SPH test simulations on a portable parallel
environment*

T. Bubeck!, M. Hipp!, S. Hiittemann®, S. Kunze?, M. Ritt!,
W. Rosenstiel', H. Ruder?, and R. Speith?

! Wilhelm-Schickard-Institut fiir Informatik, Universitiit Tiibingen
2 Institut fiir Astronomie und Astrophysik, Universitit Tiibingen

Abstract. In this paper we report on the results of a joint effort of astrophysicists
and computer scientists to develop and implement a parallel program that enables
us to solve large systems of hydrodynamic equations and covers a wide range of
applications in astrophysics. We introduce the Distributed Threads System (DTS)
as an environment for the development of portable parallel applications. The nu-
merical method Smoothed Particle Hydrodynamics (SPH) is used to simulate the
viscous spreading of an accretion disk around a massive compact object as an astro-
physical test problem. The SPH code was parallelized using DTS and successfully
ported to systems of different architecture (NEC SX-4 and Cray T3E). The use of
a parallel SPH code on supercomputers enables us to treat astrophysical systems
that were not accessible before. The achieved speedup proves the efficiency of DTS
as a parallel programming environment. The physical results show the consistency
and accuracy of the SPH method.

1 Introduction

The numerical simulation of large physical systems is still a great challenge
even for modern computers. Especially in astrophysics, where laboratory ex-
periments are not available, computer simulations are often the only way
to gain new insights, by verifying, improving, or excluding theoretical mod-
els based on observational data. In problems involving fluids, which are the
major problems in astrophysics, usually large systems of coupled differential
equations have to be solved. One suitable method is Smoothed Particle Hy-
drodynamics (SPH). In this study, SPH is used to simulate a gaseous disk
around a compact star. Due to the nature of the problem, hardware and
CPU time requirements are high and super-computing is a necessity. Usu-
ally, physicists are more involved in their physical problems than in parallel
programming. Therefore, the parallel programming environment Distributed
Threads System (DTS), developed and implemented by computer scientists,
is a great help for physicists as it provides the means of easily porting their
simulation codes to different parallel architectures and efficiently uses all par-
allel features.

* This project is funded by the DFG within SFB 382: Verfahren und Algorith-
men zur Simulation physikalischer Prozesse auf Hochstleistungsrechnern (Meth-
ods and algorithms to simulate physical processes on supercomputers).

140 T. Bubeck et al.

In section 2 we give the motivation for using DTS and present some of
its implementation details. Section 3 reviews some fundamentals of SPH. In
section 4 the parallelization of SPH is detailed. Finally, we present the results
of this study in section 5 and give a conclusion in section 6.

2 Distributed Threads System

Rapidly changing parallel architectures and programming interfaces make it
difficult to achieve on-the-edge performance for parallel applications. Either
the code has to be adapted with much effort to the native programming
model for every new architecture, or it is based upon a portable parallel pro-
gramming interface, trading code reuse for efficiency. Because we are working
on long term research projects, portability was one of our major goals.

Of course, there are already standardized and widespread interfaces like
MPI [11] or PVM [7], which provide a portable basis for parallel program-
ming. But the main disadvantage of message passing systems is their low
level approach: It is difficult to concentrate on core parallelization and re-
sulting programs are often erroneous and hard to debug. Another goal in this
context was the separation of tasks: Physicists should be able to concentrate
on solving their problems, while computer science is to make the physicist’s
job as easy as possible.

Therefore, we decided to suggest DTS as a portable parallel programming
environment. It includes a parallelizing compiler [15], a parallel runtime sys-
tem [2,3] as well as evaluation tools [4]. The runtime system is based on a
thread interface, which has been extended to distributed memory architec-
tures. The thread interface was chosen because it is a well known program-
ming interface and a suitable target for our parallelizing compiler. It provides
enough abstraction from simple message passing to concentrate on parallel
algorithms, which, in the present study, are mainly regular data-parallel or
irregular control-flow-parallel (divide-and-conquer algorithms).

From the user’s perspective, in most cases programming in DTS does not
differ from programming with conventional threads. The current implemen-
tation provides a pure functional progamming model, which proved to be
sufficient for our current needs. For algorithms with stronger data depen-
dencies, an extension allowing for direct thread-to-thread communication via
distributed shared memory methods is planned in the near future.

2.1 Implementation of DTS

The implementation of DTS comes in two flavors, a completely distributed
managed version and one with a centralized manager process. Although the
central manager becomes a bottleneck on large numbers of processors, it
proved to be more efficient for small and medium processor numbers. There-
fore, we used the centralized approach on the NEC SX-4.

SPH test simulations on a portable parallel environment 141

Figure 1 shows the major steps in executing a thread in DTS. On one
node, called the root node, a central manager administers and controls the
creation and distribution of threads to other nodes in the virtual machine.
Every client node runs a client manager, waiting for threads to be executed.
If a new thread is created, the caller asks the central manager for an executor,
and sends it the job. The results are directly passed back to the caller. The
choice of a suitable machine for executing the thread (load balancing), sending
the parameters to the executor, and collecting them after execution, as well
as error recovery is done transparently by the different managers.

host linus host sally

UNIX process

2. fork reply
3. send args(func,arg)

de

(e
.manager manager
\—/

6. join 5. send result(result)
1. fork request
4. execution
- v)
UNIX process UNIX process

Fig. 1. Remote thread execution in DTS.

2.2 Porting DTS to the NEC SX-4

The DTS system is based upon threads and the message passing library
PVM. Porting usually involves translating the machine independent thread
interface layer of DTS into native thread calls only.

As the NEC SX-4 is a shared memory system, there was no need to use
any kind of message passing. Therefore, we decided to eliminate the message
passing layer completely. The PVM library was replaced by a version con-
taining only empty function stubs, and the runtime system was modified to
pass thread calls of DTS directly to the underlying thread layer. Actually,
DTS has been reduced to a pure threads package. Measurements have shown,
that the extra overhead of the DTS system using only threads is about 2%.

142 T. Bubeck et al.

To realize the thread functionality, we chose to use the native implemen-
tation of POSIX threads. Since we already did a port of the DTS threads
interface to another POSIX threads implementation, only minor changes con-
cerning some missing functions which are optional in the POSIX standard,
were required. Most problems we had to cope with had their origin in the
POSIX-threads implementation of the NEC SX-4 itself! and were fixed by
NEC.

Currently we are working towards a port for DTS to the Cray T3E. Addi-
tionally, the SPH code is parallelized using the native Cray SHMEM interface
to serve as a base for quantifying the efficiency of DTS (see section 4).

3 Smoothed Particle Hydrodynamics

3.1 Basics

Smoothed Particle Hydrodynamics is a grid-free Lagrangian particle method
for solving a system of hydrodynamic equations for compressible and viscous
fluids. It was first introduced independently by Gingold & Monaghan [8] and
Lucy [10]. SPH is especially suited for problems with high density contrasts
and free boundaries. Rather than being solved on a grid, the equations are
solved at the positions of the so-called particles, each of them representing a
continuum with a certain mass, density, temperature, etc. and moving with
the flow according to the equations of motion.

In contrast to most other flavors of SPH, here the viscous stress tensor
is implemented to describe the physical viscosity correctly according to the
Navier-Stokes equations. Usually only artificial viscosity is used, which is
needed for the treatment of shocks, but vanishes in the continuum limit.

3.2 The Hydrodynamic Equations

The motion of the fluid is described by the Navier-Stokes equation, here in
Lagrangian formulation:

dv 1 1.
d—: = _Ep’a + Et‘o’t;cg + fa (1)

with f being the gravitational force of the central object and the viscous
stress tensor

og = (va,6 + V8,0 = %511,3 Uyiy) +COap Uy - (2)

! First experiences have shown that the implementation was not POSIX conform,

because a pthread_detach was required after joining the thread to free up in-

ternal thread administration structures. Without doing so the total number of
executable fork/join-pairs was reduced to 512.

SPH test simulations on a portable parallel environment 143

(Here all spatial derivatives 8/0x, are represented by , and Einstein’s sum-
ming convention holds). The coefficients of shear and bulk viscosity, n and ,
are positive scalars and independent of the velocity [9]. The term in parenthe-
ses is the shear, denoted by o,3. Although the treatment of bulk viscosity is
no principal problem we assume ¢ = 0. Furthermore, the kinematic viscosity
coefficient v = 7/ is assumed to be constant.

3.3 SPH Approximations

The purpose of the SPH method is to transform a system of coupled partial
differential equations into a system of coupled ordinary differential equations,
which can be solved by a standard integration algorithm.

The transformation is achieved by two steps of approximations. First, any
variables are replaced according to the convolution

f(r) — / Fe Y W(lr =), h) av’ 3)

with an appropriate kernel W.
Secondly, the convolution integral is evaluated only at the positions of the
particles, hence transformed to a sum:

sy~ g = Y LW (=) (@
J

(n;: Particle density at the point ;).
The spatial derivatives can now be transferred onto the kernel by partial
integration:

ﬂvw(lm —ril,h) - ()

J

Since the derivatives of the kernel are known analytically, we now have the
desired system of ordinary differential equations that can be integrated nu-
merically. The free constant of integration f(r;) that appears due to the par-
tial integration can be chosen in a way to fulfill the conservation of energy,
momentum, or angular momentum.

3.4 SPH Formulation of the Equations

As an example, the application of the smoothing discretization scheme to the
viscous part of the Navier-Stokes equation (1) yields

dUa visc (1 >
— _ta 6
(dt)z 0 b6 i ©)

= Ej:mj (2 (0ap); + Z—; (Ua,@)i) (Wi

144 T. Bubeck et al.

with the particle form of the shear o,g

(0a8); = (Vap)i + (Vaa)i = 30ap(Var)i (7)
where (V,3); is the particle representation of the velocity gradient v, g

ms

(Vag)i = (Va,8)i = Y, — ((va); — (va)s) Wp)ij - (8)

;Y

All other equations (continuity equation, energy equation, state equation)
can be formulated in SPH in a similar way.

4 Parallelizing SPH with DTS

First, we will describe our SPH implementation on NEC SX-4 using DTS.
Second, we will discuss SPH codes for machines with distributed memory.
There are several papers on parallel SPH for machines such as Cray T3D,
CM-5 or Intel Paragon [13,6]. The method introduced in [5] is compared with
our parallel SPH code for machines with distributed memory in section 4.3.

4.1 Shared Memory Machines

The basic idea is to find data structures to allow independent parallel threads
and to avoid critical sections as much as possible. There are two main prob-
lems involved with a SPH algorithm. First, the nearest neighbor search and
second, the evaluation of the list of neighbors to calculate the physical quan-
tities for each particle.

Particle-List

ARNNNNENNREEEEEE

— read
—= write

list of interaction partners

Fig. 2. Data structure of parallel SPH for shared memory machines (the list of
particles and the corresponding list of interaction partners).

Concerning the nearest neighbor search, using the linked list algorithm
of [1] we were able to develop a parallel algorithm with a parallel efficiency

SPH test simulations on a portable parallel environment 145

of at least 90% on NEC SX-4 using 20 CPUs (see figure 3). The search for
nearest neighbors is divided into a sequential and a parallel part. In the
sequential part the particles are projected on a grid which is used to build
the linked list. This is an algorithm of order O(N), where N is the number
of particles. Since the linked list is only read in the process of finding the
interaction partner for each particle, the nearest neighbor search can be done
in parallel.

For the evaluation of physical quantities every particle has a complete list
of all its neighbors (figure 2). To compute a physical quantity for a certain
particle, the information stored in the neighbor list is read only. Thus, a given
physical quantity can be evaluated in parallel for each particle. By storing a
complete list of all neighbors per particle, the physical symmetry relations
between the particles cannot be exploited by the algorithm. This makes the
parallel code at most two times slower than an optimized sequential code.

4.2 SPH on the NEC SX-4 using DTS

The SPH code was implemented on the NEC SX-4 using DTS. The usage of
DTS makes it possible to run the same SPH code both on the NEC SX-4 and
on other machines?, just by recompiling with the c-compiler frontend dtscc.
The parallel SPH code was used for benchmarking, using different numbers
of CPUs. The results prove the high quality of the parallelization features of
the NEC SX-4.

Figure 3 shows the speedup and the parallel efficiency of the parallel SPH
code on the NEC SX-4. For 10000 particles the parallel efficiency decreases

[[©10.000 Particles _ m100.000 Particles |

1 3 5 7 9 1 13 15 17 19
—=-10.000 Particles —=—100.000 Particles cPu

Fig. 3. Left: speedup of parallel SPH. Right: parallel efficiency on NEC SX-4.

from 90% on two CPUs to 60% on 20 CPUs. For 100000 particles the parallel
efficency is more than 90% for all 20 CPUs.

% e.g. Ross Hyper Sparc, Sun MP, SGI Onyx2

146 T. Bubeck et al.

Figure 4 compares a sequential F77 solution with a parallelized C code on
the NEC SX-4. The parallelized C code is less then two times slower than the
(optimal) sequential F77 solution. Runtime is improved by using vectorization
options of the NEC compiler.

16000

14000

12000

10000

- =
o
sec: F77 c(1cPy) c(8CPY)

M No Vect. O Vector

Fig. 4. Vectorization and F77 solution of a SPH simulation with 10000 particles
(runtime in seconds). Left: optimized F77 sequential code. Middle: parallel SPH on
1 CPU. Right: parallel SPH on 8 CPUs.

4.3 Parallel SPH Codes on Distributed Memory Architectures

Besides the DTS SPH code for shared memory machines, there are other
implementations for SPH on parallel machines. Three of them developed
especially for machines with distributed memory are the PTreeSPH [5], a
port for the MEMSY architecture developed in Erlangen [12], and our own
implementation for the Cray T3E. All of them handle the communication in
a different way.

The PTreeSPH code is based on MPI, the MEMSY code expects a 2D pro-
cessor mesh where communication is only possible between neighbor nodes
and our current implementation uses the Cray SHMEM library[14]. This li-
brary provides functions oriented at the Cray T3E hardware capabilities espe-
cially put and get functions for one side communication, reduction operations
and broadcast facilities. All functions can be used with a global addressing
model making it possible to send pointers to other nodes without converting
it.

4.4 Parallel SPH on Cray T3E

Since DTS has not yet been ported to the Cray T3E, we decided to implement
SPH using the Cray T3E SHMEM library, which provides functions oriented

SPH test simulations on a portable parallel environment 147

at the Cray T3E hardware capabilities. The main reason was to get an opti-
mal implementation by using all possible features the Cray T3E offers, which
can serve as a reference implementation for quantifying the efficiency of a
later DTS port. Another reason was that we already had a shared memory
implementation. A message passing based version would have required a ma-
jor redesign. The SHMEM library allowed us to reuse as much as possible of
the original code.

An essential idea was to use two different domain decompositions depend-
ing on the type of computation:

1. All computations without neighbor interaction are done on an equally
sized subset on every node. The subset is selected by splitting the particle
field into n parts for n nodes. A node also operates as a relay node for
its subset. Information about a specific particle can always be found on
its relay node.

2. For computations with neighbor interaction all particles are sorted ac-
cording to their positions into a grid with equally sized cells. These cells
are assigned to nodes in a way that every node holds the same number
of particles.

The load balancing is good in both cases, because the computation takes
about the same time for every particle except the neighbor search.

The neighbor search uses the grid from the second domain decomposition.
The problem here is, that it is not known a priori how many comparisons are
necessary to find the nearest neighbors of every particle. Hence we added the
possibility that one node helps another to find its neighbors. In this step the
ability of the Cray T3E to read and write remote memory asynchronously is
used. The neighbor indices are stored in a list for later reuse.

Both the neighbor list and two lists similar to the LEPL described in the
PTreeSPH section are built simultaneously. Because there are two domain
decompositions we also need two lists, a get list and a put list. The get
list holds the indices of particles which are not assigned to a node by one
of the two domain decompositions but are neighbors of a particle in the
second domain decomposition. The put list holds the list of particles which
are assigned to a node by the second domain decomposition, but not by the
first.

It is not possible to decide which node needs which particle positions
because of the neighbor search. So we decided to distribute the positions of
all particles to all nodes using a broadcast.

To compute a physical quantity which is independent of neighbor inter-
action, no communication is needed. Every node does this work on its relay
particles.

The first evaluated quantity with neighbor interaction is the kernel. We
can compute it with no further communication, because we still have dis-
tributed the particle position. To distribute the computed kernel every node
first uses the put list to send the kernel back to the relay node and then uses

148 T. Bubeck et al.

the get list to get the kernel of all other necessary particles. The same is done
for the mass density and all other physical quantities.

The final steps are the computation of the gravitational force and the
integration timestep itself. This again requires no neighbor interaction and
every node does it on its relay particles.

For most physical quantities an array is allocated with enough space to
theoretically hold every particle on a single node. On the Cray T3E with
128MB local memory, this currently limits the maximum number of particles
to about 750000 for the 2D case when using double precision floating point.
For single precision the maximum number of particles doubles.

5 Simulations and Results

5.1 The Test Problem

The test problem is a thin accretion disk around a compact central mass
M. ‘Thin’ means the size of the disk perpendicular to the disk plane can be
neglected. The following approximations are made: v, ~ 0, 22 < z2,y>.

All variables are integrated over the height of the disk, e.g. the surface
density is given by ¥ = [pdz. The motion of the gas in the disk is described
by the Navier-Stokes equation (1), as pointed out in section 3. With the
approximations made above, in 2D form the equation reads

dva visc
EE =—Dattag s (a,8=1,2). 9)

In order to obtain an analytic solution, we transform to polar coordinates
(r,) and assume rotational symmetry. Furthermore, pressure forces are ne-
glected, and v, < v, is assumed. With the constant viscosity coeflicient v
and the initial density profile

m

Yo=—96(r—- 10
0 27‘[”/‘0 (7‘ TO) ()
we get the following analytic solution for the surface density and the radial
velocity :
-1 _rox? o
X(r,t) = n; (L> e "o I <—>, (11)
TreT \To0 4 \roT
oo [a, (3) - 1 (2)
v = . . : (12)

Here m denotes the mass of the disk, I 1 is the modified Bessel function to
the base I, and 7 = 12vt/r] is the dimensionless ‘viscous time’.

Now we have the analytic radial density profile of the disk, which can be
compared with the results of the simulations.

SPH test simulations on a portable parallel environment 149
2 T T T T T T T 2 T T T T T T
N=100000 N=200000
15+ B
N ,
05 1
ol ,
-0.5 | —
nt ,
1.5 4
2 1.5 1 0.5 0 0.5 1 1.5 2 2 1.5 1 0.5 0 0.5 1 1.5 2
2 2
N=500000 N=10000
15 —
N ,
05 —
ol ,
05 | —
4L ,
A5+ 4
2 15 1 0.5 0 05 1 15 2 2 15 1 0.5 0 05 1 15 2

Fig. 5. Positions of particles at 7 = 0.09. Upper left: 100 000 particles, upper right:
200000 particles, lower left: 500 000 particles, lower right: for comparison: simu-
lation with 10000 particles with a serial code on a workstation. Note the lack of
spiral-like structures in the 200000 and 500 000 particle simulations.

5.2 Simulations of the Test Problem

Numerical simulations of the test problem were performed both on work-
stations and on the NEC SX-4. The SPH forms of the 2D cartesian hydro-
dynamic equations were used, neglecting pressure forces. The physical pa-
rameters for all simulations were (® denotes solar units): mass of central
object M = 1M, total mass of the disk m = 1071 M, initial radial dis-
tance of the disk from the center ro = 1R, and the coeflicient of viscosity:
v=3-10"8R% /s.

Initial particle distributions were produced, according to the density pro-
file at viscous time 7 = 0.018, but with the individual particles being placed
stochastically on Kepler orbits.

150 T. Bubeck et al.

N=100000 | N=200000 |

N=500000 | N=10000 |

Fig. 6. Surface density of particles at 7 = 0.09, only radial coordinate plotted.
Arrangement as in figure 5. Underlying is the analytic solution. Note that the
mean deviation from the analytic value does not decrease with particle number,
because the mean number of interaction partners for each particle is the same in
all simulations.

Simulations with 100000, 200000, and 500000 particles were made, us-
ing the parallel queues NP2GB8CPU and NP4GB16CPU. Output files were
produced at viscous times 0.036, 0.054, 0.072, 0.090, and 0.126.

In figures 5, 6 and 7 we show the positions of the particles, the radially
plotted surface density ¥ (r), and the radially plotted radial velocity v,(r) at
viscous time 0.09. Furthermore, the analytic solutions for the surface density
and the radial velocity distribution are shown in the respective plots. Also
shown are the results of a simulation with 10000 particles that was carried
out on a SGI workstation with a 100MHz R4000 processor (figures 5, 6 and 7
lower right corner). For clarity, from the simulations only 50000 randomly
chosen particles are plotted.

5.3 Physical and Numerical Accuracy

We know from earlier simulations that the most important numerical param-
eter is the number of interaction partners per particle. In this implementation
of SPH the smoothing length, which corresponds to the interaction radius of

SPH test simulations on a portable parallel environment 151

2005 T T T T T T T 2605 T T T T T T T
N=100000 N=200000
1.50-05 1.50-05 [4

10-05 10-05

5006 5006

5606 -56-06

1005 1005

-1.5e-05 -1.5e-05 | ! 1

2605 L L L L L L L 2005 L L L L L L L
02 E 02

2e05 T T T T T T T 2605 T T T T T T T

N=500000 N=10000

1.50-05 [4 1.50-05 [. 4

10-05 10-05

5006 5006

5606 -56-06

1005 1005

-1.5e-05 | B -1.5e-05 | ' B

2605 L L L L L L L 2005 L L L L L L L
02 02

Fig. 7. Radial velocity distribution of particles at 7 = 0.09. Arrangement as in
figure 5. Underlying is the analytic solution.

a particle, is kept constant throughout a simulation. In order to give each
particle the same average number of interaction partners in all simulations,
the smoothing length was scaled with the inverse square root of the total
particle number.

With this setup we expect the accuracy to be very similar for all simula-
tions. This can be seen in the distribution of the surface densities in figure 6.
The deviation from the mean value is very similar in the simulations with
10000, 100 000, and 200 000 particles. All these simulations have been carried
out with the same error tolerance of the time integrator. In the simulation
with 500000 particles a higher error was tolerated, obviously too high, since
the deviation in the surface density distribution is clearly too large. This is
not to be considered as a failure, because we also wanted to determine the
numerical parameter ‘accuracy of integrator’.

Looking at figure 7, one can see a decrease in the mean deviation from
the analytical value with particle number, in (seemingly) contradiction to
the constant deviation of the surface density distributions. This is because
the latter deviation is due to the stochastical character of the SPH method,
whereas the other is not a SPH effect. The particles are principally on ellip-
tical Kepler orbits. The interaction with the neighbours implies a distortion

152 T. Bubeck et al.

Anlytic solution —

N=10000 +—

N=100000 ~+—
38e-11 - N=200000 &—

Fig. 8. Averaged radial surface density distribution of the particles. The simulation
with 10000 particles shows some deviation from the analytic value, whereas the
simulations with more particles are practically identical.

on these orbits. The smaller the smoothing length, the smaller the distortion
of the orbits and hence the deviation from the analytical value.

Although there is a large scatter about the analytical value of the surface
density, the mean density is conserved to very high accuracy in the simula-
tions. This can be seen in figure 8, where the surface density of the particles
is averaged in 50 bins between radial coordinates 0.05 and 2.05. (Because of
the insufficient integrator accuracy the simulation with 500000 particles is
excluded.) The results from the NEC simulations are practically identical,
whereas the simulation with only 10000 particles shows some deviation from
the analytical value. This is mainly due to the spiral structures, which are
of mainly numerical origin. This can be seen from the fact that they are
strongest for smallest particle number and not present at all in the simula-
tions with 200000 and 500000 particles.

5.4 Speedup of SPH on Cray T3E

We measured the speedup of SPH simulations of the test problem (section 5.1)
with 10000, 100000 and 500000 particles on a Cray T3E-900 (DEC Alpha
processors with 450MHz). The speedup is quite satisfactory, see figure 9. One
can also see that there is a problem in the SHMEM communication when the
number of nodes is not a power of two (figure 10, 96 and 384 nodes).

The 500000 particle simulation has the highest efficiency. This is because
in the nearest neighbor search, the computation cost rise faster than the
communication cost with increasing particle number. Since the computation
has a higher parallel efficiency, the total efficiency is better for more particles.

SPH test simulations on a portable parallel environment 153

Speedup Efficency

10000 partic]
00000 partic}

100 o ¢
* '///ﬁ) \

0 100 20

400 500 0 100 2 400 500

0 300 00 300
Number of nodes. Number of nodes

Fig. 9. Speedup and efficiency for the T3E implementation with 10000, 100 000
and 500 000 particles.

Wallclock time per node for communicaton

time for 100000 particles -s—

time [s]
—

P

200
Number of nodes

Fig. 10. Time for communication for 100 000 particles. The communication time is
the time for internode data transfers and synchronization including data preprocess-
ing necessary for communication. This plot shows the flaw in the communication
when using a number of nodes, which isn’t a power of two.

5.5 Comparison of Parallel SPH Methods for the Cray T3E

It is difficult to compare our simulation with PTreeSPH because our problem
is similar but not equal. So, the speedup results should only give an impression
of the parallel efficency.

The PTreeSPH implementation reaches a maximum speedup of 27 at 64
nodes for 256 000 particles while our SPH implementation gains a speedup of
183 for 512 nodes with only 100000 particles and 278 for 500000 particles.
The ported version of the MEMSY code cannot keep up with this result.
On top of higher total computation time, test runs showed that the queued
communication is quite expensive. In a test simulation with 20000 particles
the contribution of the communication to the total computation time rised
from 17% on 4 nodes to 76% on 256 nodes.

154 T. Bubeck et al.

6 Conclusion

From the physical point of view the simulations on the NEC SX-4 were suc-
cessful in different aspects. First, there is still no mathematical proof of the
consistency of the SPH method. Nevertheless, it is widely, and often uncriti-
cally, used throughout the astrophysical community. Therefore, the confirma-
tion of the consistency and accuracy of the method as shown by the results
of the test simulations is a good justification for the usage of the method and
lets us sleep with a good conscience. Furthermore, the possibility to treat
large systems with high spatial resolution opens the door to new fields of
research. In future, we want to use our code to simulate accretion disks in
binary systems, where a gas stream from a secondary star hits the disk. We
want to look in greater detail on the stream-disk impact region and on gas
streaming over the disk. Now we have the means to tackle these problems,
and will do so, computing time provided.

The major goals in providing our own parallel programming environment,
namely the portability of code and a simplified parallel programming inter-
face, have been reached. Besides running the same code without modification
on all supported platforms, we gained much from a port of DTS to networks
of workstations: We were able to develop and debug all of the codes in our
local environment, saving time and computing cost. Only the final tests and
modifications had to be done directly on the production platforms.

The efficiency and parallel speedup of applications based on DTS proved
to be satisfying. The gain of portability outweights the loss of efficiency due
to system overheads. The system will be ported to the Cray T3E in the near
future.

We were able to show that parallel SPH codes with an efficiency of
90% and more on the NEC SX-4 are possible. We could also show that the
Cray T3E’s fast communication hardware together with an optimized com-
munication protocol and domain decomposition allows a parallel SPH ver-
sion with an efficiency better than 50% for 512 nodes (500000 particles) on
machines with distributed memory. Even for a small SPH problem (10000
particles) we gain significant speedup reducing the computation time by a
factor of 60.

All this was possible due to the fruitful collaboration of astrophysicists
and computer scientists within the SFB 382 “Verfahren und Algorithmen zur
Simulation physikalischer Prozesse auf Hochstleistungsrechnern” (Methods
and algorithms to simulate physical processes on supercomputers).

References

1. Allen, M. P., Tildesdley, D. J.: Computer Simulation of Liquids. Oxford Univer-
sity Press (1992)

2. Bubeck T.: Eine Systemumgebung zum verteilten funktionalen Rechnen.
Eberhard-Karls-Universitdt Tiibingen, Technical Report WSI-93-8 (1993)

SPH test simulations on a portable parallel environment 155

3. Bubeck, T.: Distributed Threads System DTS User’s Guide. Universitit
Tiibingen, SFB 382/C6 (1995)

4. Bubeck, T., Schreiner, J., Rosenstiel, W.: Timing multi-threaded Message-
Passing Programs. Proceedings SIPAR Workshop 96 (1996) 15-18

5. Davé, R., Dubinski, J., Hernquist, L.: Parallel] TreeSPH. New Astronomy volume
2 number 3 (1997) 277-297

6. Dubinski, J.: A Parallel Tree Code. Board of Studies in Astronomy and Astro-
physics, University of California, Santa Cruz (1994)

7. Geist, A., Beguelin, A., Dongarra, J., Jian W.: PVM 3 User’s Guide and Refer-
ence Manual. Oak Ridge National Laboratory, Tennessee (1994)

8. Gingold, R. A., Monaghan, J. J.: Smoothed particle hydrodynamics: theory and
application to non-spherical stars. Mon. Not. R. astr. Soc. volume 181 (1977)
375-389

9. Landau, L. D., Lifshitz, E. M.: Fluid Dynamics, 2nd ed. Pergamon Press, Oxford
(1987)

10. Lucy, Leon B.: A Numerical Approach to Testing the Fission Hypothesis. As-
tron. J volume 82 (1977) 1013-1924

11. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard.
Computer Science Department, University of Tennessee, Knoxville, TN Techn.
Rep. CS-94-230 (1994)

12. Schneider, A.: Mefstudie paralleler Simulationen von Akkretionsscheiben. Uni-
versitit Erlangen (1997)

13. Warren, S. Micheal, Salmon, K. John: A portable parallel particle program.
Comp. Phys. Comm. volume 87 (1995) 266-290

14. Cray Research: Cray T3E SHMEM Manpages

15. Wedeck, J.: Automatische Parallelisierung von sequentiellen Programmen
unter besonderer Beriicksichtigung von Hardware-Beschleunigern. Universitit
Tibingen, Technische Informatik (1996)

