfanotion estimation algorithms have been propdggd
Diamond Search (DS) [3] is a fast ME algorithm thighificantly reduces the ME complexity by redurihe
amount of SAD calculations while keeping the vidpality near to FS performance. The DS employs two
search patterns: the Large Diamond Search Patt&8K), with 9 SAD calculations, and the Small Diamo
Search Pattern (SDSP), with 4 SAD calculationdif@al refinement.

These Motion Estimation algorithms present a higheptial of parallelization and are proper for
implementation on parallel architectures. This ptitd may be exploited by using the massively gakr&PUs
(Graphic Processing Units) available in most of¢therent computers. Using CUDA (Compute Unified [2ev
Architecture) [4], proposed by NVIDIA in 2007, thptovides a programming API for GPUs, it is possitd
use the GPUs for general purpose processing.

Different video encoding software solutions haverbeeveloped, e.g. JM H.264 reference software [7],
x264 free software library [8]. However, they have nBWBacceleration support or use proprietary libsafo
this purpose (the case of x264). Research worksathato accelerate video encoding using GPU cafoined
in the literature. The authors focus specifically the implementation of distinct ME algorithms or@®U,
which is directly related to the scope of this wofthese solutions consider the implementation G&int
versions of ME algorithms considering variable llsze and multiple reference frames.

Chenet al. [9] presented a ME FS algorithm for GPU impleraéioh using CUDA architecture. This work
suggests the ME in different steps to achieve pigfallelism through and low data transference betw@PU
and GPU memories. The work considers variable bkizks 16x8, 8x16, 8x8 — 8x4, 4x8, 4x4) and spends
large processing time to decide the size of thelbthat will be used. Liret al. [10] proposed an algorithm
based on a multi-pass encoding technique for thel§@&ithm. This solution considers four Motion BEstion
loops. The main drawback of this approach is théopmance limitation imposed by multiple iteratisteps for
SAD calculation and SAD values comparisons. &ed. [11] presents three alternatives of ME in GPUebas
on FSalgorithm: Integer Accuracy, Fractional Accuracydamteger Accuracy considering three reference
frames in parallel. In this work four loops werensmered. Chenget al. [12] suggest block-based ME
techniques, such as FS, TSS (Three Step SearcB)(Fesir Step Search) and DS. The strategy appli¢iis
work is based in use as many threads as possibkctderate the computation.

By exploring the maximum inherent parallelism poi@ of FS and DS and the available parallel
processing capability of recent GPUSs, this worlsprgs an efficient method to map FS and DS algostbnto
GPGPU architecture using CUDA programming modeliragnto achieve real time processing (up to 30 frame
per second — 30fps) in the entire video encodingther, for comparison purpose, we compared the £UD
solutions with a parallel implementation for mudtre GPP using OpenMP library [5] and with a dstted
implementation to run onto cluster/grid machinesmwgisMessage Passing Interface (MPI) library [6].eTh

2 XXVII SIM - South Symposium on Microelectronics

performances of our GPU solutions are extensivelygared, using real video sequences. Our GPU sphuti
are also compared to state-of-the-art ME implentmts. onto GPUs. This paper is organized as folldws
Section 2, are described the ME FS and DS impleatiens on parallel and distributed architecturexti®n 3
shows the results, analysis, and comparisons wite-sf-the-art and between ME algorithms. Secton
concludes the work.

2. Motion Estimation Parallelization

By analyzing the computational complexity introdddsy ME, this work proposes a highly parallelizable
solution for exhaustive and fast algorithms on asneely parallel platform, the video graphic caf@®U).

The parallelization strategy for the algorithms @8l DS) proposed in this work is presented inffig.

Initially, the video sequence is loaded from a YWMideo file and, according to the processing ordlee,
current frame and the reference frames are sehetGPU device.

Video Sequence: CIF, HD720p, HD1080p

I Frame Separation: Reference and QOriginal I

SAD Values Calculation

e

gdaig

Gl 2% NI
Tdeis
Yan2 O1NO I

Motion Viectors

Fig. 1 — Proposed ME Algorithms Flow.

The parallel ME is composed by two stef$:SAD values calculation, ar{@) comparison of SAD values
(the lowest SAD is chosen). Finally, the motiontees are generated for each current frame andfénaied
back to CPU.

2.1. Motion Estimation Parallelization onto CUDA Architecture

The hardware platform used in this work is compdsgd CPU and a NVIDIA GPU that supports CUDA.
There are two communications between CPU and GHRidtin algorithms presented (FS and Dy)eference
and current frames are sent to GPU from CP)Ugsulting data (motion vectors and SAD valuesinfi@PU to
CPU. The ME programming model considers the CUD&drichy as shown in the fig. 2.

Image Referenge;Frame CurrentiFrame P
IH 1 "

1
H
Kernel

L 1
[33 52

g
Y
Block (0,0) | | Block (0,5) LILEESAE)

vand-Ndd (.7

Block (1,0) == Block(1,5)

Grid Blocks Thread

Fig. 2 — CUDA Programming Models — Algorithm Alld@n.

The ME parallelization in GPU is based in only dwenel (parallel procedure executed in GPU). It is
responsible for execution of the ME block matchaigorithms onto CUDA (FS and DS): the SAD values
calculation and the SAD values final comparisone Tgarallelization of FS algorithm onto CUDA was
performed by considering the following entiti€s: thread: each thread is responsible for the computation of
one 4x4 video block: thedx4 video block is the basis for the block matchingmpion, since it allows finer
motion granularity compared to thmacroblock (16x16 pixels); (ii) block: the size of the blocks in this
application is variable according to the size & #earch area in FS algorithm (see fig. 2 - FS) @nygrid:
the grid size is related to the number of currdothks that compose the video. The DS parallelinmatato
CUDA requires some changes in the programming mdidehread: each thread that composes the GPU block
is responsible to execute the ME for one curreatll(see fig. 2 - DS)(ii) block: the block size refers to
maximum number of threads that the graphic camhati(iii) grid: the grid size is also related to the number of
current blocks that compose a image.

2.2. ME onto Multi-core Processors and Distributed Platbrms

To establish a comparative basis for our CUDA-baakpbrithms, we also implemented a sequential
version, a parallel OpenMP-based version [4] amiisaibuted and parallel MPI-based version [5] ko ME
FS and DS algorithms. Both OpenMP and MPI versiis and DS) implement a 4x4 block comparison in
each thread (as well as the algorithm flow in f8). Then, these implementations are based on two

XXVII SIM - South Symposium on Microelectronics 3

communications(i) one broadcast of the current blo¢k) one broadcast of the reference frame. Finally, the
SAD values are compared to define tiest match.

3. Experimental Results

In this section we present the experimental foeR& DS ME algorithms comparing CUDA, OpenMP and MPI
solutions. These tests were performed using thigowresolutions (CIF, HD720p and HD1080p) for skar
areas ranging froh2x12 pixels t0128x128 pixels, considering a current blockd# pixels size.

The experimental setup features a NVIDIA GTX480 @GHz (480 CUDA cores) connected via PCI-
Express interface through an Intel Core2Quad Q9858.82GHz CPU. For MPI processing theu cluster
was used (Dell PowerEdge 1950). It is composed4dual-CPU nodes and four cores per CPU (Intel Xeon
CPU E5310 @1.60GHz). This infrastructure is parthefGrid5000 since 2010 [12].

Fig. 3 shows the speed-up achieved in relatioheésstquential implementation for both algorithns énad
DS). For these resul®ue Sy video sequence (HD1080psolution) was used. Four nodes and eight CPUs (32
processes) are used in MPI version, while fouratiseare used in the OpenMP version.

For FS, the speed-up obtained by CUDA version mitesea linear growth in relation to the size of the
search area, while for OpenMP version the speed-kppt constant. The obtained speed-ups of CUDR| M
and OpenMP versions afi®4x, 13x and 2x, respectively. CUDA version achievedldx and 77x speed-up
compared to MPIl and OpenMP, respectively.

DS algorithm presente@2x, 4x and 2x speed-up for CUDA, MPI and OpenMP versiorsspectively.
Speed-ups are calculated in relation with the tesnibtained with the sequential version executi@dDA
version achieved a X&peed-up in relation to MPI ari@1x compared to OpenMP.

200 200
- ’/_,_./_’_‘ e
100 100
50 >
O e ' ’ " . — 12 16 20 24 32 36 48

12 16 20 24 32 36 48
Search Area (pixel) [n*n]

Speed-up

——CUDA —m—NMPI OpenMP
(@Fs (b) DS
Fig. 3 —HD1800p ME (a) FS and (b) DS - Speed-up Results (CU8ApenMP vs. MPI vs. Sequential).

Fig. 4 shows the timeline of the CUDA implementatieexecution, including the four steps that imply t
total time execution this algorithm in GPU: datbbedtion, data transfer from CPU to GPU, kernelcexien
and data transfer from GPU to CPU.

B -iccation B cru-— cru [0 «ernel [cru— cru
* Y v - = o Y 3k + -

Frame 1 Frame 2 Frame 2 P Frama M

Fig. 4 —Timeline - DS Execution.

Analyzing fig. 4 we observe that the allocationdifior DS represents 83.78% of the total ME timé¢hef
first frame while the CPU-GPU data transfer, kemedcution and GPU-CPU data transfer represeB87%2,
0.89% and 3.22%, respectively. For FS the allooasipends 46.62% of total encoding time of the firsine
(26.99%, 0.89% and 25.49% for the other stepsectisely).

Since the allocation is the phase where the int&RdJ memory is reserved for the required ME refeee
data, this step is only necessary in the beginointipe video encoding. Since this initial latensyaimortized
along the frames processing, the execution timerpate will be represented in this work only t)ythe CPU
to GPU transfer timgji) the kernel execution time afidi) the GPU to CPU results transfer time.

Tab. 1 presents the performance results of thegsexp implementations for the three target resoistio
These results consider only the ME execution time.

Tab 1 - ME Performance Results

CIF HD720p HD1080p
DS (fps) 1754 fps 310 fps 158 fps
34 fps 33 fps 43 fps
FS(fps) | T
48x48 24x24 12x12

The ME FS achieves real time processing due the leigel of parallelization employed in our approach
Since the FS analyzes all possible candidate bldbkssearch area is determinant for the performaRor
larger resolutions, the real time processing iseaeu using smaller search area dimensions, asibe seen in
tab. 1. The ME DS surpasses the real time proagésirall tested video sequences. These resultsidenthe
maximum number of iterations necessary to the dlgurconverge. Fig. 5 presents the total time ef DS
computation for CUDA implementation when comparethhe minimum real time requirement, 30 fps.

4 XXVII SIM - South Symposium on Microelectronics

100%

80%

oL
60% mOthers

40%

- ML
20%
Q%
CIF

HD720p HD1080pR

Encoding time (%)

Fig. 5 —Timeline - DS Execution.

If the proposed DS CUDA implementation is used émbination with a CPU approach for the entire
H.264/AVC encoder, it will represent only 20% oéttotal required execution time for real time psteg, in
the worst case scenario when HD1080p videos arathget. In addition, this work is also comparedelated
works [8-10] where the features used are presartabi 2. The works in tab. 2 consider integer Ipaxguracy
ME for NVIDIA boards using CIF [8-10] and HD1080psolutions [11]. The speed-ups results presented
include 9x9, 16x16 and 32x32 pixels search area showing that our algorithmeaas the highest speed-up
considering different search areas for FS and D®. AS algorithm in [9] achieved the highest spgea@mong
others works that propose FS parallelization onRiJ& Our CUDA FS version achieve@®aandl1x speed-up
increase compared to [9] fa6x16 and32x32 search areas, respectively. Additionally, a gdit8x over the
work in [11] is observed, fo®x9 search area. Moreover, the DS algorithm versiea ptesents the best result
in comparison with state-of-the-art. A speed-upease ofl1x over [11] is observed, consideri®g9 pixels
search area.

The results were achieved due to our efficient rmappf FS and DS algorithms to the threads in CUDA
architecture. Also, the device we have used ineaperiment is faster and has more cores than e in
related work 2x more than in [11]). However, our speedups areastlone-order-of-magnitude higher than
related work [8-11]. It is shown that algorithmppéng is scalable and benefits from the increase of
computation cores of GPUs.

Table 2 - Related Works Comparison

[10] [9] [8] [11] This Work
#Cores - - 128 192 480
Shared /
Memory Shared Texture Texture Texture Global
BMA FS FS FS FS/DS FS/DS
__________ level | _____Block | _____Pixel | _ _____Pixel | _____Block | ___Block
__ Results-Speedup .
FS9x9 n.a. n.a. n.a. 8.76 148.18
FS16x16 1.79 12.08 n.a. n.a. 41.87
FS32x32 2.18 26.76 10.38 n.a. 34.03
DS 9x9 n.a. n.a. n.a. 6.86 70.11

4. Conclusions

This paper presented Motion Estimation module immglietation in GPU architecture, for tRell Search
and Diamond Seach algorithms. The parallelized algorithms were deged and mapped in NVIDIA CUDA
architecture. MPI, OpenMP and sequential versiomewalso implemented for comparison purposes WRkhJ G
The performance results presented by CUDA impleat@ms meet the constraints for the real-time eimgpdf
HD720p (FS and DS) and HD1080p (D8)ompared to [9] (which provides the best residtthe literature),
our Full Search solution achieve8x and 1x speed-up increase fa6x16 and32x32 search areas, respectively.
Our Diamond Search for CUDA provide$lx speed-up foBx9 search area when compared to [11]. These gains
were achieved through an optimized mapping of B algorithms to the CUDA.

5. References
[1] ITU-T Recommendation H.264/AVC (03/10): advadaédeo coding for generic audiovisual services,®0

[2] Kuhn, P.,Algorithms, Complexity Analysis and VLS Architectures for MPEG4 Motion Estimation, Boston: Kluwer Academic
Publishers, 1999. 239 p. ISBN 0-7923-8516-0.

[3] NVIDIA CUDA Programming Guide 1.1. www.nvidicom

[4] The OpenMP API specification. http://openmp/ang

[5] The Message Passing Interface (MPI) standdtd;/lwww.mcs.anl.gov/research/projects/mpi
[6]IM H.264 v. 14.2. http://iphome.hhi.de/suehring/download

[7] x264 codec. http://www.videolan.org/develope2&4.html

[8] W-N. Chen, H-M. Hang. “H.264/AVC motion estiniait implementation on Compute Unified Device Areleture (CUDA)”,
ICME 2008, pp. 697-700

[9] Y-C. Lin, P-L Li, C-H. Chang, C-L. Wu, Y-M. Tga S-Y. Chien, “Multi-pass algorithm of motion esttion in video encoding
for generic GPU”, ISCAS 2006, pp. 4451-4454

[10] C-Y. Lee, Y-C. Lin, C-L. Wu, C-H. Chang,Y-M.sBo, S-Y. Chien. “Multi-Pass and Frame Parallelofithms of Motion
Estimation in H.264/AVC for Generic GPU”, ICME 2003p. 1603-1606

[11] R. Cheng, Y. Eryan, T. Liu. “Speeding Up Mati&stimation Algorithms on CUDA TechnologyPrimeAsia, 2010.
[12] Grid’5000. www.grid5000.fr

