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Abstract. A major goal of the Sonderforschungsbereich 382 is the development of
different particle methods for solving physical problems. In this paper, we present
two different implementations of parallel Smoothed Particle Hydrodynamics codes
and a newly developed method called Finite Mass Methode. We follow up with
the results of some test simulations which show the pros and cons of the different
approaches.

We talk about our experiences with these codes and conclusions for paralleliza-
tion in general. Our recent work concentrated on object-oriented physical codes
and runtime systems. The newly established particle method called Finite Mass
Method (FMM), which got developed within the SFB 382 was ported to C++, and
parallelized using MPI-1.1. The experiences made with this code led to an object-
oriented parallel runtime system, based on message passing and threads. Finally we
describe our proposed solutions for higher-level programming abstractions, includ-
ing design patterns and application-domain specific libraries. Based on this work
we currently develop an object-oriented prototype of a QMC simulation.

1 Introduction

There is a need for parallelization in a considerable number of physical re-
search fields. With more computation power, you can compute larger prob-
lems (memory-parallelization) or you gain a better resolution for your ex-
isting simulations. One major focus in our SFB are particle methods. We
assisted several parallelization projects in the last years. One of the first pro-
duction codes was a parallel implementation of the SPH (Smoothed Particle
Hydrodynamics) method, which was done on our own procedural thread-
based parallel runtime system (DTS). The system showed its limitations for
large-scale distributed memory codes. An implementation of a newer SPH
code based on MPI (and SHMEM for the Cray T3E), which achieves very
satisfying performance is described in section 2. Included is a comparison of
SHMEM and MPI performance on Cray T3E and MPI performance on the
SP system.

* This project is funded by the DFG within SFB 382: Verfahren und Algorith-
men zur Simulation physikalischer Prozesse auf Hochstleistungsrechnern (Meth-
ods and algorithms to simulate physical processes on supercomputers).
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In the recent time, we noticed the need for a shift towards object-oriented
programming methods for reusable parallel algorithms and design patterns
in order to cut down development time and to enable the collaborative work
of larger group of scientists. For gaining experience we decided to port an
existing code of a new approach for a particle-based fluid simulation called
Finite Mass Methode (FMM). The object-oriented code was initially paral-
lelized using MPI. The method and some preliminary performance results of
the parallel code are presented in section 4.

Based on this work, we propose an object-oriented parallel runtime system
and specific algorithm libraries for the parallelization of particle methods in
section 5. A new, object-oriented version of the FMM code as well as the
distributed SPH code is planned for this year. We are also developing a
parallel object-oriented version of a QMC code simulating a neutron star. All
three codes are supposed to share a significat amount of library code.

2 SPH on SHMEM and MPI

In [11] we introduced our SPH implementation optimized for Cray SHMEM
message passing. We achieved very good speedups on the Cray T3E up to
512 nodes with this code. There was a demand to continue this effort in order
to get a library for a wider range of architectures and applications.

From SHMEM to MPI This code seperates the communication part
rather strictly from the physical model. In order to compare the implemen-
tation for different architectures we ported the communication library of the
SHMEM-based code to MPI-1.1. Due to the limitations of the MPI-1.1 stan-
dard a few one side communication parts needed a major rewrite but most of
the work was simply done by exchanging the SHMEM calls by their equiva-
lent (two-sided) MPI calls. We expect less porting efforts with the availability
of a MPI-2.0 implementation on the major platforms. In the exisiting code
we wrote wrapper functions around near all communication calls, so we still
used only a few direct calls to SHMEM functions and therefor the exchange
of the SHMEM calls was quite easy. Not a single line in the main physical
application had to be changed.

Due to the dynamic of SPH, the simulation needs a good communi-
cation bandwidth and a low latency. The most expensive communication
parts are the distribution of particle positions, which is a non parallelized
gather /broadcast operation between all nodes. A latency-sensitive part is for
example the parallel construction of a particle grid.

We plan to use this application as one of several real-world test application
to compare parallel environments. The program has a good mix of different
requirements, such as the need for a high communication bandwidth and
low latency together with a good floating point performance for some real
computations and a considerable integer performance to handle complex data
structures. The application should perform well on a good balanced system.
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Native SHMEM Communication vs. MPI We measured the perfor-
mance of the MPI code on the Cray T3E in Stuttgart and on the SP system
in Karlsruhe. On the SP we used 128 P2SC thin nodes with 120MHz. The
tests showed, that the MPI implementation of the Cray T3E is worse com-
pared to the native SHMEM library (see figure 1). Our tests show that CRAY
could easily improve the MPI performance by making better wrappers around
existing SHMEM calls. For some communication parts, such as gather oper-
ations of large arrays, the throughput decreased from about 300MB/s using
SHMEM to 120 MB/s using MPI. On the SP we achieved the expected per-
formance of around 50MB/s. The whole code didn’t perform this good on
the SP system, because the implementation is optimized for Cray T3E and
depends heavily on good MPI performance in order to scale beyon 64 Pro-
Cessors.

Speedup for 100.000 SPH particles

180 T3E with SHMEM ——— |
T3E with MPI —-x-—-
SP2 with MPI - -
160 =
140
120
o /
3 100
(7]
(7]
&
80 /
50 e PO S S,
40 X
20
0
0 50 100 150 200 250

Number of processors

Fig. 1. Speedup of the SPH Simulation on Cray T3E with SHMEM and MPI and
on SP with MPI for a mid-size problem with 100000 SPH particles. For larger node
numbers the curves are dominated by the non parallelized communication parts
such as gather/broadcast operations between all nodes. Please note the effect of
the limitations of the MPI implementation on the CRAY T3E beyond 128 nodes.

Results The result of this performance test is, that for existing code it
can be useful to exchange performance-critical communication parts in a
MPI implementation by SHMEM functions to achieve better performance
and better scaling to higher number of nodes. If a high level abstraction of a
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problem isn’t possible you should at least consider to write wrapper functions
around your explicit communication calls to simplify the later optimization
of the applications hotspots. For new developments it proved to be beneficial
to use an abstraction layer, which allows the exchange of low level parts
without changing the application to obtain the best performance on a given
hardware platform. We chose an object oriented programming model for this
abstraction, which is introduced in the next chapter.

3 The need for Object-Oriented techniques

In providing our own runtime system we try to alleviate the error-prone and
troublesome process of parallelizing physical simulation code.

Since most existing codes are procedural — written in FORTRAN or C -
our first approach for a parallel runtime system was to provide the widely
known interface of threads for architectures with distributed memory [2]. The
standard model of communication between local threads, data exchange via
shared memory, cannot be supported efficiently in a transparent and portable
manner, and has been replaced by a distributed shared memory interface [9]
for direct thread-thread communication.

From the work of the last years, we found reasons to redesign our simu-
lation environment using object-oriented techniques:

1. using message objects on the lowest level to communicate between con-
current program units on distributed memory computers seems to be
most natural and easy to use for our simulation methods and hides the
difficult syntax of the communication libraries from the user.

2. the growing complexity of our simulation programs requires structural
elements in the programming paradigm not offered by e.g. FORTRAN
or C. A special requirement of scientists is ease of understanding and
extending of exisiting code due to the high right of fluctuation in the sci-
entific workplace. Also using an object-oriented approach to describe the
problem is closer to the physical model used and leads to improvements
of the algorithms by making use of more physical properties.

3. to exploit the usual features promised by object-oriented programming
(reusability etc.) our project partners programmed in C++; which re-
sulted in code which was reusable and modular within its own scope.

Our goal is to provide a well documented and maintained library of
reusable and extensible solutions for astrophysical simulation methods in the
near future. This also should give a guideline on how to use object-oriented
techniques for our simulation methods (e.g. SPH).

To gain experience, we decided to port a new particle method to C++
and parallelize it using standard MPI.
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4 Finite Mass Method

4.1 A new Approach to Lagrangian Fluid Dynamics

Within the SFB 382 H. Yserentant [13] developed a new approach to solv-
ing the continuums mechanics of fluid dynamics which is similiar to finite
elements and finite volumes but completely Lagrangean in nature.

In contrast to finite volume and finite element methods this new method
is not based on discretization of space but on discretization of mass which
is from the point of view of a physicist at least as natural as the former
approach.

The demand of astrophysical problems on computational power and high
quality algorithms led to the development of this new method for solving
fluid dynamics numerically. The method impresses with high accuracy and
correctness regarding the conservation of energy, momentum and angular mo-
mentum. The later properties and the convergence of the finite mass meth-
ode are mathematically proven which is a major advantage compared to the
Smoothed Particle Hydrodynamics method

These mass packets of finite size do have a finite number of interiour
degrees of freedom and are under the influence of external and internal forces.
The shape and size of the mass packets as well as the translation of the center
of mass is controlled by internal and external forces, while obeying the laws
of thermodynamics.

It proved that FMM is highly suited for problems with free boundaries,
which are often encountered in astrophysics. The lagrangian approach also
avoids the problem of adapting the grid during the simulation.

Arbitrary linear deformations like contraction, expansion, rotation and
changes of shape combined with intersection and penetration of the packets
leads to a high quality representation of the pysical function with a rather
low number of packets. We already obtained very good numerical results with
only 20 packets for each dimension for one of our test problems, the viscous
gasball.

The higher number of physical values, compared to the Smoothed Particle
Hydrodynamics method, stored in each packet and the rather low number of
required simulation packets is more easy to scale efficiently on distributed
memory machines like the CRAY T3E. The currently available code we used
in our numerical experiments shows fourth order convergence and behaves
numerically stable while using reasonable amounts of memory.

Originally the very first implementation of FMM was done in PASCAL
on a Sun Workstation. This implementation lacked portability, speed and an
easy way to do parallization. There is currently no standard way to use MPI
safely in a portable manner with PASCAL compilers.

Instead of simply porting the available application to C we decided to use
an object oriented approach, which allows the developers of the algorithms to



6 M. Hipp et al.

exchanges fundamental parts of the codes without breaking other sections like
the physical models. Other major reasons are efficient implementation, which
forbids layering and its inheritent copying overhead and ease of paralleliza-
tion. By putting a large effort in complex classes we could hide very efficent,
but hard to understand implementations from the developer of the pysical
model while still being able to exchange the underlying algorithms without
the need to notify each other. This proved to be beneficial to heterogenious
groups of developers. The object oriented design pattern was helpful in mak-
ing a cache efficient implementation, which otherwise would have obscurified
the code base.

A FORTRAN implementation was no option due to missing features in
representing the rather complicated data structures employed in the original
PASCAL version.

It showed that while the C++ version employes most complex data struc-
tures in order to gain cache efficiency and hiding of the parallization code
that this code is optimal for well balanced scalar central processor units like
the SPARC ULTRA and the PENTIUM PRO class.

These complex data structures lead to an integer/floating point ratio of
nearly one and rather short vector lengths so that this implementation runs
well on the scalar distributed memory machine CRAY T3E in contrast to the
NEC SX4 parallel vector processor. Due to the complex data structures it
showed that the code runs twice as fast on a single INTEL Pentium IT with 450
MHz compared to a single node on the T3E-900 which suffers from branches
due to a rather long pipline and missing efficient implementation of branch
prediction.

The finite mass method is a purely Lagrangean approach to solve problems
in continuum mechanics. It somewhat resembles much more the concepts of
finite volume and finite elements methods than pure particle methods like
the Boltzmann-like transport equations.

4.2 The Particle Model of Continuum Mechanics

Instead of starting from the Euler and Navier Stokes equations the prefered
way to introduce FMM is to start from the basic physical principles which
finally lead to these well known differential equations. In the trivial case of
of an adiabatic, inviscid flow, the equations of motion are straight forwardly
derived via the Lagrangian method from the potential and kinetic energies.

The necessary breakage of invariance with respect to time reversal is
achieved via frictional forces which tend to zero for the limit of velocity
differences of neighbouring packets.

The funktion ¥;(y) which describes the mass distribution inside a mass
packet ¢ with finite extension in space has to fulfill the following properties.

/ @;(y)dy = ms, / ¥ (y)ydy =0 (1)
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One possible choice for the functions ¥; as proposed by Yserentant is

i) =it (L) 2)

with the shape function V.

These properties provide normalization and coincidence of the center of
the packet and the center of mass. This Lagrangean approach automatically
leads to the conservation of mass. The fluid is then described as the super-
position of the above individual mass packets in space.

It is mathematically proven that the constants of motion energy, momen-
tum and angular momentum are conserved within FMM.

We suppose further that with the vector components y; and y; of y fullfill
the following condition

/W(y)ykyldy = Jou. (3)

In our case it showed to be beneficial to make the function ¥ up from
piecewise one dimensional polynomial functions @(yk). The above constant
J is independent on the space dimension and we used J=1/12 for our calcu-
lations.

A suitable choice for building up the function ¥(y) from piecewise poly-
nominal one dimensional functions in our computations was the normalized
compact third order B-spline given by

21+¢)3  , -1<¢E<-1/2
1-662(1+¢) , —-1/2<¢<0
F(€)=-41-662(1-¢) , 0<&£<1/2 (4)
1 2a-e2 , 12<e<1
0 , 1€l >1

which then is combined to the tensor product

U(y) =[] () (5)
k=1

The superposition of the masses of single packets results in the total mass
density.

The normalized frictional force for a packet within the fluid is governed by
the difference from the average sourounding velocity and leads to dampening
of local velocity fluctuations, coupling of packets and production of entropy
according to the second law of thermodynamics.
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FO) = _% / RY;[v; — vde (6)

The local relaxation time T'= 2/R of the system represents for constant
R and v = 0 the time which is needed to dampen the velocity by a factor of
1/e. This relaxation time vanishes for smooth flows with the second order of
the local packet size but is dominant for shocks.

4.3 Experimental Results

Execution Time
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Fig. 2. Execution time over number of processors for a two-dimensional gasball
with initial azimutal and radial velocity towards the center.

The current parallel FMM implementation is based on MPI-1.1 and uses
a coarse grained parallel tree approach. The parallel tree helps to hide the
implementation details of the parallel data structures from the physicist de-
veloping new applications and from the numerical mathematicians testing
new integration algorithms. It showed to be beneficial that the integration
is parallized implicitely via the distributed packets in a parallel tree struc-
ture. The users are able to develop new applications and algorithms without
beeing concerned about any MPI details.
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Speedup
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Fig. 3. Speedup over number of processors for a two-dimensional gasball with initial
azimutal and radial velocity towards the center

Figure 2 shows that both the smaller two-dimensional 21 x 21 packet
test problem and the bigger 81 x 81 test problem. The execution time on
the CRAY T3E-900 is compared to a four processor SUN Enterprise Ultra
SMP machine running at 300 MHz. It can easily be seen that the SPARC
processor family is much better suited to more complex data structures than
the ALPHA processor which results in about 40 percent less execution time
on the single node 300 MHz SPARC ULTRA compared to the 450 MHz DEC
21164. Some preliminary tests on much cheaper Intel Pentium II/III ma-
chines showed the same performance per clock cycle like the SPARC ULTRA.
Due to memory bandwidth limitations and unfortunate scheduling algorithms
on the SUN ENTERPRISE noticeably performance decrease is already observed
for employing only three processor nodes. Because of the excellent and well
balanced network interconnect of the CRAY this machine scales very well even
for relatively small problems with very high communication overhead. Figure
3 gives an estimate of the possible speedups for the current parallel FMM
implementation. It is easily seen that the speedup of the SUN ENTERPRISE
can not compete with the CRAY T3E. The possible speedup is very much
dependent on the problem size. Three dimensional problems are between 20
and 1000 times larger than the current two dimensional test problems so
that estimates show that this parallel FMM implementation should scale up
to 384 processors on a T3E.
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5 An object-oriented Parallel Runtime System

Based on the experiences with the implementation of FMM, we now intro-
duce our proposal for a object-oriented parallel runtime system. The basic
architecture can be seen in figure 4.

On the lowest level of our parallel programming system is an object-
oriented message-passing layer with a functionality close to MPI. To keep this
layer portable, it is designed to be easily implemented on different low-level
communication primitives. There exists a UDP based version for local test
runs in a LAN environment and a MPI based version to support nearly every
parallel architecture. Due to the disapointing MPI performance on the Cray
T3E, we will also implement a Cray SHMEM based version for production
runs on this platform. The message passing layer is designed to be thread-
safe. A portable object-oriented thread library will be integrated in the near
future.

Based on local threads and object-oriented message passing, we propose a
second layer with a more abstract interface to hide the message passing and
data distribution details from the application programmer. This level will
include synchronous and asynchronous remote method invocations as well as
distributed shared objects, which are migratable and replicatable.

The second layer will be responsible for load-balancing problems. In our
simulation particles move free in space, therefore different particles will in-
teract in each time-step. Access to the particles should be transparent to the
application programmer, e.g. a programmer can access a particle as if the
particle is in local memory. The access time to the particle of course varies,
and will be optimized by the programming system and application library.
This layer is scheduled to be implemented by fall this year.

There are numerous reasons, which motivated the redesign of these lay-
ers, despite of the existence of object-oriented message passing libraries like
MPI++ or MPC++ [12]. The most important are the lack of thread-safe
implementations and the missing integration of modern C++ concepts like
templates and the support for the standard template library.

Based on the lower-level object-oriented layers, we are developing simu-
lation code and object-oriented parallel application libraries.

5.1 The use of Design Patterns

We cannot ignore the demand for programming in C or FORTRAN. To pro-
vide just an implementation in C++ will not be accepted by our project
partners. We had to find a way to write down our solutions in a ”Meta-
Language”. Using Design Patterns serves this purpose best. We have an easy
to understand way to document our solutions, that is not bound to any pro-
gramming language. Also using UML allows us to use tools to implement the
documented Design Patterns in e.g. C++ (almost) automatically.
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Procedural
Interface (DTS)

Message passing I
Hardware I

Fig. 4. Layers of the parallel programming system

OO-Interface

Documenting the Design Patterns in a modern, easy to read way was
achieved by using multi-frame HTML documents. Solutions that are easy
to read and understand find generally better acceptance, even if there is
no direct implementation in the favorite language of the programmer, e.g.
FORTRAN. Also documenting the simplicity of our ready to use solutions
motivates more physicists to take a look at a new programming paradigm
(some even take a second look).

5.2 An object-oriented Application Library for Parallel SPH
Simulations

As a first step towards an object-oriented SPH program, we used an easy
to parallelize Monte Carlo simulation of the pulsar HER-X1. Looking at the
problem as a programmer the Monte Carlo simulation and the SPH simula-
tion are similar, because they are both particle simulation methods. We used
design patterns to describe the solutions that were implemented in the class
library. For algorithmic problems like coordinate transformation or different
types of integrators we used a Strategy Design Pattern. The simulation data
is created using Factory Design Pattern and the individual sub-domains of
our simulation domain are connected with each other by being part of a
Composite Design Pattern (see 5).

Prototyping a new simulation using this class library is faster than writing
new C or FORTRAN code. Currently we are working on optimizing the
performance of our C++-programs. We could get some positive feedback from
our physics partners with respect to using these solutions for prototyping.
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Fig.5. UML notation of Composite Design Pattern used for Domain-
Decomposition

The special SPH data structures and algorithms are also part of our cur-
rent work — e.g. nearest neighbor problems.

6 Outlook

Fluid dynamics calculated with modern particle methods remains an impor-
tant topic not only in the area of astrophysics but increasingly in engineering
like combustion engines. A future version of our software will include online
visualization on distributed memory parallel machines which requires rather
good I/0 and interactive use capabilities of the employed hardware.
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