A hybrid genetic algorithm for road congestion minimization

Luciana S. Buriol Michael J. Hirsch Panos M. Pardalos Tania Queridd
Mauricio G. C. Resende Marcus Ritt

Instituto de Infornatica, Universidade Federal do Rio Grande do Sul
Av. Bento Goncalves, 9500, Porto Alegre, Brazil.
{buriol,marcus.ritt}@nf.ufrgs. br

2Raytheon, Inc.,
P.O. Box 10128, Largo, FL 33773, USA.
nj h8787@f | . edu

3Dept. of Industrial and Systems Engineering, University of Florida
303 Weil Hall, Gainesville, FL 32611, USA.
pardal os@f | . edu

“4Linear Options Consulting,
7450 SW 86th Way, Gainesville, FL 32608, USA.
tani a@ i near opti ons. com

5Internet and Network Systems Research Center, AT&T Labs Researc
180 Park Avenue, Room C241, Florham Park, NJ 07932, USA.
ngcr @ esearch. att. com

ABSTRACT

One of the main goals in a transportation planning process is to achieve ssligidwo classical
problems: the traffic assignment problem, which minimizes the total travel delaggall travelers,
and the toll pricing problem which settles, based on data derived fromrdtgfoblem, the tolls
that would collectively benefit all travelers and would lead to a user equitibsolution. Acquiring
precision for this framework is a challenge for large networks. In thislartice propose an approach
to solve the two problems jointly, making use of a Hybrid Genetic Algorithm for fhtérazation
of transportation network performance by strategically allocating tolls on sdrte links. Since
a regular transportation network may have thousands of intersectionsuaddeds of roads, our
algorithm takes advantage of mechanisms for speeding up shortest paithaig.

Keywords: Transportation networks. Genetic algorithm. Shorteg paths. Applications to
Logistics and Transportation.

RESUMO

Um dos principais objetivos no planejamento de redes de transpartder soluges para dois
problemas dssicos: o problema de desigaage tafego, o qual minimiza o tempo total de atraso
considerando todos os viajantes, e o problema de designar valoresg®p o qual, considerando
os dados do primeiro problema, atribui valores dedgénl que beneficiam todos os viajantes, con-
duzindo a uma sol@p de equibrio. Resolver tais problema@sum desafio para redes de grande
dimengo. Neste artigo, prdje-se a resold@p desses dois problemas em conjunto, fazendo uso de
um Algoritmo Gertico Hbrido para otimizago de redes de transporte, alocandcapésk estrate-
gicamente em alguns links. Visto que redes de transporte, em gevakdes de grande dimé&us
o algoritmo tem seu desempenho melhorado ao fazer uso de ataalida®mica de caminhos
minimos.

Palavras-chave: Redes de transporte. Algoritmos géticos. Caminhos nnimos. Aplicagdes
a Logistica e Transportes.

1 Introduction

Stable transportation systems are one of the main factors contributing to aualjty of life.
Moreover, as reported by Arnott and Small (1994), millions of dollarspent every day on traffic
issues. Thus, traffic planning is a crucial component of any planniagegs for investment and
operating policies. Traffic Assignment models have been used to prowddeetiessary description
of real-world traffic flows with accuracy. These problems are mathematicallyeled on a graph
structure, with nodes representing locations of interest and arcsespirey valid roads on which
traffic can flow. Some pairs of nodes are called commodities, or origin-aéistin(©OD) pairs,
representing traffic flow start and end points. In most instances, eadhf the network has an
associated capacity and cost of use, as a function of the amount af trsifiig the arc. In addition,
some arcs might have tolls levied on them, adding to the arc cost. The main goal tiraffic
planning model is to levy tolls on some arcs of the network such that the ouesalbf the network
(the sum of the cost of each arc) is minimized.

As an example, one can look at New York City. Each day, many people limitgw Jersey
commute into New York City to work. Suppose we label the city of Newark (in Nergey) as one
origin node of our traffic network, and the borough of Queens (in NX¥€a destination node. It is
easy to see that there are many possible traffic paths to go from the oridgntmdhe destination
node. Some of the arcs in these paths have tolls levied on them (Holland aradrLinnnels, for
example), while others do not. In addition, each arc has an associatedscagunction of the
number of commuters using that arc. Each commuter ideally would want to minimibehcost
of getting from their respective origins to their respective destinations.

Optimizing transportation network performance has been widely discustedlliterature (Bai,
2004; Bai et al., 2006; Dial, 1999a,b; Florian and Hearn, 1995; Lawgpanich and Hearn, 2004)
and two fundamental traffic assignment models have been develtysed:Equilibrium(UE) and
System OptimdlSO models.UE is used to describe the behavior of users on a given traffic network.
In aUE solution, each driver will follow his/her shortest path (least cost pattrareling from their
origin to their destination. In contras§O describes a traffic network in its best operation. This
means that &0solution seeks to spread the flow over all the arcs of the network so thateha|
network cost is minimized. Hence,3E solution attempts to do what is best for each individual
driver, without consideration of other users on the network, wh8@aolution considers the overall
performance of the network, without consideration of any one indiVids@r. These two concepts
seem contradictory, and in a way they are. The overall traffic assignpnelolem can therefore be
viewed as simultaneously solving thiE and SO problems, i.e. to find a traffic flow that is both
UE andSQ In most instances, tolls are introduced on some of the arcs in the netwthlatsithe
resultingSOandUE solutions coincide.

Itis important to note that while the transportation problem can be stated in tébathesystem
optimality and user equilibrium, to the best of our knowledge, there has lzeeffiant to solve these
problems jointly. In effect, the problem has always been split into two pnadaldn the literature,
first the SO problem is considered (see, for instance Hearn and Ribera (1980)ex functions
are used to represent the cost of traveling along each arc, as a fuattiee flow on the arc. This
problem is solved to optimality, and tl&Osolution is then used as input into th& problem. In
order to induce users to choose B@path solution, tolls are levied on certain arcs within the traffic
network. A genetic algorithm which solves the toll location and level problepasately has been
proposed by Shepherd and Sumalee (2004).

The Minimum Toll Booth ProblemNIINTB) (Bai et al., 2006) describes an approach that mini-
mizes the number of toll locations for whichHe solution is achieved, maintaining tis®solution.
MINTBwas formulated as a mixed-integer program (Bai et al., 2006), and is eheilyn to be in the
class ofNP-hardproblems (Bai, 2004). Various heuristics have been designed in am teffeolve
the MINTB. The reader is referred to Bai (2004) for a complete description of thikadelogy, as
well as background on traffic assignment problems.

One problem with the above two-phase approach is thas@®olution may result in an infea-
sible UE program. Hearn and Ramana (1988) report infeasibility with a toll pricimiplpm for
a network of416 links, 962 nodes and 623 OD pairs, when an approximate solution to {8®
program, with a relative optimality gap af)—3, is used to construct the constraints defining the
MINTB program. To overcome infeasibility, methods based on penalty terms (HedrRibera,
1980) and relaxation of constraints (Kim and Pardalos, 1999) are estpldyowever, acquiring
precision for this framework remains a challenge for larger network®ther issue, related to the
heuristics defined for thMINTB problem, is to select an appropriate neighborhood structure, that
is a set of solutions near a given solution. In Bai (2004); Kim and Pesdd999) a binary vector
{y.} is used to indicate whether aidas a toll levied on it. They limit the concept of neighborhood
to adjacent vertexes in the unit hyper-cube (N.B.: each binary végigrcan be seen as one vertex
of the unit hyper-cube). Due to this definition of neighborhood, evesiiwall problem instances,
the computation time was reported as large, and/or the quality of the solutioroeas p

In this article we propose to use a Hybrid Genetic Algorithm with local improvejriest
presented in Ericsson et al. (2002), for the optimization of traffic flovgiteato a system efficient
pattern and user optimal solution on the network. We compare our appwitckhe two-phase
approaches in the literature.

This paper is organized as follows. In Section 2 we present the mathenfitioawork for the
traffic assignment problem. Section 3 describes our Hybrid Genetic Algousiea to determine the
optimal traffic pattern and tolling scheme. Computational results are reporgeattion 4. Finally,
conclusions are presented in Section 5.

2 Problem Formulation

Given a network topology and certain traffic flow demands, we levy tollsrogs, &eeking an
efficient system such that the resulting commodity least-cost paasglution) is optimal for the
overall system. In a mathematical framework, consider a directed graph (IV, A), with N
representing the set of nodes aAdhe set of arcs. Each atce A has an associated capadcity
and cos®,, which is a function of the load, (or flow) on the arc, the time, to transverse the arc,
powern,, and cost’,. In real-world traffic networks, arc (road) delay are generally dieed by
nonlinear functions associated with these network congestion paraméterassume thab,, is a
strictly increasing, convex function. In addition, defifeC N x N to be the set of commaodities,
or origin-destination@D) pairs, having (k) andd(k) as origin and destination nodes, respectively,
Vke K ={1,...,|K|}. Each commodity: € K has an associated demand of traffic fldy
defined, i.e. for eacD pair {o(k), d(k)}, there is an associated amount of fldwthat emanates
from nodeo(k) and terminates at nod&k). Furthermore, define® to be the the contribution of
commaodityk to the flow on arau.

Then, we can write the traffic optimization problem as (1) - (4).

minimize ® =" lota[1 +Ta(la/ca)™]/ > di (1)
acA keK
subjectto £, =Y af VacA 2)
kek
—dj, if j = d(k)
ooaly— Y. af; dp it j=o(k) (3)
i(jr)eA i:(i.5)eA 0 otherwise
>0,Vae A VkeK. (4)

The objective function (1) represents the mean delay time for the systerh islased on the
Bureau of Public Roads (BPR) function for travel costs. This functiogy waay according to a
specific network.® uses the volume delay (time) on ar@s a function of total flow. Our goal is
to allocate tolls on arcs such that the delay values minimized and we have a system efficient
solution. In this function{,, /¢, describes the utilization of akc In Section 4 we describe in more
detail the delay function for some real-world problems. Constraint (2hegthe load on each aic
as the sum of flow on are arising from each commodity. Constraint (3) defines flow conservation
on the network, which is equivalent to the system of equati®®s = dj,, V k € K, whereB is the
arc-node incidence matrix for the network anftl = {2}, 4 is the flow vector corresponding to
commodityk € K. Constraint (4) specifies that the flow on each arc must be non-negativ

As seen in the next section, we distribute tollsroof the arcs of the network, leading to a traffic
balance and congestion minimization.

3 A Hybrid Genetic Algorithm for the Toll Booth Problem

In this section we summarize the description of the hybrid genetic algorithmfasedlving
the toll booth problem.

A Genetic Algorithm was successfully applied to Open Shortest Path Bi&®p intra-domain
Internet routing problems (Ericsson et al., 2002), and in Buriol et @D%2a Hybrid Genetic Algo-
rithm (HGA) was proposed to solve the same problem with additional local weprents. In the
present work, we take advantage of some similarities betwee®8#Frouting problem and the
traffic assignment problem, and apply the HGA proposed in Buriol et@D5padjusted to optimize
the traffic network.

A genetic algorithm is a population-based metaheuristic used to obtain high cg@lityons
for combinatorial optimization problems. In this context, a population is a sefasilile solutions.
Solutions in a population are combined (through crossover) and pedt(isipenutation) to produce
a new generation of solutions. When solutions are combined, attributeshafrfigality solutions
have a greater probability to be passed down to the next generation. robesp is repeated over
many generations as long as the quality of the solutions in the new populatiorvaspreer time.
We next show how this idea can be explored for the toll booth problem.

Each solution is represented by two arrayandb. Array w stores the integer arc weights, while
b is a binary array indicating the set of tolls. An arof the network has weight equal t@, in case
b, = true and zero in casé, = false. Each individual weight belongs to the interyal wpax].

A solutionw defines a total flow,,,a € A by means of an equal-cost multipath routing. In OSPF
routing, there is no link weight equal to zero, and the shortest path is thevith the shortest
distance. In our implementation, non tolled links are considered to have veeightMoreover, two
paths are considered of equal cost if they have the same total distahtteessame number of hops.
In case they have the same total distance, but different hop countd)dtiest path is considered
the one with less hops. Each demand is routed forward to its destinatiorfic Btaintermediate
nodes is split equally among all outgoing links on shortest paths to the desiinatter the flow is
defined, the solution is associated with a fithess value defined by the objkoiationd.

The initial population is randomly generated, with arc weights selected unifanrtite interval
[1, wmax/3]. A number of K links, chosen at random, are set as having tolls, &;ds, set totrue
for K links. The population is partitioned into three sgsi3, andC. The best solutions are kept in
A, while the worst ones are . All solutions in.A are promoted to the next generation. Solutions
in B are replaced by crossover of one parent frdnwith another from U C using therandom
keyscrossover scheme of Bean (1994). All solutiong iare replaced by new randomly generated
solutions with arc weights selected in the interMakvyax -

In the random-keys scheme, crossover is carried out on a selectedff pairent solutions to
produce an offspring solution. Unlike Bean (1994), we use a biagatbra-keys scheme, where

each selected pair consists of an elite parent and a non-elite parent.lit€hgaeent is selected,
uniformly at random, from solutions in set, while the non-elite parent is selected, at random,
uniformly from solutions in seB U C. Each weight of thev array in the offspring solution is either
inherited from one of its parents or is reset by mutation. With mutation probapjlitythe weight
from w is reset to a value selected at random in the intgivab,,.«]. If mutation does not occur,
then the child inherits the weight from its elite parent with a given probability> 1/2. After the
crossover, array is adjusted:

e b; istruein case the correspondent values in both parentsaee

e 50% of the position$;, chosen at random, which only one of the parents has the corresgondin
position equal to true, are set to true in the child solution;

o all other positions ob; are set tdalse

In this fashion, we generate a child with exactly the same number of tolls thae asténts.
Next we describe the solution evaluation.

3.1 Solution Evaluation

Depending on the problem, the main effort of the algorithm can be in thear@seperator or
in the solution evaluation. For the case of the weight setting problem the sokwibmation takes
longer than the crossover operator. In this section, we describe tbhedun® used for evaluating a
solution. This procedure is presented in Figure 1.

Let T" be the set of destination nodes. We comgitesingle-destination shortest path graphs
gt. Eachg!, with destinationt € T', has an A|-vector, L, associated with the arcs, that stores the
partial loads flowing ta traversing each are € A. The total load on each arc is represented in
the | A|-vectorl, which stores the total load traversing eachare A. For each destinatiof) the
|V |-vectorsr® andd? are associated with its nodes. The distance from each nads stored inr?,
while §! keeps the number of arc multiplicities (links) outgoing from each nodg.in

procedure Eval uat eSol ut i on(w, If, rf)
1 forall a € Adope =1;

2 forall t € T do

3 mt «+ Rever seDi j kst r a(w);

4 gt «— Conput eSPGw, 7t);

5 5t « Comput eDel t a(g?);

6 L' < Conput eParti al Loads(u, d, 7, gt);
7 end forall

8 |« Conput eTot al Loads(L);

9 S« UpdateMul tiandDel t a();

10 if |S| > 0 Updat eSol ut i on();

11 forall a € Aif l, = 0thenp, = 0;

12 f « EaeA Ha;

13 return (f, w);

end procedure

Figure 1: Pseudo-code for the solution evaluation procedure.

In order to update the system by means of the new arc loads, we computettesspaths to
all destination nodes € T and arrive at a grapt® = (N, A'), V¢ € T. This is achieved using
Dijkstra’s well-known shortest path algorithm (Ahuja et al., 1993) with a singpienge. A small
cost is added to the node distances for each traversed link. With this modificatio paths are
considered of equal cost if they have the same total distance and the sproeumts. Since in our
network we are computing shortest paths to all destination nodes (i.e. dil@s)ave reverse the
direction of all arcs inG and compute the distance$, V « € N to destination iril” (Buriol et al.,

5

2005). Given the shortest paths to each destination, we can calculaibé fifor all OD demand
pairs with destinatiort and finally the total flowg. The cost of a solution is computed according
to (1). Next the local search procedure is presented.

3.2 Local Improvement Procedure

In this section, we describe the local improvement procedure propo8ediol et al. (2005) and
adapted for this problem. Starting from a given solution, the local improveprtenedure analyzes
solutions in the neighborhood of a current solutiesearching for a solution having a smaller cost.
If such a solution exists, then it replaces the current solution. Otherthigesurrent solution is
returned as a local minimum.

The local improvement procedure is incorporated in the genetic algorithnmhimee its ability
to find better-quality solutions with less computational effort. Local improvenweapplied to
each solution generated by the crossover operator. Besides beingtetiomally demanding, the
use of large neighborhoods in a hybrid genetic algorithm can lead to Igsspoiation diversity,
and consequently premature convergence to low-quality local minima. Wedasgribe the local
improvement procedure using a reduced neighborhood.

As before, lef, denote the total load on atce A in the solution defined by the current weight
settingsw. We recall that®,(l,) denotes the routing cost on this arc. The local improvement
procedure examines the effect of increasing the weights of a subfie¢ efcs. These candidate
arcs are selected among those with the highest routing costs and whokeis/eigaller thamu,,,.

To reduce the routing cost of a candidate arc, the procedure attemptsdasadts weight, in case
there is a toll installed on the arc, in order to induce a reduction of its loade Belected arc has no
toll installed, a toll is installed on it with initial weight one, and the procedure atselmincrease
its weight, and a toll is removed from some other link. To select the link to havelitetooved, a
subset of ten tolled arcs are tested in circular order to avoid testing anieeotithout having tested
all tolled arcs. Initially, tolled arcs are tested in order of increasing routirsg, dut once a change
is performed, the new tolled arc is placed in the position occupied by the pestdlled arc, and the
the order can be not respected anymore, since the vector is not desortase the solution did not
improve, the solution returns to the previous state. If this leads to a reductiba overall routing
cost, the change is accepted and the procedure is restarted. Theyseos®ps at a local minimum
when no improvement results from changing the weights of the candidateTdre pseudo-code in
Figure 2 describes the local improvement procedure in detalil.

The proceduréocal | npr ovenent takes as input parameters the current solution defined by
the weightsw, the vecton that indicates which are the tolled arcs, and a parametérich specifies
the maximum number of candidate arcs to be examined at each local improvteregian.

The counter of candidate arcs is initialized in line 2. The loop in lines 2 to 25tigates at most
g selected candidate arcs for weight increase in the current solutiorar® redexes are renumbered
in line 3 such that the arcs are considered in non-increasing ordeuntirigaost.

Arc d’ is selected in line 8. If ara’ has no toll installed on it, we install a toll of weight one on
it (lines 6 and 7), and mark flag that this operation was performed.

The loop in lines 10 to 16 examines all possible weight changes far’ ancthe ranggw,, +
1, we + [(wmax — wer)/4]]. A neighbor solutionv’, keeping all arc weights unchanged except for
arcad/, is built in lines 11 and 12. If the new solutian has a smaller routing cost than the current
solution (test in line 13), then the current solution is updated in line 14;'asainmarked in line 15,
and the arc counteris reset in line 162

The loop in lines 17 to 23 are executed only if the current arc being analiaggreviously not
tolled. In line 18, each arc belonging to the &eof tolled arcs, are tested one by one, always testing
arcs with lower testing costs first. In line 20 we test if the solution is better thacutinent solution
in the beginning of loop in line 2. In case the new solution is better, it is takereasithent solution,
and the for loop stops. If there is no better solution, then the current soistieset to the solution

procedure Local | npr overent (g, w, b)
1 i 1;
2 while 7 < g do
3 Renumber the arc indexes such that
\Ija(la) > \Ija+1(la+1)7va =1,..., ‘Al -1
4 a' +—1; flag « F;
5 if by = F
6 by «— T
7 Wy 1
8 flag —V
9 end if
10 fOr’Lf}:’wa/ +1,...,wa/ + f(w,,,ax—wa/)/éf\ do
11 wh — wq,Va € A,a # d';
12 w;, —
13 if \I/w/,b’ < \ij,b then
14 w — w’;
15 end if
16 end for
17 if flag then
18 for tena’’ € R do
19 byrr — F,
20 i f W,y < Wy p then break
21 end for
22 end if
23 if not I mproved(w, w ') thenrestoreOriginal Sol(a’, a'’, w')
24 i—1+1;
25 end while
endLocal | nprovemrent .

Figure 2: Pseudo-code of procedlwrecal | npr ovenent .

considered in the beginning of loop of line 2 to 25.

The routing costb(w’) associated with the neighbor solutieh must be evaluated in lines 13,
20, and 23. Instead of computing it from scratch, we use fast updategures for recomputing the
shortest path graphs as well as the arc loads. These proceducessidered in the next section of
the paper. Once the new arc loads are known, the total routing cost isutexings the sum of the
individual arc routing costs.

3.3 Dynamic Updates

We denote byG' = (N, A?) the shortest paths graph associated with each destination node
t € T. When the weight of a single aré is changed, the grapfi’ does not have to be recomputed
from scratch. Instead, we update the part of it which is affected by #ightvchange.

In Buriol et al. (2005), dynamic shortest path algorithms were presdotede case of positive
arc weights. In this paper we deal with non-negative weights, i.e. arczeiithor positive weights.

When a toll is installed in an arc, or a toll is removed from an arc, or the weigatolled arc
changes, we used the dynamic shortest paths described in Buriol22@6) o update the shortest
path graph, instead of recomputing it from scratch.

The possibility of having weights with cost zero cost allows for cycles st eero. To avoid
that, we add the valug¢/|E| to the distance for each arc traversed. So, for alternative shortest
paths with cost zero, it is possible to know which has fewer hops compidwéngeal values of their
distances. Since a direct path is always shorter in number of hops ttzdh with cycles, the cycles
are eliminated. Using this rule, all alternative shortest paths of cost kerdonger in number of
hops, are also eliminated. Thus, if a node has multiple shortest path oferosjust one with the
fewest hops will remain.

The loads are also updated, instead of being calculated from scratehappinoach used for
updating the affect part of the graph is presented in Buriol et al. (2024 we use the same

algorithm. Only the part of the graph whose loads were affected by theveight increase is
explored.

4 Computational Results

4.1 The Nine Node Example

To provide an example on how our HGA works, in comparison to the MINTBr@gch, we
discuss the nine node problem generated in Hearn and Ramana (1B8&)bjé€ctive function used
for this problem is based on the BPR data and is the same used to desctildeleggor larger
instances. The associated network h&dinks, and four O-D pairs, namely (1,3), (1,4), (2,3) and
(2,4). Figure 3 displays the optimality gap obtained for this example when @A for different
number of tolls.

75 ‘

70

65

60

optimality gap [%]

55

50 - .

45 ! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18

number of tolls

Figure 3: Number of tolls installed vs. optimality gap for the nine node example.

The objective function value of the optimal solution for this instanc22i§9314 (Hearn and
Ramana, 1988). It is important to note that our HGA does not produceptiveal configuration.
The solution found by the HGA was about the same found by the GA. Thiseidalthe fact, that
in small networks, a system optimal solution can significantly deviate from aal-egpst multi-path
routing.

4.2 Realistic Problems

Some realistic problems where attributes are known in the transportationestitenature have
a particular objective function. We consider for exam@epux Fal | s, North Dakota (LeBlanc
et al., 1975). In this case, the delay function on each arc is knowh,as= ° . 4 lata[l +
Ba(la/cqa)?]. Other instances, such 8sockhol m W nni peg, andBar cel ona are also studied
in this paper, and have a similar delay function for their links. Their attributesmber of nodes,
number of links, number of O-D pairs) are displayed in Table. 1.

4.3 Optimal solutions

The traffic optimization problem (1)—(4) has a convex objective functimhlmear constraints.
Therefore it can, in principle, be solved by standard methods of coopgmization. We imple-
mented a solver for the traffic optimization problem baseadwropt (Dahl and Vandenberghe,
2005), a freely available solver for convex programs.

Table 1: Attributes of realistic problem instances.

Instance Vertices Arcs OD pairs Destinations
Sioux Falls 24 76 528 24
Stockholm 416 962 1623 45
Barcelona 1020 2522 7922 108
Winnipeg 1052 2836 4345 138

Table 2: Optimal solutions.

Instance Optimal value Solution time [s]
Nine node problem 22.539181 <1
Sioux Falls 19.950794 22
Stockholm - > 86400

Our implementation uses a more compact, but equivalent formulation of J1ch repre-
sents the flows of all O-D pairs with the same destination as a single commoditytetinises the
number of variables frorfA| | K| to|A| D, whereD = |{d | (o,d) € K}| is the number of different
destinations. Table 1 shows that this number is a factor bet@2em73 lesser than the number of
O-D pairs.

The solver has been able to produce optimal values only for the two smalémtdes shown
in Table 2. On the next larger instance, Stockholm, the solver did not termvirithia three days
of CPU time. Thus, the results of the GA and HGA for the nine node problehtrenSioux Falls
instance in Fig. 3 and 4 show the optimality gap (in percent above the optimébsdjwhile the
results for the remaining instances are absolute values. Figure 4 shaviar tagufficient number
of installed tolls, the heuristic solution lies withi0% of the SO solution.

4.4 Quality of the HGA solutions

We compared the best solution values and the optimality gap (where positd@jenl by the
HGA and by the GA (HGA without local search). For each instance, vegl ukfferent numbers
of tolled arcs, varying from a few tolled arcs up to tolls on all arcs. Foheaanber of tolled
arcs, we ran the GA and the HGA three times with different random seed®@0 generations,
but at most up to a time limit of one hour. The results represent the averéigese runs. For the
experiments, we used a Intel Pentium Core2 Duo, runnirigdaGHz, with 3 GB of RAM. Each
run of instanceSi oux Fal | s spent in average abo@tminutes of CPU time, while the runs of
instanceSt ockhol mspent about8 minutes. Runs for instancé¥ nni peg andBar cel ona
stopped always by the time limit 60 minutes. The HGA spent betwe& to 70 percent of its time
in the local search.

Figures 4 to 7 show computational results for instardesux Fal | s, St ockhol m and
W nni peg, respectively. On the-axis are presented the number of tolls installed, whileigthe
axis presents the solution value. For each instance, we present resuitsldy the GA and HGA
algorithms.

By the experimental results we can observe that the solution obtained byGhAeadd GA
algorithms are competitive. For instancgisoux Fal | s andSt ockhol mthe HGA presented
better results, while for instanc®¥$ nni peg andBar cel ona the GA presented better solutions.

For most of the instances, the quality of the results improves with larger toll Ble¢ssolution
value almost decreases monotonically with an increasing number of tolls, wigp#on of instance
W nni peg (instanceBar cel ona presented this behavior only for the HGA algorithm).

Given that in almost all cases the solution is better for a larger number of tolleg one can
choose the optimal trade-off between the number of tolled links and the quititg eolution.

250

GA ——
HGA--x---

200 N

150

Optimality gap [%]

100 % \\

10 20 30 40 50 60 70 80
Number of tolls

Figure 4: Number of tolls installed vs. quality of results, for the GA and HGAowitlgms, for
instanceSi oux Fal | s. The number of installed tolls tested varies from 10 up to 75, increasing
five by five.

5 Conclusions

In the present work, we have adapted the evolutionary algorithm frorwolBat al. (2005) to a
transportation problem. We tested both the genetic algorithm and the hybet@algorithm. By
means of computing a solution that minimizes the mean delay of the system, we delabthiS0O
andUE problems simultaneously. As we have applied a heuristic to solve this problem jshe
guarantee that the system optimal solution is achieved. Instead, an ¢ficletion for the overall
transportation system is obtained. We show the genetic algorithm as well aylitid genetic
algorithm obtain solutions of good quality. For tBeoux Fal | s we were able to confirm an
optimality gap of less thah0%. Solutions for other three large instances were presented, showing
the ability of the GA and HGA algorithms to deal with large instances.

6 Acknowledgements

Luciana S. Buriol and Marcus Ritt have received support from tleziBan government (CNPQ)
under project no. 481256/2008-3.

References

Ahuja, R. K., Magnanti, T. L. and Orlin., J. B. (199etwork Flows — theory, algorithms, and applicatipns
Prentice Hall.

Arnott, R. and Small, K. (1994). The economics of traffic cestipn,American Scientis32: 446—-455.

Bai, L. (2004).Computational methods for toll pricing modelhD thesis, University of Florida, Gainesville,
Florida.

Bai, L., Hearn, D. W. and Lawphongpanich, S. (2006). Relarddets for congestion pricing problenis,
S. L. D.W. Hearn and M. Smith (edd)lathematical and Computational Models for Congestion @ivag,
Springer.

Bean, J. C. (1994). Genetic algorithms and random keys tpresecing and optimizatio®RSA J. on Comp.
6: 154-160.

10

700 T
GA —+—

X HGA——%-—

600 -
500 \ 4

400

Solution value

300

200

100
0 100 200 300 400 500 600 700 800 900 1000

Number of tolls

Figure 5: Number of tolls installed vs. quality of results, for the GA and HGAowitlgms, for
instanceSt ockhol m The number of installed tolls tested were 10, 100, 300, 500, 700, and 900

Buriol, L. S., Resende, M. G. C., Ribiero, C. C. and Thorup,(BQ05). A hybrid genetic algorithm for the
weight setting problem in OSPF/IS-IS routindetworks46: 36—-56.

Dahl and Vandenberghe (2005). CVXOPT.
URL: http://abel.ee.ucla.edu/cvxopt

Dial, R. B. (1999a). Minimal-revenue congestion pricingtgaA fast algorithm for the single origin case,
Transportation Research Part 8; 189-202.

Dial, R. B. (1999b). Minimal-revenue congestion pricingtdé An efficient algorithm for the general case,
Transportation Research Part 8% 645-665.

Ericsson, M., Resende, M. G. C. and Pardalos, P. M. (2002).eretic algorithm for the weight setting
problem in OSPF routinglournal of Combinatorial Optimizatiof: 299—2002.

Florian, M. and Hearn, D. (1995). Network equilibrium malahd algorithmsin M. O. Ball et al. (eds),
Network RoutingElsevier Science, pp. 485-550.

Hearn, D. W. and Ramana, M. (198&olving congestion toll pricing model&quilibrium and Advances in
Transportation Modeling, North-Holland, New York.

Hearn, D. W. and Ribera, J. (1980). Bounded flow equilibrignpénalty methods?roceedings of the IEEE
International Conference on Circuits and Comput&rd 62—-164.

Kim, D. and Pardalos, P. (1999). A solution approach to thedfigharge network flow problem using a
dynamic slope scaling proceduf@perations Research Lette2g: 195-203.

Lawphongpanich, S. and Hearn, D. W. (2004). An MPEC apprt@askcond-best toll pricinglathematical
Programming, Series Bp. 33-55.

LeBlanc, L. J., Morlok, E. K., and Pierskalla, W. P. (1975 éfficient approach to solving the road network
equilibrium traffic assignment probleftansportation Research 309-318.

Shepherd, S. and Sumalee, S. (2004). A genetic algorithedbagsproach to optimal toll level and location
problemsNetworks and Spatial Economid§): 161—-179.

11

45
GA —+——
HGA---%-—-
40\ A
o 35
]
E
>
c
S -3
5 N
9 30 e Treess
‘\‘ //' —_ \x\\
/ \\\\
25 \{
20
0 500 1000 1500 2000 2500 3000

Number of tolls

Figure 6: Number of tolls installed vs. quality of results, for the GA and HG/Aitlyms, for
instanceW nni peg. The number of installed tolls tested were 10, 500, 1000, 1500, 2000, 250
and 2800.

24 :
GA —+—

HGA---X-—-
22 |
2P\
[
3
]
>
5 18
3
3
[7]
16
14
e N
””””””””” X
12
0 200 400 600 800 1000 1200 1400 1600

Number of tolls

Figure 7: Number of tolls installed vs. quality of results, for the GA and HG/Aowitlgms, for
instanceBar cel ona. The number of installed tolls tested were 10, 500, 1000, 1500, 2000, and
2500.

12

