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1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen
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Summary. We present two libraries for the parallel computation of particle sim-
ulations. One is the object-oriented library sph2000 written in C++, the other
is ParaSPH, a library written in C, that supports hybrid architectures (clustered
SMPs). They are portable and performant on a variety of parallel architectures
with shared and distributed memory. We give details of the object-oriented design
of sph2000, the parallelization of ParaSPH for hybrid architectures using MPI and
OpenMP and discuss the speedups of the codes. Further, we give three examples of
applications based on these libraries, which simulate protoplanetary discs, colliding
rubber rings and the injection of diesel into a combustion chamber.
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1.1 Introduction

In the Sonderforschungsbereich 382 there are several particle codes for the
simulation of astrophysical problems. In the last years there was a strong ef-
fort to develop fast parallel particle libraries to support these applications.
However, there is still a need for larger simulations needing more memory
and computing power. To meet this requirements we are continuously investi-
gating to reduce the parallel overhead and the serial parts of our codes, that
limit the overall speedup. For the increasing number of hybrid architectures,
a parallelization combining threads and message passing is a promising way
to reduce the parallel overhead.
Our main interest is to develop efficient libraries for particle simulations, which
are portable to all important parallel platforms. Therefore access to several
different parallel architectures is crucial for us to verify our concepts. Here we

? This project is funded by the DFG within SFB 382: Verfahren und Algorithmen
zur Simulation physikalischer Prozesse auf Höchstleistungsrechnern (Methods and
algorithms to simulate physical processes on supercomputers).
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can profit from the large number of parallel architectures the HLRS provides.
For the development of the libraries, the parallel machines are not needed for
large production runs, but the applications on top of the libraries have a great
demand for parallel computing power.
We are mainly working with three parallel machines. The Hitachi SR8000 and
the Cray T3E, both installed at the HLRS in Stuttgart and the Kepler Cluster
installed in Tübingen. The Hitachi is a 8-way SMP machine coupled with a fast
communication network. The Cray is a conventional parallel machine with one
450 MHz Alpha processor per node and a fast 3D–torus communication net-
work. Kepler is built of commodity hardware and has dual SMP Pentium III
nodes with 650 MHz processor speed and a switched full–bisection-bandwidth
Myrinet network.

1.1.1 The SPH Method

One main focus in our Sonderforschungsbereich 382 are particle simulations.
An important particle simulation method is Smoothed Particle Hydrodynam-
ics (SPH). SPH is a grid-free numerical Lagrangian method for solving the
system of hydrodynamic equations for compressible and viscous fluids. It was
introduced in 1977 by [3] and [6] and has become a widely used numeri-
cal method for astrophysical problems. Due to the mesh-less nature of the
method SPH is especially suited for free-boundary problems. Another advan-
tage of SPH is the ability to handle large density gradients well. Rather than
being solved on a grid, the equations are solved at the positions of the so-called
particles, each of which represents a mass element with a certain volume, den-
sity, temperature, etc. while moving with the flow according to the equations
of motion.

1.2 The Libraries

1.2.1 A Hybrid Parallel Library for Particle Simulations

Why Hybrid?

The dominant part of the TOP500 super computers are so called hybrid paral-
lel architectures, a combination of shared memory nodes with message passing
communication between the nodes. Two large hybrid machines at the HLRS
in Stuttgart are the Hitachi SR8000 and the NEC SX5.
Hybrid parallelization is the combination of two programming models opti-
mized for hybrid parallel architectures. It uses a thread based programming
model for parallelization on the nodes together with message passing paral-
lelization between the nodes.
Obviously, the share of common data structures on one SMP node can re-
duce the amount of memory used. But more important is the reduction of
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the communication. Every parallel implementation has a maximum speedup
limited by its serial part. In our non trivial parallel codes the dominant serial
part is the communication. A hybrid implementation reduces the amount of
communication, because some data is shared on the SMP node and thus the
communication is implicit. But also the communication itself is faster. A small
test shows this for the MPI Allgather call with a 200MB data array on the
Hitachi SR8000. K is the number of nodes. The numbers are the time for 50
MPI Allgather calls in seconds.

K=1 K=2 K=4 K=8
MPI intra/inter 15.8 49.2 90.2 116.8
MPI inter 9.3 14.6 19.5 19.7

One can see, that the MPI Allgather with pure inter-node communication
(comparable to the hybrid programming model) is much faster than the MPI
call where MPI is also used for intra-node communication.

OpenMP

To keep the implementation portable and support the majority of hybrid
architectures, we chose OpenMP, a wide-spread standard for shared mem-
ory parallelization. Compilers for OpenMP are available on all important hy-
brid plattforms including Hitachi SR8000, NEC SX5 and Linux (Intel C++
or Portland Group compilers). OpenMP has other advantages over explicit
thread programming, for example POSIX threads. It annotates sequential
code with compiler directives (pragmas). This makes an incremental paral-
lelization possible and keeps the code portable, since non-OpenMP compilers
ignore the directives. POSIX threads require to implement parallel sections
in separate functions and to write wrappers (sometimes called jackets) for
functions with more than one argument, since the POSIX threads API sup-
ports only one argument. OpenMP, on the other hand, allows to join and fork
threads at arbitrary positions in the source code.

Hybrid Development

The hybrid implementation is based on the ParaSPH library for particle sim-
ulations. ParaSPH is written in C and parallelized with MPI. The library
separates the parallelization from the physics and numerics code. The inter-
face between the library and the application is optimized for particle simula-
tions. The library provides an iterator concept to step through all particles
and their neighbors and later communicates the results of this time step. In
parallel mode, the library transparently distributes the work amongst all pro-
cessors. Every local iterator processes only a subset of all particles. The code
performs well on machines with a fast message passing network. We tested
the code on Cray T3E, Hitachi SR8000, IBM SP and the Kepler cluster.
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In the hybrid implementation, OpenMP is used for the inner node paral-
lelization. MPI is still used for inter-node communication. It showed, that
it is necessary to optimize the load balancing. Therefore, we introduced a
two stage balancing. The “old” load balancer for distributed memory is only
used for a coarse load balancing between the nodes. For the fine balancing
on the node we provide two new load balancers. The user can choose be-
tween a fixed load balancing and a dynamic master-worker load balancing.
The master-worker algorithm promises the best load-balancing, especially for
inhomogeneous problems but has disadvantages in cache utilization. That is
why the static load balancing is usually faster.
We used three different OpenMP features (omp parallel, omp barrier, omp
threadprivate) together with some functions of the OpenMP library. All over,
we used 9 parallel pragmas, one barrier pragma and one threadprivate pragma
to parallelize about 95 percent of the code. We also needed two additional
locks to protect internal structures.

Experiences on Hitachi SR8000 and Kepler

The first OpenMP version of ParaSPH on Hitachi SR8000 frequently called
sections with a critical region and showed a bad performance. Explicit locks
instead of critical regions improved the performance only a little. Enhancing
the fixed load balancer with a lock free implementation fixed the problem.
On the Linux platform, we used Intels C++ compiler. To port the code we had
to replace the threadprivate directives by explicit memory allocation for every
thread, because the threadprivate directive triggers a bug in the compiler.

Performance results

On both architectures, we measured the speedup (figure 1.1) of a SPH sim-
ulation with 300 000 particles and about 80 interaction partners per particle.
This medium sized simulation requires about 900 megabytes of memory on
one node. One time step needs about 23 seconds on one Hitachi node (8 CPUs)
Typical production runs need 1 000 or even more time steps resulting in sev-
eral hours of computation time on eight CPUs and about two days on one
CPU.
We compared speedups of the pure MPI and the hybrid parallelization for dif-
ferent numbers of processors. On Kepler with only two CPUs per SMP node,
we observe almost no difference between the pure MPI and the hybrid paral-
lelization. The Hitachi with 8 CPUs per node shows a big difference between
the pure MPI and the Hybrid version especially for large node numbers.

There are three main reasons for the performance impact of the hybrid version.
First, the code is not fully annotated with OpenMP instructions. There is a
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Fig. 1.1. Speedups using different parallelization strategies on Hitachi SR8000 and
Kepler.

small serial part (about 5%), which is not present in the pure MPI version.
This shows a performance decrease especially on the Hitachi SR8000 for large
numbers of OpenMP threads. The second reason may be a lesser efficient
cache utilization and the third reason is the OpenMP overhead itself (thread
creation, locking of critical sections).

1.2.2 Object-Oriented SPH

An Object-Oriented Library for Particle Simulations

The SPH simulation program sph2000 is implemented on top of an object-
oriented particle simulation library written in C++. We wanted to prove the
feasibility of the object-oriented approach in the performance critical domain
of particle simulations. First results are shown in this section. Our principle
subject is the development of an object-oriented library for particle simula-
tions. The object-orientation brings a well structured design of a library with
classes modeling the elements of the problem domain. Design patterns [2] help
to organize the classes to get a clear and efficient design. One main concern in
the design was the strict decoupling of the parallelization and physics. These
aspects increase the extendibility, maintainability and reusability of the code.
Another goal was to simplify the configuration of simulations, which mainly
means to configure a simulation run after the compilation at runtime by read-
ing a parameter file. To avoid conditional compilation with preprocessor di-
rectives, as it is often seen in C libraries, the strategy pattern, which is based
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on the object-oriented concept of polymorphism is used. With this pattern the
program instantiates objects at runtime due to the configuration parameters.
One such strategy is the communication shown in figure 1.2.

Fig. 1.2. Class diagram of the sph2000 communication classes.

An abstract base class defines the interface for the communication classes,
concrete subclasses define the communication code for different machine archi-
tectures. sph2000 runs on architectures with shared and distributed memory.
On distributed memory machines, a domain decomposition splits the simu-
lation space in rectangular subregions, which are distributed one per node.
Each subregion calculates all its particles geometrically. To interact with the
particles in the subregion of the neighbors, proxy particles are copied and
sent between the neighbor subregions. Both communication codes, the Sin-
gleCommunicator and the TpoCommunicator classes are compiled but due to
a configuration parameter only one will be loaded and instantiated. The same
strategy pattern is used for the kernel function, the integrator, the physical
quantities and the handling of the subregions of the simulation domain.
The mediator pattern is used twice to decouple parallelization, the numerics
and the physics. First, the communicator class mediates between the nodes.
It handles the whole communication. If neighboring nodes need proxies, the
communicator requests them from the subregion mediator.
Inside a node, a subregion mediator class controls the execution of the cal-
culation classes as shown in figure 1.3. It is responsible for a correct order of
calculation and communication and decouples the calculation classes by keep-
ing the objects from referring to each other explicitly. This concept separates
the object interactions and class dependencies from the physical classes. The
result of object-oriented techniques with design patterns is a library, in which
classes have clear and strictly separated responsibilities. Different methods
can be interchanged without influencing other code. Extensions, for example
a new physical effect, are delimited to the corresponding strategy.



1 Efficient Particle Simulations 9

Fig. 1.3. Simplified class diagram of the sph2000 calculation classes.

Performance Results

We run simulations with the object-oriented SPH code sph2000. The speedups
can be found in figure 1.4.
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Fig. 1.4. Time and speedup on Kepler for 100 000 particles with sph2000.

The measuring took place on the Kepler cluster, simulating 100 000 particles
on 1, 4, 9, 16, 25, 36 and 64 nodes. We plan to port the C++ program to the
Cray T3E to compare the performance of the object-based communication
with the Kepler results.
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1.3 Applications

Although its main application still lies in the astrophysical area, the SPH
approach is used nowadays also in fields of the material sciences, for mod-
eling multiphase flows (Diesel injection problem, see [9] for details), and the
simulation of brittle solids (e.g. [1]). To give an short overview and to show
the advantages of the method, we present two examples of calculations, which
were done using ParaSPH and one example done using sph2000. The first
example is an astrophysical application, the simulation of a protoplanet em-
bedded in a protoplanetary accretion disc, the second is a collision of two
rubber rings and the last example is the injection of diesel into an air filles
chamber.

Simulations of protoplanetary discs

Since the discovery of the first extrasolar planet in 1995 [7], the interest in
planet formation theory has grown intensely. Most of the over one hundred
new found planets feature attributes that differ completely from those of the
planets of the solar system. These planets have masses in the range of 0.4 to
11 Jupitermasses, and large eccentricities up to 0.67, while the most massive
planet in our solar system is Jupiter and the highest eccentricity is 0.25.
Nowadays planet formation theories need not only to explain the formation of
the solar system, but the formation of planetary systems with these different
features.
It is generally believed that planets form in circumstellar discs, which have
formed out of a gravitational collapse of a dense molecular cloud. The typical
lifetime of such a disc is between 106-107 years. During this time material mi-
grates constantly radially inwards in the disc and finally accretes onto central
protostar. The dust particles in the disc grow through a hit-and-stick mecha-
nism and finally combine into larger bodies, which are eventually able to build
planetesimals. Planetary sized objects form out of these planetesimals by col-
lision processes. These objects grow further by accretion of gas and dust, and
build the giant planets. A more detailed description of planet formation can
be found e.g. in [10].
The high masses of the new found planets give rise to more questions. The
tidal interaction between a massive protoplanet and the protoplanetary disc
can lead to a so-called gap formation at the orbital region of the planet. This
gap formation has severe impact on the accretion rate on the planet, and
can probably prevent accretion through this gap completely depending on the
mass of the protoplanet. In numerical grid-based simulations it was shown by
[5] that the gap formation process does not inhibit accretion in the case of a
jovian protoplanet and material can still reach the planet.
By the use of supercomputers, we were now able to study the protoplanet-disc
system with SPH. The evolution of the surface density during the first tens
orbits of the protoplanet is shown in figure 1.5 for a Jupiter-sized planet at



1 Efficient Particle Simulations 11

an orbital radius of 5.2 AU and a central star with one solar mass. Already
after ten orbits, the decrease of density at the orbital region of the planet is
visible. After forty orbits the gap is completely formed, and the accretion onto
protoplanet diminishes. In order to achieve a high enough spatial resolution
of the accretion on the protoplanet, more than 360 000 particles have been
used for this simulation.
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Fig. 1.5. Color-coded plots of the surface density in the case of a jovian protoplanet
at 5.2AU away from the protostar. The protostar is located in the center of the disc
and has one solar mass. The surface density is shown for four different times: at the
beginning of the simulation, after one, ten and forty-two orbits of the protoplanet.
The circle represents the approximation for the Roche lobe of the planet.

Simulation of colliding rubber rings

Although the SPH method has its roots in the astrophysical area, recent
enhancements lead to the application of SPH in solid body physics. By intro-
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ducing an additional elastic stress tensor, the SPH method can be successfully
extended to model elastic solid bodies (see [4] for details).
As an example we present the simulation of the collision of two rubber rings,
which is a typical test problem for elastic solid body codes: Two rubber rings
with the initial density %0 collide with 6% of the sound speed c0. The shear
modulus µ, which characterizes the elastic behavior of the material, is set
to 0.22 %0c

2
0

in this problem. The results of the simulation are presented in
figure 1.6. The rings bounce back off each other as expected and continue to
oscillate.

Fig. 1.6. Collision of two rubber rings. The pictures show the rubber rings at the
start of the simulation, in the moment of the highest compression, and after the
collision when they continue to oscillate.

Simulation of diesel injection

Diesel engine manufactures are interested in an optimal injection of the diesel
into the combustion chamber. A perfect mixing of diesel and air means means
an efficient use of the fuel and therefore reduces emissions. To achieve this, the
breakup of the diesel jet must be examined and understood. When injected
into the cylinder of an engine, the diesel jet undergoes two stages of breakup. In
the primary breakup large drops and filaments split off the compact jet. These
turn into a spray of droplets during the secondary breakup. This secondary
process is well known and can be modeled as a spray, but the understanding
of the primary breakup is only in the initial stages. The physical effects that
might influence the primary breakup are the pressure forces in the interface
region of diesel and air, instabilities of the jet induced by cavitation inside the
injection nozzle, surface tension and turbulences.
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Fig. 1.7. Injection of diesel in an air filled chamber, simulation with 200.000 parti-
cles. The picture shows the injected diesel after 7.2e − 07 s. First drops are already
splitted off the jet.

1.4 Future work

1.4.1 Parallel I/O

The computation of our massive parallel application showed a lack in per-
formance due to sequential I/O. For example, writing the data of 10 exp 6
particles in sph2000 in each integration step limits the maximum speedup
of the parallelization to 25. Moreover, visualizations of physical simulations
typically require hundreds of gigabyte. As a result, the I/O bottleneck lim-
its the scalability of the parallelization significantly. The constantly growing
gap between processor and hard disk performance during the last decades
makes this problem even worse and requires the use of parallel I/O systems.
Distributed hard disks in special I/O nodes, which use the underlying com-
munication network for data exchange are the most common way in massive
parallel systems to overcome the problem. Thus, the application can profit
from the aggregated performance of all hard disks available in the system.
However, special parallel I/O interfaces have to be implemented and used by
the application to benefit from the whole hard disk performance. The most
often used interface for parallel I/O is MPI-IO [8]. One implementation of this
part of the widely accepted and used standard MPI 2 is ROMIO [11], which
is setup on top of the file system using an abstract device interface for I/O
(ADIO) to achieve high portability (e.g. NFS, PIOFS, HFS, XFS).
In implementing parallel I/O two major problems rise: First, the application
has to be ported on the parallel I/O interface of MPI 2 to enable the use
of higher hard disk throughput. Second, besides a parallel implementation
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sequential I/O also has to be implemented for keeping the portability of the
interface. Both leads to a more complex and larger implementation. Moreover,
MPI 2 only supports procedural interfaces for parallel I/O, which makes it
hard to be used in object-oriented applications. Therefore, concepts for object-
oriented parallel I/O have to be developed, which is a very difficult task due to
irregular distributed object structures in main memory and dynamic memory
sizes of the objects.
To close the gap between object-oriented software development and procedu-
ral communication we developed an communication library for parallelizing
object-oriented applications called TPO++. Its concepts for mapping objects
on simpler communication structures can be reused for the implementation of
object-oriented parallel I/O. Additional, wrapper classes for file management
are already implemented and only have to be extended by interfaces for data
transfer and function mapping on MPI 2 calls. The interface design is very
important to keep the high portability of TPO++ and the compatibility to
already existing applications.
Finally, the interface will be integrated in our object-oriented applications to
increase their performance and functionality. Verifications will then help to
optimize and improve the object-oriented parallel I/O interface.

1.4.2 Applications

We have extended the two dimensional object-oriented code to three dimen-
sions. Due to the increased number of particles in three dimensions, we are
investigating solutions to decrease the amount of calculated interactions. First,
we try to filter the shock wave of the injected diesel out of the outer air re-
gions. The problem with the shock wave is its movement with sound speed
towards the system boundaries together with the interference of its reflections
with the diesel jet. So, the cylinder size must be chosen big enough to prevent
this artificial interference. The second step will be the online generation of
air particles according to the motion of the jet. The idea is to calculate only
air regions, which are affected by the diesel jet. Another field of work is the
development of new physical models of the surface tension and the cavita-
tion. To implement these quantities efficiently, we need new concepts for the
parallelization, for example to adjust the neighborhood of particles.

1.5 Summary

The application of object-oriented development methods has improved the
quality of our simulation codes. While having a performance, which is compa-
rable to procedural approaches, an object-oriented implementation is easier
to maintain and extend, f.ex. to add new physics.
For massive parallel applications, scalability is always an issue. Besides im-
proving the parallel algorithms, we currently follow two other approaches to
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reduce the serial parts: A hybrid parallelization promises to reduce the com-
munication cost, because intra-node data can be shared, and parallel I/O can
reduce the time spent for persistency. However, the study of ParaSPH on
Hitachi SR8000 shows that improving the performance with an hybrid paral-
lelization is not trivial. The main obstacle for the use of parallel I/O is the
lack of an object-oriented interface in current standards.
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