Visualization of Parallel Execution Graphs *

Bjorn Steckelbach!, Till Bubeck!, Ulrich Fofimeier?, Michael
Kaufmann!, Marcus Ritt!, Wolfgang Rosenstiel!

! Universitiit Tiibingen, Wilhelm-Schickard-Institut, Sand 13, 72076 Tiibingen,
Germany,
email: steckelb/bubeck/mk/ritt/rosen @informatik.uni-tuebingen.de
2 Tom Sawyer Software, 804 Hearst Avenue, Berkeley, CA 94710,
email: foessmei@tomsawyer.com

Abstract. Measuring and evaluating the runtime of parallel programs
is a difficult task. In this paper we present tools for performance evalu-
ation and visualization in the distributed thread system (DTS), a pro-
gramming environment for portable parallel applications. We describe
the visualization of a parallel trace log as an execution graph using a
novel layout algorithm which has been tailored to expose the structure
of multithreaded applications.

1 Introduction

The measurement and evaluation of parallel runtime is a problem where very
few tools exist. We present a parallel programming environment, the distributed
threads system DTS [1,2], which consists of a parallelizing compiler, a parallel
runtime system and evaluation tools. For evaluation of parallel applications, the
runtime system generates a trace log of parallel execution, which is postprocessed
to calculate the contribution of each thread to the overall runtime. Even with this
detailed information it is often difficult if not impossible to extract important
quantities out of the huge amount of profiling data.

Hence, the next step was to visualize the parallel execution in a call graph. The
goal was to be able to see several key characteristics of the execution profile in
a glance: The overall structure of the application, its load balancing as well as
the critical execution path.

The problem here was to tailor the graph layout to the specific needs of call
graph visualization. Each thread has to be clearly distinguishable from other
threads and the execution times should be easily recognizable. Existing layout
algorithms proved to be insufficient for this task. The main contribution of this
paper is a novel layout algorithm suitable for the visualization of runtime graphs.

* This research is partially supported by the DFG-Grant Ka812/4-2 “Graphenzeichnen
und Animation” and by the DFG within SFB 382: Verfahren und Algorithmen zur
Simulation physikalischer Prozesse auf Hochstleistungsrechnern



In Section 2 we describe the generation of execution logs and profile graphs for
parallel applications. Section 3 presents the detailed criteria for the visualization
of call graphs, in Section 4 the algorithms und layout techniques used are dis-
cussed. Examples of parallel algorithms and their corresponding profile graphs
are given in Section 5.

2 Timing Parallel Applications in DTS

Although all modern UNIX operating systems provide threads, there is no inter-
face for measuring the execution times of single threads. Standard UNIX timing
calls like getrusage or times provide only information about the virtual pro-
cess time. For multithreaded processes, this is the accumulated thread execution
time. There is no information about how many CPU time has to be accounted
to each thread. Measuring wall clock time is completely inadequate, since the
execution times are further disturbed by other applications running on the same
machine. Therefore we decided to trace parallel execution based on virtual CPU
time and calculate the runtime share of each thread using our own algorithms.

The DTS runtime system has been modified to trace the execution of multi-
threaded parallel programs. A DTS application usually is distributed to several
independent hosts. Each host executes multiple threads. On uniprocessor nodes
this allows to hide communication latencies, on multiprocessor nodes we are able
to use all available CPUs.

Each node produces a separate logfile, gathering timestamps for all significant
events during execution. For each of the following seven events the virtual process
time and additional control information is logged:

init Start of computation on local node.

exit End of computation on local node.

start Creation of a new thread. The thread id is logged.
end Termination of a thread.

fork Start of execution of a thread on local node.

bjoin Local node issued a join on a thread. This event marks the begin of the
join. The caller gets suspended until the thread to be joined has terminated.

ajoin Completion of a join. The thread issuing the join continues execution.

Based on the information in the logfiles, the computation time for all threads
can be computed. FEach thread has to be accounted for its share of the measured
virtual process time. This is accomplished using a simple recursive algorithm,
which relies on some basic assumptions on the thread scheduler. Details can be
found in [3].



Host "linus"

Fig. 1. Control flow for a single master and a single slave thread

3 A Graph Theoretical Formulation

Let G = (V, E) be the given graph. Ignoring the init- and the exit-node (they
carry no information for the graph) we can partition V in five subsets: V =
Vs UVe U Ve UV UV, namely start-, end-, fork-, b-join- and a-join-nodes.

Edges of G are either flow-edges € Ey which represent a part of a thread or
structural edges € Eg which connect a subthread with its calling thread. Thus
edges in E; run from a fork-node to a start-node or from an end-node to a
join-node and do not represent any sort of run time. Each flow-edge carries the
information about the run time of the corresponding part of the thread.

A thread T consists of a chain vy,...,v; of nodes, v; being a start-node, v,
being an end-node and ws,...v;_1 being fork- and join-nodes. Each thread is
preceded by a fork-node and succeeded by an a-join-node. The nodes va,...v;_1
themselves are predecessors resp. successors of subthreads of T'. vs,...v;_1 can
be paired into disjoint pairs (v;,v;) with ¢ < j such that v; is the predecessor and
v; is the successor of the same subthread. If for any two subthreads of T" defined
by pairs (vi,,vj,), (viy,vj,) holds: iy < is < j2 < j1, then G is a series-parallel
graph.

Our thread visualization tool TreVis computes drawings of runtime graphs with
the following qualities:

— The five types of nodes can be easily distinguished.

— The drawing is orthogonal where every thread is represented by a chain of
nodes in the same column.

— The drawing is hierarchically (top-down) such that flow-edges are drawn ver-
tically and structural edges are drawn horizontally (with a possible vertical
extension if necessary because of idle times).

— The number of edge crossings is at least locally minimal; the drawing is
always planar for series-parallel graphs.



— Every thread T is balanced (if possible); i.e. T" will be drawn near the
barycenter of the subgraph induced by T and its subthreads.

— The run times are represented by the node positions. Here the y-axis is seen
as a time axis and the y-coordinate of a node is proportional to the time
when the corresponding action is performed.

Many applications show graphs where some edges have a very short length com-
pared to other edges (e.g. Fig. 2: 0.01 vs. 3.14). We use a special scaling strategy
here that sets short edges to a user- (or system-) defined minimum length; this
makes it possible to distinguish the endpoints of this edge and to recognize
the edge itself (see the first two join-nodes of the main thread in Fig. 2 for an
example). If there is an edge of length zero between a b-join-node and the corre-
sponding a-join-node, we do not distinguish between these nodes and draw them
as a single join-node.

4 Algorithms

Since the edge routing is simple for given node positions (most of the edges
are straight, some edges have one bend) the crucial part of the algorithm is to
compute the node positions.

4.1 Computing y-Coordinates

Computing the y-coordinates is easy: The init-node is getting y-coordinate 0.
Every start-, fork-, end-, and b-join-node is getting the value of the y-coordinate
of its only predecessor plus the length of the corresponding edge. a-join-nodes
have two predecessors (say v and w). W.l.o.g. u is an end-node and w is a
fork- or a b-join-node. Place v at max(y-coord(u) + length(u,v), y-coord(w)
+ length(w,v)). b-join-nodes have diamond shape in our drawings and indicate
an idle time in this part of the program. Note that solid edges in the drawings
indicate the node positions whereas dashed edges indicate idle times.

4.2 Computing z-Coordinates

We only have to compute an z-coordinate for every thread because all nodes of
the thread will have the same coordinate. We distinguish whether the graph is
series-parallel or not which is easy to decide (this information is often part of
the input).

Series-Parallel Graphs. In series-parallel graphs a series T; (1 <4 < t) with
T; is subthread of T; 41 (1 <4 <t — 1) is nested. Thus they can easily be drawn
without edge crossings. For balancing the drawing we use the following strategy:



We treat the subthreads of T' one by one ‘outermost-first’ and store for every
step the ranges currently used by the subthreads to the left and to the right
of T'. The next subthread to be drawn will be placed at the side of T" with the
smaller range. In the example of Fig. 2 we first choose to place the outermost
subthread T} of the main thread T to the left of T'. T} uses four columns there.
T, (starting at the second fork-node of T') will be draw at the right side of T
and uses two columns. Since the right range (two) is smaller than the left range
(four) we draw T3 (starting at the third fork-node of T') at the right of T'.

o 1%
& | e
S ey S

—————iPZ

Lo

4

éy

Fig. 2. A series-parallel graph.

General Planar and Nonplanar Graphs. Let T be a thread, 77 and T5 two
subthreads of T', f1 and f> the predecessors of the start-nodes of 77 and T»; and
j1 and jo the successors of the end-nodes of T} and T5. If f; is placed above of
(before) fy in the time-axis, but j; below (after) j2, then T} and Ty must cross
if they are drawn at the same side of T'. We call these threads intersecting. Thus
we have to solve the problem of finding an assignment of the subthreads of T
to the sides L and R (left and right) of T, such that no two subthreads on the
same side cross or more general, we want to minimize the number of crossings.

The intersection structure of the subthreads of 7" can be formalized by the in-
tersection graph Gy = (S,I), where S is the set of nodes representing the direct
subthreads of T' and an edge e = (T}, T;) € I exists iff T;, T; are intersecting.

A non-crossing assignment of the subtreads to L and R corresponds to a subdi-
vision of the nodes of G into two independent sets. This is possible only if the
graph is bipartite. Hence, the tests whether the thread structure can be visual-
ized using our drawing convention can be done greedily in linear time checking
the bipartiteness property.

If the intersection graph is not bipartite, we cannot avoid all crossings. Since each
remaining edge in the subgraphs induced by L and R represents a crossings, we
have to minimize the number of those edges, or to maximize the number of edges



between nodes in L and R. This is exactly the well-known max-cut problem [5].
Note that our intersection graphs are graphs similar to interval graphs [6]. The
setting of the problem here is the same as for row routing [8,7,4], although in
row routing the goal is to minimize the number of layers, vias and/or tracks,
while we have a crossing minimization problem. To our current knowledge, it is
unknown whether the problem is NP-complete or can be solved efficiently.

TreVis currently uses a greedy heuristic for that problem with a postprocessing
local exchange step. That performs very well in practice (see examples in Section
5). For the future, we plan to incorporate exact methods from combinatorial
optimization as well.

5 Some Examples

Fibonacci Numbers. In this example the Fibonacci numbers are calculated,
using the well-known recursion formula. A slightly simplified version of the actual
code and the resulting profile graph are shown in Fig. 3.

RSA Encryption. RSA encryption is an example for a regular non-recursive
parallel algorithm. The main thread forks a number of slave workers, depending
on the size of the input file, which each encrypt a single block of the plaintext
using the RSA method.

Fig. 4 shows two call graphs of the same parallel execution using 13 threads. In
the upper graph small edges are enlarged to emphasize the overall structure of
the application. The calling sequence can be seen clearly. The lower graph shows
the execution in true time scale. This view is of particular interest to evaluate
the load balancing of the algorithm.

Bubble Merge Sort. Bubble merge sort uses a divide-and-conquer based ap-
proach to sort integer numbers. The divide step splits the array to be sorted and
creates two subtasks running in parallel. Each thread uses the same algorithm
recursively to sort its part. The conquer step grabs the pre-sorted subarrays and
combines them using merge sort. The call graph of Bubble merge sort of 100000
Integers using 1024 threads can be seen in Fig. 5.

6 Conclusion

We presented a novel approach of visualizing the execution profiles of multi-
threaded parallel applications. The visual inspection of the parallel call graphs
has proved to be a very valuable tool in evaluating and tuning parallel applica-
tions. The layout algorithm presented here improved the usability and expres-
siveness of call graphs significantly.



int fib(int n) {
dts_t dts_idl,dts_id2;
int result=0;

/* simple case */
if (n<=1) return 1;

/* recurse with two threads */
dts_idi=fork_fib(n-1);
dts_id2=fork_fib(n-2);

result+= (int) join_fib(dts_id1);
result+= (int) join_fib(dts_id2);
return result;

}

int main(int argc, char *argv[]) {
dts_init (argc,argv,NULL);
for (i=0; i< 35; i++) fib(i);
dts_leave();

}

Fig. 3. Source code and call graph of Fibonacci calculation using 729 threads.

References

1

2.

o«

. T. Bubeck. Eine Systemumgebung zum verteilten funktionalen Rechnen. Technical
Report WSI-93-8, Eberhard-Karls-Universitit Tibingen, August 1993.

T. Bubeck. Distributed Threads System DTS User’s Guide. SFB 382/C6, Universitit
Ti{ibingen, Sep 1995.

T. Bubeck, J. Schreiner, and W. Rosenstiel. Timing multi-threaded Message-Passing
Programs. In C. A. Héritier, editor, SIPAR Workshop 96, pages 1518, University
of Geneva, Oct 1996.

A. Dingle and H. Sudborough. The complexity of single row routing problems.
volume LNCS 382, pages 529-540, 1989.

M. Garey and D. Johnson. Computers and Intractability. Freeman, 1979.

M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academ. Press, 1980.
R. Raghavan and S. Sahni. Single row routing. IEEE Transactions on Computers,
(C-32:209-220, 1983.

T. Tarng, M. Marek-Sadowska, and E. Kuh. An efficient single row routing algo-
rithm. IEEE Transactions on CAD, CAD-3:178-183, 1984.



047
043

0.56

041_032 043 )EE: 012045 I é_')
nd

B

Fig. 4. Call graphs of RSA encryption. In Fig. A small edges are enlarged to emphasize
the calling structure, Fig. B shows the call graph in original time scale.

ki
i
i
:
i
i
™
N
1
™
i
i
e
g

Fig. 5. A partial view of the call graph of bubble merge sort with 1024 threads.



