Table of Contents

Engineering and Computer Science 1

Fast parallel particle simulations on distributed memory architectures. 1
M. Hipp, S. Kunze, M. Ritt, W. Rosenstiel, H. Ruder

II

Fast parallel particle simulations on
distributed memory architectures *

M. Hipp!, S. Kunze?, M. Ritt!, W. Rosenstiel', and H. Ruder?

! Wilhelm-Schickard-Institut fiir Informatik, Universitéit Tiibingen
2 Institut fiir Astronomie und Astrophysik, Universitit Tiibingen

Abstract. One of the major goals of the Sonderforschungsbereich (SFB) 382 is the
development of parallelization strategies for physical applications. In particular, we
focus on simulation methods based on particles.

In this paper, we present two different particle methods, a three-dimensional Smoothed
particle hydrodynamics (SPH) code and a one-dimensional Particle-in-Cell (PiC)
code with Monte-Carlo collisions (MCC). For both methods, a brief introduction
to the physical model and its implementation is given. We discuss implementation
and runtime aspects and detail the parallelization of the codes.

We talk about our experience porting the codes and running them on a couple
of distributed memory machines, such as Cray T3E, Hitachi SR8000 and a Linux
Cluster and present performance measurements of the codes. For the SPH method,
some of the physical results of the simulation runs are explained.

Keywords: Object-orientation, Parallelization, Simulation.

1 Introduction

In our project the numerical method SPH is used to simulate astrophysical
problems. In the last years we gained a lot of experience with several different
parallel SPH codes in the programming languages Fortran, C and C++ using
MPI and SHMEM on the Cray T3E [12]. We could show, that an efficient
implementation of SPH is possible on machines with distributed memory
[11]. In the last year the code was improved to simulate three dimensional
problems and simulations with particle injection. Furthermore, the code was
optimized to handle more particles with the same amount of memory allowing
us to run bigger problems.

1.1 Motivation

To obtain a good spatial resolution for three dimensional problems it is nec-
essary to increase the number of particles and the number of interactions per

* This project is funded by the DFG within SFB 382: Verfahren und Algorith-
men zur Simulation physikalischer Prozesse auf Hochstleistungsrechnern (Meth-
ods and algorithms to simulate physical processes on supercomputers).

2 M. Hipp et al.

particle. Both result in an overall computation time and memory consump-
tion which is too big for small desktop machines.

The overall performance for SPH simulations on vector SMP machines is
not very good, because the SPH method does not provide long vectors. This
results in a bad price-performance ratio for vector SMP machines like the
NEC SX5 compared to machines with distributed memory (like Cray T3E,
Hitachi SR8000 and becoming popular PC based Clusters) if it is possible to
extract and group the communication parts of the code. So, we decided to
do the parallelization using message passing with explicit communication.

2 Smoothed particle hydrodynamics

2.1 About SPH

Smoothed particle hydrodynamics (SPH) was introduced by Lucy [8] and
Gingold & Monaghan [4]. It is a grid-less Lagrangian particle method for
the solution of the hydrodynamic equations. Instead of solving the equations
on a grid, the fluid is modelled by small interacting packets of matter that
move along with the flow and carry mass and momentum. Hydrodynamic
variables such as density, pressure, and temperature are assigned to each
particle. The values of these quantities are determined by the interactions
with the neighbour particles.

SPH is especially suited for the simulation of accretion disks because SPH can
handle large density contrasts, open boundaries are easily implemented, and
SPH posesses an adaptive resolution both by the variation of the interaction
range of each particle and also by the particle mass. So it is possible to
resolve the most interesting regions very fine. Readers interested in the basic
principles of SPH find detailed reviews of the SPH method in Benz [2] or
Monaghan [9].

2.2 Physical Problem

Accretion discs are very common structures. They play an important role in
galaxy formation and feed the central engines in the nuclei of active galaxies.
All stars form via accretion, the left-over of this process provides the material
for the formation of planets.

Most binary star systems form accretion disks at some evolutionary state.
Here we are concerened with cataclysmic variables, which are good laborato-
ries to study the physics of accretion disks.

Cataclysmic variables (CVs) are close binaries with mass transfer from the
secondary to the primary. The donor, a low-mass, late type main sequence
star, fills its Roche lobe and loses mass to the accretor, a white dwarf (WD).
In many CVs the magnetic field strength of the WD is so small that it can be
neglected. In this case the overflowing matter forms an accretion disk around

Fast parallel particle simulations 3

the WD, and the accretion process is governed by the viscous evolution of
the disk.

One aspect of the physics of accretion discs in CVs is the interaction of the
in-falling gas stream with the rim of the accretion disk. As both flows, the
stream and the disk, are highly supersonic, the development of shock fronts
is expected at the impact zone.

This interaction region, the so-called “bright spot” or “hot spot”, can be seen
in many high-inclination CVs, e.g. U Gem (1965), and Z Cha (1986), as a
hump in the orbital light curve shortly before the eclipse of the WD.

From the large range of different bright spot sizes, locations and intensities,
and their variability, it is already clear that the underlying physics is rather
complex and has to be approached by numerical simulations. Closely related
to the bright spot is the question of how much of the in-falling gas stream is
stopped at the edge of the disk and stored there, and how much of the stream
can flow over and under the disk surface to inner parts of the disk.

By observation, there are several features seen in CVs and low-mass X-ray
binaries (LMXBs) that can be explained by stream-disk overflow. In CVs the
accretion stream reveals itself by its high velocity in Doppler maps and phased
spectra (Lubow 1989, Shafter, Hessman & Zhang 1988, Hellier & Robinson
1994). . Furthermore, many CVs and LMXBs show so-called absorption dips
in X-ray and UV around orbital phase 0.7 to 0.8. Some systems also show a
shallower dip at about phase 0.1. The absorption dips at phase 0.7 can be
explained if stream material overflows the disk at several disk scale heights
after being deflected by shock interaction at the bright spot region.

Still missing are numerical simulations of the stream-disk impact with high
spatial resolution, and simulations that take into account the further fate
of the overflowing matter. For this purpose it is necessary to use the full
Roche potential. Also lacking are comparable simulations for different kinds
of systems with differing orbital periods, mass ratios, and mass transfer rates.
Our simulations of different systems cover a wide range of these parameters,
and we hope to fill this gap to some extent.

2.3 Physical Results

Simulation Setup In order to achieve a reasonable spatial resolution the
disk should contain at least 50000 particles. Simply starting the simulation
with an empty disk and waiting until some form of quasi-steady state is
reached is far too time consuming to allow for parameter studies. This prob-
lem can be circumvented by making use of one of the more pleasant features
of SPH. Since the particles are actually to be interpreted as integration points
rather than fluid particles, one is free to substitute a given particle distribu-
tion with another, equivalent distribution that represents the same physical
situation, within the accuracy of the method. The trick is to take a certain
number of data sets of different time steps and simply concatenate them to

4 M. Hipp et al.

get a new single data set. If we take, e.g., 10 data sets and concatenate them,
the mass of each individual particle has to be divided by that factor.

This method allows for the construction of viscously evolved disks with almost
arbitrary particle number in a short time.

The in-falling gas stream is set up in a way that gaussian shaped density
distributions in the horizontal and vertical directions are fulfilled. The theo-
retical results of Lubow & Shu (1975, 1976) are used to determine the vertical
and horizontal scale heights of the stream. Particles are inserted a bit down-
stream of the inner Lagrangian point with appropriate velocity. The density
in the stream is lower than in the disk. In order to reach comparable reso-
lution, we used more but less massive particles for the stream than for the
disk.

Results The astrophysical results of these simulations are discussed in detail
in Kunze, Speith & Hessman (2001). Here we can only show some exemplary
results. In Figure 1 the particle distribution of the simulation of the stream
disk interaction and stream overflow of the dwarf nova IP Pegasi are shown.
Details of the simulations are given in the figure captions. For clarity only
the particles inserted during the last orbital period are shown. The most
important results of this simulations are the rather massive stream overflow
over the disk, resulting in the disposition of the in-falling material not only,
and not even predominantly in the outer part of the disk, but rather at a
radius close to the center. The other striking feature is the elevation of stream
matter high above the disk plane, neatly explaining the x-ray dips that are
often observed at this orbital phase in many medium to high inclination
systems.

Apart from the exemplary results given here, the simulations span a large
range of mass ratios, orbital periods, mass transfer rates and thermal states
of the disk. Not only could we show that stream disk overflow always plays
an important role in CV disks, our results also explain the UV and X-ray
dips often observed in these sysytems. Under certain circumstances, namely
a small disk or an enhanced mass transfer rate, a second absorption region
occurs around orbital phase0.2. This feature is observed in some systems and
could not be explained before. Moreover, the re-impact of the overflowing gas
onto the disk close to the white dwarf around orbital phase 0.5 can be seen
as a second bright spot. Such a feature has been observed in the dwarf nova
WZ Sagittae. Also this observation had no explanation yet.

To our knowledge these are the only high-resolution simulations of the stream-
disk impact in CVs including the full Roche potential, which is necessary
because the structure of the outer disk rim is heavily influenced by the tidal
forces from the secondary star. Due to the high computational requirements
these simulations profit from the use of parallel machines. Although it is in
principle possible to perform such simulations on top-of-the-notch worksta-
tions, only parallel machines make it possible to cover such a large range of
parameters in a reasonable time.

Fast parallel particle simulations 5

1P Pag, 1 1.01, stream paricies 1P Pag, 1~ 1.2, stream paricies 1P Pag, 1~ 513, stream paricies

1P Peg, =101

Angle o orbital plane
Angle o orbital plane

04 08 04 08 04 05
Orbital phase Orbital phase Orbital phase

Fig. 1. Simulation of the dwarf nova IP Peg (primary mass: 1.15 Mg, secondary
mass: 0.67 Mg, orbital period 3"48™20°, mass transfer rate: 107° Mg yr=!) The
left column shows particle distributions from a simulation with nearly isothermal
equation of state, the right column is derived from a simulation with adiabatic equa-
tion of state, and in the simulation displayed in the middle column the polytropic
coefficient was set to 1.2. Displayed are particles inserted during the last half orbital
cycle. The upper row shows the distribution of the overflowing matter projected
onto the orbital plane, the middle row shows edge-on views of the disks from two
perspectives, namely perpendicular to and along the system axis. The lower row
shows what the stream overflow would look like when seen from the white dwarf.
Disk particles are not plotted. These simulations show that a substantial fraction
of the accretion stream flows over the disk surface directly to inner parts of the disk
even when the disk rim is geometrically thicker than the accretion stream at the
impact region. The stream disk overflow can explain the X-ray and UV dips which
are observed in many systems.

6 M. Hipp et al.

2.4 Parallel SPH Implementation

The parallel implementation of the used SPH code is written in C and par-
allelized using MPI. It is based on a code formerly written and optimized for
the Cray T3E with the SHMEM communication library. The communication
code is separated from the physical calculation in an own module allowing
us to easily switch between different communication libraries such as MPI,
PVM or SHMEM.

With older revisions of the MPI libraries on the Cray T3E we measured big
performance differences between MPI and SHMEM for some operations, but
after an update to new MPI libraries the difference between the SHMEM
and MPI version was very small, with some performance advantages for the
- slightly improved and optimized - MPI implementation.

The code itself is portable and runs with very minor differences on every
machine, which provides the MPI communication library. We tested the code
on Cray T3E, Hitachi SR8000, IBM SP and a Linux system.

SPH is a numerical method with high dynamics and therefor the code contains
some complex and irregular data structures and does not profit much from
vector machines or machines with a very good floating point performance.
The computation time of code is mainly consumed in two parts:

— The neighbour search, which is dominated by integer operations and
— computations with neighbour particle interactions which is mixed floating
point and integer based.

Both parts have a spreaded memory access pattern and therefor cannot profit
very much from processor caches.

Some smaller computations without neighbour interaction are more cache
efficent but consume less than 5 percent of the overall computation time.
There is a simple API between the library containing the whole parallelization
and the code containing the physics. The abstraction simplifies the extension
of a simulation without knowing much about the parallelization. A user can
add new physical quantities by allocating a new parallel field.

For the parallel computation the library provides an iterator concept to step
through all particles and their neighbours and later communicates the new
data. For all particle computations the user does not need to add explicit
communication. But to prevent unnecessary communication the user explic-
itly has to register the parallel fields in the library, that are necessary for
further computations. The library then ensures that for all particles returned
by the iterator, that the necessary data is available on the node. If the field
is no longer necessary for parallel computations, the user has to unregister
the field.

On the former SHMEM based implementation there was a load stealing mech-
anism to optimize the rough static load—balancing on-the-fly. This part was
removed in the MPI version, because it was heavily dependent on SHMEM
one-sided communication operations. It showed that the MPI version of the

Fast parallel particle simulations 7

parallel SPH code with its static load—balancing scales very well without the
load stealing.

2.5 Performance results

We measured the performance of the improved SPH 3D Code with particle
injection on three different machines. Cray T3E and Hitachi SR8000 at the
HLRS in Stuttgart and on the Kepler Cluster, a Linux Cluster installed
in Tibingen. The Kepler Cluster has Dual SMP Pentium III nodes with
650 MHz processor speed. For the communication the cluster has a Myrinet
network with a peak MPI bandwidth of about 115 MByte/s and a one-way
latency of about 7us.

We measured two different problems. A small problem with about 34000
particles and a bigger problem with 360000 particles.

One-node performance The small problem needs less than 100MB mem-
ory allowing us to compare the raw application performance of the three dif-
ferent machines, without communication. The code has fairly complex data
structures and is therefor dominated by the integer and memory performance
of the processors. So, using a Pentium III with its fairly bad floatingpoint
performance is no disadvantage over the Alpha processors in the Cray T3E
or the processors in the Hitachi SR8000. The application has a total float-
ingpoint performance of about 60 MFlop/s on one Pentium III processor.

Cray T3E|[Hitachi SR8000|Kepler Cluster
903,4 s 721,3 s 467,9 s

Parallel performance For better comparison of the three machines we de-
cided to plot runtime information instead of speedup because the big problem
fits only into at least 24 Cray T3E nodes. The big problem computes the right
hand side 36 times and the small problem computes the right hand side 90
times. The three curves are all-over (wall clock) time, the time for a the
nearest neighbour search and the parallel overhead including communication
and additional work for load balancing (see 2, 3, 4) .

3 Particle-in-Cell with Monte-Carlo collisions

4 About PiC/MCC

The Particle-in-Cell method allows the simulation of large numbers of par-
ticles with short range interactions. In contrast to other particle methods
such as SPH, the forces moving the particles are calculated using a fixed
grid. Characteristic values of the particles are weighted on the grid using a

8 M. Hipp et al.

Time for ~34.000 particles Time for ~360.000 particles
T T 250 T T
Alover —— Alover ——
Nearest Neighbour Search ---- 7 Nearest Neighbour Search ----
Parallelization ---%- Parallelization ---%-

500

200

400

150

300

E——————————

L \

200

Wallclock time in seconds
Wallclock time in seconds

150 200 250 0 100 200 300 400 500
Number of nodes Number of nodes

Fig. 2. The Cray T3E plot starts with 2 nodes for 34 000 particles and 24 nodes
for 360000 particles. The small problem does not scale very good for runs with
more than 64 nodes. If we assume a speedup of 24 on 24 nodes for the big problem,
we can achieve a maximum speedup of 128 for 384 processors. On 256 we have a
speedup of about 124 and near 50 percent efficency. It showed, that a part with
individual all-to-all communication becomes dominant for higher node numbers.

Time for ~34.000 particles Time for ~360.000 particles

T T T
Alover —— 1
Nearest Neighbour Search ----
Parallelization ---%-

Nearest Neighbour Search ----
Parallelization ---%--

' " Alover —— 800 \

700

600 \\
500

! \
w0l

300

Wallclock time in seconds

Wallclock time in seconds

200

100

Number of nodes Number of nodes

Fig. 3. We ran our tests on the Hitachi SR8000 with pure MPI. Node num-
bers start at 2 nodes for the small problem and 8 nodes for the big problem. One
can see a significant increase of the parallel overhead on more than 64 processors.
Again the part with the individual all-to—all communication becomes very domi-
nant. One should note, that we did not optimize the code for the Hitachi SR8000.
Using threads instead of message passing for the inner node communication would
probably increase the performance significantly. Therefor the maximum speedup
compared with the one node run is limited to 53 on 128 nodes for the big problem.

Fast parallel particle simulations 9

Time for ~34.000 particles Time for ~360.000 particles

450
i T Alover —— T Alover ——
250 Nearest Neighbour Search --»-- Nearest Neighbour Search ----
\ Paralllizafion - 40 Paralllizafion -~~~ |

350 \
200 \
K 300
150 \
100

250 \
x 100 X

Wallclock time in seconds
Wallclock time in seconds

200 \
150

0 50 100 150 200 0 50 100
Number of nodes Number of nodes

Fig. 4. On the Kepler Linux Cluster node numbers start at 2 nodes for the small
problem and 8 nodes for the big problem. The Pentium IIT Processors have a fairly
good integer performance and the contribution of the nearest neighbour search to
the all-over time is very small. The Kepler cluster does not show the dominant all-
to—all communication but has an expensive broadcast which is not this dominant
on SR8000 and T3E. The big problem has a maximum speedup compared to the
one node run of about 45 on 96 nodes using only one processor per node. This is
worse compared to the other machines but the overall computation time using 64
nodes (128 processors) is about the same compared to 256 Cray T3E nodes.

kernel function. The momentum equations on the grid are solved using some
standard method (for example finite differences). From the results the forces
are calculated and interpolated back to the particles to solve the equations
of motion. The basic algorithmic steps are summarized in figure 5.

The method reduces computational complexity from O(n?) to O(n) for in-
terpolating the n particles to the grid and the grid back to the particles.
The complexity for solving the momentum equations on the grid is usually
O(glog g) for g gridpoints. A detailed description of the method can be found
in [1]

4.1 Physical problem

In our application the PiC method is used to simulate the electrostatic plasma
of a direct current glow discharge in a tube. The simulation is effectively one-
dimensional, since the problem has a cylindrical symmetry and we are not
interested in the radius components. Each simulation particle i represents a
number 7; of physical particles (electrons or ions), where n ~ 2 -10°. The
charge ¢; of the particles is weighted to a regular one-dimensional grid of

10 M. Hipp et al.

Integration of
equations of motion Emission/Absorption of

particles at boundaries

F—v' — x

Calculate forces @

(E,B) — F
Integration of field Weight particles
on the grid on grid
rho — (E,B) (x,v) — rho

Fig. 5. Particle-in-Cell algorithm

width Az using a triangular kernel function

1-1 <A
W(r) = > for |r| < Az
0 else

according to

1 n
p(zy) = Az ;qu’W(xi —zg).

In other words, the charge of each simulation particle is weighted according
to the number of real particles represented to its two nearest grid neighbours.
The normalization by Az results in the discretized charge density p. Next,
the electrostatic potential ¢ and the electric field E are computed on the grid
using discretized versions of

Ad(z) = - p(2)
€0
and
E(z) = —Vé(z).

To model the particle-particle interactions in the plasma, the PiC method has
been extended by Monte-Carlo collision processes. The last step computes
randomized particle-particle interactions:

— Elastic scattering
— Stimulation of a neutral gas atom by a electron
— Tonization of a neutral gas atom by an electron

Detail about the collision mechanisms can be found in [7].

Fast parallel particle simulations 11

4.2 Parallelization

The PiC application is implemented in C++ using object-oriented techniques.
The basic structure can be found in the UML class diagram in figure 6. The
application is structered in two parts: Management classes, responsible for
providing a flexible and easy to configure user interface. The execution con-
cept is centered around the CTask object, responsible for executing some
part of the physical simulation. CTask and derived objects can also be made
persistent in a textual representation, which serves to configure the physi-
cal environment and the execution order of calculations. Simulations with
different physical behaviour can be tailored using this single configuration
file [3,7].

CSimulation

[CSpecies|
I—

—I CDensity| \ :
1

1

1

1

CPotential : 1
— 1
1

CEfield] o

_______ :

CMCEvent \

Fig. 6. Simplified class diagram of the PiC-MCC simulation

For the parallelization two aspects had to be considered: Data dependencies
and load-balancing. Most of the steps in the PiC and MC collision code are
independent calculations updating all particles. The only dependency lies in
the global grid. Since, in our case the grid is much smaller than the number
of particles (9 < n), a natural approach is to parallelize over the number
of particles and keep the grid redundant. After weighting the particles on
the local grid, a global reduction operation provides each processor with a
global grid. Next, each processor solves the grid equations in parallel. Mea-
surements showed that this part of the calculation is lower than 1%, allowing
for speedups > 100.

Since the distribution of particles to processes is arbitrary, initially an optimal
load-balance can be guaranteed. The particle-particle interactions calculated
by Monte-Carlo collisions are divided between all processes and applied to the
local subset of particles. Due to random variations of the number of particles

12 M. Hipp et al.

created or destroyed, a variation of the load-balancing over the time can be
expected. Since the MC processes are equally distributed we expected the
resulting load imbalance to be small.

The parallelized code is targeted for distributed memory architectures and is
parallelized using TPO++, an object-oriented message-passing library [6,5].

4.3 Performance measurements

The performance of the application has been measured on the Cray T3E and
the Kepler cluster. Both are distributed memory architectures with different
characteristics: Single nodes of the Cray T3E are less performant (450 Mhz)
and equipped with less memory (128 MB) compared to the Kepler cluster
(650 Mhz dual processors and 512 MB memory per processor). On the other
hand, the network of the Cray T3E reaching 300 MB/s is more performant
than the 115 MB/s of Kepler.

The performance of the application is compared for three different numbers
of real particles (1.2 - 104, 1.2 - 10! and 1.2 - 10'%), different numbers of
processors (1-96) and for different numbers of simulation steps (1000 and
5000) to analyze a possible load imbalance over the time.

The speedup and efficiency results for the Cray T3E can be found in figures 7
and 8, for the Kepler cluster in 9 and 10. Note that the speedup results on
the Cray T3E are based on the 4-processor runs, since the problem is too
large for 1 and 2 processors.

Both results show that the number of particles should be larger than 1.2-10%®
to obtain reasonable speedups. For 1.2 - 101 particles the application scales
very good, reaching about 80% efficiency for 1000 simulation steps. The com-
parison of 1000 and 5000 simulation steps shows an unexpected decrease in
performance. A detailed investigation reveals, that the load-imbalance due to
the non-deterministic Monte-Carlo events gets worse with increasing number
of steps, resulting in some processors which are responsible for 3 times of
the particles compared to the optimal load-balance, effectively reducing the
speedup by the same factor.

Comparing both architectures, we find for all runs the speedups on Kepler
being lesser than the speedups on Cray T3E. This is due to different ratio of
CPU performance to network performance of the two architectures, resulting
in lesser speedup for Kepler, which has faster nodes and a slower commu-
nication network. A comparison of the total (wall clock) execution time of
both runs confirms this, with Kepler being about 50% faster on single-node
runs. The runtime advantage of Kepler gets smaller with increasing number
of processors.

5 Conclusions and future work

The parallel 3D SPH code allows us to run bigger simulations in a reasonable
time. The code is portable and all platforms are suitable for SPH production

Fast parallel particle simulations 13

100 ‘ ‘
80 ®
0 * -
a a -
& ; &
40 04
~
s A X
. e
0
o
40 60 80 100 10 20 30 40 50 60 70 80 90 100
Processors Processors

Fig. 7. Speedup and efficiency on Cray T3E for 1000 simulation steps and different

number of particles.

100 - 1 T
80 08
i
0 06 [t
g s |
3 3 E
% % t x
& i TR = “
S S—
) 04
x >
= % - *
. X 02
o
60 80 100 10 20 0 40 50 0 70 8 0 100
Processors Processors

Fig. 8. Speedups and efficiency on Cray T3E for 5000 simulation steps and different

number of particles.

100 T
80
X,
60 06 =
g B N x
5 i .
W - 04
* e
20 02
< x.
>>>>>>> B S W _—
— R e i -
a0 60) 100 0 20 30 4 s e 70 8 9% 100
Processors Processors

Fig. 9. Speedup and efficiency on Kepler for 1000 simulation steps and different
number of particles.

14 M. Hipp et al.

100 T 1

Speedup
Speedup
X

W
0 20 w 63 % o0 0 2 % @ s s w0 s s 10

Fig. 10. Speedups and efficiency on Kepler for 5000 simulation steps and different
number of particles.

runs. The platforms also allow us to compare and optimize parallel applica-
tions on machines with different parallel concepts. The main disadvantage of
the Cray T3E is the amount of available memory on one node. It is often
necessary to take more nodes to fit a problem into memory. This has been a
problem in both applications.

On the SPH side, future works are the implementation of a fast three di-
mensional SPH code written in C++ and based on TPO++ together with
an uniform I/O interface and data format based on XML to ease the share
of simulation data with other implementations. It is also planned to imple-
ment a version with mixed MPI and thread-based parallelization. Especially
machines with a mixed SMP /Message Passing architecture such as Hitachi
SR8000 and the Kepler Cluster would profit from this optimization.

On the PiC side, we plan to extend the one-dimensional Particle-in-Cell code
to solve two or three-dimensional problems. With respect to the paralleliza-
tion, two improvements are needed: First, for large grids, the overhead solving
the momentum equations on each processes must be avoided by a solver with
the grid domain decomposed over all processors. Second, as the measurements
showed, a significant load-imbalance can result due to the non-deterministic
creation and destruction of particles on each processors. To improve the scal-
ing behaviour, an unfrequently executed rebalancing step after reaching a
user-definable threshold can improve the performance in such cases.

References

1. R. W. Hockney, J. W. Eastwood. Computer simulation using particles. Adam
Hilger, Philadelphia, 1988.

2. W. Benz, R.L. Bowers, A.G.W. Cameron, and W.H. Press. Dynamic Mass
Exchange In Doubly Degenerate Binaries. I. 0.9 adn 1.2 My. 348:647-667,
1990.

11.

12.

Fast parallel particle simulations 15

Th. Daube and H. Schmitz. Opar: Open architecture c++ plasma simulation
code. Ruhr-Universitt Bonn, 1998.

R.A. Gingold and J.J. Monaghan. Smoothed particle hydrodynamics: theory
and application to non-spherical stars. Mon. Not. R. astr. Soc., 181:375-389,
1977.

Tobias Grundmann, Marcus Ritt, and Wolfgang Rosenstiel. Object-oriented
message-passing with TPO++. In Arndt Bode, Thomas Ludwig, Wolfgang
Karl, and Roland Wissmiiller, editors, Lecture notes in computer science, pages
xx-yy. Springer-Verlag, 2000.

Tobias Grundmann, Marcus Ritt, and Wolfgang Rosenstiel. TPO++: An
object-oriented message-passing library in C++. pages 43—-50. IEEE Computer
society, 2000.

A. Klaedtke. Particle-in-cell Simulationen mit Monte Carlo collisions. Master’s
thesis, Universitdt Stuttgart, Juli 1999.

Leon B. Lucy. A Numerical Approach to Testing the Fission Hypothesis. As-
tron. J, 82(12):1013-1924, December 1977.

J.J. Monaghan. Smoothed Particle Hydrodynamics. 30:543-74, 1992.

. S.Kunze, E.Schnetter, and R.Speith. Development and Astrophysical Applica-

tions of a Parallel Smoothed Particle Hydrodynamics Code with MPI. pages
52 — 61.

T.Bubeck, M.Hipp, S.Hiittemann, S.Kunze, M.Ritt, W.Rosenstiel, H.Ruder,
and R.Speith. SPH test simulations on a portable parallel environment. pages
139 - 155.

T.Bubeck, M.Hipp, S.Hiittemann, S.Kunze, M.Ritt, W.Rosenstiel, H.Ruder,
and R.Speith. Parallel SPH on Cray T3E and NEC SX-4 using DTS. In W.J4ger
E.Krause, editor, High Performance Computing in Science and Engineering 98,
pages 396 — 410. Springer, 1999.

