POOSC ’99
Object Oriented Concepts for Parallel
Smoothed Particle Hydrodynamics
Simulations

Stefan Hiittemann® Michael Hipp! Marcus Ritt! Wolfgang Rosenstiel

Wilhelm-Schickard-Institut fiir Informatik, Universitdt Tibingen
Arbeitsbereich fiir Technische Informatik

Sand 13, 72076 Tiibingen

e-mail: {hippm,hutteman,ritt,rosen}@informatik.uni-tuebingen.de

Abstract. In this paper we present our object oriented concepts for parallel smoo-
thed particle hydrodynamics simulations based on a 3 year work experience in a
government funded project with computer scientists, physicists and mathemati-
cians.!

In this project we support physicists to parallelize their simulation methods
and to run these programs on supercomputers like the NEC SX-4 and Cray T3E
installations at HLRS Stuttgart (www.hlrs.de).

First we introduce our portable parallel (non object oriented) environment DTS.
Benchmarks of simulations we parallelized are shown, to demonstrate the efficiency
of our environment.

Based on these experiences we discuss our concepts developed so far, and future
ideas for object oriented parallel SPH simulations at two different layers. An object
oriented message passing library with load-balancing mechanisms for our simula-
tions at the lower level, and an object oriented parallel application library for our
physical simulations on the upper level.

1 Motivation

In a collaborate work of physicists, mathematicians and computer scien-
tists, we simulate astrophysical systems. In this paper we present our object
oriented concepts based on our experiences made in a government-funded
project! in the last three years. Smoothed Particle Hydrodynamics (SPH)
is the method used by the astrophysicists to solve a Navier-Stokes equation
(see [5], [8])- SPH became widely popular in the last years. SPH is now also
used as an alternative for grid based CFD simulations (e.g. in automobile
industry).

The astrophysical problems are open boundary problems of viscous com-
pressible fluids. SPH uses particles that move with the fluid instead of grid

! SFB 382: ”Verfahren und Algorithmen zur Simulation physikalischer Prozesse
auf Hochstleistungsrechnern” (Methods and algorithms to simulate physical pro-
cesses on supercomputers)

points as in other CFD simulation methods. This makes SPH much more
difficult to parallelize than grid based CFD methods.

1.1 Portable Environment

Programming with threads showed to be well-known and simple enough to
serve as a basis for a portable parallel programming environment. The first
approach, named ”Distributed threads system” (DTS) [2] generalized the
notion of threads for distributed memory machines. A compiler was written
to simplify the task of identifying and creating parallel threads.

A major drawback of this system was its pure functional programming
model: the communication between threads running on different nodes was
not well supported. We are investigating, whether a combination of (global)
threads and distributed shared memory, i.e. a logical consistent memory for
machines with physically distributed memory, is suitable for our applications.

Currently we are working at the task of combining the basic ideas of this
system, namely distributed threads and shared memory, with object-oriented
concepts. This system, written in C++, is described in section 3.

For Cray T3E we used another approach. We provide a high level appli-
cation interface optimized for SPH-like programs. The library has a simple to
use interface and hides near all of the parallelization and explicit communi-
cation. A programmer only has to give some hints to optimize the communi-
cation and load balancing. The library itself is based on the native SHMEM
message passing for Cray T3E or alternatively on MPI.

1.2 The need for Object-Oriented techniques

There were reasons to redesign our simulation environment using object-
oriented techniques:

1. using message objects on the lowest level to communicate between con-
current program units on distributed memory computers seems to be
most natural and easy to use for our simulation methods.

2. the growing complexity of our simulation programs requires structural
elements in the programming paradigm not offered by e.g. FORTRAN
or C. Also using an object-oriented approach to describe the problem is
closer to the physical model used.

3. to exploit the usual features promised by object-oriented programming
(reusability etc.) our project partners tried programming in C++; which
resulted in anything but reusable, modular software. It showed, that
just by switching to C++ physicists do not gain much, and fall back
to FORTRAN-style programming.

Our goal is to provide a well documented library of reusable and extensi-
ble solutions for astrophysical simulation methods. This also should give
a guideline on how to use object-oriented techniques for our simulation
methods (e.g. SPH).

2 Parallelizing SPH

We could gain a lot of experience with two different types of parallelization of
the SPH code for shared memory machines based on DTS and for machines
with distributed memory for which we developed a portable procedural li-
brary.

Both implementations can compete with other SPH codes for parallel
machines such as the codes for Cray T3D, CM-5 or Intel Paragon [6,4].

2.1 Shared Memory Machines

The SPH code was implemented on the NEC SX-4 using DTS. The usage
of DTS allows to run the same SPH code both on the NECSX-4 and on
other machines! without modifications. The parallel SPH code was used for
benchmarking, using different numbers of CPUs. The results prove the high
quality of the parallelization features of the NEC SX-4.

The right side of Figure 1 shows the parallel efficiency of the parallel SPH
code on the NEC SX-4. For 10000 particles the parallel efficiency decreases
from 90% on two CPUs to 60% on 20 CPUs. For 100000 particles the parallel
efficency is more than 90% for all 20 CPUs.

Further runtime improvement can be reached by vectorization of the code.
In the left side of figure 1 we present a comparison of the runtimes of SPH
simulations of the same test problem with different codes. Together, the mea-
surements in figure 1 show, that already using as less as 2 CPUs on the
NEC SX-4 a runtime improvement compared to the optimal sequential SPH
code can be achieved. As the efficency is excellent for 20 processors, very
good runtime improvements can be expected using more CPUs.

[©10.000 Particles_ m100.000 Particles | 16000

0
sec. F77 C(1CcPU) C (8 CPU)

MNo Vect. OVector

Fig. 1. Left: parallel efficiency on NEC SX-4. Right: Vectorization and F77 solution
of a SPH simulation with 10 000 particles for optimized F77 sequential code, parallel
SPH on 1 CPU and parallel SPH on 8 CPUs.

! e.g. SGI Onyx2, HP V-Class

2.2 Distributed Memory Architectures

Besides the DTS SPH code for shared memory machines, there are a few
implementations for SPH on parallel machines such as the PTreeSPH [3].
The PTreeSPH code is based on MPI and, therefore, is portable to nearly
every platform. We decided to go another way, because we see the need
for a more efficent implementation on some architectures. We developed an
abstraction layer optimized for SPH like problems with two different low level
implementations for the communication.

The slower portable implementation is based on MPI. The other imple-
mentation is based on the Cray SHMEM message passing library, which pro-
vides functions oriented at the Cray T3E hardware capabilities and therefor
gains a better performance.

Having two different implementations allowed us to test the flexibilty of
our SPH abstraction layer. We first wrote the SHMEM implementation and
specified the interface on which we put our physical code. It showed that
the layer was flexible enough to later add a MPI implementation without
changing the interface or the physical application.

Parallelization An essential idea for parallelization was to use two different
domain decompositions depending on the type of computation:

1. All computations without neighbor interaction are done on an equally
sized subset on every node. The subset is selected by splitting the particle
field into n parts for n nodes. A node also operates as a relay node for
its subset. Information about a specific particle can always be found on
its relay node.

2. For computations with neighbor interaction all particles are sorted ac-
cording to their positions into a grid with equally sized cells. These cells
are assigned to nodes in a way that every node holds the same number
of particles.

The load balancing is good in both cases, because the computation takes
about the same time for every particle. For the case of very unbalanced com-
putations we have the option to do load stealing between nodes to optimize
the load balancing.

This approach reduces communication overhead and memory comsump-
tion because the particle information resides on one node as long as possible.
Also, the computation of this domain decomposition is fast enough to be done
on the fly. This is important, because the particle positions change after every
integration step.

Native SHMEM communication vs. MPI We measured the perfor-
mance of the MPI code on the Cray T3E in Stuttgart and on the IBM SP
system in Karlsruhe. On the SP we used 128 P2SC thin nodes with 120MHz.
The tests showed, that the MPI implementation of the Cray T3E is worse

compared to the native SHMEM library (see figure 2). Our tests show that
Cray could easily improve the MPI performance by making better wrappers
around existing SHMEM calls. For some communication parts, such as gather
operations of large arrays, the throughput decreased from about 300MB/s us-
ing SHMEM to 120 MB/s using MPI. On the SP we achieved the expected
performance of around 50MB/s. The whole code didn’t perform this good on
the SP system, because the implementation is optimized for Cray T3E and
depends heavily on good communication bandwith and latency in order to
scale beyond 64 Processors.

Results It proved to be beneficial to use an abstraction layer, which allows
the exchange of low level parts without changing the application to obtain the
best performance on a given hardware platform. In the previous projects this
was a procedural abstraction layer. For our current developments we choose
an object oriented programming model for this abstraction. The crucial point
for the parallelization is a smart domain decompostion optimized for both,
the machine and the problem. An object oriented modelling of domain de-
compositions, which we want to describe in a later chapter is therfor one of
the requirements for our parallel environment.

Speedup for 100.000 SPH particles

180 T3E with SHMEM —— |
T3E with M| —x—
P2 with MPI -

160

140

120

100 /
80 /
B [e e ST T

40 Lot i
20 AR

0 50 100 150 200 250
Number of processors

Speedup

Fig. 2. Speedup of the SPH Simulation on Cray T3E with SHMEM and MPI and
on IBM SP with MPI for a mid-size problem with 100 000 SPH particles. For larger
node numbers the curves are dominated by the non parallelized communication
parts such as gather/broadcast operations between all nodes. Please note the effect
of the limitations of the MPI implementation on the Cray T3E beyond 128 nodes.

3 An object-oriented parallel runtime system

Based on the experiences with existing object-oriented parallel systems and
our own object-oriented codes, we now describe our concepts for a object-
oriented parallel runtime system.

There were numerous reasons, which motivated the redesign of these lay-
ers, despite of the existence of object-oriented message passing libraries like
MPI++ or MPC++ [9]. The most important were the lack of thread-safe

implementations and the missing integration of modern C++ concepts like
templates and the support for the standard template library.

To support object-orientation for parallel programming, we extended our
model of parallel computing with threads on machines with distributed mem-
ory to C++ objects. In this model, an object — extended for architectures with
distributed memory — is the basic entity of data communication. Objects can
be migrated between different address spaces and replicated to improve per-
formance. Migration and replication can be done explicitly by the user. For
specific applications-domains, for example particle codes, we intend to pro-
vide tailored load-balancing components which free the user from explicitly
specifying the data distribution. The methods for guaranteeing consistency
are based on the well-known consistency protocols from distributed shared
memory. In addition to this, objects support asynchronous remote method
invocations. This corresponds to the asynchronous remote procedure call in
our former approach, that is, a thread fork extended for machines with dis-
tributed memory, . Based on these facilities we plan to integrate some library
solutions for a couple of common problems, for example automatic paral-
lelization and load-balancing for independent data-parallel problems. These
libraries will be application-independent (in difference to the higher-level li-
braries described later, which support specific physical problem domains like
particle simulations).

To realize this model, we started implementing a basic layer for object-
oriented message-passing. This layer can be used independently from the
higher-level layers. To keep it portable, it is designed to be easily implemented
on different low-level communication primitives. One implementation is on
top of MPI to support a broad range of parallel architectures. There also
exists an UDP-based version for test runs in a local environments without
MPI support. Currently we are porting the library to the Cray T3E to run
performance tests. Due to the bad MPI performance on the Cray T3E (see 2,
we will also implement a native Cray SHMEM based version for production
runs on this platform.

To simplify the migration from procedural codes written in MPI, the
functions and methods are very similar to the MPI calls as far as suitable
for the object-oriented interface. The main focus lied on extending the MPI
functionality to objects without losing type-safety and the full integrations
of the STL, i.e. transferring STL containers as well as using iterators for send
and receive calls. To support the higher-level layers the library had to be
programmed thread-safe.

The user interface for the object-oriented message-passing is straightfor-
ward with Communicator objects, send- and receive-methods. Composite ob-
jects like STL containers, arrays or user objects are decomposed into basic
types by an overload resolution/traits technique [11]. Therefore, the user has
not to deal with the unattractive concept of MPI datatypes, without loosing
type-safety. To send and receive objects, the user has to provide serialize and
deserialize methods, specifying how an object can be broken in components.

To minimize the communication overhead and prevent writing unnecessary
serializer methods, objects with a trivial copy constructor can be handled
directly by the library. We are also working an a code preprocessor which
will generate the serializer methods for most objects automatically. Further-
more, note that the techniques used for sending objects and other C++ data
types over the net, can be used without modification to implement persistent
objects and application-level checkpointing.

A message-passing based version of an object-oriented SPH code will be
our first test application. Based on these experiments, we plan to implement
the higher-level layers by the end of this year. A portable object-oriented
thread library will be integrated in the near future.

4 Towards object-oriented parallel SPH
4.1 Design Patterns

We cannot ignore the demand for programming in C or FORTRAN. To pro-
vide simply an implementation in C++ will not be accepted by our project
partners. We had to find a way to write down our solutions in a ”Meta-
Language”. Using Design Patterns serves this purpose best. We have an easy
to understand way to document our solutions that is not bound to any pro-
gramming language. Writing the design patterns in UML, we can use tools
to implement the documented Design Patterns in e.g. C++ (almost) auto-
matically.

As a first step towards an object-oriented SPH program, we used an easy
to parallelize Monte Carlo simulation of the pulsar HER-X1. Looking at the
problem as a programmer the Monte Carlo simulation and the SPH simula-
tion are similar, because they are both particle simulation methods (in the
case of the Monte Carlo simulation the particles are photons).

In the following we want to give an overview over the design patterns we
used. The names for the patterns are taken from the Design Pattern book by
E. Gamma (see [10]), but our patterns might differ from those in the book
(we still need to give names to our patterns).

Composite Pattern for Domain-Decomposition Domain decomposition is the
method used to parallelize particle simulations like SPH. The simulation area
of all particles is decomposed into separate simulation-domains. The domain
consists of particle lists that are being used to evaluate the equations. Since
the particles interact, information must flow between the domains.

The main problem with the domains is the communication between the
domains, and how to update the particle lists in each domain during the
simulation.

To describe the solution for this problem, we used a pattern similar to the
composite design pattern. The general behaviour common to all simulation-
domains, the ability to communicate with other domains, is defined in the

abstract root-class SimulationArea (see fig. 3). A concrete simulation area
will inherit the basic communication methods from this parent class, and
change the implementation to its own needs.

Using this pattern, you can write simulation programs with compatible
simulation subdomains without the need to rewrite the communcication be-
tween the different simulation-domains. To parallelize a simulation build us-

Client P> Simulation Area
comunicate() -«

add(SimulationArea)

del(SimulationArea)

list of neighbours

. Concrete
Simulation Area

comunicate() O-----4--------------=
add(SimulationArea)

del(SimulationArea) forall g in children
g.comunicate();

Fig. 3. Design Pattern used for Domain-Decomposition

ing the Domain-Decomposition, we make the SimulationArea root-class in-
herit from a class similar to a Thread-class, so that all simulation-area objects
become active objects. (Active in the sense, that these objects run concur-
rently).

Iterator Pattern to step through meigbour-lists The iterator pattern is used
to step through dynamic lists of neigbour simulation areas. This pattern is
also available in C++ STL.

Strategy Pattern to select a numerical algorithm The core functionality of a
simulation of physical processes always are some numerical algorithms. The
selection of algorithms is stored in libraries for procedural languages like C
or FORTRAN. To keep the advantage of a fine-grained selection of different
algorithms we choose a strategy pattern for our numerical algorithms.

A strategy always works on a specific context. As an example we use
the coordinate transformation of a vector (see fig. 4). Here the vector is the
context of the strategy, and the different transformations are the concrete
strategies, that have to be implemented for a simulation. The basic function-
ality is defined in the root-class for the coordinate transformation strategy. In
this example the root-class contains the methods toGeneric and toSpecial.
These methods transform the coordinates of a vector from and to a special
coordinate system to a (pre-defined) generic coordinte system.

Vector Coordinate Transf.
toGeneric()
strategy '
toSpecial()
Cylinder Spherical Other ...
toGeneric() toGeneric() toGeneric()
toSpecial() toSpecial() toSpecial()

Fig. 4. Strategy Desing Pattern for Coordinate Transformations

Facade Pattern to handle input parameters To handle user input parameters
independent of the objects used in the simulation, we use the facade pattern.
A facade object collects all input, and marshalls the parameters to the correct
object for this simulation.

Factory Pattern to create the particles A Factory pattern can be used to
create the particles for the simulation. Communicating a single particle will
not be efficient, therefore container classes for particles are necessary. Par-
ticles created using the ParticleFactory can now be collected, and put into
container classes (see fig. 5).

. Particle
ParticleFactory
Operation()
GetParticle(key) 4»
Electron Photon
Operation() Operation()

Fig. 5. Factory pattern for particles

Documentation Documenting the Design Patterns in a modern, easy to read
way was achieved by using multi-frame HTML documents. Solutions that

are fun to read find generally better acceptance, even if there is no direct
implementation in the favorite language of the programmer, e.g. FORTRAN.
Also documenting the simplicity of our ready to use solutions motivates more
physicists to take a look at a new programming paradigm (some even take a
second look).

Prototyping in JAVA We also tried using JAVA for prototyping. Implement-
ing our design patterns written in UML is fast to do in JAVA. The JAVA
protoypes cannot be used for the real problem (in our case because there
are no JAVA environments on Cray and NEC computers). The prototype is
really just a prototype.

References

1. Allen, M. P., Tildesdley, D. J.: Computer Simulation of Liquids. Oxford Univer-
sity Press (1992)

2. Bubeck T.: Eine Systemumgebung zum verteilten funktionalen Rechnen.
Eberhard-Karls-Universitdt T{ibingen, Technical Report WSI-93-8 (1993)

3. Davé, R., Dubinski, J., Hernquist, L.: Parallel TreeSPH. New Astronomy volume
2 number 3 (1997) 277-297

4. Dubinski, J.: A Parallel Tree Code. Board of Studies in Astronomy and Astro-
physics, University of California, Santa Cruz (1994)

5. Lucy, Leon B.: A Numerical Approach to Testing the Fission Hypothesis. As-
tron. J volume 82 (1977) 1013-1924

6. Warren, S. Micheal, Salmon, K. John: A portable parallel particle program.
Comp. Phys. Comm. volume 87 (1995) 266-290

7. Bubeck, T., Hipp, M., Hiittemann, S., Kunze, S., Ritt, M., Rosenstiel, W., Ruder,
H., Speith, R.: Paralle] SPH on Cray T3E and NEC SX-4 using DTS High Per-
formance Computing in Science and Engineering 98, Springer (1999) 396-410

8. Gingold, R. A., Monaghan, J. J.: Smoothed particle hydrodynamics: theory and
application to non-spherical stars Mon. Not. R. astr. Soc. volume 181 (1977)
375-389

9. Wilson, Gregory V.,Lu, Paul: Parallel Programming using C++ The MIT Press,
Cambridge (1996)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: elements of
reusable object-oriented software Addison-Wesley (1995)

11. Programming languages — C++. International Standard 14882. ISO/IEC
(1998)

