Parallelization of an Object-Oriented
Particle-in-Cell Simulation*

Simon Pinkenburg, Marcus Ritt, and Wolfgang Rosenstiel

Wilhelm-Schickard-Institut fiir Informatik
University of Tiibingen, Department of Computer Engineering
Sand 13, 72076 Tibingen
{pinkenbu,ritt,rosen}Qinformatik.uni-tuebingen.de

Abstract. We describe our experience made in parallelizing a Particle-
in-Cell simulation. The project was part of our efforts to apply object-
oriented methodologies to the development of parallel physical simula-
tions. Unlike earlier projects, which were developed and parallelized in
cooperation with physicists, the goal was to parallelize a sequential simu-
lation code written in C++ without having support from its developers.
Our interest was to analyze the structure of the original code and the
possibilities ofadding the parallelization after sequential development.
Also, since the parallelization was targeted to distributed memory ar-
chitectures, we wanted to test the deployment of the object-oriented
message-passing library developed in our working group.

Based on a static and dynamic analysis, we describe several general par-
allelization strategies and the implementation of one of them. We give
a introduction to our message-passing library and detail its extension to
collective communication, which was necessary to implement the parallel
algorithm. Runtime measurements made on two different architectures
are compared. We conclude with a discussion of the findings made in
course of the project.

Keywords: Object-orientation, Message-Passing, Simulation, Particle-in-Cell

1 Introduction

This work is part of a government funded collaboration of physicists, mathe-
maticians and computer scientists to develop large-scale physical simulations
for massive parallel computers. Our group is concerned with the development
of adequate runtime environments and libraries to parallelize these simulations
effectively.

While in industry object-oriented techniques and programming languages are
widely used, the scientific computing community still does not employ them in

* This project is funded by the Deutsche Forschungsgemeinschaft as a part of the
Collaborative Research Center 382 (Methods and Algorithms for the Simulation of
Physical Processes on High Performance Computers)

2 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

T, integration of T,

2

field integration T weight particles

Monte—Carlo Collision

equations of motion
Vo —= v

F—=v —=x

T,

p — = F xv) —= p

Fig. 1. Steps in a Particle-in-Cell simulation with MCC

the majority of the applications. In recent years, some efforts to enable object-
orientation for parallel computing have been made, mainly in the C++ commu-
nity. Efficient and standard-conforming compilers, mathematical base libraries
reduced the performance gap between classical approaches and object-oriented
codes [14]. Parallel programming standards like the Message-passing interface
provide support for object-oriented languages and efforts to establish object-
oriented frameworks for parallel computing are ongoing [15, 8, 11].

In this paper, we investigate how object-oriented methods can help in the
parallelization of object-oriented codes. A focus is the reusability of the object-
oriented design of a sequential code. In section 2 we give a overview over the
Particle-in-Cell method used in this application. We explore parallelization strate-
gies in section 3 and discuss their implementation in the next section. In section
4, we also present an object-oriented message-passing library supporting collec-
tive communications, which helped to parallelize the application on distributed
memory machine at a reasonable level of abstraction. Measurements of the par-

allel execution are presented and discussed in section 5. We conclude in section
6.

2 Particle-in-Cell simulation with Monte-Carlo collisions

In a Particle-in-Cell simulation, the medium under consideration is represented
by a large number of macro particles, each describing the physics of an ensemble
of real particles. The macro particles reside in a simulation space of finite geomet-
ric boundaries. In contrast to other particle methods, the particle interactions
are calculated using a discrete grid. The grid divides the simulation space into
usually regular subregions or cells (hence the name of the method). Character-
istic physical properties of the particles are weighted on the grid using a kernel

Parallelization of an Object-Oriented Particle-in-Cell Simulation 3

function. The momentum equations on the grid are solved with some standard
method (for example finite differences). Based on these results, the forces are
calculated and interpolated to the particles positions to solve the equations of
motion.

PiC simulations use grid points to reduce drastically the amount of compu-
tation necessary to produce good approximations to the actual behavior of the
underlying physical phenomena. To do this they make use of the common phys-
ical property that the influence of any two macro particles upon one another
quadratically decreases as the geometric distance between them increases. The
computational reduction is accomplished by weighting the contributions of the
particles on the grid cells, using a kernel function of finite domain. In this way,
the computational complexity of simulating n macro particles drops from O(n?)
to O(n).

In this specific application, the PiC method is used to simulate the phenom-
ena in the electrostatic plasma of a direct current glow discharge in a tube. A
plasma medium is an ionized gas, which may be regarded as a collection of ions
and electrons interacting through their mutual electric and magnetic fields. PiC
methods are often used to simulate plasma phenomena by solving Maxwell’s
Equations in a numeric manner. This involves computing the dynamics of a
large number of electrons and ions in the plasma and the influence of the self-
consistent electromagnetic fields. Each macro particle represents about 2 - 10°
real particles. Since the problem to be solved shows a cylindrical symmetry and
the radius components were of no interest, the simulation is effectively one-
dimensional. In order to make a model of the direct particle interactions in the
plasma, the method is extended by Monte-Carlo collision (MCC) processes. The
collision processes prevent regarding the whole physics of the scattering process,
but randomly approximate elastic scattering and the stimulation or ionization
of neutral gas atoms by electrons.

The sequential PiC code in C++ was the result of an effort creating a frame-
work for PiC simulations called Open Particle Framework (OPAR) [2]. While
designed as an extensible framework, it currently implements only the classes re-
quired to simulate the direct current glow discharge. The object-oriented CASE
tool together was used for the static analysis.

The application provides two major abstractions: a task concept and a di-
agnosis subsystem. Tasks define the execution of the simulation. Each physical
entity is encapsulated in a task (by deriving them from class CTask) and imple-
ments its simulation code. The task classes follow the Composite design pattern
and thus a hierarchical execution structure can be defined. Task objects have
an external representation for configuring the simulation. This configuration file
makes it possible to define the tasks, their parameters and the static dependen-
cies (associations) between them. On start of the simulation, the static object
model is reconstructed from this configuration file. Thus, the user is able to
construct arbitrary simulation setups based on the set of implemented physical
entities without recompiling the application.

4 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

The diagnosis subsystem contains classes for producing output from simula-
tion runs. Any diagnosis output (f.ex.particle trajectories or the plasma density
distribution) is implemented in its own diagnosis task. This task can be attached
as a subtask to the physical entity to observe, and produces the desired output.

Since together does not support dynamic analysis by producing an UML se-
quence diagram from a concrete run, the dynamic behavior was analyzed by
manually tracing some executions. In each timestep, the execution engine runs
all configured tasks in the order given by the configuration file. The configura-
tion supports one-time tasks, which can be used for additional setup, and tasks
running the entire simulation time.

3 Parallelization strategies

After initializing the particles, each simulation timestep executes four substeps:
T, weights the particles on the grid, T calculates the solution on the grid, 75
solves the equations of motion of the particles and Ty applies the Monte-Carlo
processes to the particles.

A parallelization has to give a decomposition of the tasks and consider the
data dependencies between the parallel computations. Regarding time complex-
ity, tasks 71, T3 and T, are linear in the number of particles and T is linear
in the number of grid points. In T3, T3 and T}, the computation on different
particles is independent, but there is a data dependency for T} and T3 to all grid
points (an output dependency in case of T, and an input dependency in T3). In
T>, the computations on a grid point depend on its neighbors. Therefore, T3, T3
and T can be decomposed on the number of particles, and 75 on the number of
grid points. For the parallel execution of T} and T3, either the data dependencies
on the grid have to be resolved, or concurrent accesses to the grid have to be
synchronized. The same holds for T5 in respect to neighboring grid points.

3.1 Decomposition

A parallel Particle-in-Cell algorithm has the choice of divide up the work done
on the particles, the grid or both. The next sections explore and compare these
different approaches.

Domain decomposition The first possibility, dividing up the grid into sub-
grids of the same size where each of them remains on one processor, is also the
most common way used for particle methods. Each processor thereby keeps one
subgrid and all particles in its local memory.

In step 71 — computing the density — the processors weight the particles on
their part of the grid. Next, the electric fields, potentials and force fields are
locally solved in parallel under the consideration of data dependencies between
the boundary values of each subgrid. Now, the equations of motion can be solved
setting the new positions and velocities of all particles. A synchronization fol-
lows, updating the positions and velocities of the particles on all processors to

Parallelization of an Object-Oriented Particle-in-Cell Simulation 5

regain redundancy. Thereby, only the moved particles are exchanged by a scat-
ter function in order to reduce the communication overhead. The used function
enables every processor to have all new positions and velocities. Finally, the
Monte-Carlo processes are executed in parallel.

The whole communication overhead, neglecting communication of boundary
values, depends on the number of particles, making this strategy only useful for
problems with a large computation on the grid and a small amount of particles.

Particle decomposition The second strategy divides up the particles on each
processor and keeps the grid redundant in memory to resolve data dependencies.
After weighting the particles on the local grid, a global reduction operation,
which sums up all local grids and distributes the result back to all processors,
leaves the application with a redundant global grid. The use of a reduction
operation is legal because of the additivity of the physical quantities weighted on
the grid. Now, the processors can locally compute the electric field, the potential
and the forces on the grid in parallel and subsequently advance their particles
by setting their new positions and velocities. After simulating the Monte-Carlo
collisions the cycle can be repeated.

This strategy parallelizes only the operations on the particles. The compu-
tation on the grid, while executed in parallel, is the same on all processors and
thus adds to the sequential overhead. The additional communication overhead
depends on the number of grid points transmitted in the reduction operation.
This approach is efficient for problems with small grids and a great large number
of particles.

Domain and particle decomposition The third possibility is to combine
both alternatives: divide up the particles and the grid points. Steps 11, T3 and
Ty — dealing with particles — should be divided by particles and step 75 by grid
points.

If the memory is large enough, an implementation could keep the grid redun-
dant and simply merge the steps of the particle and domain decomposition. In
step T, each processor weights its particles on the local grid. After the grid is
subdivided into equal parts, each processor sums up the local contributions of
the subgrid now is responsible for from all other processors. This can be done in
a single reduction operation. In the next step, the processors compute the fields
on each subgrid in parallel, considering the data dependencies between bound-
ary values. Afterwards each processor broadcasts its local grid, bringing all local
grids up-to-date, which makes in turn possible to proceed locally with the com-
putation of new positions and velocities of the particles and the Monte-Carlo
collisions.

This implementation involves a lot of communication overhead. If tight mem-
ory resources prohibit the redundancy of some data structures, like in the algo-
rithm above, this overhead gets even worse. Such an approach is only efficient
for problems with large grids and a large number of particles.

6 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

Conclusion The choice of a parallelization strategy for an application depends
on the percentages of computation spent in updating the particles and the grid.
As a requirement of the PiC method, the number of particles must exceed the
number of grid points. Usually the computation on the grid contributes less than
10% to the total running time, depending on the complexity of the algorithm.
In our case, the number of particles exceeds the number of grid points by a
magnitude of 2 to 4, therefore the computation on the grid contributes less
than 1%. Thus we decided to decompose the computation only by the number
of particles. If the simulation would be extended to three dimensions, which
increases the number of grid points and requires more complex algorithms for the
solution of the field equations, a combined domain and particle decomposition
approach would be most promising.

3.2 Load balancing

Another important point was to add a load balancing component. Initially, the
particles are distributed equally to all processors. Due to the Monte-Carlo col-
lisions and ionizations done in the last step of the algorithm, the distribution
of the particles changes in course of the simulation. The resulting load imbal-
ance can reduce the speedup significantly. The load balancing component checks
the particles distribution periodically and averages the number of particles on
the processors. Since the running time of a full timestep is very small, the load
balancer must be carefully tuned to add little overhead. This was achieved by
checking the balance only every few steps and executing the averaging process,
which implies the communication of the particles, only if the imbalance exceeds
a configurable limit. Further, the averaging process is stopped, if a sufficient
balance is reached. For this application, the load balancer starts rebalancing at
20% imbalance and stops at 5% imbalance. This can be usually done in a single
communication step, which keeps the overhead small.

4 Implementation

A goal of the implementation was to parallelize the application without substan-
tially rewriting the sequential code. The implementation had to modify three
parts of the code: At initialization the particles must be distributed equally to
all processors, between T} and T3, the redundant grid must be updated, and
in after some number of timesteps, the particles must be load balanced. Where
it is possible, the implementation follows the task model. Initialization of the
particles is done in tasks of class CGeneration. Since the particles are not ini-
tialized from external values but created on startup, the initial distribution of
particles to processors could be done by modifying this task (by inheritance) to
assign newly created particles to the processors in a round-robin fashion. This
step requires no communication.

The summation of the local grids could be implemented transparently as a
subtask of class CDensity, which is responsible for weighting the particles to the

Parallelization of an Object-Oriented Particle-in-Cell Simulation 7

grid. The subtask executes the reduction operation after the local updates are
done.

Since the load balancer depends on the particles, it has been implemented
as a subtask of class CSpecies, the representation of the particles. After the
integration of the equations of motion, this subtask is responsible for checking
and, if necessary, averaging the particle distribution.

4.1 TPO++

The implementation of the communication was done in TPO++ [3], an object-
oriented message-passing library developed in our group. In this section, we give
an overview of point-to-point communication in TPO++. For this application,
TPO++ has been extended to collective communication, which is discussed in
more detail in the next subsection.

TPO++ implements an object-oriented interface for the functionality of the
well-known MPI 1.2 message-passing standard [11]. It is intended to fill the se-
mantic gap between current the message-passing standard MPI and the object-
oriented programming paradigm. This includes a type-safe interface with a data-
centric rather than a memory-block oriented view and concepts for inheritance
of communication code for classes. Other goals were to provide a light-weight, ef-
ficient and thread-safe implementation, and, since TPO++ is targeted to C++,
the extensive use of all language features that help to simplify the interface.
A distinguishing feature compared to other approaches [6,7,1,12] is the tight
integration of the Standard Template Library (STL). TPO++ is able to com-
municate STL containers and adheres to STL interface conventions. All commu-
nication methods provide the same orthogonal interface for specifying the data
objects to communicate. A sender has two options: provide a single datatype
(basic or object) or a range of data elements by using a pair of STL iterators.
A receiver has the third option to provide a special back inserter (in analogy to
the STL back inserters) that allocates the memory on the receiving side auto-
matically.

The following code examples illustrate some of the features of TPO++. Fig-
ure 2 shows two classes enabled for transmission in TPO++. For types with a
trivial copy constructor like Point, a single declaration is sufficient to achieve
this. For more complex types like Circle, the user has to provide two marshalling
methods named serialize and deserialize. Figure 3 shows the communica-
tion of a single object and a collection of objects of class Circle from process 0
to process 1.

For further details on TPO++ and a comparison with other object-oriented
message-passing systems see [3].

4.2 Collective communication in TPO++

The implementation of collective communication in TPO++ covers the func-
tionality of MPI 1.2. MPI provides three groups of collective primitives:

8 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

class Point { class Circle {
public: public:
Point() : x(0), y(0) {} Circle() : radius(0.0) {
private: center = new Point(0.0);
int x, y; }
}; ~“Circle() { delete center; }
TPO_TRIVIAL(Point); void

serialize(Message_data& m) const {
m.insert (*center);
m.insert(radius);
}
void
deserialize(Message_data& m) {
m.extract (*center) ;
m.extract(radius);
}
private:
Point* center;
double radius;
};
TPO_MARSHALL (Circle);

Fig. 2. Examples of two classes enabled for transmission in TPO++.

using namespace TPO;

if (CommWorld.rank() == 0) { // sender
Circle c;
CommWorld.send(c, 1);

vector<Circle> vc(20);

CommWorld.send(vc.begin(), vc.end(), 1);
} else { // receiver

Circle c;

CommWorld.receive(c) ;

vector<Circle> vc(20);
CommWorld.receive (vc.begin(), vc.end());

Fig. 3. Transmission of user-defined objects.

Parallelization of an Object-Oriented Particle-in-Cell Simulation 9

vector<double> vd(10);
TPO: : CommWorld.bcast(vd.begin(), vd.end(), 2);

Fig. 4. Broadcast of a container of floating-point values in TPO++ rooted at process 2.

— The basic collective primitives broadcast and barrier.
— Four data-exchange primitives (scatter, gather,allgather and alltoall).
— Four combination primitives (reduce, allreduce, reduce_scatter and scan).

The goal of the TPO++ implementation of collective communication was to
provide a interface consistent with its point-to-point interface and the STL con-
ventions. Of course, the implementation should show a reasonable performance
compared to MPI. The existing interfaces suggest an implementation of collec-
tive operations as methods of class TPO: : Communicator. The methods should
accept the different kind of data structures discussed in section 4.1. For the
details of the interface, several characteristics different from the point-to-point
communication are relevant:

Five primitives (broadcast and the combination primitives) are rooted oper-
ations, i.e. they are asymmetrical in respect to one process. The root must
be somehow given for these operations. Since it is likely to change in subse-
quent calls, we chose to add it to the methods parameters. Figure 4 gives an
example of broadcasting a vector of floating point values.

The data-exchange and combination primitives are operations on different in-
put and output data structures, given in the same call. With two variants to
send and three variants to receive date, we have a maximum of six possible
overloaded methods for these operations. Looking more closely, not all pos-
sibilities are reasonable, for example a scatter operation, which sends only
one element, is impossible. Table 1 summarizes the overloaded methods of
these operations.

The data-exchange primitives also come in a vector-variant, which does not re-
quire the data structures of the participating processes to be of the same size.
MPT allows the clients for p processes to pass p memory blocks of different
size and offset relative to a common base address. An obvious generalization
in C++ is to allow the clients to pass a number of element ranges, each
given by a begin and end iterator. Several different realizations of such an
interface are imaginable. TPO++ favors a container of pairs of begin and
end iterators. This simplifies the interface, since only one additional param-
eters is needed, and enhances readability and safety due the explicit pairing
of corresponding iterators. For convenience in the common case of adjacent
element ranges of different sizes, TPO++ provides another interface, where
only a single container of p + 1 iterators defining the p segments of different
length is required.

3 Except in the boundary case of one process, in which no communication is needed.

10 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

The four combination operations require another parameters, the operation

to be applied to the elements given by the processes. Standard operations
defined in MPI include for example the sum or the minimum of the values.
In conformance with the STL, TPO++ allows the client to pass an arbitrary
function object. Unlike the STL, MPI further requires the client to state the
commutativity of the operation, which is realized by a boolean class attribute
of the function operators type. Figure 5 gives an example of an user-defined
function operator and a reduction in TPO++.
The implementation of function operators cannot hide entirely the MPI layer
and some deviations of the STL semantics. Unlike STL function operators,
the function operators in TPO++ obviously cannot be state-dependent,
since the operations are executed on different hosts in different instances.
Moreover, TPO++ requires the data objects used in reduction operators to
provide a default constructor and to be of constant size. These restrictions
result from the constraints of MPI user-defined combination operations.

Receiver
Sender Single Collection Back-inserter
Single Broadcast, Reduce, Scan, Allreduce (All)Gather (All)Gather
Collection Scatter All operations All operations

Table 1. Overload collective communication methods. The sender can pass single ob-
jects or arbitrary collections of elements in STL containers. The receiver can get single
objects, collections of elements in STL containers or allocate the space automatically
using a back-inserter.

// user-defined operator vector<double> source(20) ;
// for combination operations vector<double> result(20);
template <class T>
class sum { // reduction
public: CommWorld.reduce (source.begin(),
static bool commute; source.end (),
void operator() (T& inout, result.begin(),
const T& in) { result.end(),
inout += in; sum<double>(),
} 0);
};

template <class T>
bool sum<T>::commute = true;

Fig. 5. Example of an user-defined reduction operation sum and its application in the
reduction of a container of floating-point values rooted at process 0.

Parallelization of an Object-Oriented Particle-in-Cell Simulation 11

Related work To our knowledge, three object-oriented message-passing sys-
tems, mpi++ [6,7], para++ [1] and OOMPI [12] implement collective commu-
nication primitives, which significantly differ from the MPI C++ bindings [9,
10].

Para++ implements the concept of C++ 10 streams for message-passing and
provides only a broadcast and multicast primitive for collective communication®.
Obviously, having only broadcast is not sufficient for most applications.

mpi++ implements the full set of MPI 1.2 collective communication prim-
itives. In mpi++ collective communication primitives are implemented in two
template classes, Collective and Reduction. Collectiveis parameterized with
the type information about the data to send and receive, its methods implement
all basic and data-exchange primitives, and its attributes hold the communicator
to use and possibly the root of the collective communication. The derived class
Reduction implements the combination primitives and encapsulates additional
information about the type of operation to apply. Different to TPO++, mpi++
reintroduces, in analogy to MPI, its own type system, but does not support
the STL. Also, the interface is built around the operations, which are reified as
classes, and avoids method parameters in favor of attributes.

OOMPI implements the full set of MPI 1.2 collective communications. One of
basic abstractions in OOMPI, class Port is used to specify the master for rooted
operations. All other operations are implemented in the communicator class
Intra_comm. Class 00OMPI_Op is a simple wrapper for MPI operators. The con-
structor also accepts user-defined MPI operators. Unfortunately, at this point,
the underlying MPT layer is visible for the user.

5 Performance measurements

The performance of the Particle-in-Cell code has been measured on two differ-
ent architectures, the Cray T3E, a conventional supercomputer installed at the
German supercomputer center in Stuttgart [4] and Kepler, a self-made clustered
supercomputer® based on commodity hardware [13]. The T3E has 512 nodes,
each equipped with a DEC Alpha EV5 21164 processor running at 450 Mhz and
128 MB of RAM. The interconnect organizes the nodes in a three-dimensional
torus (8 x 8 x 8), and every connection to the 6 neighbors provides a nominal
bidirectional bandwidth of about 500 MB/s. Measurements of MPI application
to application performance gives a bandwidth of about 300 MB/s and 15us la-
tency. Keplers 96 nodes are running two Pentium IIT processors at 650 Mhz and
have 1 GB of total memory, or 512 MB per processor. Kepler has two intercon-
nects, a fast ethernet for booting the nodes and administration purposes and a
Myrinet network for parallel applications. The latter has a multi-staged hierar-
chical switched topology organized as a fat tree. The nominal bandwidth of 133

4 In MPI, the multicast is realized by creating a new communicator containing only a
subset of all processes.
6 As of July 2001 Kepler occupies rank 290 at the TOP 500 list of supercomputers.

Speedup

Speedup

12 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

T T
1000 steps —
90 2000 steps —*— 90
5000 steps—*—
Ipeé% —
80 80
70 / 70
60 60
S
50 kS 50
@
Q
(%)
40] 40
_ e -
30 > S — 30 - R S
/ L L S e
20 S 20
s — — // i —
10 = 10
=]
0 0
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Processors Processors
T T T 14 T
steps —+— 1.2*10.; particles —+—
120 2| steps - - 120 1.2"1 qé\imw,\m a
5000 steps.~ 1.2*10 " particles
Ideal Ideal
100 100
80 80
a
S
k=1
53
60 & 60
40 - 40 e g
|
e A
— *
20 = 20
0 0
20 40 60 80 100 120 0 20 40 60 80 100 120
Processors Processors

Fig. 6. Measurements on Kepler cluster. Upper row: Load balancing disabled. Lower
row: Load balancing enabled. Left column: 1.2 * 10'® particles for different numbers
simulation steps. Right column: 5000 simulation steps for different number of particles.

Speedup

Speedup

90 90
80 80
70 70
60 60
£
50 3 50
8
2]
40 / 40
e e
30
s L 30 P
i
20 —— 20 / I
L s R Ty
P S A SR S S N
e — —
10 10 . -
- Do
/ i
0 L=
0 10 20 30 40 50 60 80 90 10 20 30 40 50 60 70 80 90
Processors Processors
"1000 steps —— 1.2410'*
120 2000 steps --=%--- - 120 12*1015 -
5000 steps. - -- 0.6*10'°
Ideal Ideal
100 100
80 - = 80
T a
S
: B
60 X = 2 60 LK
- 2
,’x/“
* .
40 s X
P 40
> X
/X/
20
20 -
’_*
B e o N I
0 = o —
0 20 40 60 80 100 120 0
Processors 0 20 40 60 80 100 120
Processors

Parallelization of an Object-Oriented Particle-in-Cell Simulation

13

Fig. 7. Measurements on Cray T3E. Upper row: Load balancing disabled. Lower row:
Load balancing enabled. Left column: 1.2 * 10'% particles for different numbers simula-
tion steps. Right column: 5000 simulation steps for different number of particles.

14 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

MB/s is the maximum PCI transfer rate, measurements give about 115 MB/s
bandwidth and 7us latency.

The Particle-in-Cell application has been run with couple of different param-
eters. Three different numbers of particles have been used to observe the effects
of a varying computation to communication ratio. Three different numbers of
simulation steps show the growing imbalance without load balancing and the
improvements after load balancing. All measurements have been made on up to
128 processors.

Figure 6 shows the results for the Kepler cluster, figure 7 for the Cray T3E.
Note that the speedups of the large runs on Cray T3E with 1.2 x 10'® particles
and 5000 simulation steps are based on the runtimes for 8 processors, which
improves these speedups artificially. The problem did not fit in a smaller number
of processors. For the same reason, the largest runs on Cray T3E use only 0.6 *
10'® simulation particles.

The different number of simulation steps show the effect of a growing im-
balance if load balancing is disabled, which results in a decreasing performance
with increasing number of simulation steps. With load balancing enabled, the
picture is reversed. The speedups improve and the application can profit from the
increasing number of particles created in course of the simulation. For smaller
number of simulation particles, the load balancing is not able to improve the
speedups, in case of 1.2 * 1014 particles they even decrease. Regarding the initial
number of simulation particles, the results clearly show a break-even between
1.2 * 10 particles, showing moderate speedups, and 1.2 * 106 particles, with
very good performance. For 1.2 x 10** particles, the application can gain only
limited runtime improvement.

6 Conclusions

While the task model allows flexible combination of physical entities, the config-
uration is restricted to a sequential execution model. In this particular domain,
an extension could provide parallel execution primitives. A shortcoming of this
implementation is the lack of a consistent organization beyond the task ab-
straction. For example, the objects defining the geometry and representing the
particles are used globally, and therefore are tightly coupled to all other classes.
As a consequence of this, it is impossible to configure the application without
knowing the classes in detail. The lack of documentation makes it even more
complicated.

The use of a design tool simplified the reverse-analysis of the application sub-
stantially as well as the understanding of the class dependencies, which otherwise
would have not been possible. Regarding the parallelization, static and dynamic
analysis helped to select from the theoretical approaches the most reusable strat-
egy, which is not necessarily the most efficient one. In this case, both strategies
were the same, which simplified the parallelization substantially. The subse-
quent addition of a parallelization without modification of the sequential code

Parallelization of an Object-Oriented Particle-in-Cell Simulation 15

was possible due to the flexibility of the task model. The tool also helped a lot
documenting the code.

References

1.

2.

10.

11.
12.

13.

14.

15.

O. Coulaud and E. Dillon. Para++: C++ bindings for message-passing libraries.
In EuroPVM Users Meeting, September 1995.

T. Daube and H. Schmitz. OPAR: Open architecture C++ plasma simulation
code. Ruhr-Universitdt Bonn, 1998.

T. Grundmann, M. Ritt, and W. Rosenstiel. TPO++: An object-oriented message-
passing library in C++. pages 43-50. IEEE Computer society, 2000.

High performance computing center Stuttgart. Cray T3E-900/512. Online. URL:
http://www.hlrs.de/hw-access/platforms/crayt3e (January 2001).

M. Hipp, S. Hiittemann, M. Konold, M. Klingler, P. Leinen, M. Ritt, W. Rosenstiel,
H. Ruder, R. Speith, and H. Yserentant. A parallel object-oriented framework for
particle methods. In E. Krause and W. Jager, editors, High Performance Comput-
ing in Science and Engineering ’99, pages 483-495. Springer-Verlag, 1999.

D. Kafure and L. Huang. mpi++: A C++ language binding for MPI. In Proceedings
MPI developers conference, Notre Dame, IN, June 1995.

D. Kafure and L. Huang. Collective communication and communicators in mpi++.
Technical report, Department of Computer Science Virginia Tech, 1996.

Los Alamos National Laboratory. POOMA, 2000. Online:
http://www.acl.lanl.gov/PoomaFramework.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Technical Report UT-CS-94-230, Computer Science Department, University of
Tennessee, Knoxville, TN, May 1994.

Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997.

M. Snir and W. Gropp. MPI: The complete reference. MIT Press, 1998.

J. M. Squyres, B. C. McCandless, and A. Lumsdaine. Object Oriented MPI: A
Class Library for the Message Passing Interface. In Proceedings of the POOMA
conference, 1996.

University of Tiibingen. Kepler cluster website. Online. URL: http://kepler.sfb382-
zdv.uni-tuebingen.de.

T. Veldhuizen. Arrays in blitz++. In D. Caromel, R. Oldehoeft, and M. Tholburn,
editors, Computing in Object-Oriented Parallel Environments (ISCOPE’98), pages
223-231, 1998.

G. V. Wilson and P. Lu, editors. Parallel Programming using C++. The MIT
Press, Cambridge, 1996.

